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Résumé. Nous présentons une nouvelle approche pour estimer le champ de la fonction
d’étalement du point d’un télescope optique en construisant un modèle semi-paramétrique
de son erreur de front d’onde. Cette méthode est particulièrement avantageuse car elle
ne nécessite pas d’observations de calibration pour récupérer l’erreur de front d’onde et
elle prend naturellement en compte la chromaticité du système optique. Le modèle est
différentiable de bout en bout et s’appuie sur un opérateur de diffraction qui nous permet
de calculer les fonction d’étalement du point monochromatiques à partir des informations
du front d’onde.

Mots-clés. Modélisation de la Fonction d’Étalement du Point, Traitement d’Images,
Optique, Lentille gravitationnelle Faible.

Abstract. We introduce a new approach to estimate the point spread function (PSF)
field of an optical telescope by building a semi-parametric model of its wavefront error.
This method is particularly advantageous because it does not require calibration observa-
tions to recover the wavefront error and it naturally takes into account the chromaticity
of the optical system. The model is end-to-end differentiable and relies on a diffraction
operator that allows us to compute monochromatic PSFs from the wavefront information.

Keywords. Point Spread Function Modelling, Image Processing, Optics, Weak Lens-
ing.

1 Introduction

Future cosmological surveys will require to measure the shape of galaxies with high ac-
curacy. However, the optical instruments used inevitably affect the observations with the
point spread function (PSF). If we do not correct the images for the PSF, we will have
significantly biased shape measurements resulting in biased cosmological analyses. Thus,
the crucial importance of building a reliable and precise PSF model that allows us to
take into account the PSF effects in the shape measurement. Next-generation imaging
surveys, like the Euclid space mission [14], are pushing the limits of weak gravitational
lensing experiments [10] providing the motivation of this study.

There exist two main approaches to PSF modelling, parametric and non-parametric.
The first one consists in building an optical model of the telescope. The model is described
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by a reduced number of parameters that express a high variability. This approach requires
a good knowledge of the optical system physics and normally is based on the reconstruction
of the wavefront error (WFE). The recovery of the WFE from in-focus images is a very
degenerate problem with respect to the reduced number of parameters used. This explains
the need of calibration information like observations of out-of-focus stars that help to break
this degeneracy. The model’s parameters can be modified slightly to fit the observation
of in-focus stars, but the core of the model is defined previous to the observations. These
models are usually reserved for space missions as the randomness added by the atmosphere
would make an approach of this type unpractical. The most known example is the Tiny
Tim algorithm for the Hubble space telescope [13]. The second approach relies in imaging-
data to build the model with a minimal use of a priori information. The observed in-focus
stars are considered to be samples of PSF field in the field-of-view (FoV) and are used to
constrain the model. These techniques are generally based on learning features of the PSF
field with a dimensionality reduction method. Then followed by an interpolation mtehod
to recover the PSF at galaxy positions [9, 5, 3, 15, 8]. While the parametric models are
capable of generating chromatic PSF models with complex shapes they are prone to have
considerable errors if there is a mismatch between the model and the observations [7].
The non-parametric models do not suffer from the same issue as they are build on the
observations. However, they experience difficulties to model the PSF chromaticity and
complex PSF variations in the FoV.

In this work we present a new family of PSF modelling methods that intend to bridge
the gap between the two classical approaches. We propose to build a semi-parametric
model of the WFE by using an end-to-end differentiable diffraction operator. Our model
is able to account for the PSF chromaticity as well as complex variations int he FoV
without relying on the a priori information of the optical system. The non-parametric
part of the WFE is able to correct for the mismatches of the parametric part and help
to regularise the inverse problem of recovering the WFE from in-focus observations. We
take advantage of the automatic differentiation provided by frameworks like Tensorflow
[1] to build our model. As our model is completely differentiable, it is well adapted for
gradient-based optimisation techniques. We expect that our model can serve as building
block for novel PSF modelling methods that can profit from the power of deep neural
networks (DNN) in a more physics-motivated environment.

