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Abstract

Homogenization theory is increasingly applied to coupled phenomena, i.e. when different physical

processes have to be modeled in order to correctly describe a system. The reason is that this

methodology provides the means to propose a consistent morphological description of the system

irrespective of the different phenomena involved, which is deemed to be physically sound. Here, we

perform numerical simulations of both mechanical and transport processes in a linear context, so

as to identify the best homogenization scheme out of five classical ones. The goal is to eventually

apply the result to cracked rocks, which present complex structures, but this study is restricted

to the case of parallel disks in an otherwise isotropic matrix. Since cracks in rocks present a

vanishing stiffness but an infinite conductivity with respect to the rock, both types of contrast will

be considered, and the reverse cases as well (infinite stiffness and vanishing conductivity) for the

sake of completeness.

After detailing the motivations behind this work, the theoretical background necessary to

derive all the analytical estimates is laid down. The derivations given are somewhat improved

over previously published ones, and the framework is extended to deal with vanishing as well as

infinite contrast. The methodology is explained for the 3D numerical simulations, and the results

are presented and discussed. Two different numerical strategies have been used: an FEM software

and an FFT-based code. This allows to lessen potential biases of a particular method, and increases

the credibility of the results. All in all, the differential scheme is identified as the best fit, which

confirms the results of previous studies, but this time in several different cases.

Keywords: Finite Element Method, Fast Fourier Transforms, Heterogeneous media, Cracked
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media, Linear elasticity, Conduction

1. Introduction

In many applications related to cracked rocks and soils, such as oil extraction, CO2 storage and

radioactive waste storage, there is a deep connection between the mechanical state of the system

and its fluid transport properties. This coupling comes in several forms: increased hydraulic

conductivity as a consequence of the mode I nucleation and propagation of cracks, further increase

caused by high pressures in the crack network, decrease of said conductivity due to clogging

or mechanical closure of the cracks, etc. . . For these applications, it is necessary to possess a

mathematical framework that takes this coupling into account. The field of micromechanics

provides a way to introduce the hydromechanical coupling in a natural way, since the transport

properties may be calculated from the knowledge of the geometrical evolution of the cracks, which

can be obtained from the strain concentration rule. This approach has been used in recent years by

a number of authors, such as Dormieux and Kondo [14], Barthelemy [4], Lemarchand et al. [29]

and Levasseur et al. [30] among others. Most of the previous efforts were focused on the increased

hydraulic conductivity caused by the propagation and/or opening of cracks.

On the other hand, the phenomenon of conductivity reduction as a consequence of mechanical

loading or swelling of the rock has also received a lot of attention in the past two decades. This

so-called "self-sealing" of swelling claystones is of great importance in the context of radioactive

waste storage, since it is expected to play a major role in the safety assessment of deep repositories.

As a consequence, a number of experiments have been carried out to investigate the conditions of

occurrence of this process (see Blümling et al. [5], Ghayaza et al. [21], Davy et al. [12], Zhang [38]

and Zhang [39] for examples of experiments and Bock et al. [8] for an overview of the investigations

up until 2010). However, few attempts at modeling this phenomenon have been made up to now.

Bluthe et al. [6] proposed to tackle this question at the scale of a drift using a micromechanical

approach in a completely linear context, i.e. the cracks are assumed to remain open. This work
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was based on the model of a cracked rock introduced in Deude et al. [13], where a Mori-Tanaka

scheme was used for the homogenization procedure. At this stage, the micromechanical analysis

was limited to the mechanical behavior of the rock, not its transport properties, so that only the

geometrical evolution of said rocks was analyzed. Moreover, the basic motivation for sticking with

the Mori-Tanaka scheme was its ability to account for some interaction between the cracks with a

quite simple implementation strategy. In other words, no heed was paid to the applicability of this

scheme in the present context.

The aim of this paper is precisely to remedy these shortcomings by extending the microme-

chanical analysis to the hydraulic conductivity of the rock, and by assessing the performance of

five classical micromechanical estimates in comparison with numerical simulations. The idea is

to confirm previous results obtained in the context of linear elasticity (Bluthe et al. [7]), and to see

if the same scheme is selected in the case of linear conduction. This will allow for a consistent

hydromechanical representation of the cracked rock at the scale of the structure in an upcoming

contribution. Note that this approach however does not take into account the coupling with the

fluid pressure through the Biot’s coefficient. One of the key points in this context is that from a

mechanical point of view, a crack can be treated as an elastic medium with vanishing stiffness,

while from a fluid transport point of view, the conductivity of a crack is much larger than that

of the surrounding rock. As a consequence, two different mathematical treatments are required,

although they are analogous in every respect. Numerically speaking, the effective conductivity of

cracked samples was more delicate to assess with one of the numerical methods (FFT, see below),

because the computations did not converge easily. In order to show that this was merely due to the

fact that the contrasts are reversed (vanishing stiffness VS infinite conductivity), and not because

of an inherent difference between linear elasticity and conduction, the case of flat rigid inclusions

and that of flat insulating inclusions were also investigated. This allowed for a more general and

thorough investigation of the effective behavior of composite media with flat inclusions and infinite

contrast.

To do so, two different numerical methods were used, namely the Finite Element Method (FEM)
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with Cast3M1, and the Fast Fourier Transform (FFT) approach with AMITEX_FFTP2, so as to

check for possible biases of using only one particular numerical method. FEM tools are ubiquitous

nowadays in research and engineering, which is reflected in the literature by the fact that most of

the recent comparisons between analytical estimates and numerical simulations for cracked media

were based on FEM. Among these contributions, one can cite Dahm and Becker [11] and Charpin

and Ehrlacher [10] in 2D, and Grechka [22], Vasylevskyi et al. [35] and Bluthe et al. [7] in 3D

(see Bluthe et al. [7] for more details on these papers). The previously mentioned contributions,

as well as others based on different techniques, showed the good performance of the differential

scheme in the case of linear elasticity. Some papers claimed a better fit of the dilute scheme, but

as explained in Bluthe et al. [7], these authors used a stress-based estimate without consideration

of the fact that the dilute scheme only applies for small values of the crack density parameter.

As a consequence, these estimates of the out-of-plane elastic moduli were actually Mori-Tanaka

estimates instead of dilute estimates. More recently, softwares with algorithms based on the Fast

Fourier Transform (FFT), originally proposed by Moulinec and Suquet [31], have also been used

to study the effective behavior of cracked solids. Willot et al. [37] have used such a software to

study the effective behavior of a medium with parallel cracks in plain strain conditions; Willot

et al. [36] have investigated the performance of the self-consistent scheme for the determination

of the effective behavior of a randomly cracked polycrystal in 3D; finally, Gasnier et al. [20] have

compared the precision of FEM and FFT methods in the case of a single crack in 2D, and have

then assessed the performance of the self-consistent and dilute schemes to predict the effective

stiffness of a solid containing either aligned cracks or randomly oriented cracks in 3D. In the

latter contribution, the authors concluded that Fourier-based methods can indeed be used to model

cracked solids, even in the case of randomly oriented cracks.

In the present paper, we thus propose to confirm and extend the aforementioned results. Both

FEM and FFT have been used for comparison on almost identical geometries, the differences being

simply due to the different discretization methods. The effective behavior of a solid with randomly

located parallel flat cylindrical inclusions has been assessed numerically in 3D, for linear elasticity

1http://www-cast3m.cea.fr
2http://www.maisondelasimulation.fr/projects/amitex/html/index.html
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and linear conduction, the latter of which has not been dealt with previously. In both cases, the

contrast between the properties of the inclusions and those of the matrix was taken to be either

vanishing (i.e. voids/insulating inclusions) or infinite (i.e. rigid/superconducting inclusions).

This represents an original contribution of the present work, since these properties are usually

investigated separately and with only one contrast (either vanishing of infinite), although some

papers have considered both contrasts, as in Kushch and Sangani [27] in the case of conductivity.

The results were systematically compared with five classical analytical estimates in order to select

the best fit. The findings are presented as follows: in section 2, the theoretical framework used

for the analytical calculations is laid down, with a focus on the concentration rules for vanishing

and infinite contrasts; in section 3, the two numerical procedures are described in turn, and in

each case the results for both contrasts are compared with the analytical estimates; at the end of

section 3, the pros and cons of using the two numerical methods for cracked media are listed, and

conclusions are then drawn for future works. Although the original goal of the study was to make

a contribution in the numerical assessment of the performance of micromechanical estimates of

the effective properties of singular composites, the required theoretical developments and the way

they are presented here might also be of use to other researchers in the field of micromechanics,

because they allow for a somewhat simpler and more unified treatment of different cases.

2. Elements of homogenization of composites with flat inclusions

This section is devoted to laying down a unified mathematical framework for the determination

of the effective properties of composites with flat inclusions and for both infinite and vanishing

contrasts, in the context of both linear elasticity and heat conduction. As mentioned in the

introduction, an effort was made to provide a unified and comprehensive presentation of the main

results, which can be found, for the most part, here and there in the literature. Although the results

are not groundbreaking, the author reckoned that some insights can be gained from the following

presentation, which is why some details are given in the case of linear elasticity. Indeed, it is more

direct and more general than what can be found in the above references, and most importantly the

specific components of the tensors which are affected by the inclusions naturally emerge. These

developments were greatly inspired by Dormieux et al. [16] and Dormieux and Kondo [15], who
5



provided a comprehensive take on how to apply homogenization theory to cracked solids.

