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Sufficient Conditions for Global Integral Action
via Incremental Forwarding

for Input-Affine Nonlinear Systems
Mattia Giaccagli and Daniele Astolfi and Vincent Andrieu and Lorenzo Marconi

Abstract—We study the problem of constant output regulation
for a class of input-affine multi-input multi-output nonlinear
systems, which don’t necessarily admit a normal form. We allow
the references and the disturbances to be arbitrarily large and
the initial conditions of the system to range in the full-state
space. We cast the problem in the contraction framework and
we rely on the common approach of extending the system with
an integral action processing the regulation error. We present
then sufficient conditions for the design of a state-feedback
control law able to make the resulting closed-loop system
incrementally stable, uniformly with respect to the references
and the disturbances. Such a property ensures uniqueness and
attractiveness of an equilibrium on which output regulation is
obtained. To this end, we develop an incremental version of
the forwarding (mod {LgV }) approach. Finally, we provide
a set of sufficient conditions for the design of a pure (small-
gain) integral-feedback control. The proposed approach is also
specialized for two classes of systems, that are linear systems
having a Lipschitz nonlinearity and a class of minimum-phase
systems whose zero-dynamics are incrementally stable.

Index Terms—Integral action, incremental stability, contrac-
tion theory, forwarding, nonlinear output regulation, minimum-
phase systems.

I. INTRODUCTION

This paper deals with the problem of constant output set-
point tracking and constant disturbances rejection for multi-
input multi-output (MIMO) nonlinear systems. For linear
systems, a common solution relies on the use of an integral
action processing the regulation error. Such approach can be
also seen as a particular case of the output regulation problem
within which the so-called internal model principle has been
developed (see, e.g., [9], [12]). For nonlinear systems, many
solutions have been proposed based on integral action. With
respect to the structural properties of the regulated system,
the existing works can be mainly grouped in two main
approaches.

In the first group of works, it is commonly supposed the
existence of a change of coordinates that puts the system
into a normal form, [17, Chapter 4]. Depending on the
properties of the zero-dynamics, different control designs
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have been proposed: see, among others, [6], [19], [21] for
single-input single-output (SISO) minimum-phase systems;
[7], [44] for MIMO minimum-phase systems; [16] for SISO
non-minimum phase systems. In these settings, output regu-
lation can be ensured for arbitrarily large references and/or
disturbances with a semi-global (or global) domain of attrac-
tion, provided that the zero-dynamics possess good uniform
attractivity properties. However, such approaches cannot be
followed when a global normal-form doesn’t exist or its
explicit expression is hard to be computed.

A second group of works approaches the problem in a
“coordinate-free” framework, trying to develop a feedback
law in the original coordinates. In this setting, the key
observation is that when a system is augmented with an
integral action processing the regulation error, the resulting
extended system is in the so-called feedforward form, for
which forwarding stabilization techniques can be applied
[20], [27], [33]. Following this paradigm, if a given sys-
tem can be globally stabilized at the origin, then a global
stabilizing feedback-law for the unperturbed system (i.e.,
when disturbances and references are zero) extended with an
integral action can be systematically designed under common
controllability conditions, which are necessary and sufficient
in the linear case, see [32]. Unfortunately, as shown in [5],
[32], such an approach can be used to address the problem
of output regulation with a domain of attraction which is
semi-global in the initial conditions but only local in the
amplitude of the references and disturbances. In other words,
when the size of those signals is “large”, the existence of a
stable equilibrium is not guaranteed anymore.

By following this “coordinate-free” approach, the objective
of this work is to develop a new approach to solve the
problem of constant output regulation for MIMO nonlinear
systems, with possibly more inputs that outputs, with a global
domain of attraction and without restrictions on the amplitude
of the set-point and of the disturbances. To this end, we
focus on the class of input-affine systems with disturbances
satisfying a matching condition, namely acting in the same
directions of the control inputs, see, e.g., [34], [35]. We
extend the system with an integral action processing the
regulation error, and we look for state-feedback laws able
to enforce some desired “good properties” for the resulting
extended system. In particular, the goal is to obtain a closed-
loop system possessing an equilibrium that is globally at-
tractive, uniformly in the disturbances and references, and at
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which the regulation objective is fulfilled. Such a property
can be achieved if the system is convergent (see, e.g., [31])
or incrementally input-to-state stable (see, e.g., [4]). As a
consequence, the objective of this article is to develop a
new version of forwarding that incrementally stabilizes a
system extended with an integral action. Furthermore, we
show that such an incremental property is uniform in the
disturbances and references if a Killing vector field (see, e.g.,
[28]) property is verified.

The contributions of this work are several. First, we
develop a new set of sufficient conditions able to determine
whether a system is incrementally stable, possibly uniformly
in the initial conditions and in the disturbances. The condi-
tions are based on a metric analysis. The cases of uniform
and non-uniform contractions are considered and two new
results are given in the Appendix. The first provides a set
of sufficient conditions to establish the incremental stability
properties of systems on an invariant compact set. The second
proves the existence of a unique attractive equilibrium for
non-uniform globally contractive systems. Then, we study the
design of forwarding-based control laws able to incremen-
tally stabilize a given system. Two different approaches are
followed. First, we provide a new extension of the forwarding
design with exact change of coordinates [27, Section IV] in
the incremental context. This extends our preliminary results
published in [14] for the SISO case. Then, in Section IV, we
propose an incremental version of the forwarding mod{LgV }
approach first appeared in [33]. Such result contribute to the
number of existing techniques able to achieve incremental
stability properties, such as backstepping [46], LMI [3], [8],
and circle criterion [43], [45]. Finally, under more restrictive
robustness-like conditions, we also propose a small-gain
pure integral-feedback control law, providing a new set of
sufficient conditions which are easier to verify and more
constructive with respect to [39]. As a particular case of
application, the proposed incremental forwarding designs are
applied to the class of linear system matched with a Lipschitz
nonlinearity and to the class of minimum-phase systems with
incrementally stable zero-dynamics.

The rest of the paper is structured as follows. The prob-
lem statement and some preliminaries tools are given in
Section II. The main results, concerning the incremental
forwarding designs, are presented in Sections III and IV.
Two study cases are analyzed in Section V-A. A review and
some new results on contraction theory are included in the
Appendix.

A. Notations

We define R>0 = (0,∞) and R≥0 = [0,∞). We denote
with |·| the Euclidean norm and with ‖·‖ the standard induced
matrix norm. Given an open set O ⊂ Rn, we denote with
Cl(O) its closure. We denote with In the Identity matrix
of dimension n × n. Given a vector field f : Rn → Rn,
we use the following compact notation ∇xf(x) := ∂f

∂x (x) or
simply ∇f(x) when there is no confusion. Given a vector
field f : Rn → Rn and a C1 mapping h : Rn → Rm, we
denote the Lie derivative of h along f at x as Lfh(x) :=

〈∇h(x), f(x)〉 = ∂h
∂x (x)f(x). Given a 2-tensor P : Rn →

Rn×n taking symmetric values and a vector field f : Rn →
Rn, we denote the Lie derivative of the tensor P along f as
LfP (x), defined as

LfP (x) := dfP (x) + P (x)∇f(x) +∇f>(x)P (x) ,

dfP (x) := lim
t→0

P (X(x0, t))− P (x0)

t
,

where and X(x0, t) is the solution of

∂

∂t
X(x0, t) = f(X(x0, t)), X(x0, 0) = x0, ∀ t ≥ 0.

Given a 2-tensor P : Rn → Rn×n and a C1 vector field
g : Rn → Rn (respectively a C1 matrix function G : Rn →
Rn×m), we say that g is a “Killing vector” (respectively,
satisfy the “Killing matrix” property) for P , if LgP (x) = 0
(resp. LGi

P (x) = 0 for all i = 1, . . . ,m, with Gi denoting
the i-th column of G).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. The Global (Integral) Output Regulation Problem

This paper focuses on the constant global output regulation
problem for nonlinear systems of the form

ẋ = f(x) + g(x)[u+ d]

e = h(x)− r
(1)

where x ∈ Rn is the system’s state, u ∈ Rm is the control
input, e ∈ Rp is the error between the output h(x) to be
regulated and a constant reference r ∈ Rp, and d ∈ Rm
is a constant unknown disturbance satisfying the so called
“matching conditions” (see, e.g., [34], [35] and references
therein), i.e., acting on the same directions of the controller
u. We suppose that the functions f : Rn 7→ Rn, g : Rn 7→
Rn×m and h : Rn 7→ Rp are C1 with m ≥ p. Furthermore
f and h are zero at the origin.

The problem that is considered in this paper is the design
of a state feedback control law for system (1) that is able to
achieve output set-point tracking and disturbance rejection,
that is, limt→∞ e(t) = 0. Following [5], [32], and in the spirit
of [9], [12], we focus on the implementation of a dynamic
controller involving an integral action processing the error.