2 Wavefront PSF modelling

Let us define the PSF field for a specific image exposure as a function that inputs a
position in the instrument’s focal plane (FP) coordinates and a specific wavelength, and
outputs a monochromatic PSF. We denote this function H : FP×R+ → I, where FP ∈ R2

is a FP position, and I ∈ RN×N is a square PSF postage stamp. PSF modelling consists
in building an estimator, Ĥ, of the PSF field from observations at a set of FP positions
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{ui}i=1,...,mobs . Then, use the model to output monochromatic PSFs at another set of
target FP positions {uj}j=1,...,mtarget . The image Hλ

uj
corresponds to the PSF at location

uj and wavelength λ. We can model a polychromatic object observation as

Ḡuj =

∫
B(λ) (Gλ

uj
∗ Hλ

uj
) dλ , (1)

where Ḡuj is the polychromatic observation of the object Gλ
uj

convolved with the PSF

Hλ
uj

, and B(λ) ∈ R is an indicator function of the instrument’s passband. To model the
PSF we consider certain star observations as point sources, hence samples of the PSF
field. Therefore, we use them to constrain the PSF model Ĥ. The star observations can
be approximated as

H̄ui ≈
Nλ∑
b=1

Sui(λb) Hλb
ui
, (2)

where we discretize the integral in (1) with Nλ wavelength bins, Sui(λb) ∈ R+ is the
normalised Spectral Energy Distribution (SED) of the star at position ui and wavelength
λb, and we approximate B(λ) as being an ideal band-pass filter in the instrument’s wave-
length range. In practice, the problem’s inputs are a set of positions {ui}i=1,...,mobs with
their SED and the corresponding observed PSF postage stamps. We have to use these
inputs to constrain our PSF model that we define as follows

Ĥλ
ui
∝ Dθ

{
P � exp

[
2πi

(
Φui

λ
+ Cλ

ui

)]}
, (3)

where � is the Hadamard or element-wise product, Dθ : Rp×p → RN×N denotes the
diffraction operator with telescope-specific parameters θ, and P ∈ [0, 1]p×p and Ĥλ

ui
∈

RN×N are the pupil function and the PSF postage stamp at wavelength λ and FP position
ui, respectively. The pupil function represents the obscurations encountered in the pupil
plane, where our wavefront model is defined. The model definition is proportional as we
need to rescale it so that its flux, the sum of the pixels in the postage stamp, is one. We
base the diffraction operator on Fraunhofer’s approximation [6] that allow us to have a
rapid calculation based on the Fast Fourier Transform (FFT) algorithm. The operator is
proportional to the squared absolute value of the FFT of the WFE. We take care of the
variable sampling in the WFE as a function of wavelength by using a variable zero-padding
of the estimated WFE before applying the FFT.

The parametric model, Φui , is based on a weighted sum of Zernike polynomials [17].
An interesting property of these polynomials is that they are orthogonal in the unit disk
making them well adapted to describe mirror aberrations. Our model reads

Φui [x, y] =

NZ∑
j=1

aj,uiZj[x, y] , (4)
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where aj,ui ∈ R corresponds to the coefficient for the Zernike polynomial of Noll’s single-
index j [17], Zj ∈ Rp×p to the disk of the Zernike polynomial of index j, and NZ is the
maximum index considered. The [x, y] are coordinates of the pupil plane and are not to
be confused with the FP coordinates ui. To model the variations on the FP we define
aj,ui as a polynomial of the FP positions. Each coefficient with Zernike index j has an
independent position polynomial of maximum order dP . For example, a maximum degree
of 1 gives us aj,ui = cj0 + cj1ui[0] + cj2ui[1], where ui[0] and ui[1] are the first and the second
coordinates of the FP position, respectively. The number of parameters of Φ to estimate
is NZ(dP + 1)(dP + 2)/2. The chromatic variation of the parametric model is encoded in
the λ divisor of Φui in (3) which corresponds to the natural chromatic variations due to
diffraction.

The non-parametric model, Cλ
ui

, is defined with a simple, but successful, model in this
work. We use a matrix factorisation scheme where each FP position is a weighted sum
of learned WFE features. The weights are constructed as polynomials of the FP position
with a maximum degree dNP providing r coefficients. The model reads

Cλ
ui

=
1

λ
(Πui ×1 S)i2,i3 =

1

λ

r∑
i1=1

(Πui)i1Si1,i2,i3 , (5)

where Cλ
ui
∈ Rp×p, ×1 is the 1-mode product of a tensor with a vector [11], S ∈ Rr×p×p

is the tensor containing r wavefront feature images, and Πui ∈ R1×r contains the position
polynomials. For example, if we set dNP to 1 we obtain Πui = [1, ui[0], ui[1]]. For sim-
plicity, we only consider chromatic variations due to diffraction but the model allows to
include more complex models.

3 Numerical experiment

3.1 Data

We simulate a polychromatic PSF field using the proposed model seen in (3) with its
non-parametric part set to zero. The optical parameters are taken from Euclid’s visible
instrument characteristics [14]. We draw 200 uniformly distributed positions in the square
FoV, where 70% are used for training the model and the rest for testing it. Each star is
randomly assigned one of 13 stellar SED from the Pickles library [18] as done in [19, §5.3].
The maximum order of Zernike polynomial, NZ , is set to 45, the number of wavelength
bins, Nλ, to 20, the polynomial maximum degree, dP , to 2, and the dimensions p and N to
256 and 32, respectively. The instrument’s passband is considered as ideal in the range of
550 nm to 900 nm. We draw random values for the coefficients of the Zernike polynomials
with the constraint that of having a RMS value of 0.1 µm to limit the optical system’s
aberrations. This allows to have a randomly varying PSF field. Finally, we add a random
white Gaussian noise to each training star so that each one has a random SNR value
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in the range [10, 70]. We use an Euclid-like obscuration that is composed of a circular
centred obscuration with three supporting arms that can be seen in the study [20].