Even though flat rigid inclusions and flat insulating inclusions are not necessarily relevant for

the study of cracked rocks that the authors are pursuing, these cases were deemed interesting in

so far as they provided additional confirmation of the good performance of the differential scheme

and of the numerical methods used. Also, one could think of real world applications such as the

computation of the thermal conduction of a cracked rock with dry cracks (air is a good thermal

insulator), or that of the stiffness of a nanocomposite with aligned graphene plates, in analogy with

the use of carbon nanotubes in material science. Additionally, partially saturated cracks could be

represented by insulating inclusions for the water transport properties of a rock, so that this case is

not at all devoid of physical meaning, even in the context of cracked rocks.

2.1. Linear elasticity

In homogenization theory, cracked media are often considered to be a limit case of a two-phase

linear elastic composite whereby spheroidal inclusions with semi-axes 𝑎 and 𝑐 � 𝑎 and stiffness

tensor C𝐼 are embedded in a matrix with stiffness tensor C𝑚. A medium with open cracks is

obtained by letting the stiffness of the inclusions vanish, and then by letting their aspect ratio 𝑋 = 𝑐
𝑎

vanish as well, see Dormieux and Kondo [15] for instance. Note that the order is important because

if C𝐼 is invertible when taking the limit 𝑋 → 0, then the inclusions have no effect on the effective

stiffness of the composite. In other words, the stiffness tensor of the inclusions necessarily has to be

singular for them to have an effect in the flat limit (see Barthelemy [2]). In practical applications,

the stiffness of the inclusions will not be exactly zero for numerical purposes. Accordingly, a

cracked medium will be obtained when | |C𝐼 : S𝑚 | | � 1 (where | | • | | is any norm on the space of

fourth rank tensors), and the inclusions are said to be void. The reverse case, i.e. rigid inclusions,

is characterized by | |C𝐼 : S𝑚 | | � 1, or equivalently | |C𝑚 : S𝐼 | | � 1. Note that the present

developments are restricted to the case of parallel circular disks in an isotropic matrix, but further

generalizations are possible (e.g. disks with different orientations in an anisotropic matrix). They

would, however, require heavier numerical treatments. As a consequence, all the effective media

obtained here are transversely isotropic.

The homogenization procedure is performed by prescribing specific boundary conditions to
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a Representative Elementary Volume (REV), assumed to contain all the necessary information

about the composite body. The classical boundary conditions include: uniform strain boundary

conditions, uniform stress boundary conditions and periodic boundary conditions. They all lead

to a linear elastic effective medium and are asymptotically equivalent, i.e. they lead to the

same homogenized stiffness Cℎ𝑜𝑚 when the size of the REV is much larger than the size of the

heterogeneity. However, some choices are more convenient than others, as will be detailed in the

sequel. In the following, the "microscopic" displacement, strain, stress, stiffness and compliance

fields will be denoted 𝝃 (𝒛), 𝜺(𝒛), 𝝈(𝒛), C(𝒛) and S(𝒛) respectively, while the "macroscopic" strain,

stress, stiffness and compliance tensors will be denoted 𝑬, 𝚺, Cℎ𝑜𝑚 and Sℎ𝑜𝑚 respectively. Here

and in the following, 𝒛 is the position vector at the microscopic scale in the composite. Finally, the

disk density parameter (DDP) 𝜖 = N𝑎3 is introduced in analogy with the crack density parameter

(CDP) of Budiansky and O’Connell [9], where N is the number of inclusions per unit volume of

composite, and all the estimates will be expressed as a function of this parameter. This quantity

will be useful upon taking the limit 𝑋 → 0 of flat spheroids. In the case of voids, it does indeed

have the usual interpretation of a CDP, but not in the case of rigid inclusions, which is why a more

general denomination will be used.

2.1.1. Flat voids

Consider the case of uniform stress boundary conditions:

𝝈(𝒛) · 𝒏(𝒛) = 𝚺 · 𝒏(𝒛); 𝒛 ∈ 𝜕Ω (1)

where 𝜕Ω is the boundary of the body Ω. The boundary value problem is then linear in the loading

parameter 𝚺, so that a "strain concentration" tensor A′(𝒛) may be introduced such that:

𝜺(𝒛) = A′(𝒛) : 𝚺 (2)

It will be shown that it is indeed convenient to introduce A′(𝒛) instead of the more widely used

A(𝒛) which relates the strain field to the macroscopic strain tensor. Defining the latter as 𝑬 = 𝜺,

where • = 1
|Ω|

∫
Ω

• d𝑉 is the average operator over the whole REV, it follows that the effective

compliance may be defined as:

Sℎ𝑜𝑚 = A′ = 𝑓A′
𝐼 + (1 − 𝑓 )A′𝑚 (3)
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where the volume fraction of inclusions 𝑓 has been introduced, as well as the volume average

operators over each phase. Since the linear elastic constitutive relation reads 𝝈(𝒛) = C(𝒛) : 𝜺(𝒛),

the uniform stress boundary conditions (1) yield:

𝚺 = 𝝈 = C : A′ : 𝚺 (4)

which holds for any symmetric tensor 𝚺. Consequently, the following relation is obtained:

𝑓C𝐼 : A′
𝐼 + (1 − 𝑓 )C𝑚 : A′

𝑚
= I (5)

where I is the fourth rank symmetric identity tensor. The tensor A′
𝑚

may then be eliminated from

(3), which becomes:

Sℎ𝑜𝑚 = S𝑚 + 𝑓

(
I − S𝑚 : C𝐼

)
: A′

𝐼
(6)

For spheroidal voids, 𝑓 is obtained from the DDP and the aspect ratio through the relation 𝑓 = 4𝜋
3 𝜖𝑋 .

Also, one has in this particular case | |S𝑚 : C𝐼 | | � 1. The previous equation then becomes:

Sℎ𝑜𝑚 = S𝑚 + 4𝜋
3
𝜖𝑋A′

𝐼
(7)

This is an exact definition of the effective compliance tensor of a two-phase composite, which

requires a priori an exact knowledge of the microstructure (through the concentration tensor). In

order to circumvent this difficulty, estimates are proposed (see section 2.3).

In order to do this, it is necessary to obtain estimates of the concentration tensor A′
𝐼
. These

estimates are classically built using the solution to the problem of a single inclusion embedded in

an infinite matrix (Eshelby [18]). In the particular case of an ellipsoidal inclusion, the strain field

in the inclusion is actually uniform and is related to the macroscopic strain tensor through the so-

called Hill’s tensor P𝐼,𝑚 (Hill [24]). This tensor is a function of the inclusion shape (superscript 𝐼)

and the stiffness of the matrix (superscript 𝑚). Its interpretation is straightforward: in the problem

of an infinite linear elastic homogeneous body with stiffness tensor C0 subjected to a polarization

stress 𝝉(𝒛) = 𝝈∗
1𝐼 (𝒛), where 1𝐼 is the indicator function of an ellipsoidal domain 𝐼, and vanishing

displacements at infinity, the resulting strain in 𝐼 is uniform and given by:

𝜺𝐼 = −P𝐼,0 : 𝝈∗ (8)
8



This result may then be used in order to solve the so-called auxiliary problem of an ellipsoidal

inclusion 𝐼 with stiffness tensor C𝐼 embedded in a reference material with stiffness C0, with

uniform auxiliary stress boundary conditions 𝚺0 (see figure 1). The reference material and the

0

0

Figure 1: Auxiliary problem: uniform stress boundary conditions and reference material.

boundary condition 𝚺0 can be chosen so as to take into account the interactions between the

different inclusions. For this auxiliary problem, the strain field is again uniform in the inclusion

and reads:

𝜺𝐼 =
(
C0 + C0 : P𝐼,0 :

(
C𝐼 − C0

))−1
: 𝚺0 (9)

In the case of a void, this reduces to:

𝜺𝐼 =
(
Q𝐼,0

)−1
: 𝚺0; Q𝐼,0 = C0 − C0 : P𝐼,0 : C0 (10)

In the sequel, the tensorQ𝐼,0 will be referred to as the second Hill’s tensor (Hill [24]). Approximate

solutions to the actual problem are then derived with appropriate values for C0 and 𝚺0 (see section

2.3). As will be shown in section 2.3, each of these choices leads to the introduction of a so-called

interaction tensor (Dormieux and Kondo [15]) M such that 𝚺0 = M : 𝚺, which depends on the

scheme, so that:

lim
𝑋→0

𝑋A′
𝐼 ' lim

𝑋→0
𝑋

(
Q𝐼,0

)−1
: M (11)

Regardless of the scheme used in practice, it should be noted that 𝜺𝐼 becomes singular as

𝑋 → 0. This can be seen from the fact that the𝑂 (1) terms in the expansion of Q𝐼,0 in powers of 𝑋

is singular. Indeed, its kernel can be shown to be V2
𝑜𝑜𝑝 = span(𝒏 ⊗ 𝒏, 𝒏

𝑠
⊗ 𝒍, 𝒏

𝑠
⊗ 𝒎) (see Appendix
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A), where 𝒏 is the unit normal to the flat void, 𝒍 and 𝒎 are two unit vectors such that (𝒏, 𝒍,𝒎) is

an orthonormal basis of the euclidean space, and
𝑠
⊗ is the symmetric tensor product. Thus, V2

𝑜𝑜𝑝 is

the linear subspace of out-of-plane symmetric second rank tensors with respect to the plane of the

disks. However, one has the classical result that 𝑋𝜺𝐼 has a finite limit as 𝑋 → 0 (see for instance

Barthelemy [3]). Said limit is obtained from:

U𝑑,0 = lim
𝑋→0

𝑋

(
Q𝐼,0

)−1
(12)

where the superscript 𝑑 stands for disk, since the limit 𝑋 → 0 has been taken. This tensor is

computed from the 𝑂 (𝑋) term in the expansion of Q𝐼,𝑚, as shown by the theorem proved in

Barthelemy [3] (see appendix of that reference). The important result of the theorem is that U𝑑,0

is also singular, and its kernel is V2
𝑖𝑝

= span( 𝒍 ⊗ 𝒍,𝒎 ⊗ 𝒎, 𝒍
𝑠
⊗ 𝒎), i.e. the linear subset of in-plane

symmetric second rank tensors. Combining this result with (7), it appears that only the out-of-plane

components of the effective compliance tensor will be affected by the presence of the flat voids,

provided that the following two conditions are met by the interaction tensor:

• It has a finite limit as 𝑋 → 0

• It does not couple the in-plane and out-of-plane components of the stress tensor

These conditions will always be fulfilled in the cases under consideration here. On the other

hand, the in-plane components of the effective stiffness tensor may still be affected because when

inverting the compliance tensor, the 𝑆ℎ𝑜𝑚3333 component is necessarily mixed up with the in-plane

components. The tensor U𝑑,0 is a function of C0 and the unit normal to the plane of the disk 𝒏,

and its Mandel representation is recalled in Bluthe et al. [7] for a transversely isotropic reference

material.