Specifically, we extend the system with a bunch of inte-
grators of the form

η̇ = e (2a)

with η ∈ Rp, and we look for a state feedback control law
φ : Rn×p 7→ Rm of the form

u = φ(x, η) (2b)

with φ(0, 0) = 0 such that there exist two sets S ⊆ Rn+p

and W ⊆ Rm+p, containing their respective origins, such
that the following properties are fulfilled:

1) if (d, r) = (0, 0), the origin of the closed loop system
(1)-(2) is globally asymptotically stable;

2) for all constant (d, r) ∈ W and all initial conditions
(x0, η0) ∈ S, the closed loop system (1)-(2) has
bounded trajectories and limt→+∞ e(t) = 0.
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Then, we have the following problem definitions.

• If S and W are non-empty, the Regional (Integral)
Output Regulation Problem is solved.

• If S = Rn+p and W = Rm+p, the Global (Integral)
Output Regulation problem is solved.

• If S is non-empty andW is of the formW = ∅×R for
some non-empty set R ⊆ Rp, then the (Integral) Output
Set-point Tracking Problem is solved.

Without the use of normal forms the construction of the
control law φ is not straightforward, especially whenever the
size of the disturbances is large in amplitude. For instance,
the results presented in [5], [32] provide a solution that is
semi-global in the amplitude of the state (x, η) but only local
in the size of (d, r). One of the contributions of this work
is to propose a set of sufficient conditions to obtain global
results.

The crucial point in the synthesis of an integral controller
is to ensure the existence of an equilibrium for every value
of (d, r). This amounts to asking that the flow admits a fixed
point which can be obtained via Banach fixed point theorem
([22, Appendix B]) if the flow itself defines a contraction. To
make the paper self contained, the Appendix provides some
fundamental definitions and results related to contractions
theory that are employed throughout the paper.

B. From Contraction to Regulation

System (1)-(2) leads to a closed-loop system of the form

Ẋ = ϕ(X) + Γ(X)w, (3)

where X = (x, η) ∈ Rn+p, w = (d, r) ∈ Rm+p, and the
functions ϕ and Γ are defined as

ϕ(X) :=

(
f(x) + g(x)φ(x, η)

h(x)

)
, (4)

Γ(X) :=
(
Γd(X) Γr

)
, Γd(X) :=

(
g(x)

0

)
, Γr :=

(
0

−Ip

)
.

(5)
Given any initial condition X0 in Rn+p and w ∈ Rm+p,
the corresponding solution of system (3) is denoted with
X (X0, t, w).

The control law (2b) solves the (integral) output regulation
problem if, for any value of w ∈ W , there exists a unique
equilibrium X∗ = (x?, η?) that is globally asymptotically
stable. Indeed, thanks to the integral action, at the equilibrium
we have η̇ = h(x?) − r = 0 and consequently the error e
converges asymptotically to zero along any solution of the
closed loop system. Contraction theory can be used to solve
the problem at hand (see, e.g., [31]), as highlighted in the
following theorem.

Theorem 1. Given f, g, h, suppose there exist a C1 function
φ : Rn×p 7→ Rm, a C1 function P : Rn+p → R(n+p)×(n+p)

taking symmetric positive definite values, a C0 function q :
Rn+p → R>0 taking positive values and two positive real

numbers p̄, p > 0 such that the vector fields ϕ,Γ defined in
(4)-(5) satisfy the following set of properties

pIn+p ≤ P(X) ≤ p̄In+p (6a)

LϕP(X) ≤ −q(X)In+p (6b)
LΓr
P(X) = 0, (6c)

LΓd
P(X) = 0, (6d)

for all X ∈ Rn+p. Then, the following holds.
1) If there exists a positive real number q > 0 such that

q(X) ≥ q for all X ∈ Rn+p, then the Global (Integral)
Output Regulation Problem is solved.

2) Otherwise, we have the following properties.
(a) Let W be a non-empty subset of Rm+p such that,

for all w in W , there exists an initial condition X0 ∈
Rn+p such that the corresponding closed-loop system
trajectory X (X0, w, t) is bounded. Then, the Regional
(Integral) Output Regulation Problem is solved for
S = Rn+p and such a W .

(b) There exists w > 0 such that, the Regional (Integral)
Output Regulation Problem is solved for S = Rn+p

and W = {w ∈ Rm+p, |w| ≤ w}.
Furthermore, if the condition (6d) is not verified, then, the
above results 1) and 2) hold for the (Integral) Output Set-
point Tracking Problem, in particular with W of the form
W = ∅ ×R, for some R ⊆ Rp.

The statement of Theorem 1 involves many different
results based on a contraction analysis of the vector field
ϕ of the closed-loop system (3) and how perturbations and
references w affect the system through the vector Γ.

First, conditions (6a) and (6b), require the unforced closed-
loop system (3), i,e, for w = 0, to be globally contractive, but
possibly non-uniformly with respect to the full-state space
X . In other words, since q can be non-uniformly lower-
bounded, we cannot conclude that the unforced closed-loop
system is δES (See Definition 1 in the Appendix). However,
since ϕ(0) = 0, the origin is globally asymptotically stable
(see Proposition 8 in the Appendix). If the contraction is
uniform (see item 1), that is q(x) ≥ q > 0, and the
Killing vector conditions (6c), (6d), with respect to Γ are
verified, then, the system is still contractive for any X and
w. In this case, the key role of the Killing vector property
is to ensure the distance among different trajectories to be
invariant with respect to the amplitude of external signals. In
turn, such a geometric condition ensures that the contractivity
property of system (3) are invariant with respect to w, and
the convergence to an equilibrium is guaranteed. Note that
such a Killing property is always verified when Γ is a linear
mapping and P is a constant matrix. This is the case, for
instance, of linear systems.

As we shall see in the sequel, the existence of a feedback-
law (2b) ensuring a uniform contraction is not always pos-
sible. However, under milder assumptions, we shall see that
it is in general possible to obtain a non-uniform contraction,
according to the conditions of item 2. In such a case, output
regulation is obtained globally in the initial conditions, but
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only regionally with respect to the exosignal w, that is, only
for w ∈ W for some compact set W . Item 2 (a) and (b)
provide two different conditions for the estimation of such a
setW . It is of particular interest the first set of conditions (a),
in which it suffices to verify whether the resulting trajectory is
bounded forward in time to conclude asymptotic regulation.
Nonetheless, the condition (b) ensures that the set W is
non-empty. In other words, asymptotic regulation is always
guaranteed globally in the state X and at least locally in the
size of the exosignal w. Note that such a result is also new
with respect to [5], where output regulation is obtained only
semi-globally in X and locally in w.

Finally, since the existence of a metric P which is of
Killing for both vectors Γr and Γd is not always possible,
the last part of the theorem states that whenever only Γr
is a Killing vector for P , then, all previous arguments hold
by considering only the case of tracking problem, i.e. with
d = 0. As a matter of fact, as we shall see in the subsequent
sections, it is easier to design a feedback law satisfying the
condition (6c) than (6d), because Γr is constant while Γd is
not.

Proof of Theorem 1. First, note that the origin of (3) for
w = 0 is an equilibrium. Hence, direct application of Propo-
sition 8 implies that the equilibrium is globally attractive
when w = 0. Furthermore, it is also locally exponentially
stable. This can be proved by using the first order ap-
proximation of system (3) at the origin and the Lyapunov
function V (X) = X>P(0)X , and inequality (6b), which is
LϕP(0) ≤ −q(0)I < 0 at the origin. This establish the first
property 1). Concerning the second property, we will now
prove the two items separately.
Item 1. Since q(X) ≥ q > 0, the inequality (6b) is strict for
all X ∈ Rn+p. Furthermore, by using the the Killing matrix
properties (6c), (6d), we have

Lϕ+ΓwP(X) = LϕP(X) + LΓP(X)w

= LϕP(X)

≤ −qIn+p ,

(7)

for all X ∈ Rn+p and all w ∈ Rm+p. As a consequence,
system (3) is an autonomous system satisfying the conditions
of Theorem 2 in the Appendix. We deduce that system (3)
is δGES. Direct application of Lemma 2 in the Appendix
ensures that, for any w, there exists a unique equilibrium
point X? = (x?, η?) which exponentially attracts all solu-
tions. On such equilibrium, we obtain η̇ = 0 and hence e = 0,
concluding the proof of the statement.
Item 2 (a). Let w be in W and let X0 ∈ Rn+p such that
X (X0, w, t) is bounded. Let C ⊂ Rn+p be defined as

C := Cl

{ ∞⋃
t≥0

X (X0, w, t)

}
and note that C is a forward invariant compact set, in view
of [41, Lemma 6.4]. Let qO := min{(x,η)∈O} q(x, η) > 0
where O is the set defined as

O :=

{
X ∈ Rn+p,max

s∈C
|X − s| < r

}
,

for some positive real number r satisfying

r >

√
p̄

2
√

p
max

(X1,X2)∈C2
|X1 − X2| .

