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Résumé

On étudie grâce à une méthode spectrale la turbulence axisymétrique en déclin, en

géométrie cylindrique avec conditions aux limites périodiques dans la direction axiale.

Les fonctions de base de notre étude sont des modes propres, orthonormaux, du rota-

tionnel (fonctions de Chandrasekhar-Kendall). On observe la formation d’états auto-

organisés quasi-stationnaires.

Abstract

A spectral-method is used to study decaying axisymmetric Navier-Stokes turbulence

inside a cylindrical geometry with vertically periodic boundary condition. The trial

functions are orthonormal eigenfunctions of the curl (Chandrasekhar-Kendall func-

tions). The formation of quasi-stationary self-organized states is observed.

Key words :axisymmetric turbulence, spectral-method, Chandrasekhar-

Kendall

1 Introduction

Whereas for 2D turbulence, statistical mechanics has been success-

fully applied to predict its self-organization [1, 2], such methods have

not been able to successfully predict the dynamics of three-dimensional

flows. Recently, progress has been made by studying the statistical me-

chanics of the axisymmetric Euler-Beltrami flows [3, 4, 5, 6], a case

which is intermediate between 2D and 3D flows. The investigations have

revealed characteristics of the thermodynamical equilibrium states con-

sidering a limited number of invariants (total Helicity H , total angular

momentum I). In particular, it was shown that these quasi-stationary

states (QSS) can be robust and significantly influence the dynamics of

the flow.
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So far, these results and predictions were obtained from statistical

considerations, without taking into account the momentum equations.

Whereas in a statistical sense axisymmetry is observed in a number of

academical flows, instantaneously turbulent flows are never axisymmet-

ric. In the present contribution we study the evolution of axi-symmetric

turbulence by direct numerical simulation. Based on an existing numer-

ical method applied to 2D turbulence [7, 8] and 3D magnetohydrody-

namics [9, 10], we have modified and developed a spectral-method for

axisymmetric Navier-Stokes turbulence, in a cylindrical geometry. The

velocity field v is expanded as a Galerkin expansion in a set of orthonor-

mal functions, in which the trial function is the Chandrasekhar-Kendall

orthonormal eigenfunction of the curl [11]. Furtherly, the field is consid-

ered periodic in the vertical direction and has a ’no-penetration’ boundary

condition in the radial direction.

In Section 2, we first describe the computational method. As the

method is entirely spectral, the Reynolds numbers are limited as com-

pared to pseudospectral methods in a fully periodic case.

In Section 3, we show the results of the computation of axisymmetric

flows at two different Reynolds numbers. As demonstrated by the former

studies [3], the formation of coherent structures is observed, along with

the approximate conservation of certain invariants associated with these

QSS.

In Section 4, we summarize the results and propose perspectives.

2 Basics for the Computational Method

We begin from the Navier-Stokes equation in cylindrical coordinates

(r,θ,z),
∂v

∂t
= v × ω −∇p+ ν∇2

v, (1)

and,

∇ · v = 0. (2)

In Eq.(1), v is the velocity field, ω = ∇× v is the vorticity. p is the

pressure divided by density, which can be obtained by taking the diver-

gence of Eq.(1) and solving the Poisson equation which results when we

consider the incompressible case. Nevertheless, as we will see afterward,

axisymmetry will make p eliminable by projecting on a divergence-free

orthonormal set of base functions, under a Galerkin approximation. Vis-

cosity ν is taken to be dimensionless. The azimuthal derivatives ∂θ = 0
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as we are considering an axisymmetric case.

The spectral technique which is implemented involves expanding v in

terms of Chandrasekhar-Kendall functions of the curl [11]:

v(r, z, t) =
∑
nq

ξnq(t)Anq(r, z), (3)

ω(r, z, t) =
∑
nq

λnqξnq(t)Anq(r, z), (4)

Here, ξnq(t) are scalar amplitudes(expansion coefficients) which depend

on time.

The Chandrasekhar-Kendall functions: Anq are defined by

Anq = I
−

1

2

nq [λnq∇ψnq × ez +∇× (∇ψnq × ez)], (5)

in a set of cylindrical orthonormal unit vectors (er,eθ,ez). The scalar

function ψnq is a solution of the Helmholtz equation, (∇2 + λ2)ψ = 0.