Note that in Bluthe et al. [7], uniform strain boundary conditions were used, yielding equiv-

alent results, which shows that the important part is to start from the microscopic strain and not

the microscopic stress, irrespective of the boundary conditions. However, using uniform stress

boundary conditions does present the advantage of being slightly more direct, since the effective

compliance is naturally obtained whereas the effective stiffness had to be calculated first and then
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the relation had to be inverted. This was the main reason for the unusual way in which the general

homogenization procedure was presented here.

2.1.2. Flat rigid inclusions

Let us now consider uniform strain boundary conditions, i.e. of the type:

𝝃 (𝒛) = 𝑬 · 𝒛; 𝒛 ∈ 𝜕Ω (13)

Then the boundary value problem is linear with respect to the loading parameter 𝑬, so that a "stress

concentration" tensor B′(𝒛) may be introduced, which satisfies:

𝝈(𝒛) = B′(𝒛) : 𝑬 (14)

Following the same logic as in section 2.1.1, the effective stiffness is defined by Cℎ𝑜𝑚 = B′ and the

following relation is eventually obtained:

Cℎ𝑜𝑚 = C𝑚 + 𝑓

(
I − C𝑚 : S𝐼

)
: B′𝐼 (15)

For spheroidal rigid inclusions one has | |C𝑚 : S𝐼 | | � 1, so that (15) becomes:

Cℎ𝑜𝑚 = C𝑚 + 4𝜋
3
𝜖𝑋B′

𝐼 (16)

An estimate for B′𝐼 is then obtained in analogy with section 2.1.1. The result of Eshelby [18]

is used with a prescribed stress-free strain 𝜺∗ in the ellipsoidal domain 𝐼, so that the stress in this

region is uniform and given by:

𝝈𝐼 = −Q𝐼,0 : 𝜺∗ (17)

The auxiliary problem whereby uniform auxiliary strain boundary conditions 𝑬0 are applied to an

infinite body containing an inclusion with stiffness tensor C𝐼 can thus be solved. The stress in the

inclusion is uniform and reads:

𝝈𝐼 =

(
S0 + S0 : Q𝐼,0 :

(
S𝐼 − S0

))−1
: 𝑬0 (18)

In the case of a rigid inclusion, this reduces to:

𝝈𝐼 =

(
P𝐼,0

)−1
: 𝑬0 (19)
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Approximate solutions to the actual problem are then obtained for specific choices of C0 and 𝑬0.

Introducing again an interaction tensor N, one has:

lim
𝑋→0

𝑋B′
𝐼 ' lim

𝑋→0
𝑋

(
P𝐼,0

)−1
: N (20)

The 𝑂 (1) term in the expansion of P𝐼,0 in powers of 𝑋 is also singular, but its kernel is V2
𝑖𝑝

, so

that 𝝈𝐼 becomes singular as 𝑋 → 0. However, 𝑋𝝈𝐼 has a finite limit as 𝑋 → 0, which is obtained

from:

V𝑑,0 = lim
𝑋→0

𝑋

(
P𝐼,0

)−1
(21)

Similarly, V𝑑,0 is singular and its kernel is V2
𝑜𝑜𝑝, so that under the same assumptions concerning

the interaction tensor as in section 2.1.1, it is seen from (16) that only the in-plane components of

the stiffness tensor are affected by the presence of the rigid disks. Again, this does not hold for

the compliance tensor. As previously stressed, this result is more readily obtained with the present

original presentation than with the standard concentration tensors. The Mandel representation of

V𝑑,0 is given in Appendix B.

As could have been expected, the roles of stress/strain, stiffness/compliance, first/second Hill’s

tensor and in-plane/out-of-plane components are perfectly interchanged between flat voids and flat

rigid inclusions. The symmetry between these problems is another reason for preferring the above

presentation. A comment similar to the one made in section 2.1.1 can be also made here: the type

of boundary conditions used is not really important, but starting from the microscopic stress and

not the microscopic strain is. However, using uniform strain boundary conditions is slightly more

direct for rigid inclusions.

2.2. Linear conduction

The case of linear conduction is treated by analogy with linear elasticity. Table 1 summarizes

the connection between the quantities involved in the two cases. The notations and terminology of

thermal conduction have been chosen, but note that all linear conduction laws (thermal, electric,

hydraulic, diffusive) are mathematically identical. This choice merely comes from the fact that

conduction is implemented in the context of thermal conduction in the softwares used. The

constitutive relation of linear conduction reads 𝒒 = −𝑲 · grad 𝑇 , so that the main difference
12



between linear conduction and linear elasticity lies in the ranks of the tensors involved, since they

are lower for linear conduction.

Table 1: Correspondence between linear elasticity and linear conduction.

Linear elasticity Linear conduction

𝝃 (displacement vector) 𝑇 (temperature)

𝜺 (strain tensor) grad 𝑇 (gradient of temperature)

𝝈 (stress tensor) 𝒒 (heat flux)

C (stiffness tensor) 𝑲 (conductivity tensor)

S (compliance tensor) 𝑹 (resistivity tensor)

The case of flat insulating inclusions is similar to that of flat voids in elasticity since one has

| |𝑲 𝐼 · 𝑹𝑚 | | � 1, so that uniform heat flux boundary conditions are applied at the boundary of the

REV, and a second rank concentration tensor 𝑨′(𝒛) for the gradient of temperature is introduced.

After taking the limit | |𝑲 𝐼 · 𝑹𝑚 | | → 0, and then the limit 𝑋 → 0, one obtains:

𝑹ℎ𝑜𝑚 = 𝑹𝑚 + 4𝜋
3
𝜖𝑋𝑨′𝐼 (22)

Estimates of the tensor 𝑨′𝐼 may then be obtained using an auxiliary problem and the second

Hill’s tensor 𝑸 𝐼,0. Here, the second Hill’s tensor is singular with kernel V1
𝑜𝑜𝑝 = span(𝒏), so

that upon taking the limit 𝑋 → 0, one obtains a singular tensor 𝑼𝑑,0 = lim
𝑋→0

𝑋

(
𝑸 𝐼,0

)−1
with

kernel V1
𝑖𝑝

= span( 𝒍,𝒎), whose only non-zero component is given in Appendix C. Thus, the flat

insulating inclusions only affect the out-of-plane resistivity.

Conversely, the case of flat superconducting inclusions is treated in analogy with that of flat

rigid inclusions, since one has | |𝑲𝑚 ·𝑹𝐼 | | � 1. Uniform temperature gradient boundary conditions

are applied at the boundary, and a second rank concentration tensor 𝑩′(𝒛) for the heat flux is

introduced. One then takes the limit | |𝑲𝑚 · 𝑹𝐼 | | → 0, and then 𝑋 → 0, which leads to:

𝑲ℎ𝑜𝑚 = 𝑲𝑚 + 4𝜋
3
𝜖𝑋𝑩′𝐼 (23)
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Here, estimates of the tensor 𝑩′𝐼 may be obtained using an auxiliary problem and the traditional

Hill’s tensor 𝑷𝐼,0. This tensor is singular with kernel V1
𝑖𝑝

, so that upon taking the limit 𝑋 → 0, one

obtains a singular tensor 𝑽𝑑,0 = lim
𝑋→0

𝑋
(
𝑷𝐼,0

)−1 with kernel V1
𝑜𝑜𝑝, whose components are given in

Appendix C. Thus, the flat superconducting inclusions only affect the in-plane conductivity.

2.3. Homogenization schemes

Five classical homogenization schemes have been chosen in the present work for comparison

with numerical simulations. They are briefly presented hereafter in the case of rigid flat inclusions

since they were already presented in Bluthe et al. [7] in the case of soft flat inclusions. The results

obtained in the latter case, as well as the analogous results obtained for linear conduction, are given

in Appendix D. The reader is reminded that we are only interested in parallel disks in the present

contribution.

It has been stated here that rigid inclusions only affect the in-plane components of the stiffness

tensor. To be more precise, the effect of the rigid inclusions may be reduced to the computation

of two in-plane elastic moduli. Here, the in-plane shear modulus and P-wave modulus, defined in

Appendix B, have been chosen because the components of V𝑑,0 are most easily expressed using

these moduli when C0 is no longer isotropic, as is shown in the same appendix.

2.3.1. Dilute scheme

The dilute approximation is obtained by setting 𝑬0 = 𝑬 and C0 = C𝑚 in (19). Then the

interaction tensor is equal to the identity tensor N = I, which shows that no interaction between the

inclusions is taken into account. The effective stiffness then reads:

Cℎ𝑜𝑚 ' C𝑑𝑖𝑙 = C𝑚 + 4𝜋
3
𝜖V𝑑,𝑚 (24)

From Appendix B, the following effective moduli are obtained:
𝑀𝑑𝑖𝑙

1
𝑀𝑚

= 1 + 16(11−14𝜈𝑚) (1−2𝜈𝑚)
3(3−4𝜈𝑚) (7−8𝜈𝑚) 𝜖

𝜇𝑑𝑖𝑙12
𝜇𝑚

= 1 + 64(1−𝜈𝑚)
3(7−8𝜈𝑚) 𝜖

(25)
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where 𝑀𝑚 and 𝜇𝑚 are the P-wave and shear moduli of the matrix C𝑚, and 𝜈𝑚 its Poisson’s ratio.