Keeping in mind that Γd,Γr satisfy the Killing matrix prop-
erties (6c), (6d) for P , by using computations similar to (7),
we obtain Lϕ+ΓwP(X) ≤ −qOIn+p for all (x,w) ∈ O×W .
Hence Proposition 7 applies (see Appendix) and therefore
system (3) is δES in C. Then, Lemma 2 in Appendix implies
the existence of an equilibrium X? ∈ C. From proposition 8
it yields that this equilibrium is unique and it is globally
attractive. Again, on such an equilibrium, we have η̇ = 0,
and hence e = 0.
Item 2 (b). We already proved that the equilibrium of (3) is
locally exponentially stable for w = 0. Hence, by [5, Lemma
5], there exists w > 0 such that, for all w ∈ W , W :=
{w ∈ Rm+p : |w| ≤ w}, system (3) admits an equilibrium
X∗ ∈ Rn+p which is locally exponentially stable. Hence,
employing Item 2 (a) with this setW , the result follows.

Motivated by the conditions of Theorem 1, in the rest of the
paper we will design a control law able to guarantee both the
contraction of ϕ for some metric P , and the Killing matrix
property with respect to Γ. To this end, we will develop
an incremental version of the forwarding approach, which
is briefly recalled in the next section.

C. Highlights on Forwarding Design

When (d, r) = (0, 0), system (3) reads

ẋ = f(x) + g(x)u, (8a)
η̇ = h(x), (8b)

where x ∈ Rn, u ∈ Rm, η ∈ Rp. Systems in the form (8),
are said to be in the so-called feed-forward form (see, e.g.,
[27]). Many techniques have been developed in the past years
for systematic stabilization of this class of systems. Among
them, we recall below the so called forwarding approach (see,
for instance, [5], [20], [32], [33], [38]).

The forwarding approach is based on the assumption that
the subsystem (8a) is stabilizable by a state-feedback law.
Following [27], the following result is obtained (see [27,
Lemma IV.2]).

Lemma 1. Assume there exists a C1 functions φ0 : Rn 7→
Rm such that the origin of

ẋ = f0(x) , f0(x) := f(x) + g(x)φ0(x) , (9)

is Locally Exponentially Stable and Globally Asymptotically
Stable. Then, there exists a C2 function M : Rn → Rp
solution of

Lf0M(x) = h(x). (10)

Two typical control laws can be given via forwarding
approaches.
• The first one is in the form

u = φ0(x)−
[
LgV (x)− LgM(x)>(η −M(x))

]
,
(11)
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where V is the Lyapunov function associated to the
feedback φ0, i.e. such that Lf0V (x) < 0 for all x 6= 0.

• The second one follows the small control strategy

u = φ0(x) + `(x)LgM(x)>(η −M(x)), (12)

where ` : Rn → R>0 is a sufficiently small function
(needed to compensate the absence of the term LgV ).
The control law (12) can be used, for instance, when
the Lyapunov function V is unknown.

See also [5, Section III] or [32] and references therein for
more details. We have the following result.

Proposition 1 (Forwarding design). Let the conditions of
Lemma 1 hold. Furthermore, suppose that the function M
defined in (10) satisfies

rank(LgM(0)) = p. (13)

Then, there exists ` : Rn → R>0 such that the origin of
system (8) in closed-loop with (12) is Globally Asymptotically
Stable and Locally Exponentially Stable.

Condition (13) is guaranteed if system (8a) with output
y = h(x) is locally controllable at the origin. Such property,
also known as non-resonance condition in regulation theory
[18, Chapter 1.4], corresponds to the condition CA−1B full
rank, where A := ∇f(0), B := g(0), C := ∇h(0). See
also [5] for more details. Although the existence of M is
always guaranteed under the conditions of Lemma 1, its
explicit expression may not be always easy to find, since it
involves the solution of the partial differential equation (10).
As a consequence, in order to provide additional degrees
of freedom for the design of the control law (12), several
extensions have been developed through the years. See, for
instance, [5, Section III.B].

A particular design of interest for our work is the design
proposed in [33] which extends the control laws of the
form (11), and denoted as “forwarding mod{LgV }”, and
highlighted in the following proposition. We recall that
such design has been proposed for single-input single-output
systems (m = p = 1).

Proposition 2 (Forwarding mod{LgV }). Consider system
(9) and suppose to know a positive definite Lyapunov function
V : Rn → R satisfying Lf0V (x) < 0 for all x 6= 0. Assume,
moreover, to know a C1 function M : Rn 7→ R with M(0) =
0 and a C0 function k(x) such that the following holds.

(i) Lf0M(x) = h(x) + k(x)LgV (x).
(ii) LgM(0) 6= 0.

(iii) For all {x ∈ Rn : LgM(x) 6= 0, x 6= 0}, then

Lf0M(x)−
k(x)(LgV )2(x)

LgM(x)
< 0.

Then, the origin of (8) in closed-loop with

u = φ0(x)− k(x)LgV (x)

LgM(x)
−[LgV (x)− LgM(x)(η −M(x))],

(14)

is Globally Asymptotically Stable and Locally Exponentially
Stable.

Proof. See [33, Proposition 1].

The interest of the condition (i) in Proposition 2 concerns
the computation of M , which can be interpreted as an approx-
imated version of the solution of the PDE (10), in which the
mismatch between the exact solution M and its approximated
version M is represented by the term k(x)LgV (x). Such an
approximated solution is introduced to add extra degrees of
freedom when the exact solution of M is hard to obtain. Such
a mismatch term has no destabilizing effect in light of the
item (iii) of the proposition. The reader may refer to [33] for
a more detailed discussion.

As shown in [5], global stabilization of the origin implies
that the output regulation problem is solved semi-globally
with respect to the state but only locally with respect to the
size of the exosignals. In order to weaken this restriction, we
aim at ensuring contractivity properties for the closed-loop
systems. The goal of Section III is therefore to develop an
incremental version of the forwarding design satisfying the
conditions of Theorem 1.

III. INCREMENTAL FORWARDING

A. Assumptions

In this section we state the main assumptions for system
(1) which are needed in order to design a feedback-law of the
form (2) that is able to satisfy the conditions of Theorem 1.
For this, we follow a forwarding-like approach, as highlighted
in Section II-C. In our contraction framework, we assume the
existence of a pre-stabilizing feedback ensuring a uniform
contraction according to a metric satisfying the Killing vector
property with respect to the function g.

Assumption 1 (Contractivity and Killing Vector). Consider
system (1) with the function g fulfilling ‖g(x)‖ ≤ ḡ for
some positive ḡ > 0 for all x ∈ Rn. There exist a known
C1 function φ0 : Rn 7→ Rm, φ0(0) = 0, a C1 function
P : Rn → Rn×n taking symmetric positive definite values
P (x) = P (x)> > 0 for all x ∈ Rn, and real numbers
p, p̄, λ0 > 0 such that, by denoting

ẋ = f0(x), f0(x) := f(x) + g(x)φ0(x) , (15)

the following properties hold for all x ∈ Rn

pIn ≤ P (x) ≤ p̄In , Lf0P (x) ≤ −2λ0In , (16)

LgP (x) = 0 . (17)

According to Theorem 2 (see Appendix), the feedback
law u = φ0(x) ensures the vector field f0 to be δGES
with respect to the metric P . The computation of φ0 can be
obtained, for instance, by following the design techniques in
[31, Chapter 5], or [2], [3], [13], [29], [46]. Furthermore, in
(17), we ask that the (Riemaniann) metric induced by P is in-
variant along g, i.e., g is a Killing vector for P . For instance,
in the case g is constant, the property (17) is satisfied for
any constant metric P . Indeed, as we allow disturbances to
have any amplitude, their contribution to the system trajectory
must be always zero, that is, the contractivity property of the
autonomous system is not affected at all by d. This means
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that the system preserves its contractivity properties in the
directions provided by g, namely, in the directions in which
the control law and the perturbations d act. In other words,
it is possible to show that Assumption 1 implies system

ẋ = f0(x) + g(x)d

to be incrementally input-to-state-stable1 with respect to d.
See also Section III.A in [25] for further details on condi-
tion (17). The Killing vector property can be obtained, for
instance, by means of computational tools (see [42]).

Since system (15) is δGES and the origin is an equilibrium,
it is also globally exponentially stable. As a consequence,
by applying Lemma 1, we know the existence of a function
M : Rn 7→ Rp satisfying (10). Similarly to the condition
(13) of Proposition 1, we suppose then that LgM(x) satisfies
a controllability-like condition, which, in our incremental
framework, is stated as follows.

Assumption 2 (Controllability along trajectories). There
exists a positive real number α > 0 satisfying

LgM(x)LgM
>(x) ≥ αIp ∀ x ∈ Rn (18)

where M is the solution of (10).

Assumption 2 can be read as a uniform controllability-like
assumption for extended dynamics

ẋ = f0(x) + g(x)u η̇ = h(x)

corresponding to the “incremental version” of condition (13).