3.2 Experience

The PSF field modelling problem consists in estimating the simulated test stars having
as input the noisy training stars. The SED information of both is available. We train and
compare three models: i) Parametric model with NZ = 15 and dP = 2; ii) Parametric
model with NZ = 45 and dP = 2; iii) Semi-parametric model with NZ = 15, dP = 2,
and dNP = 3. The objective function used to train the model is the Mean Square Error
(MSE) between the observed stars and the PSF model reconstruction. All the models use
a gradient-based optimization method based on the Rectified Adam optimiser [16] with
a batch size of 16. Both parametric models use a learning rate of 10−2 and a number of
epochs of 30. For the semi-parametric model, we first train the parametric part using a
learning rate of 10−2 for 15 epochs with the non-parametric part set to zero. Then we
fix the parametric part and start to train the non-parametric part using a learning rate
of 1−1 during 100 epochs. The evaluation metric we use is the root mean square error
(RMSE) between the test stars and the model estimations. Let us point out that our
implementation follows the Tensorflow 2.1 framework [1] but it is used as an automatic
differentiation library to perform optimisation.

3.3 Results

Table 1 presents the quantitative results. We see that the parametric model with NZ = 15
is the worst performing, as expected, due to a misspecification of the parametric model
with respect to the underlying data model. The parametric model with NZ = 45 has a
perfect match with the data model, and we observe a 35% performance gain with respect
to the previous one. However, the interesting part is that the semi-parametric model with
a wrongly-specified parametric part is able to obtain the best performance. Thanks to
its non-parametric part the proposed model can recover the performance gap between
the two parametric models, and even go beyond by obtaining a gain of almost 65% with
respect to the parametric NZ = 45 model.

The estimation of the Zernike coefficients using in-focus stars is a difficult problem,
known to be ill-posed, and possibly presents multi-modalities. Even if we use all the
training stars in our data-set we are prone to get stuck at a local minimum due to the
non-convexity of the problem. The non-parametric part of the model acts as a regularizer
and helps to escape from local minima by providing an easier optimization landscape.
This behaviour has been observed in the optimization of overparametrized DNN and is
currently a subject of study [2]. The metrics are calculated on the test stars that are
not available for the training of the model, showing that the non-parametric part is not
over-fitting the training stars.
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Model RMSE Relative RMSE

Parametric NZ = 15 8.69× 10−4 (7.90× 10−4) 11.4% (9.9%)
Parametric NZ = 45 5.59× 10−4(4.95× 10−4) 7.3% (6.2%)
Semi-parametric NZ = 15, dNP = 3 2.03× 10−4 (1.71× 10−4) 2.6% (2.1%)

Table 1: Pixel RMSE results on the test dataset, in parenthesis for the train dataset, for
the different PSF models.

4 Discussion and conclusions

We have presented the building blocks that open the way to a brand-new family of PSF
models that aims to improve the two classical families, which are the parametric and the
non-parametric methods. The proposed semi-parametric approach allows us to recon-
struct the wavefront error and derive the chromatic point spread function at any position
in the field-of-view. One of the novelties of our approach is that it uses only in-focus
stars to characterise the wavefront error. This is in contrast with other wavefront-based
models [4, 12] that need out-of-focus stars, sometimes referred as donuts, to estimate its
parameters. Nonetheless, our model could also profit from these rich observations if they
are available.

The proposed PSF model provides a way to estimate the PSF field taking into account
the PSF chromaticity and field-of-view variations. The semi-parametric approach is able
to learn features that a parametric model cannot capture. The non-parametric part of
the model corrects for a mismatch between the parametric model and the underlying
observed data model. It also helps to regularize the challenging ill-posed inverse problem
of estimating the wavefront error from in-focus stars. We show on a realistic data-set
that it can even improve the results over a perfectly specified parametric model and that
the model is not over-fitting the testing data. Our model is based on an end-to-end
differentiable approach which allows for gradient-based optimization techniques which, in
practice, give good results with the semi-parametric approach. Its framework allows us to
easily incorporate known physical models, while the non-parametric part learns to correct
for its imperfections. In this way, we can continuously incorporate physical knowledge to
the model.
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