These are related by:
𝑀𝑚

𝜇𝑚
=

2(1 − 𝜈𝑚)
1 − 2𝜈𝑚

(26)

Note that the dilute estimate of the effective compliance tensor is not
(
C𝑑𝑖𝑙

)−1, as explained in

Bluthe et al. [7], but its expansion to first order in 𝜖 :

S𝑑𝑖𝑙 = S𝑚 − 4𝜋
3
𝜖S𝑚 : V𝑑,𝑚 : S𝑚 (27)

Indeed, the range of applicability of the dilute scheme is 𝜖 � 1, so that one cannot simply invert

(24). This result, together with (24), shows that the dilute estimates of the stiffness and compliance

tensors are inverse to each other only to the second order in 𝜖 , since one has:

C𝑑𝑖𝑙 : S𝑑𝑖𝑙 = I − 16𝜋2

9
𝜖2V𝑑,𝑚 : S𝑚 : V𝑑,𝑚 : S𝑚 (28)

One should thus be careful when using this particular scheme to produce estimates. As an example,

the reader is referred to the explanation regarding the effective Young’s modulus and shear modulus

in the aforementioned reference.

2.3.2. Mori-Tanaka scheme

Some interaction between the inclusions may be taken into account by setting 𝑬0 = 𝜺𝑚 and

C0 = C𝑚. Then, the strain average rule 𝜺 = 𝑬 yields (1 − 𝑓 )𝑬0 = 𝑬, since 𝜺 = 0 in the rigid

inclusions. Thus, it turns out that the interaction tensor reduces to N = 1
1− 𝑓 I, and to N = I when

taking the limit 𝑋 → 0. As a consequence, the interaction between the inclusions vanishes in

the limit 𝑋 → 0, and the dilute and Mori-Tanaka estimates of the effective stiffness are identical.

This is analogous to a classical result in the case of cracks, whereby the dilute and Mori-Tanaka

estimates of the effective compliance are identical. In the present case of flat rigid inclusions,

the Mori-Tanaka estimate of the effective compliance is S𝑀𝑇 =

(
C𝑚 + 4𝜋

3 𝜖V
𝑑,𝑚

)−1
, so that it is

different from the dilute estimate (27).

2.3.3. Self-consistent scheme

The self-consistent approximation consists in embedding the inclusions in the sought effective

medium, that is in setting C0 = Cℎ𝑜𝑚 ' C𝑠𝑐. This particular scheme is deemed able to account for
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a stronger interaction between the inclusions than the Mori-Tanaka scheme for a given value of 𝜖 .

Here, the self-consistent approximation is built by treating the composite as a dispersion of parallel

rigid inclusions, as proposed by Hashin [23] in the case of cracked media. Additionally, 𝑬0 is set

equal to 𝑬. This yields the following implicit equation for the effective stiffness:

C𝑠𝑐 = C𝑚 + 4𝜋
3
𝜖V𝑑,𝑠𝑐 (29)

Here, V𝑑,𝑠𝑐 is a function of C𝑠𝑐, which is why (29) is actually implicit and must be solved

numerically. Two implicit coupled equations are obtained and must be solved for 𝑀 𝑠𝑐
1 and 𝜇𝑠𝑐12, but

they are not written down for the sake of simplicity.

2.3.4. Differential scheme

The differential scheme is another way to deal with strong interactions in composites with a

high density of inclusions. It consists in building the composite in an iterative manner, by adding

an infinitesimal amount dN of inclusions per unit volume, leading to an increase in the DDP, here

denoted by 𝑒, equal to d𝑒 = 𝑎3dN . This leads to the following differential equation for the effective

stiffness:
d
d𝑒
C𝑑𝑖 𝑓 =

4𝜋
3
V𝑑,𝑑𝑖 𝑓 (30)

Here,V𝑑,𝑑𝑖 𝑓 is computed fromC𝑑𝑖 𝑓 , so that it is a function of 𝑒, and this equation must be integrated

from 0 to 𝜖 with the initial condition that C𝑑𝑖 𝑓 (0) = C𝑚. Thus, two coupled differential equations

are obtained for 𝑀𝑑𝑖 𝑓

1 and 𝜇𝑑𝑖 𝑓12 , but they are not written down for the sake of simplicity.

2.3.5. Ponte Castaneda and Willis bound

An important class of estimates has been derived in Ponte Castaneda and Willis [33] from the

Hashin-Shtrikman variational principles. These estimates, referred to as the PCW bounds, are able

to account for specific types of inclusion distributions, those which possess ellipsoidal symmetry.

They yield rigorous bounds on the effective stiffness in a certain range of inclusion densities. In

the special case where the ellipsoid describing the distribution of inclusions is identical to the

ellipsoidal shape of the inclusions themselves, the Mori-Tanaka estimate is recovered, so that this

case will not be considered here. Another interesting case is that of a spherical distribution of
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inclusions. This is the one that will be referred to as PCW bound in the rest of the article. In

the case of rigid inclusions, the resulting estimate is actually a lower bound for the exact effective

stiffness. Formally, the estimate is still identical to the Mori-Tanaka estimate, but with a modified

Hill’s tensor, which reads:

P𝑃𝐶𝑊 =
1

1 − 𝑓

(
P𝐼,𝑚 − 𝑓 P𝑠𝑝ℎ𝑒𝑟𝑒,𝑚

)
(31)

where P𝑠𝑝ℎ𝑒𝑟𝑒,𝑚 is the Hill’s tensor for a sphere with the reference stiffness C𝑚, i.e.:

P𝑠𝑝ℎ𝑒𝑟𝑒,𝑚 =
1

3𝑀𝑚

J + 3𝑀𝑚 + 2𝜇𝑚
15𝜇𝑚𝑀𝑚

K (32)

J and K being the spherical and deviatoric projectors. It is clear from (31) that the Hill’s tensor of

the sphere will impact the𝑂 (𝑋) term in the expansion of P𝑃𝐶𝑊 in powers of 𝑋 because 𝑓 = 4𝜋
3 𝜖𝑋 .

After some straightforward but tedious calculations, the following estimates are obtained:
𝑀𝑃𝐶𝑊

1
𝑀𝑚

= 1 + 240𝜖 (1−2𝜈𝑚)
45(3−4𝜈𝑚)−64𝜖 (3−5𝜈𝑚) +

480𝜖 (1−2𝜈𝑚)
45(7−8𝜈𝑚)−128𝜖 (4−5𝜈𝑚)

𝜇𝑃𝐶𝑊
12
𝜇𝑚

= 1 + 960𝜖 (1−𝜈𝑚)
45(7−8𝜈𝑚)−128𝜖 (4−5𝜈𝑚)

(33)

These are rigorous lower bounds for 𝜖 ≤ 3
4𝜋 ' 0.24, and they exhibit a percolation threshold for

𝜖 =
45(7−8𝜈𝑚)
128(4−5𝜈𝑚) . When 𝜈𝑚 goes from 0 to 0.5, the percolation threshold increases from 𝜖 ' 0.615 to

𝜖 ' 0.703, so that the status of bound is lost before this threshold is reached anyway.

3. Numerical simulations

The simulation step is closely related to the work presented in Bluthe et al. [7] (see this

reference for details). Elementary Volumes (EVs) have been generated using the same procedure:

the inclusion centroids are randomly distributed in a cubic box using the python tool Combs

developed for the CAD platform Salome3, and the shape and size of the inclusions is prescribed.

As in the aforementioned contribution, flat cylinders have been used instead of flat spheroids, as

they make the geometry generation easier and this has a negligible impact on the results. Also, to

further simplify the generation step, the inclusions were actually defined as prisms with 200-sided

polygonal bases, since the circles are discretized during the meshing step anyway. Interpenetration

3https://www.salome-platform.org
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of the inclusions was allowed here, which was previously not the case, so that the positions of

the centroids are independent. In order to improve on the results obtained in the above reference,

an effort was made to increase the number of inclusions in each EV, since it was deemed from

statistical analysis that there weren’t enough of them for the EVs to be representative. The same

DDP range was explored (0.2 to 0.8), but the radius of the inclusions is about 𝑎 = 0.159𝐿 in the

present study, where 𝐿 is the edge length of the EV, while it ranged from 0.188𝐿 to 0.237𝐿 in

Bluthe et al. [7], representing a 15-33% decrease. This allowed for the number of inclusions to

be increased from 30 to 50 for 𝜖 = 0.2, and from 60 to 200 for 𝜖 = 0.8 (and similarly for 𝜖 = 0.4

and 𝜖 = 0.6). For each value of the DDP, three different geometries were thus generated. Finally,

periodic microstructures were prescribed, i.e. inclusions whose centroid is less than 𝑎 away from

a side of the box reappear on the opposite side (see figure 2). That way, if the box is repeated

periodically in space, all the inclusions are complete, and not cut.

The discretization procedures will be described in sections 3.1.1 and 3.2.1 since they depend

on the specific numerical method. Periodic boundary conditions are necessarily applied to the EVs

in the case of FFT, but they were also applied for the FEM simulations, since uniform boundary

conditions were previously shown to yield unsatisfactory results with these geometries (see Bluthe

et al. [7]). Note that periodic boundary conditions do not provide perfectly accurate results either,

but at least they do yield intermediate results between uniform stress and uniform strain conditions.