Remark 1. Note that for a linear system of the form

ẋ = Ax+Bu, η̇ = Cx

Assumptions 1 and 2 boil down to ask, respectively, for
(A,B) to be stabilizable (in this case the metric P is constant
and (17) is automatically satisfied) and the non-resonance
condition rank(CA−1B) = p to hold. In linear output
regulation theory (see, e.g. [9], [12], or [18, Chapter 1])
these conditions are necessary and sufficient to solve the
Global Output Regulation Problem.

B. Design for Output Regulation Problem

Under the assumptions stated in Section III-A, we are now
in the position to state the first result, concerning the design
of a forwarding-based control law for system (1) satisfying
the hypothesis (6a) (6b) and (6c) of Theorem 1. Taking
inspiration from (12), we focus on a control law of the form

φ(x, η) = φ0(x) + κΨ(x)β(η −M(x)), (19)

where the function Ψ : Rn → Rm×p is defined as

Ψ(x) := LgM(x)>(LgM(x)LgM(x)>)−1, (20)

κ ∈ R is a control gain parameter and β : Rp → Rp is a C1

function to be specified. We have the following result.

1See, for instance, [4].

Proposition 3 (Incremental (non-uniform) forwarding). Con-
sider system (1) and suppose Assumptions 1 and 2 hold.
Suppose, moreover, that there exist positive real numbers
LM > 0 and k1 ≥ 0 such that the following inequalities
are verified

‖∇M(x)‖ ≤ LM , (21)

‖∇x(Ψ(x)v)‖ ≤ k1|v| , ∀v ∈ Rp (22)

for all x ∈ Rn, with Ψ defined as in (20) and with M defined
as in (10). Finally, select β : Rp → Rp as any C1 function
satisfying

‖β(s)‖ ≤ 1

k1
, ∇β(s) = ∇β>(s), 0 < ∇β(s) ≤ Ip,

(23)
for all s ∈ Rp. Then, there exists a positive real number
κ̄ > 0 such that, for any κ ∈ (0, κ̄], the closed-loop system
(1)-(2), with φ selected as in (19), satisfies the properties (6a),
(6b), and (6c) and the conditions of item 2 of Theorem 1.

Remark 2. For instance, when p = 1, a simple choice of
β satisfying the conditions in (23) is β(s) = µ atan(s) with
µ > 0 to be selected sufficiently small.

A direct consequence of Proposition 3 and Theorem 1,
is the following corollary. The proof is omitted for space
reasons.

Corollary 1. Under the assumptions of Proposition 3, the
control law (2), with φ selected as in (19), satisfies the
Regional (Integral) Output Tracking Problem for system (1)
for some non-empty R ⊂ Rp, according to the statement of
item 2 of Theorem 1.

Proof of Proposition 3. Since the condition (6d) is not veri-
fied, in the rest of the proof we refer to the last part of the
statement of Theorem 1 and we fix d = 0. Now, consider
then the following change of coordinates

(x, η) 7→ χ := (x, z), z := η −M(x), (24)

and recall that in view of Assumption 2 and the definition of
Ψ in (20), we have LgM(x)Ψ(x) = Ip for all x ∈ Rp. As
a consequence, in the χ-coordinates, the closed-loop system
(1), (2), (19), with d = 0 and any r, reads

χ̇ = F (χ) + Γrr

with F defined as

F (χ) :=

(
f0(x) + κg(x)Ψ(x)β(z)

−κβ(z)

)
and Γr defined as in (5). Now, by recalling the triangular
structure of F , the Jacobian JF of F is given by

JF (χ) := ∇F (χ) =

(
J11(χ) J12(χ)

0 J22(χ)

)
(25)

where the components J11, J12 and J22 are defined as

J11(χ) := ∇f0(x) + κ∇
(
g(x)Ψ(x)

)
β(z) ,

J12(χ) := κg(x)Ψ(x)∇β(z) , J22(χ) := −κ∇β(z) .
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Consider a matrix valued function P : Rn+p →
R(n+p)×(n+p) of the form

P(x) :=

(
P (x) 0

0 bIp

)
, (26)

where P is given by Assumption 1 and b > 0 is some positive
real number to be defined yet. By construction, the function
P takes symmetric positive values. Then, let also the function
L : Rn+p → R(n+p)×(n+p) be defined as

L(χ) := LFP(χ) +

(
λ0In 0

0 κ∇β(z)

)
(27)

with λ0 given by Assumption 1. Observe that L takes
symmetric values. We want to show now that L takes only
negative definite values if κ is selected small enough. To this
end, let us decompose L as follows

L(χ) :=

(
L11(χ) L12(χ)

L>12(χ) L22(χ)

)
. (28)

By inspecting its components, by using the definition of JF
and the Killing vector property LgP (x) = 0, see (17) in
Assumption 1, we have

L11(χ) :=Lf0P (x) + λ0In + κP (x)g(x)∇Ψ(x)β(z)

+ κ (P (x)g(x)∇Ψ(x)β(z))
>
,

L12(χ) :=κP (x)g(x)Ψ(x)∇β(z),

L22(χ) :=− κ(2b− 1)∇β(z).

By using (23), we have L22(χ) < 0 for all χ ∈ Rn+p and for
any b > 1

2 . Furthermore, it is invertible for all χ ∈ Rn+p. As
a consequence, L(χ) is negative definite for all χ ∈ Rn+p if
its Schur complement, denoted as SCL(χ), is also negative
definite for all χ ∈ Rn+p. Now, by using the fact that Lf0P
satisfies inequality (16), and that the functions P , g, β and
the derivative of Ψ are bounded, see (16), (17), (21), and
(23), it yields

L11(χ) ≤ − (λ0 − 2κp̄ḡ) In ∀ χ ∈ Rn+p. (29)

Moreover, by combining inequalities (18) and (21) and by
recalling the definition of Ψ in (20), we also obtain

‖Ψ(x)‖ ≤ LM ḡ

α

By combining all previous bounds together, we obtain

SCL(χ) :=L11(χ)− L12(χ)L22(χ)−1L12(χ)>

≤− (λ0 − 2κp̄ḡ) In

+
κ

2b− 1
P (x)g(x)Ψ(x)∇β(z)Ψ>(x)g>(x)P (x)

≤−
(
λ0 − κp̄ḡ

(
2 +

p̄L2
M ḡ

3

2(2b− 1)α2

))
In.

Hence, with b > 1
2 , selecting

κ̄ = λ0

(
p̄ḡ

(
2 +

p̄ḡ3L2
M

2(2b− 1)α2

))−1

,

it implies that SCL(χ) ≤ 0 for all χ ∈ Rn+p and therefore
L(χ) ≤ 0 for all κ ∈ (0, κ̄] and for all χ ∈ Rn+p.
Consequently, recalling the definition of L in (27), it yields

LFP(χ) ≤ −min {λ0, κ∇β(z)} In+p . (30)

Note that the metric P has been obtained in the χ-
coordinates. In order to complete the proof, we need to come
back into the original coordinates X = (x, η). In particular,
the metric P is defined as

P(χ) := E(x)>P(X)E(x) , E(x) :=

(
In 0

−∇M(x) Ip

)
,

(31)
giving

P(χ) =

(
P (x) + b∇M>(x)∇M(x) −b∇M>(x)

−b∇M(x) bIp

)
.

Note that

E(x)−1 =

(
In 0

∇M(x) Ip

)
,

and, with (21),

|E(x)| ≤ 1 + LM ,
∣∣E(x)−1

∣∣ ≤ 1 + LM , ∀ x ∈ Rn.

Hence, for all v in Rn+p and x ∈ Rn,

v>P(χ)v ≥ min{p, b} |E(x)v|2

≥ min{p, b} |v|2

|E(x)−1|2
≥

min{p, b}
(1 + LM )2

|v|2 .

On another hand,

v>P(χ)v ≤ max{p, b} |E(x)v|2

≤ max{p, b} (1 + LM )2|v|2 .

Hence, inequality (6a) holds with

p̄ := max{p, b} (1 + LM )2, p :=
min{p, b}
(1 + LM )2

. (32)

Finally, by combining inequality (30) with the definition of
P in (31) and previous bounds, we have that inequality (6b)
holds with the function q : Rn+p → R>0 defined as

q(x, η) =
1

(1 + LM )2
min {λ0, κ∇β(η −M(x))} , (33)

which is always positive in view of the property of β in (23).
Finally, since the metric P is constant in the z-coordinates
(indeed, by its definition, it does not depend on z), and Γr
is constant, it follows that LΓrP(X) = 0 for all X ∈ Rn+p,
that is (6c) is satisfied.

Remark 3. According to Definition 1 in Appendix, the
closed-loop system is not δGES. Indeed, the right-hand side
of (33) may be not uniformly bounded from below in (x, η)
because of the properties of β in (23).
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IV. INCREMENTAL FORWARDING MOD {LgV }
A. Design for Global (Integral) Output Regulation

In the previous section, we have seen that under Assump-
tions 1 and 2, it is always possible to solve the Regional
(Integral) Output Tracking Problem. Two main drawbacks of
the previous procedure can be highlighted. The first concerns
the fact that the proposed design relies on the solution of
the PDE (10) that may be hard to compute in practice. The
second is related to the fact that the condition (6d) is not
satisfied as Γd depends on x and therefore only the second
part of Theorem 1 can be applied (in other words, global
disturbance rejection is not generically ensured).