After the derivation, using that in our case the field is taken periodic in

the vertical direction, and ∂θ = 0, the explicit form of ψnq turns out to be

ψnq = J0(γnqr)e
−iknz. (6)

Here J0 is a Bessel function of the first kind of order 0. The wave

number kn = 2πn/Lz, where Lz is the length in the axial direction, n =
1,±1,±2, . . ., q = 1, 2, 3, . . . corresponds to the values of λnq, λ

2

nq =

γ2nq + k2n. As the velocity v is always a real number, and considering the

conjugated expansion coefficients ξnq(t), here λnq are determined to be

always positive. Inq is a normalization constant obtained by

1

V

∫
Anq ·A

∗

nqd
3x = 1, (7)

where the volume integration is within the interior of the cylinder 0 ≤

r < a, 0 ≤ z ≤ Lz, and V = πa2Lz.

That leaves the γnq to be specified. When kn 6= 0, by the no penetra-

tion boundary conditions, Anq · er(r = a) = 0, it gives

J1(γnqa) = 0, (8)

which determines an infinite sequence of positive γnq, and the associated

λnq.
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When k = 0, there is no radial component, and some decisions are

necessary. One convenient choice [9] is to demand the A0q to be "flux-

less" , which is achieved by using
∫
ez · A0qd

2x = 0 to determine the

γ0q and λ0q. After simple integration, it also leads to Eq.(8). Hence, γnqa
are taken as the zeros of Bessel function J1. The normalization integral

Inq is

Inq = 2γ2nqλ
2

nqJ
2

0
(γnqa). (9)

All these choices allow us to show the orthonormality

1

V

∫
A

n
′

q
′ ·A∗

n
′′

q
′′d3x = δn′

n
′′ · δq′q′′ . (10)

Upon substitution of the expansion Eq.(3), Eq.(4) into Eq.(1), and then

taking inner products one at a time with the individual Anq, we find

∂

∂t
ξnq =

1

V

∫
V

A
∗

nq · [(v × ω)−∇p+ ν∇2
v]. (11)

Under a Galerkin approximation [12], we truncate the expansion and

only retain a finite number of modes. As the result, we convert Eq.(1)

into a set of ordinary differential equations for the expansion coefficient.

Since (∇p)θ = 0 by axisymmetry, and the integration 1

V

∫
V
A

∗

nq·(−∇p) =
0, we find that in Eq.(11), p vanishes:

∂

∂t
ξnq + νλ2nqξnq =

∑
n
′
q
′

∑
n
′′
q
′′

λn′′
q
′′ξn′

q
′ ξn′′

q
′′ ·

1

V

∫
V

A
∗

nq · (An
′

q
′ ×A

n
′′

q
′′ )d3x.

(12)

Eqs.(12) are solved numerically by a 4th-order Runge-Kutta method,

with a = Lz = 2π. The convolution in 3D is directly evaluated since a

fast algorithm like the fast-Fourier-transform does not exist for the Bessel

functions. As a first check, the code is tested for the ideal case in which

ν = 0, and it is observed that the total energy is well conserved up to

at least dE
dt

≤ 10−9 using dimensionless time units. The required reso-

lution for our viscid computations was established by careful numerical

convergence checks, increasing the resolution until all invariants evolved

independently of the resolution.

3 Computational Results
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We summarize the results of our simulations for ν = 0.01 (Re ≈ 80
at t = 0) with nmax = 10 and qmax = 40, and ν = 0.001 (Re ≈ 800
at t = 0) with nmax = 25 and qmax = 60. The same initial condition

is used for these 2 runs. The initial conditions is generated by defining

the energy of a small number of large-scale modes with a random phase.

In Fig.(1) the initial kz − q spectrum is shown. The Reynolds number is

here based on the radial integral length scale and the r.m.s of velocity.