The size required for the elementary volume to actually representative is not easily determined

beforehand, but there are some results in some specific cases, such as Drugan and Willis [17] in the

case of an isotropic distribution of spheres in a matrix, both of which are made up of an isotropic

material. For voids, the minimum requirement for the size of the elementary volume is a function

of the Poisson’s ratio of the matrix and of the inclusion volume fraction. In the present paper, the

Poisson’s ratio has been chosen as 𝜈𝑚 = 0.2, which is a usual value for rocks and concretes, and

the inclusion volume fraction is given by 𝑓 = 4𝜋
3 𝜖𝑋 . As will be discussed below, 𝑋 will be lower

than 6.3 · 10−2 (and even lower than 0.01 in the case of FEM), so that the maximum crack volume

fraction used here is 0.21. According to Drugan and Willis [17], this leads to the condition that
𝐿
2𝑎 should be greater that some number between 1.967 and 1.987 for an error limit of 5%, if the

inclusions were spheres. Of course the present contribution deals with disks instead of spheres,
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but it is worth noting that we have 𝐿
2𝑎 ' 3.14, which is indeed greater than 1.987.

Figure 2: Example of a 2D periodic EV. Inclusions in solid lines are entirely inside the box; inclusions in dotted lines

intersect with at least one of the boundaries and reappear on another side of the box.

3.1. FEM

3.1.1. Method

Automatic softwares plugged in Salome4 were used to generate periodic meshes from the

geometries previously discussed. They are made up of tetrahedra for volumes and triangles for

surfaces. Note that the mesh size was systematically reduced close to the inclusion edges as the

fields are expected to present high gradients in these regions. An example is shown in figure 3.

3.1.2. Flat voids and flat insulating inclusions

In the case of soft flat inclusions, the out-of-plane components 𝑆3333 and 𝑆1313 of the compliance

tensor are sought, where 𝒆3 has been chosen as the unit vector perpendicular to the plane of the

inclusions. These components may be obtained for the different EVs by prescribing successively

𝚺 = 𝒆3 ⊗ 𝒆3 and measuring 𝐸33, and 𝚺 = 𝒆1 ⊗ 𝒆3 + 𝒆3 ⊗ 𝒆1 and measuring 𝐸13. The results are

presented, along with the micromechanical estimates, in terms of the out-of-plane Young’s and

shear moduli in figure 4, and the differential scheme is clearly the best fit. In figure 4, two different

4http://distene.com

19



Figure 3: Top view of a generated geometry (left) and the associated mesh (right). Only the inclusions are shown for

clarity. The mesh refinement close to the inclusion edges and the periodicity of the geometry can be seen.

values for the initial aspect ratio of the inclusions were used for 𝜖 = 0.8, namely 𝑐
𝑎
= 1

1000 and
𝑐
𝑎
= 1

100 , so as to investigate the influence of this parameter. Since these geometries have the highest

number of inclusions, the effect of the aspect ratio should be stronger than for the other values of

the DDP. As can be seen, the influence on the results is very modest and still favors the differential

scheme. These results were obtained with a finite, but very large, contrast of 5 · 107 between the

Young’s moduli of the two phases.

For insulating flat inclusions, only the out-of-plane component 𝑅33 of the resistivity tensor

is sought. It may be obtained by prescribing an average heat flux 𝒒 = 𝒆3 and measuring 𝜕𝑇
𝜕𝑧3

.

Once again, figure 5 shows that the differential scheme best fits the numerical simulations. In this

case, all the geometries were tested with two levels of mesh refinements, so as to check for mesh

convergence. Coarse meshes were used for the left-hand plot, with about 3 million elements for

𝜖 = 0.2 and almost 7 million elements for 𝜖 = 0.8, while fine meshes were used for the right-hand

plot, with about 7 million elements for 𝜖 = 0.2 and over 17 million elements for 𝜖 = 0.8. The

effect of such a refinement is not visible to the eye in the figure, which does indicate good mesh

convergence. A contrast of 1010 between the conductivities of the two phases was used to obtain
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Figure 4: Out-of-plane Young’s and shear moduli as a function of DDP: FEM vs analytical estimates for flat voids.

these results.
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Figure 5: Out-of-plane conductivity as a function of DDP: FEM vs analytical estimates for flat insulating inclusions.

Left: coarse mesh; right: fine mesh.

3.1.3. Flat rigid inclusions and flat superconducting inclusions

A similar analysis is performed in the case of flat rigid inclusions and flat superconducting

inclusions on the exact same geometries by inverting the contrast. More precisely, a contrast of 108

was used for the elastic moduli, and 1010 for the conductivity. This time, the in-plane components

of the stiffness and conductivity tensors respectively are sought. For flat rigid inclusions, the three

in-plane components of the average stress tensor were successively prescribed in three different
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simulations, so that two values of the in-plane P-wave modulus could be obtained (one for each

in-plane direction), as well as the in-plane shear modulus. These two values of the in-plane P-

wave modulus allowed to show that consistent results are obtained when loading the two in-plane

directions. More precisely, upon applying an average stress tensor of the type 𝚺 = Σ𝒆1⊗ 𝒆1, Hook’s

law yields: 
Σ = 𝑀ℎ𝑜𝑚

1 𝐸11 +
(
𝑀ℎ𝑜𝑚

1 − 2𝜇ℎ𝑜𝑚12
)
𝐸22 + 𝜆𝑠𝐸33

0 =
(
𝑀ℎ𝑜𝑚

1 − 2𝜇ℎ𝑜𝑚12
)
𝐸11 + 𝑀ℎ𝑜𝑚

1 𝐸22 + 𝜆𝑠𝐸33

(34)

where a transversely isotropic behavior of the EV has been assumed, use has been made of the fact

that the 3333 component of the stiffness tensor is unaffected by the disks (see Appendix B), and

𝜆𝑠 is the first Lamé coefficient of the matrix. This 2 × 2 system may then be inverted to yield:

𝑀ℎ𝑜𝑚
1 =

Σ𝐸11 − 𝜆𝑠 (𝐸11 − 𝐸22) 𝐸33

𝐸2
11 − 𝐸

2
22

(35)

A similar derivation yields a value 𝑀ℎ𝑜𝑚
2 obtained upon application of an average stress tensor

𝚺 = Σ𝒆2 ⊗ 𝒆2, and the result is the same as (35) with the indices 1 and 2 interchanged. In hindsight,

it would have been more direct to prescribe the strain components instead of the stress components

in this particular context, which would have spared us this step. For flat superconducting inclusions,

an average temperature gradient of the form grad 𝑇 = 1 was prescribed, so as to be able to compute

all three components of the conductivity tensor.

The results are shown in figures 6 and 7. In each case, the figure on the left shows the results

obtained in the two different directions with an aspect ratio of 1:1000, while the figure on the right

shows the influence of the aspect ratio. In the case of linear elasticity, the latter influence was

shown for the shear modulus, while the average in-plane conductivity was chosen in the case of

linear conduction. It is clear from these two figures that the scatter in the results is greater than for

flat voids and flat insulating inclusions, especially for 𝜖 = 0.8. However, the differential scheme

can still be identified as the best fit. Note that the results obtained with an aspect ratio of 1:100

appear to be closer to the self-consistent scheme than to the differential scheme, but it can be seen

that reducing the aspect ratio to 1:1000 brings the data points closer to the latter scheme. This

point will be further expanded upon in the case of FFT simulations. Both left-hand plots show that

the properties of the generated samples obtained in the directions 𝒆1 and 𝒆2 are indeed very close,
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which confirms the good transverse isotropy observed in Bluthe et al. [7] on different samples.

Finally, note that the right-hand plot of figure 7 shows the average conductivity between the two

directions, hence the "〈•〉" symbols, so as to not clutter the plot with too many markers.

Dilute scheme

Mori-Tanaka scheme

Self-consistent scheme

Differential scheme

PCW bound

Figure 6: In-plane P-wave and shear moduli as a function of DDP: FEM vs analytical estimates for flat rigid inclusions.

Dilute scheme

Mori-Tanaka scheme

Self-consistent scheme

Differential scheme

PCW bound

Figure 7: In-plane conductivities as a function of DDP: FEM vs analytical estimates for flat superconducting inclusions.

Left: both in-plane directions; right: influence of the aspect ratio of the inclusions.
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3.2. FFT

3.2.1. Method

The geometries previously generated for FEM calculations were then discretized using voxels

in order to use the FFT-based software AMITEX_FFTP5, in combination with the FFT library fftw

version 3.3.8. Regular grids were used, with three different levels of refinement: 503, 2003 and

5003 voxels respectively. In each case, the inclusions were represented as one-voxel thick cylinders

with an approximately circular base. These thicknesses were 6.3:100, 1.6:100 and 6.3:1000 for the

three grid sizes respectively. Of course, the base of the cylinder is more and more circular as the

number of voxels increases. Note that an inherent characteristic of this discretization procedure

is that the positions of the centroids of the inclusions are only respected to within a voxel, so that

the positions of the inclusions are less precise with a coarser grid. Additionally, thicker inclusions

are more likely to interpenetrate, so that percolation phenomena are more frequent with a coarser

grid. That being said, it will be shown that certain properties are obtained with great precision,

even with a coarse grid.

3.2.2. Flat voids and flat insulating inclusions

As in section 2.1.1, the EVs were subjected to uniaxial tension in the direction perpendicular

to the plane of the inclusions to determine the out-of-plane Young’s and shear moduli. A contrast

of about 109 between the matrix and the inclusions was used. The results are presented in figure 8.