To this end, we state a new assumption, that extends in the
incremental framework the forwarding mod{LgV } technique
presented in Section II-C and in particular items (i)-(iii)
of Proposition 2. The proposed conditions, although more
conservative, allow for a design that is easier to apply since
it doesn’t rely on the exact solution of the PDE (10), but only
on an approximation version of it.

Assumption 3 (Incremental forwarding mod{LgV }). There
exist a C2 function M : Rn 7→ Rp, a C1 function N : Rn 7→
Rp a p × m matrix Λ and a positive real number λ1 > 0
satisfying the following properties:

1) Lf0M(x) = h(x) +N(x) for all x ∈ Rn.
2) LgM(x) = Λ for all x ∈ Rn.
3) rank(Λ) = p.
4) The following inequality holds

Lf0P (x)− P (x)g(x)Ψ∇N(x)

−∇N>(x)Ψ>g(x)>P (x) ≤ −2λ1I, (34)

for all x ∈ Rn, with P given by Assumption 1, and Ψ
defined as

Ψ := LgM(x)>
[
LgM(x)LgM(x)>

]−1
= Λ>(ΛΛ>)−1.

(35)

In Assumption 3 we ask LgM(x) to be constant for
all x ∈ Rn. Although such an assumption is in general
much more stringent than asking for a constant rank as in
Assumption 2, it is worth however noting that the defini-
tion of M is now different, see item 1. In particular, the
function N represents the mismatch between the definition
of M in (10) and M in Assumption 3. Such a term N
can be therefore used as an extra degree of freedom, to
achieve the desired regularity on LgM or to provide an
“easy-to-compute” approximate solution of the PDE (10). In
the contraction analysis, the remaining term N is managed
via the robustness properties of the x-dynamics, which is
assumed to be “sufficiently contractive”. This is expressed
in the inequality (34). Evidently, in case N(x) = 0 for all
x ∈ Rn, the designs of M and M coincide and items 2 and
3 read as a strongest version of Assumption 2, while item 4
is automatically satisfied by Assumption 1 with λ1 := λ0.
Finally, we stress that items 1-4 of Assumption 3 correspond
to a generalized incremental version of the conditions (i)-(iii)
of Proposition 2 when selecting N(x) = k(x)LgV (x).

Remark 4. Item 2 of Assumption 3 can be interpreted as the
existence of a DC gain approximation Λ of the system (15),
which is constant for any linearization around any point of
the state space.

Based on the previous assumption, we focus on a control
law of the form

φ(x, η) = φ0(x) + κΨ
(
η −M(x)

)
−ΨN(x), (36)

where the matrix Ψ is defined as in (35), N is the function of
item 1 satisfying (34), and κ ∈ R is a control gain parameter.
We have then the following result.

Proposition 4 (Incremental uniform forwarding mod{LgV }).
Consider system (1) and suppose Assumptions 1 and 3 hold.
Suppose, moreover, that there exists a positive real number
LM > 0 such that

‖∇M(x)‖ ≤ LM (37)

holds for all x ∈ Rn. Then, for any κ > 0, the closed-
loop system (1)-(2) with φ selected as in (36), satisfies the
properties (6a), (6b), (6c), (6d) and the conditions of item 1 of
Theorem 1, namely, there exists q > 0 such that the function
q in (6b) satisfies q(X) ≥ q for all X ∈ Rn.

A direct consequence of Proposition 3 and Theorem 1 is
the following result. The proof is omitted for compactness.

Corollary 2. Under the assumptions of Proposition 4, the
control law (2b), with φ selected as in (36), satisfies the
Global (Integral) Output Regulation Problem for system (1).

Proof of Proposition 4. We follow here the main steps of the
proof of Proposition 3. Consider the change of coordinates
(24). By item 2 of Assumption 3 and by definition of Ψ in
(35), we have LgM(x)Ψ = Ip. Hence, the z-dynamics reads

ż =h(x)− LfM(x)− LgM(x)φ(x, η)

=h(x)− Lf0M(x)− κLgM(x)Ψz + LgM(x)ΨN(x)

=− κz,

where we used the relation on h,M,N given in item 1) of
Assumption 3. The closed-loop system (1), (2), (36) can be
then compactly written as

χ̇ = F (χ) + Γ̃(X)w

with F and Γ̃ defined as

F (χ) :=

(
f0(x) + κg(x)Ψz − g(x)ΨN(x)

−κz

)
,

Γ̃(χ) :=

(
g(x) 0
−Λ −Ip

)
.

The Jacobian JF of F is of the form (25) where now the
components J11, J12 and J22 are defined as

J11(χ) := ∇f0(x) +∇g(x)Ψ(κ−N(x))− g(x)Ψ∇N(x) ,

J12(χ) := κg(x)Ψ , J22(χ) := −κIp.
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Consider the metric P defined in (26) for some b > 0
to be defined later, and the matrix function L : Rn+p →
R(n+p)×(n+p) defined as

L(χ) := LFP(χ) +

(
λ1In 0

0 κIp

)
(38)

with λ1 given by (34). By construction, L takes symmetric
values. We want to show that for any value of κ, the function
L so defined is negative definite for all χ ∈ Rn+p. By
inspecting its components as in (28), and by using the Killing
vector property LgP (x) = 0 in (17), we obtain

L11(χ) :=Lf0P (x) + λ1In − P (x)g(x)Ψ∇N(x)

−∇N>(x)Ψ>g>(x)P (x) ,

L12(χ) :=κP (x)g(x)Ψ , L22(χ) := −κ(2b− 1)Ip .

Trivially, L22(χ) < 0 for all χ ∈ Rn+p and for any b > 1
2 .

As a consequence, L(χ) is negative definite for all χ ∈ Rn+p

if its Schur complement, denoted as SCL(χ), is also negative
definite for all χ ∈ Rn+p. By using (34), we compute

SCL(χ) :=L11(χ)− L12(χ)L22(χ)−1L12(χ)>

≤− λ1In +
κ

2b− 1
P (x)g(x)ΨΨ>P (x)g(x)P (x)

≤−
(
λ1 −

κ(p̄ḡk1)2

2b− 1

)
In,

where k1 =
√
‖ΨΨ>‖. Hence, by selecting

b =
1

2

(
1 +

κ(p̄ḡk1)2

λ1

)
. (39)

we obtain SCL(x) ≤ 0 and consequently L(χ) ≤ 0 for all
χ ∈ Rn. Consequently, recalling the definition of L in (38),
it yields

LFP(χ) ≤ −min {λ1, κ} In+p .

Moreover, in light of the structure of Γ̃ and the fact that P
is independent of z, we deduce that LΓ̃P(χ) = 0 for all
χ ∈ Rn+p. Finally, as in the proof of Proposition 3, consider
the function P defined as

P(χ) := E(x)>P(X)E(x) , E(x) :=

(
In 0

−∇M(x) Ip

)
,

(40)
to obtain a metric in the original coordinates X = (x, η).
The rest of the proof follows the same lines of the proof of
Proposition 3, with p̄, p selected as in (32),

q :=
1

(1 + LM )2
min {λ1, κ} ,

and by recalling that the Killing vector property is invariant
with respect to global diffeomorphism (see Remark 7 in
Appendix).

Remark 5. The fact that the closed-loop defines a uniform
global contraction with respect to a metric P(χ) and that Γ
is of Killing with respect to such P , is a sufficient condition
to show that the closed loop is Incremental ISS ([4]) with
respect to the input w. Therefore, in case w = (d, r) is a
time-varying bounded and integrable signal, the trajectory of

the closed loop is guaranteed to be bounded for all positive
times. Moreover, if limt 7→∞ w(t) = w? for some constant
w?, then the closed loop trajectory asymptotically tends to
an equilibrium point where constant output regulation is
achieved.

B. (Partial) Output Feedback Design

In this section we explore the case in which the control
law used to stabilize the cascade system is not dependent
on x but only on the state of the integrator itself (see, e.g.,
[10] or, more recently, [39]). Solutions based on forwarding
in which the stabilization of the cascade system is achieved
by a control law only dependent on the local state are not
new in literature. For linear systems, this corresponds to
the use of a pure I-regulator with a small gain, instead of
a classical PI-regulator. In this section we show how, by
slightly strengthening the condition (34), the feedback law
(36) can be modified into

φ(x, η) = φ0(x) + κΨη (41)

where φ0 is the pre-stabilizing feedback needed to achieve
contractivity of the x-dynamics (recall that for an open-loop
contractive system, φ0 can be zero), and κ > 0 is a small
positive gain to be selected. With respect to control law (36),
the term κΨM(x) + N(x) is not needed. To this end, we
state the following assumption (which is new with respect to
[39]).