The time histories of total energy E, helicity H and angular momen-

tum I are shown in Fig.(2). Time is normalized by the integral timescale

defined as τ = a
ur.m.s

. The initial value of E, H or I is the same for

these 2 runs, since we used the same initial condition. A clear difference

between the simulations is that at Re ≈ 80 all invariants decay rapidly

to zero, whereas this is not the case for Re ≈ 800, where the quantities

evolve to an approximately constant value. To explain the phenomenol-

ogy behind this behavior, we show in Fig.(3) the contribution of the 4

modes wihich are dominating the angular momentum. It is observed that

for the run at Re ≈ 800 an important increase of angular momentum

is observed for mode L(0, 1). This increase is due to nonlinear mode

coupling. For longer times this mode dominates the dynamics since the

viscous dissipation acts only weakly on this mode. Further verification of

this ’selective-decay’ scenario will be presented in a future paper. Fig.(4)

and Fig.(5) show the evolution of the stream function and vorticity in the

r − z plane. A formation of large coherent-structures is observed, es-

pecially for the stream function. These observations are in agreement

with the predictions of the statistical mechanics, already at the moderate

Reynolds numbers used in the present investigation.

4 Conclusion and perspectives

In summary, a spectral-method based on Galerkin approximation is

described and applied to calculate decaying axisymmetric Navier-Stokes

turbulence. So far we have obtained results which seem to agree, at least

qualitatively, with the results of statistical mechanics. In perspective, we

will perform a more quantitative comparison with the theoretical stud-

ies and we will investigate the influence of the Reynolds number and of

the invariants (E, I ,H) values on the results by increasing the resolution

and the Reynolds number. Most importantly, we hope to validate the pre-

dictions of theory [3], thereby assessing the validity of the assumptions

to predict the evolution of viscous axisymmetric turbulence by statistical



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

t=0s

 0  1  2  3  4  5  6  7

k

 1

 2

 3

 4

 5

 6

 7

q

 0.0001

 0.001

 0.01

 0.1

 1

Figure 1: Initial kz − q spectral energy distribution.
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Figure 2: Time histories of the kinetic energy E, angular momentum I and Helicity H ,

normalized to their initial values. Top: ν = 0.01; bottom: ν = 0.001.
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Figure 3: Modal angular momenta versus time normalized by the integral time. Top:

ν = 0.01; bottom: ν = 0.001.

Figure 4: Evolution of Stream Function and Vorticity in the r − z plane, ν = 0.01.
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Figure 5: Evolution of Stream Function and Vorticity in the r − z plane, ν = 0.001.

mechanics.

References

[1] R. Robert, and J. Sommeria, Statistical equilibrium states for two-

dimensional flows, Journal of Fluid Mechanics 229 (1991): 291-310.

[2] J. Miller, Statistical mechanics of Euler equations in two dimensions,

Physical review letters 65.17 (1990): 2137.

[3] A. Naso, S. Thalabard, G. Collette, P. H. Chavanis and B. Dubrulle,

Statistical mechanics of Beltrami flows in axisymmetric geome-

try: Equilibria and bifurcations, Journal of Statistical Mechanics.

P06019 (2010).

[4] A. Naso, R. Monchaux, P. H. Chavanis and B. Dubrulle, Statistical

mechanics of Beltrami flows in axisymmetric geometry: Theory re-

examined, Physical Review E 81, 066318 (2010).

[5] N. Leprovost, B. Dubrulle, and P. H. Chavanis, Dynamics and ther-

modynamics of axisymmetric flows: Theory, Physical Review E 73.4

(2006): 046308.



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

[6] S. Thalabard, B. Dubrulle, and F. Bouchet, Statistical mechanics of

the 3D axisymmetric Euler equations in a Taylor–Couette geome-

try, Journal of Statistical Mechanics: Theory and Experiment 2014.1

(2014): P01005.

[7] S. Li, and D. Montgomery, Decaying two-dimensional turbulence

with rigid walls, Physics Letters A 218.3 (1996): 281-291.

[8] S. Li, D. Montgomery, and W. B. Jones, Two-dimensional turbulence

with rigid circular walls, Theoretical and computational fluid dynam-

ics 9.3-4 (1997): 167-181.

[9] H. Chen, X. Shan, and D. Montgomery, Galerkin approximations

for dissipative magnetohydrodynamics, Physical Review A 42.10

(1990): 6158.

[10] X. Shan, D. Montgomery, and H. Chen, Nonlinear magnetohy-

drodynamics by Galerkin-method computation, Physical Review A

44.10 (1991): 6800.

[11] S. Chandrasekhar, and P. C. Kendall, On Force-Free Magnetic

Fields, The Astrophysical Journal 126 (1957): 457.

[12] C. Canuto, et al. Spectral methods in fluid dynamics, No. CMCS-

BOOK-2009-021. Springer, 1988.