The three different grid refinement levels have been plotted together with the analytical results, and

for the Young’s modulus the markers are surprisingly close. This means that even a very coarse

grid may be used to determine the out-of-plane Young’s modulus of such a composite. On the

other hand, there is a distinct separation between the refinement levels when looking at the shear

modulus. Still, the difference between the 2003 and 5003 grids is low enough to reckon that further

refining the grid is unnecessary. Finally, the differential scheme is here again identified as the best

fit for the finer grids.

Similar observation can be made for the determination of the out-of-plane conductivity of the

composites (see figure 9): the markers corresponding to the different refinement levels may be

5http://www.maisondelasimulation.fr/projects/amitex/html/index.html
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Figure 8: Out-of-plane Young’s and shear moduli as a function of DDP: FFT vs analytical estimates for flat voids.

distinguished, but the difference between the results obtained with the 2003 and 5003 grids is small

enough that these can be trusted. Thus, the differential scheme yields the best fit.
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Figure 9: Out-of-plane conductivity as a function of DDP: FFT vs analytical estimates for flat insulating inclusions.

3.2.3. Flat rigid inclusions and flat superconducting inclusions

The case of flat rigid inclusions proved to be more difficult with FFT, since percolation phe-

nomena were observed for reasons mentioned in 3.2.1. Using very large contrasts prevented the

simulations from converging, so that a contrast of only 105 eventually had to be used. Even then,

only the finest grid yielded usable results for all the simulations, as can be seen in figure 10. Indeed,

the results obtained with the 503 grids were way above the curves for 𝜖 = 0.8 and are thus not
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represented. The same phenomenon appeared for one out of the three 2003 grids. This time, the

loading was applied only in the 𝒆1 direction because the same geometries were used as before

and the FEM simulations had already shown a satisfactory transverse isotropy. A large amount

of scatter was observed between the simulations for 𝜖 ≥ 0.6, which does not allow for a clear

decision to be made between the self-consistent and differential schemes. However, one can note

that increasing the grid size tends to lower the results, so that one can speculate that further refining

the grid would eliminate the self-consistent scheme from the potential candidates. All-in-all, these

numerical results do not discard the differential scheme, which is still the best fit for 𝜖 ≤ 0.6.

Dilute scheme

Mori-Tanaka scheme

Self-consistent scheme

Differential scheme

PCW bound

FFT (50³)

FFT (200³)

FFT (500³)

Figure 10: In-plane P-wave and shear moduli as a function of DDP: FFT vs analytical estimates for flat rigid inclusions.

Similar trends were observed in the context of superconducting inclusions. The in-plane

conductivity was susceptible to percolation, but here it was possible to get the computations to

converge even with a contrast of 1010. As can be seen from figure 11, very few results are presented

for the 503 grid, and those obtained with the 5003 grid lie between the self-consistent and differential

schemes. Again, the latter scheme does appear to best fit the numerical data for 𝜖 ≤ 0.6, and the

general trend pushes toward speculating that using even finer grids would favor this scheme for

𝜖 = 0.8 as well. Keep in mind that the aspect ratio of the cracks is dictated by the grid size, and the

aspect ratio of 1:1000 used in the FEM simulations could not be reached, even with the 5003 grid.

3.3. Comparison of the two numerical methods

Both methods yielded similar results in terms of identifying one scheme that performs bet-

ter than the others, but they do present some differences that should be pointed out for future
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Figure 11: In-plane conductivity as a function of DDP: FFT vs analytical estimates for flat superconducting inclusions.

investigations of the sort. Let us summarize the pros and cons of using one versus the other.

FEM is ubiquitous nowadays in engineering, so it is no surprise that it has been used extensively

for the determination of the effective properties of composites. With this method, it is possible to

choose between uniform strain, uniform stress and periodic boundary conditions, which is a great

advantage. Although periodic boundary conditions are often preferred because they yield more

precise estimates for locally periodic composites (see Hollister and Kikuchi [25]), the possibility

of prescribing uniform boundary conditions allows to assess if the EVs are representative or not. In

terms of computation times, the mechanical simulations described here ran for about one and seven

hours on a standard Linux machine with 48 cores and 48 GB for 𝜖 = 0.2 and 𝜖 = 0.8 respectively,

while the longest heat conduction simulations ran for about an hour (𝜖 = 0.8). This difference is to

be expected since there are fewer degrees of freedom for heat conduction than for linear elasticity.

One important point is that the computation time was about the same whether one considered

voids or rigid inclusions (respectively insulating or superconducting inclusions). Finally, note

that although the user has a lot of freedom in terms of geometry (inclusion shapes, positions,

orientations, interpenetration), special algorithms do need to be used to generate complex meshes,

and these need to be systematically scrutinized to ensure overall good mesh quality, which is not

always possible with very flat inclusions. One way to remedy this is to use interface elements to

model the inclusions as perfectly flat (see perspectives).
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On the other hand, FFT grids are very easy to generate: a triple for-loop can be used to go

through each voxel and assign an integer associated with the desired phase. Here, this was done

using a simple home-made python script. However, this simplicity comes at a cost, namely a

reduced freedom in the potentially usable inclusion orientations. Indeed, the Cartesian nature

of the grid does generally restrict the possibilities to cylinders with axis parallel to one of the

coordinate axes, because the inclusions are one voxel thick. Introducing an inclusion at 45° with

respect to one of the coordinate axes would result in a "staircase" that may not transmit fluxes

(either stresses or heat fluxes) well. Note that it has been shown in Gasnier et al. [20] that certain

FFT schemes are in fact able to correctly compute the stress field around a single disk-like inclusion

with normal parallel to 𝒆1 + 𝒆2 + 𝒆3, but they also showed that the thickness of the cracks should

not be lower than 1.5 voxels for randomly oriented cracks. As for running times, they are plotted in

figures 12 and 13 for voids/insulating inclusions and rigid/superconducting inclusions respectively.

Both graphs show a linear trend in log-log scale, but there are some fundamental differences.

Figure 12: FFT computation time as a function of grid size. Left: linear elastic composites with flat voids; right:

conducting composites with flat insulating inclusions.

For voids/insulating inclusions (figure 12), the different simulations are well ordered according

to the value of the DDP for each grid size, while for rigid/superconducting inclusions (figure 13)

there does not seem to be any particular order. More striking is the fact that computation times for

rigid/superconducting inclusions are systematically about an order of magnitude higher than for

voids/insulating inclusions. Longer computation times were obtained because the algorithm was

having trouble converging, even though the contrast was much lower for these simulations. These
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Figure 13: FFT computation time as a function of grid size. Left: linear elastic composites with flat rigid inclusions;

right: conducting composites with flat superconducting inclusions.

results, together with figures 10 and 11, suggest that the scheme implemented in AMITEX_FFTP

is probably not well-suited for the computation of the in-plane properties of composites with disks

of very high moduli (either elastic moduli or conductivities). That being said, it is worth noting

that very low running times (often below 1 s) were obtained for voids/insulating inclusions with

the coarsest grids, and they still yielded some very good results (see the out-of-plane Young’s

modulus in figure 8). Additionally, even the 2003 grids had running times on the order of a couple

of minutes for voids/insulating inclusions, and they yielded excellent results, which shows that in

this case, this method does outperform FEM, which required at least one hour. Finally, note that

there is not much freedom with respect to boundary conditions with this method, although some

tricks are possible (for example using a one voxel thick layer of either a very soft or a very stiff

material on the outside can approximate uniform boundary conditions).

4. Conclusion

In the present contribution, a somewhat original presentation has been laid down for the

analytical estimation of the effective properties of composites with parallel flat inclusions. It has

the advantage of being slightly more direct than previously published ones, and of underlining

the similarities between the two dual kinds of contrasts, namely infinite and vanishing moduli for

the inclusions with respect to the matrix. Numerical simulations have been performed to assess

the predictions of five classical homogenization schemes for both linear elasticity and conduction.
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For the former, flat voids and flat rigid inclusions have been considered, while insulating and

superconducting inclusions were used for the latter. In order to strengthen the conclusions, two

very different numerical methods were used, namely the FEM with the code Cast3M and the

FFT-based method with the software AMITEX_FFTP.

The main conclusions are as follows. First, the good performance of the differential scheme has

been confirmed in all cases. The only cases where the conclusion is not so cut and dry are those

of rigid inclusions and superconducting inclusions, whereby FFT computations did not converge

very well due to percolation phenomena. Thankfully, FEM computations did not suffer from this

drawback, which allows for definite conclusions under the present hypotheses. Since the same

scheme was identified in the case of linear elasticity and conduction, it will be possible to use it

when considering coupled problems, such as the hydromechanical behavior of rocks. In terms of

numerical methods, each one has its pros and cons: excellent results have been obtained in a matter

of minutes with the FFT software for the out-of-plane components when the stiffness/conductivity

of the inclusions is much smaller than that of the matrix, but the same method was clearly not

very efficient for the in-plane components when contrast is reversed due to percolation. It would

be interesting to investigate these phenomena using a different software to ascertain whether they

are related to this specific implementation (AMITEX_FFTP), or to the method as a whole. The

simplicity of the discretization procedure does make it an attractive method, but it also restricts

the possible geometries. FEM is and remains a very robust tool, which was yet again confirmed

by its lack of sensitivity to percolation phenomena. Several options are available to improve the

geometrical description of the disks and possibly reduce the computation times, most notably

XFEM and interface elements seem very attractive.