Assumption 4 (Generalized forwarding for output feedback).
There exist positive real numbers a, λ2 > 0 such that all the
items of Assumption 3 are verified and moreover the following
inequality(
aP (x)g(x)Ψ− 1

a∇N
>(x)

) (
aP (x)g(x)Ψ− 1

a∇N
>(x)

)>
+Lf0P (x) ≤ −2λ2In

(42)

holds for all x ∈ Rn.

Remark 6. Simple computation show that (42) implies (34)
for some λ1 ≥ λ2. Moreover, if N(x) = 0 for all x ∈ Rn,
the inequality (42) is always verified under Assumption 1. In
particular, it can be directly derived from inequality (16) by
selecting

a =
1

p̄ḡ

√
λ0

2‖ΨΨ>‖
, λ2 =

λ0

2
,

and q, p̄, ḡ as in (16), (17), and (21).

Proposition 5 (Incremental uniform integral action). Con-
sider system (1) and suppose Assumptions 1 and 4 hold and
that there exists LM ∈ R>0 such that the inequality (37)
holds for all x ∈ Rn. Then, there exists a positive real number
κ̄ > 0, such that, for any κ ∈ (0, κ̄], the closed-loop system
(1)-(2), with φ selected as in (41), satisfies the properties (6a),
(6b), (6c), (6d) and the conditions of item 1 of Theorem 1,
namely, there exists q > 0 such that the function q in (6b)
satisfies q(X) ≥ q for all X ∈ Rn.
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Combining Proposition 5 with Theorem 1, we directly
obtain the following result.

Corollary 3. Under the assumptions of Proposition 5, the
control law (2b), with φ selected as in (41), satisfies the
Global (Integral) Output Regulation Problem for system (1)
for κ > 0 small enough.

Proof of Proposition 5. We follow the same steps used in the
proof of Proposition 4. By using the change of coordinates
(24), and defining χ = (x, z), the closed-loop system (1),
(2), (41) reads as

χ̇ = F (χ) + Γ̃(X)w

with F and Γ̃ defined as

F (χ) :=

(
f0(x) + κg(x)Ψ

(
z +M(x)

)
−κz −N(x)− κM(x)

)
,

Γ̃(χ) :=

(
g(x) 0
−Λ −Ip

)
.

The Jacobian JF of F is now of the form

JF (χ) := ∇Fχ(χ) =

(
J11(χ) J12(χ)
J21(χ) J22(χ)

)
,

where now the components J11, J12, J22 and J22 are defined
as

J11(χ) :=∇f0(x) + κ∇g(x)Ψ
(
z +M(x)

)
+ κg(x)Ψ∇M(x) ,

J12(χ) :=κg(x)Ψ , J21(χ) := −κ∇M(x)−∇N(x) ,

J22(χ) :=− κIp.

Consider now the metric P defined in (26) for some b > 0 to
be defined later, and the function L : Rn+p → R(n+p)×(n+p)

defined as

L(χ) := LFP(χ) +

(
λ2In 0

0 1
2κbIp

)
(43)

with λ2 given by (42). By construction, L takes symmetric
values. We want to show that for any value of κ, the function
L so defined is negative definite for all χ ∈ Rn+p. By
inspecting its components as in (28), and by using the Killing
vector property LgP (x) = 0 in (17), we obtain

L11(χ) :=Lf0P (x) + λ2In + κP (x)g(x)Ψ∇M(x)

+ κ∇M>(x)Ψ>g>(x)P (x) ,

L12(χ) :=κP (x)g(x)Ψ− κb∇M>(x)− b∇N>(x) ,

L22(χ) :=− 3
2κbIp .

Trivially, L22(χ) < 0 for all χ ∈ Rn+p and for any b > 0.
As a consequence, L(χ) is negative definite for all χ ∈ Rn+p

if its Schur complement, denoted as SCL(χ), is also negative
definite for all χ ∈ Rn+p. By using the inequality

(a+ b)(a+ b)> ≤ (1 + ν)aa> + (1 + ν−1)bb>

valid for any matrices a, b of suitable dimension and any
ν > 0, we obtain

SCL(χ) = −L12(χ)L22(χ)−1L12(χ)>

=
2

3κb

[
κP (x)g(x)Ψ− κb∇M>(x)− b∇N>(x)

]
×

×
[
κP (x)g(x)Ψ− κb∇M>(x)− b∇N>(x)

]>
≤

(√
κ

b
P (x)g(x)Ψ−

√
b

κ
∇N>(x)

)
×

×

(√
κ

b
P (x)g(x)Ψ−

√
b

κ
∇N>(x)

)>
+2κb∇M>(x)∇M(x).

Hence, select b = κ/a2 with a given by (42). It gives

SCL(χ) ≤ 2κb∇M>(x)∇M(x)

+
(
aPg(x)Ψ− 1

a∇N
>(x)

) (
aPg(x)Ψ− 1

a∇N
>(x)

)>
and therefore, by using (42), and the bounds (16), (17) and
(21), we obtain

SCL(χ) ≤ −
(
λ2 − 2κp̄ḡ‖Ψ‖LM − 2κ2L

2
M

a2

)
In,

for all χ ∈ Rn+p. Hence by selecting κ̄ > 0 small enough
so that

λ2 − 2κ̄p̄ḡ‖Ψ‖LM − 2κ̄2L
2
M

a2
≥ 0

and by recalling the definition of L in (43), and the structure
of Γ̃, we conclude that

LFP(χ) ≤ −min

{
λ2,

κ2

2a2

}
, LΓ̃P(χ) = 0

for all χ ∈ Rn and for all κ ∈ (0, κ̄]. The rest of the proof
follows the same lines of the proof of Proposition 4 with
q := 1

(1+LM )2 min
{
λ2,

κ2

2a2

}
.

C. Academic Example

Consider a nonlinear system of the form (1) with n = 3,
m = 3, p = 2 and functions f, g, h selected as

f(x) =

 −x1 − x3
1

−x2 − 1
2x2 cos(x2)
−2x3

 , g(x) =

 1 1
2 + cos(x2) 0

0 1

 ,

h(x) =

(
x3

1 − 2x2 − sin(x2)
x3

)
Following [17, Chapter 5], we compute

Lgh(x) =

(
3x2

1 − (2 + cos(x2))2 3x2
1

0 1

)
which is not invertible for all x, as it contains some singu-
larities, for instance in x1 = ±

√
3 and x2 = 1. Therefore,

it does not exist a global diffeomorphism transforming this
system into a normal form [17, Chapter 5]. Nevertheless, it’s
possible to check that Assumptions 1 and 3 hold. First, we
can check that inequality (16) is verified with φ0(x) = 0,
P (x) = diag(1, (2 + cos(x2))2, 1

2 ) and λ0 = 1. Indeed,

LfP (x) = diag(−2− 6x2
1,−1,−2) ≤ −I.
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Furthermore, it can be verified that the Killing vector property
(17) is verified. Hence Assumption 1 holds. Then, selecting

M(x) =
(
−x1

− 1
2x3

)
, Λ =

(
−1 −1
0 − 1

2

)
,

N(x) =
(
x1+2x2+sin(x2)

0

)
, Ψ =

(−1 2
0 −2

)
.

verifies items 1-3 of Assumption 3. Finally, item 4 and in
particular inequality (34) is satisfied for λ1 = 1

2 . Hence,
Corollary 2 holds and the control law (36), reading

η̇ = h(x)− r =

(
x3

1 − 2x2 − sin(x2)− r1

x3 − r2

)
u = φ(x, η)

=

(
−κη1 + 2κη2 + (1− κ)x1 + (2 + κ)x2 + sin(x2)

−κ(η2 + x3)

)
,

solves the Global (Integral) Output Regulation Problem for
any κ > 0.

V. CASE STUDIES

A. Lipschitz systems

In this section we specialize our previous results to the
following class of Lipschitz systems of the form

ẋ = Ax+B(u+ d) + Sϑ(Hx)
e = Cx+Dϑ(Hx)− r (44)

where A,B,C, S,D,H are constant matrices of suitable
dimension and ϑ is a C1 Lipschitz function with Lipschitz
constant ϑL. We suppose that the following assumption holds.
Assumption 1’. There exist a constant symmetric positive
definite matrix P and a positive real number λ0 > 0
satisfying the inequality

PA+A>P + PS
∂ϑ

∂x
(x)H +H>

∂ϑ>

∂x
(x)S>P ≤ −2λ0I

for all x ∈ Rn.
Such an assumption is a particular case of Assumption 1,

in which we considered a constant Euclidean metric P .
Assumption 1’ can be satisfied after a preliminary state-
feedback, by following for instance [3] (see also references
therein). Following the ideas of Section IV, instead of looking
for the exact solution M of the PDE (10), we look for an
approximation M that is obtained by considering only the
linear terms of (44). Let us define the following functions
and matrices

M(x) = CA−1x, Λ := CA−1B,

N(x) := (CA−1D − S)ϑ(Hx), Ψ = Λ>(ΛΛ>)−1.