It should be recalled that the resulting choice of a scheme only holds here in the context

of parallel disks, and other cases should be investigated independently. From the theoretical

standpoint, random and axisymmetric distributions of disks have indeed already been investigated

in the past, and the interested reader is referred to Fritsch et al. [19] for mechanical properties, and

to Abdalrahman et al. [1] and Kiefer et al. [26] for transport properties.
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Appendix A. Kernels of Hill’s tensors for a disk in a linear elastic material

Consider a spheroidal region of space with semi-minor axis in the direction of the unit vector

𝒏. Assuming the space to be filled with a linear elastic material with stiffness tensor C0, then Hill’s

tensor of the ellipsoid E has the following expression (see Barthelemy [3]):

PE,0 =
det𝑨
4𝜋

∫
| |𝝃 | |=1

Γ4 (𝝃)
| |𝑨 · 𝝃 | |3

d𝑆𝝃 (A.1)

where 𝑨 defines the ellipsoid through the equation | |𝑨−1 · 𝝃 | | ≤ 1, and Γ4 is given by:

Γ4 (𝝃) = 𝝃
𝑠
⊗

(
𝝃 · C0 · 𝝃

)−1 𝑠
⊗ 𝝃 (A.2)

The subscript "4" refers to the fact that this tensor function has rank 4. As explained in Barthelemy

[3], a change of variable allows one to show that:

lim
𝑋→0
PE,0 = Γ4(𝒏) (A.3)

Thus, Γ4(𝒏) is the 𝑂 (1) term in the expansion of PE,0 in powers of 𝑋 . It is thus the Hill’s tensor

for a disk (𝑋 → 0) with the reference stiffness C0. Let 𝑪 be defined by 𝑪 =
(
𝒏 · C0 · 𝒏

)−1, and let

𝒍 and 𝒎 be two vectors such that ( 𝒍,𝒎, 𝒏) is orthonormal. Then, by definition of the symmetric

tensor product, one has:

(Γ4(𝒏))𝑖 𝑗 𝑘𝑙 =
1
4

(
𝑛𝑖𝐶 𝑗 𝑘𝑛𝑙 + 𝑛 𝑗𝐶𝑖𝑘𝑛𝑙 + 𝑛𝑖𝐶 𝑗 𝑙𝑛𝑘 + 𝑛 𝑗𝐶𝑖𝑙𝑛𝑘

)
(A.4)

Then, for any two vectors 𝒖, 𝒗 orthogonal to 𝒏, 𝒖 ⊗ 𝒗 is in the kernel of Γ4(𝒏), since:

(Γ4(𝒏) : (𝒖 ⊗ 𝒗))𝑖 𝑗 =
1
4

(
𝑛𝑖𝐶 𝑗 𝑘𝑛𝑙 + 𝑛 𝑗𝐶𝑖𝑘𝑛𝑙 + 𝑛𝑖𝐶 𝑗 𝑙𝑛𝑘 + 𝑛 𝑗𝐶𝑖𝑙𝑛𝑘

)
𝑢𝑙𝑣𝑘 (A.5)

and all the terms either have a 𝒖 · 𝒏 = 0 or a 𝒗 · 𝒏 = 0 factor. Of course, this is also true of

𝒖
𝑠
⊗ 𝒗. Thus, it appears that V2

𝑖𝑝
= span( 𝒍 ⊗ 𝒍,𝒎 ⊗ 𝒎, 𝒍

𝑠
⊗ 𝒎) ⊂ Ker Γ4(𝒏). As a consequence,

dim Ker Γ4(𝒏) ≥ 3. Next, we show that actually V2
𝑖𝑝

= Ker Γ4(𝒏).

In order to do that, it is useful to consider the second Hill’s tensor (Hill [24]):

QE,0 = C0 − C0 : PE,0 : C0 (A.6)
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Indeed, the 𝑂 (1) term of its expansion in powers of 𝑋 reads Λ4(𝒏) = C0 − C0 : Γ4(𝒏) : C0, but

then:

C0 : Γ4(𝒏) : C0 =

(
C0 · 𝒏

)
·
(
𝒏 · C0 · 𝒏

)−1
·
(
𝒏 · C0

)
(A.7)

so that taking the dot product with 𝒏 yields:(
C0 : Γ4(𝒏) : C0

)
· 𝒏 = C0 · 𝒏 (A.8)

As a consequence,
(
C0 : Γ4(𝒏) : C0) : (𝒏 ⊗ 𝒗) = C0 : (𝒏 ⊗ 𝒗) for any vector 𝒗. This also holds

when replacing the tensor product with the symmetric tensor product because C0 : Γ4(𝒏) : C0

has the minor symmetries. Thus, V2
𝑜𝑜𝑝 = span(𝒏 ⊗ 𝒏, 𝒏

𝑠
⊗ 𝒍, 𝒏

𝑠
⊗ 𝒎) ⊂ Ker Λ4(𝒏), and thus

dim Ker Λ4(𝒏) ≥ 3. Note that Λ4(𝒏) is the second Hill’s tensor for a disk with the reference

stiffness C0.

To finish the proof, note that any symmetric second-rank tensor𝜶 in KerΛ4(𝒏) is an eigenvector

of C0 : Γ4(𝒏) with eigenvalue 1. Since C0 is invertible, it follows that RankΓ4(𝒏) ≥ 3. According

to the rank-nullity theorem, Rank Γ4(𝒏) + dim Ker Γ4(𝒏) = 6, but both terms are greater than or

equal to 3, so one necessarily has Rank Γ4(𝒏) = dim Ker Γ4(𝒏) = 3. Finally, V2
𝑖𝑝

⊂ Ker Γ4(𝒏) and

both linear subsets have the same dimension, so that V2
𝑖𝑝

= Ker Γ4(𝒏).

Similarly, any symmetric second-rank tensor 𝜶 in Ker Γ4(𝒏) is an eigenvector of S0 : Λ4(𝒏)

with eigenvalue 1. Consequently, Rank Λ4(𝒏) ≥ 3, and application of the rank-nullity theorem

again shows that Rank Λ4(𝒏) = dim Ker Λ4(𝒏) = 3. Thus, V2
𝑜𝑜𝑝 ⊂ Ker Λ4(𝒏), and both linear

subsets have the same dimension, so that V2
𝑜𝑜𝑝 = Ker Λ4(𝒏).

Thus, the 𝑂 (1) terms in the expansions of PE,0 and QE,0 are both singular, their kernels have

dimension 3, and the linear space of symmetric second-rank tensors is their direct sum.

Appendix B. Concentration tensor for a flat rigid inclusion in a transversely isotropic matrix

Using identical conventions to Bluthe et al. [7], an orthonormal basis B = (𝒆1, 𝒆2, 𝒆3) of

the Euclidean space is introduced, and the Mandel representation of second-rank and fourth-rank

tensors is adopted. The reference material is assumed to be transversely isotropic with stiffness

tensor C0, and its axis of transverse isotropy is taken to be parallel to 𝒆3, so that its Mandel
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representation may be expressed as:

[C0]B =

©­­­­­­­­­­­­­­­­­­«

𝑀1 𝑀1 − 2𝜇12 𝜆13 0 0 0

𝑀1 − 2𝜇12 𝑀1 𝜆13 0 0 0

𝜆13 𝜆13 𝑀3 0 0 0

0 0 0 2𝜇13 0 0

0 0 0 0 2𝜇13 0

0 0 0 0 0 2𝜇12

ª®®®®®®®®®®®®®®®®®®¬

(B.1)

𝑀1 and 𝑀3 will be referred to as the in-plane and out-of-plane P-wave moduli respectively, 𝜇12 and

𝜇13 as the in-plane and out-of-plane shear moduli respectively, and 𝜆13 as the out-of-plane Lamé’s

first parameter.

Derivation of the concentration tensor requires the expansion to first order in 𝑋 of Hill’s tensor:

PE,0 = Γ4(𝒏) + 𝑋Π + 𝑜(𝑋) (B.2)

As shown in Appendix A, Γ4(𝒏) is singular with kernel V2
𝑖𝑝

, so that lim
𝑋→0

(
PE,0

)−1 is computed

by inverting the corresponding square submatrix of Π (see Barthelemy [3]). The tensor Π can

be obtained from Laws [28]. For a spheroid with axis of revolution parallel to 𝒏, Hill’s tensor is

also transversely isotropic, and its components can be obtained from two integrals given in Laws

[28]. The author also gives their expansion to first order in 𝑋 , which allows to easily compute the

required components of Π: 
Π1111 = 𝜋

16

(
3

𝜇13𝛾
+ 3√

𝑀1𝑀3𝛾
+ 1√

𝜇12𝜇13

)
Π1122 = 𝜋

16

(
1

𝜇13𝛾
+ 1√

𝑀1𝑀3𝛾
− 1√

𝜇12𝜇13

) (B.3)

with:

𝛾 =

√︄
𝑀1
𝜇13

+ 2
√︂
𝑀1
𝑀3

− 𝜆13 (𝜆13 + 2𝜇13)
𝑀3𝜇13

(B.4)
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The Mandel representation of V𝑑,0 then reads:

[V𝑑,0]B =

©­­­­­­­­­­­­­­­­­­«

𝐴+𝐵
2

𝐴−𝐵
2 0 0 0 0

𝐴−𝐵
2

𝐴+𝐵
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 𝐵

ª®®®®®®®®®®®®®®®®®®¬

(B.5)

with: 
𝐴 = 1

Π1111+Π1122

𝐵 = 1
Π1111−Π1122

(B.6)

As can be seen from (B.5) and the effective stiffness tensors (24), (29) and (30), 𝜆13, 𝑀3 and 𝜇13

are not affected by V𝑑,0. For all the schemes, the reference stiffness must reduce to the stiffness

of the matrix for 𝜖 = 0, so 𝜆13, 𝑀3 and 𝜇13 are actually equal to their values for 𝜖 = 0, i.e.

𝜆13 = 𝑀𝑚 − 2𝜇𝑚, 𝑀3 = 𝑀𝑚 and 𝜇13 = 𝜇𝑚. Then, (B.3) reduces to:
Π1111 = 𝜋

16

(
3
𝜇𝑚𝛾

+ 3√
𝑀1𝑀𝑚𝛾

+ 1√
𝜇12𝜇𝑚

)
Π1122 = 𝜋

16

(
1
𝜇𝑚𝛾

+ 1√
𝑀1𝑀𝑚𝛾

− 1√
𝜇12𝜇𝑚

) (B.7)

with:

𝛾 =

√√√
2

(
1 +

√︂
𝑀1
𝑀𝑚

)
+ 𝑀𝑚

𝜇𝑚

(
𝑀1
𝑀𝑚

− 1
)

(B.8)

These are the equations needed for the self-consistent and differential approximations. For the

dilute and Mori-Tanaka approximations and for the PCW bound, the reference material actually

has the stiffness C𝑚, so that 𝑀1 = 𝑀𝑚 and 𝜇12 = 𝜇𝑚, in which case 𝛾 = 2 and:
Π1111 = 𝜋

32

(
3
𝑀𝑚

+ 5
𝜇𝑚

)
Π1122 = 𝜋

32

(
1
𝑀𝑚

− 1
𝜇𝑚

) (B.9)
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Appendix C. Concentration tensor for an insulating/superconducting disk in a transversely

isotropic matrix

The developments are similar to those of Appendix A and Appendix B, but much simplified by

the lower ranks of tensors in the case of linear conduction. Denoting 𝑲0 the reference conductivity,

the Hill’s tensor now reads:

𝑷E,0 =
det𝑨
4𝜋

∫
| |𝝃 | |=1

Γ2(𝝃)
| |𝑨 · 𝝃 | |3

d𝑆𝝃 ; Γ2(𝝃) =
𝝃 ⊗ 𝝃

𝝃 · 𝑲0 · 𝝃
(C.1)

where the subscript "2" has been used since Γ2(𝝃) is a second rank tensor function. In analogy

with linear elasticity, its expansion to first order in 𝑋 then reads:

𝑷E,0 = Γ2(𝒏) + 𝑋𝜛 + 𝑜(𝑋) (C.2)

It is clear that Ker Γ2(𝒏) is exactly V1
𝑖𝑝

= span( 𝒍,𝒎). The second Hill’s tensor reads:

𝑸E,0 = 𝑲0 − 𝑲0 · 𝑷E,0 · 𝑲0 (C.3)

so that the 𝑂 (1) term in its expansion in powers of 𝑋 reads:

Λ2(𝒏) = 𝑲0 −
(
𝑲0 · 𝒏

)
⊗

(
𝒏 · 𝑲0)

𝒏 · 𝑲0 · 𝒏
(C.4)

and taking the dot product with 𝒏 yields Λ2(𝒏) · 𝒏 = 0. In analogy with linear elasticity, any vector

of Ker Γ2(𝒏) is an eigenvector with eigenvalue one of 𝑹0 · Λ2(𝒏), so that Rank Λ2(𝒏) ≥ 2, and

RankΛ2(𝒏) = 2 by application of the rank-nullity theorem. As a consequence, dimKerΛ2(𝒏) = 1,

but since V1
𝑜𝑜𝑝 = span(𝒏) ⊂ Ker Λ2(𝒏), one actually has V1

𝑜𝑜𝑝 = Ker Λ2(𝒏).

A general expression for 𝑷E,0 may be obtained for a spheroid whose axis of revolution is

parallel to the direction of transverse isotropy of the reference material (along 𝒆3 in the following).

Denoting 𝐾0 = 𝐾0
11 = 𝐾0

22 and 𝑉 =
𝐾0

33
𝐾0

, the two independent components of the Hill’s tensor are

given by:

𝑃
S,0
11 = 𝑃

S,0
22 =

1
2𝐾0

(
1 − 𝐹

(
𝑋
√
𝑉

))
; 𝑃

S,0
33 =

1
𝐾0𝑉

𝐹

(
𝑋
√
𝑉

)
(C.5)
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with 𝐹 (𝑥) = 1
1−𝑥2 − 𝑥

(1−𝑥2)3/2 arccos 𝑥 (see Parnell [32] for instance). Here the superscript S was

used to stress the fact that the inclusion is a spheroid. The tensor 𝜛 is then readily obtained:

[𝜛]B =
1
𝐾0

©­­­­­­«
𝜋

4
√
𝑉

0 0

0 𝜋

4
√
𝑉

0

0 0 − 𝜋

2𝑉3/2

ª®®®®®®¬
(C.6)

and 𝑼𝑑,0 follows:

[𝑼𝑑,0]B =
4
√
𝑉

𝜋
𝐾0

©­­­­­­«
1 0 0

0 1 0

0 0 0

ª®®®®®®¬
(C.7)

Finally, the 𝑂 (𝑋) term in the expansion of 𝑸S,0 reads:

[−𝑲0 ·𝜛 · 𝑲0]B = −𝐾0

©­­­­­­«
𝜋

4
√
𝑉

0 0

0 𝜋

4
√
𝑉

0

0 0 − 𝜋
2
√
𝑉

ª®®®®®®¬
(C.8)

and 𝑽𝑑,0 follows:

[𝑽𝑑,0]B =
2

𝜋
√
𝑉

1
𝐾0

©­­­­­­«
0 0 0

0 0 0

0 0 1

ª®®®®®®¬
(C.9)

These expressions are used for the self-consistent and differential schemes, while 𝑉 is set to 1 for

the dilute and Mori-Tanaka schemes, as well as for the PCW bound.

Appendix D. Effective moduli and conductivities

All the analytical estimates are summarized in tables D.2 and D.3 for completeness. In

D.2, the tensors U𝑑,𝑃𝐶𝑊 and V𝑑,𝑃𝐶𝑊 are computed from Q𝑃𝐶𝑊 = 1
1− 𝑓

(
Q𝐼,𝑚 − 𝑓Q𝑠𝑝ℎ𝑒𝑟𝑒,𝑚

)
and

P𝑃𝐶𝑊 = 1
1− 𝑓

(
P𝐼,𝑚 − 𝑓 P𝑠𝑝ℎ𝑒𝑟𝑒,𝑚

)
by taking the limits (12) and (21) respectively. The conductivities

are given explicitly since the calculations may be carried out to the end, but only the tensorial results
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are given for elasticity for the sake of brevity. It is clear from table D.3 that all the conductivity

estimates yield the dilute scheme upon expansion to first order in 𝜖 , as they should.

Table D.2: Analytical effective compliance/stiffness tensors.

Scheme Flat voids Flat rigid inclusions

Dilute scheme S𝑑𝑖𝑙 = S𝑚 + 4𝜋
3 𝜖U

𝑑,𝑚 C𝑑𝑖𝑙 = C𝑚 + 4𝜋
3 𝜖V

𝑑,𝑚

Mori-Tanaka scheme S𝑀𝑇 = S𝑚 + 4𝜋
3 𝜖U

𝑑,𝑚 C𝑀𝑇 = C𝑚 + 4𝜋
3 𝜖V

𝑑,𝑚

Self-consistent scheme S𝑠𝑐 = S𝑚 + 4𝜋
3 𝜖U

𝑑,𝑠𝑐 C𝑠𝑐 = C𝑚 + 4𝜋
3 𝜖V

𝑑,𝑠𝑐

Differential scheme d
d𝑒S

𝑑𝑖 𝑓 = 4𝜋
3 U

𝑑,𝑑𝑖 𝑓 d
d𝑒C

𝑑𝑖 𝑓 = 4𝜋
3 V

𝑑,𝑑𝑖 𝑓

PCW bound S𝑃𝐶𝑊 = S𝑚 + 4𝜋
3 𝜖U

𝑑,𝑃𝐶𝑊 C𝑃𝐶𝑊 = C𝑚 + 4𝜋
3 𝜖V

𝑑,𝑃𝐶𝑊

Tensorial expressions were preferred here because they are more compact, and because they

do possess all the information needed to infer the elastic moduli. Note that explicit expressions

exist for these moduli in all cases, except that of the self-consistent scheme. For the dilute and

Mori-Tanaka schemes, the expressions are easily derived, for the PCW bound they may be found

in Ponte Castaneda and Willis [33] although they require more calculation, and for the differential

scheme the differential equations satisfied by the elastic moduli in the case of flat voids have been

given by Salganik [34] and their closed-form solution can be found in Zimmerman [40]. The

implicit equation of the self-consistent scheme and the differential equation of the differential

scheme in the case of rigid inclusions were solved numerically in the present paper.
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Table D.3: Analytical effective conductivities.

Scheme Flat insulating inclusions Flat superconducting inclusions

Dilute scheme 𝐾33
𝐾𝑚

= 1 − 8
3𝜖

𝐾11
𝐾𝑚

=
𝐾22
𝐾𝑚

= 1 + 16
3 𝜖

Mori-Tanaka scheme 𝐾33
𝐾𝑚

= (1 + 8
3𝜖)

−1 𝐾11
𝐾𝑚

=
𝐾22
𝐾𝑚

= 1 + 16
3 𝜖

Self-consistent scheme 𝐾33
𝐾𝑚

=

(√︃
1 + 16

9 𝜖
2 − 4

3𝜖

)2
𝐾11
𝐾𝑚

=
𝐾22
𝐾𝑚

=

(√︃
1 + 64

9 𝜖
2 − 8

3𝜖

)−2

Differential scheme 𝐾33
𝐾𝑚

= (1 + 4
3𝜖)

−2 𝐾11
𝐾𝑚

=
𝐾22
𝐾𝑚

= (1 + 8
3𝜖)

2

PCW bound 𝐾33
𝐾𝑚

= (1 − 16
9 𝜖)/(1 + 8

9𝜖)
𝐾11
𝐾𝑚

=
𝐾22
𝐾𝑚

= (1 + 32
9 𝜖)/(1 − 16

9 𝜖)
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