With these definitions, it follows that, by using the Lipschitz
constant of ϑ, inequality (34) in Assumption 3 is satisfied if

PBΨ(CA−1D − S)H +
[
PBΨ(CA−1D − S)H

]>
≤ 2(λ0 − λ1)

ϑL
I, (45)

for some λ1 > 0. Note that inequality (45) is verified with
λ1 = λ0 when CA−1D = S or for some λ1 < λ0 when ϑL

is sufficiently small compared to λ0. Furthermore, inequality
(42) in Assumption 4 reads(

aPBΨ− ϑL

a (CA−1D − S)H
)

(
aPBΨ− ϑL

a (CA−1D − S)H
)>

≤ 2(λ0 − λ2)I (46)

for some λ2, a > 0. Hence, the following can be stated.

Corollary 4. Consider system (44) and suppose Assump-
tion 1’ holds. Then, the following holds.
• If Λ is full rank and the inequality (45) is satisfied for

some λ1 > 0, the regulator

η̇ = e,

u = κΨ(η − CA−1x)−Ψ(CA−1D − S)ϑ(Hx)

solves the (Global) Integral Output Regulation Problem
for any κ > 0.

• Moreover if the inequality (46) is satisfied for some
λ2, a > 0, then the output-feedback control law

η̇ = e

u = κΨη

solves the (Global) Integral Output Regulation Problem
for κ sufficiently small.

B. Systems in Normal Form

Most of the results in output regulation literature focus
on systems possessing a well defined relative degree ([17,
Chapter IV]). See, for instance, [6], [19], [21]. In the case
of unitary relative degree (the extension to higher relative
degree can dealt with canonical tools, see, e.g., [36, Section
V]), system (1) can be rewritten as

ż = ψ(z, y)

ẏ = q(z, y) + b(z, y)(u+ d),

e = y − r
(47)

where z ∈ Rn−1 is the so-called zero-dynamics, y ∈ R is
the output to be regulated, u ∈ R is the control, r ∈ R is the
reference and d ∈ R represents some constant perturbation.

By using the change of coordinates y 7→ e := y−r, system
(47) can be alternatively rewritten as

ż = ψ̄(w, z, e), ė = q̄(w, z, e) + b̄(w, z, e)u,

with ψ̄(w, z, e) := ψ(z, e + r), q̄(w, z, e) := q(z, e + r) +
b(z, e + r)d, b̄(w, z, e) := b(z, e + r). Concerning the zero-
dynamics, it is worth recalling that very few work addressed
the case of non-minimum-phase, that is, when the dynamics

ż = ψ̄(w, z, 0) (48)

is possibly unstable. Most of the works, indeed, focused on
the case in which such a zero-dynamics possess a unique
steady-state trajectory (possibly that depends on w) which is
attractive with a given domain of attraction. See, for instance,
[36, Assumption V.1], [21, Assumption 4], [24, Assumption
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4], [37, Assumption 4], [26, Assumption H2], and others.
This, in turn, corresponds to ask that the subsystem (48)
possesses some incremental stability property on a given set
of interest, since the attractivity properties are uniform with
respect to w. In the global framework considered in this work,
this corresponds to our Assumption 1.

We focus here on minimum-phase systems (47) possessing
a constant, and therefore, without loss of generality, unitary
high frequency gain, that is b(z, y) = 1. System (47) reads

ż = ψ(z, y)

ẏ = q(z, y) + u+ d

e = y − r.
(49)

In our framework, the minimum-phase assumption is stated
as follows.
Assumption 5 (Minimum Phase). Consider system (49).
There exist positive real numbers q̄, ψ̄y, p̄z, pz, λz > 0 and
a function Pz : Rn−1 7→ R(n−1)×(n−1) taking symmetric
positive values so that the following inequalities2 hold

‖∇q(z, y)‖ ≤ q̄, ‖∇y ψ(z, y)‖ ≤ ψ̄y, (50)
p
z
In−1 ≤ Pz(z) ≤ p̄zIn−1, LψPz(z, y) ≤ −2λzIn,

(51)

for all (z, y) ∈ Rn.

We have the following result.

Proposition 6 (Output regulation for minimum phase). Sup-
pose Assumption 5 is satisfied. Then, there exists a positive
real number σ ≥ 1 such that, for any fixed σ ≥ σ,
Assumptions 1, 3 and 4 are satisfied with

P (z, y) =

(
Pz(z) 0

0 σ−
2
3

)
,

p = min

{
p
z
, σ−

2
3

}
,

p̄ = max{p̄z, 1},

φ0(z, y) = −σy, λ0 =
λz
2
, λ1 = λ2 =

λz
4
, a = σ−

2
3 ,

M(z, y) = − y
σ
, N(z, y) = −q(z, y)

σ
, Λ = Ψ−1 = − 1

σ
,

with Pz , p̄z , p
z

and λz given by Assumption 5.

As a consequence of previous proposition, we have the
following corollary that can be derived from Proposition 6
and Corollary 3.

Corollary 5. Under the assumptions of Proposition 6, the
control law

η̇ = e, u = −σ(y + κη),

solves the Global (Integral) Output Regulation Problem for
system (49) for κ > 0 small enough and σ > 0 large enough.

Proof of Proposition 6. Let σ be defined as

σ
1
3 := max

{
q̄ +

λz
2

+
(p̄zψ̄y + q̄)2

2λz
, 2

√
q̄

λz
,√

2

λz
(1 + 2q̄), 1

}
.

(52)

2The notation LψPz(z, y) has to be understood as the Lie derivative of
Pz along the vector field z 7→ ψ(z, y) where y is fixed.

Now, with the control u = ψ0(x, z) system (49) is in the form
(1) and (15) with x = (z, y), f0(x) = (ψ>(z, y), q(z, y) −
σy)>, g(x) = (0, 1)>, h(x) = y. With the function P defined
as in the statement of the proposition, let us define

R(x) := Lf0P (x) + λzIn =

(
R11(x) R12(x)
R12(x)> R22(x)

)
, (53)

where

R11(x) :=LψPz(z) + λzIn,

R12(x) :=Pz(z)∇yψ(z, y) + σ−
2
3∇zq(z, y),

R22(x) :=− 2σ
1
3 + 2σ−

2
3∇yq(z, y) + λz.

By using (51) and the definition of σ in (52), we have
R11(x) ≤ 0 and R22(x) ≤ 0 for all x ∈ Rn and all σ ≥ σ.
Then, by denoting with SCR the Schur complement of R,
and by using (50) and σ− 2

3 ≤ 1, we compute

SCR(x) ≤ −
(
λz −

(p̄zψ̄z + q)2

2σ
1
3 − 2q̄ − λz

)
In ≤ 0 ∀ x ∈ Rn,

for all σ ≥ σ. Therefore R(x) ≤ 0 for all x ∈ Rn which
shows inequality (16) with λ0 selected as in the statement
of the theorem. Finally, since the function P defined in the
statement of the proposition and the function g are constant
in the y-coordinates (and zero otherwise), the Killing vector
property LgP (x) = 0 is trivially satisfied. This shows that
Assumption 1 holds. Note that an alternative proof can be
done, in the case of constant metric Pz , by following [30,
Theorem 2].

Now, in order to show Assumption 3, first note that with
the definition of M,N,Λ,Ψ given in the statement, item 1, 2
and 3 are trivially satisfied with simple computations. Then,
to show inequality (34), we define

Q1(x) := −P (x)g(x)Ψ∇N(x)−∇N>(x)Ψ>g(x)>P (x).

By omitting computations and using inequality (50), we have

Q1(x) = σ−
2
3

(
0 ∇zq(z, y)

∇zq>(z, y) ∇yq(z, y)

)
≤ 2σ−

2
3 q̄In,

that is, Q1(x) ≤ λz

2 In for all x ∈ Rn and all σ ≥ σ.
Therefore, by recalling the definition of R given in (53) and
recalling that R(x) ≤ 0 for all x ∈ Rn, inequality (34) reads
Lf0P (x) +Q1(x) ≤ R(x)− λz

2 In ≤ −
λz

2 In for all x ∈ Rn
and for all σ ≥ σ. Hence, inequality (34) holds with λ1 given
as in the statement of the proposition showing Assumption 3.

Finally, in order to show Assumption 4, we define

Q2(x) := T (x)T>(x), T (x) := aP (x)g(x)Ψ− 1
a∇N

>(x),

which gives T>(x) = σ−
1
3 (∇zq(z, y),∇yq(z, y)−1) with a

selected as in the statement of the Proposition. By using the

bounds in (50), we obtain Q2(x) ≤ ‖T (x)‖2In ≤ σ−
2
3 (2q̄+

1)2In ≤ λz

2 In for all x ∈ Rn and all σ ≥ σ. Hence, by
following previous steps, we obtain Lf0P (x) + Q2(x) ≤
R(x) − λz

2 In ≤ −
λz

2 In for all x ∈ Rn and for all σ ≥ σ.
This shows inequality (42) with λ2 given as in the statement
of the proposition and concludes the proof.
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VI. CONCLUSIONS

We studied the problem of designing an integral-action
based state-feedback control law for multi-input multi-output
input-affine nonlinear systems following contraction argu-
ments. We developed an extension of the forwarding via
exact change of coordinates [27] and forwarding mod {LgV }
[33] approaches in an incremental framework. The analysis is
done via a metric approach rather than using an incremental
Lyapunov approach. The resulting control law is applied
in global output regulation problems for nonlinear systems
in which both perturbations and references are supposed to
be constant and arbitrarily large. The proposed approach is
coordinate-free since no use of normal form is required. The
sufficient conditions are verified for Lipschitz systems and a
class of minimum-phase systems. Future works include the
design of a pure output-feedback law, possibly by means of
an incremental observer, and the use of similar strategies in
more general output regulation frameworks, in which refer-
ences and perturbations are generated by a known neutrally
stable autonomous systems, see, e.g., [36].

APPENDIX

We review here some results and tools related to contrac-
tion theory. For a deeper analysis the reader may refer for
instance to [1], [2], [4], [11], [40] and the references therein.
The formal proofs of Propositions 7 and 8 are new to the
author’s knowledge.

A. Definition and consequences of incremental exponential
stability

Consider a system of the form

ẋ = f(x), (54)

where x ∈ Rn is the system’s state and f : Rn → Rn is a
C1 vector field. Let X(x0, t) denote the system’s trajectory
evaluated at time t starting from the initial condition x0. In
what follows, we don’t necessary need f(0) = 0. We have
the following definition.

Definition 1 (Incremental Exponential Stability). System (54)
is said to be Incrementally Exponentially Stable (in short
δES) in a positively forward invariant set C ⊆ Rn if there
exists k, λ ∈ R>0 such that

|X(x1, t)−X(x2, t)| ≤ k|x1 − x2| exp(−λt) (55)

for all x1, x2 ∈ C and for all t ≥ 0. In case C coincides
with Rn, we say that the system is Incrementally Globally
Exponentially Stable (in short δGES).

Definition 1 mainly states that any two trajectories of
system (54) converge (exponentially) one to each other. Since
we focused on time-invariant systems, a direct consequence
of the δGES property is stated in the following lemma (see
[14, Lemma 1]).

Lemma 2 (Equilibria on Forward Invariant Sets). Suppose
system (54) is δES in a closed forward invariant set denoted

C ⊆ Rn. Then, there exists a unique equilibrium point x? ∈ C
which exponentially attracts all solutions initiated from C.

Proof of Lemma 2. Let τ be such that k exp(−λτ) = ρ < 1
and define Tτ as the mapping that associate to any initial
condition x0 of system of (54), its corresponding solution
X(x0, τ) at time τ , that is Tτ (x0) := X(x0, τ). Since C is
forward invariant, the function so defined maps points of C
into C. Now pick any two initial conditions x1, x2 ∈ C and
recall that system (54) is δES. Therefore, by using (55), we
obtain

|Tτ (x1)− Tτ (x2)| = |X(x1, τ)−X(x2, τ)|
≤ k exp(−λτ)|x1 − x2| ≤ ρ|x1 − x2|,

with ρ < 1. Note that the Euclidean space endowed with
standard Euclidean norm is a complete metric. Hence, the
map Tτ is a contraction and by Banach fixed point theorem,
there exists a unique fixed point x? in C satisfying Tτ (x?) =
x?. Therefore, by using again (55), we obtain

|X(x, t)− x?| = |X(x, t)−X(x?, t)|
≤ k exp(−λt) |x− x?|

for any t ≥ 0 and any x ∈ C. Hence, x? is attracts all trajec-
tories initiated from C. Finally, note that an equivalent proof
of this lemma, covering also the case of periodic equilibrium,
has been developed independently in [15, Section IV-B].

B. A metric view point for contraction analysis

The following result links the δGES property of (54) with
a differential analysis of the vector field f . In particular it
is shown that the existence of a metric that decreases along
the vector field guarantees incremental exponential stability
of the system.

Theorem 2 (Global Uniform Contraction). Suppose there
exist a C1 function P : Rn → Rn×n taking positive definite
symmetric values, and positive real numbers p̄, p, q > 0
satisfying

pIn ≤ P(x) ≤ p̄In, LfP(x) ≤ −qIn, (56)

for all x ∈ Rn. Then system (54) is δGES with contraction
rate q.

Proof of Theorem 2. A proof can be found in [23, Theorem
1], [1, Section II-B], or [11].

Note that under more restrictive conditions (i.e. f being C2

with bounded first and second derivatives) it is also possible
to establish a converse result, see, e.g., [1, Proposition 4].
This one is obtained since associated to the matrix function
P we can define a Riemannian metric and its associated
norm |v|2P(χ) = v>P(χ)v on Rn. The (Riemannian) distance
dP between any pair of points of Rn can be defined in
the following way. The length of any piecewise C1 path
γ : [sa, sb] → Rn between two arbitrary points χa = γ(sa)
and χb = γ(sb) in Rn is defined as

`(γ) =

∫ sb

sa

∣∣∣∣∂γ∂s(s)

∣∣∣∣
P(χ)

ds . (57)
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The distance dP(χa, χb) is then defined as the infimum of
the length over all these paths. Note that for all (xa, xb) both
in Rn, inequalities (56) imply

p|xa − xb|2 ≤ dP(xa, xb)
2 ≤ p̄|xa − xb|2 . (58)

Remark 7. The interest we have in a sufficient condition
for δGES in the form of (56) is that this one is (almost)
coordinates free. Indeed, assume that a matrix function which
defines a Riemannian metric on Rn denoted P : Rn 7→ Rn×n
is given. Let ψ : Rn → Rn be a global diffeomorphism. Then,
the matrix function P(z) defined as

P(z) = ∇ψ−1(z)>P(ψ−1(z))∇ψ−1(z)

satisfies dP(xa, xb) = dP(ψ(xa), ψ(xb)) for all pair (xa, xb)
in Rn, where dP is the Riemannian distance associated to
the matrix function P . Moreover, in the new coordinates z :=
ψ(x), a vector fields f : Rn 7→ Rn becomes

f(z) = (∇ψ−1(z))−1f(ψ−1(z))

and we have, LfP(z) = ∇ψ−1(z)>LfP(ψ−1(z))∇ψ−1(z).
Hence, if the pair (P, f) satisfies (56) and the diffeomor-
phism ψ is globally Lipschitz, then the pair (P, f) satisfies
a similar inequality. Moreover if f is a Killing vector field
for P , then so is f for P .

Although the result established in Theorem 2 is global, a
similar result can be established whenever we restrict our
attention to compact forward invariant sets. Indeed, when
inequality (56) holds on the (Riemannian) convex hull of
a positively invariant compact set, exponential contraction is
established in this one as stated in the following proposition.

Proposition 7 (Uniform Contraction on Compact Invariant
Sets). Suppose that there exist a C1 function P : Rn →
Rn×n taking positive definite symmetric values, and positive
real numbers p̄, p, such that the first inequality in (56) holds
for all x ∈ Rn. Let C be a compact invariant subset of Rn
for system (54) and assume that there exists q > 0 such that
inequality (56) holds for all x ∈ O,

O :=
{
x ∈ Rn,max

s∈C
|x− s| < r

}
, (59)

where r > 0 is a positive real number satisfying

r >

√
p̄

2
√
p

max
(xa,xb)∈C2

|xa − xb| . (60)

Then, system (54) is δES on C.

Proof of Proposition 7. Let r1 be such that

r > r1 >

√
p̄

2
√
p

max
(xa,xb)∈C2

|xa − xb| , (61)

and let

O1 =

{
x ∈ Rn,max

s∈C
|x− s| < r1

}
. (62)

Note that C ⊂ O1 and Cl{O1} ⊂ O.
The proof is divided into two steps. In a first step, it is

shown that the (Riemannian) convex hull of C is included

in O1 defined in (62). In a second step, it is shown that
the Riemannian distance between any pair or points in C
converges exponentially to zero.
Step 1 : Let (xa, xb) be in C. From (61), we can find ε > 0
such that

ε√
p̄
< 2r1

√
p

p̄
− max

(xa,xb)∈C2
|xa − xb|. (63)

We aim at showing that for all C2 path γ : [sa, sb] → Rn
between xa = γ(sa) and xb = γ(sb) such that

`(γ) ≤ dP(xa, xb) + ε , (64)

this implies that γ(s) ∈ O1 for all s ∈ [sa, sb]. Assume
the opposite. In other words, assume that there exists s∗ in
[sa, sb] such that γ(s∗) /∈ O1. With (62), this implies that
|γ(s∗) − xa| ≥ r1 and |γ(s∗) − xb| ≥ r1. Consequently, in
combination with the left-hand side of (58), it implies

`(γ) ≥ dP(xa, γ(s∗)) + dP(xb, γ(s∗))

≥
√
p (|xa − γ(s∗)|+ |xb − γ(s∗)|) ≥ 2r1

√
p .

(65)

On the other hand, with (64), the right-hand side of (58) and
(63), it yields

`(γ) ≤
√
p̄|xa − xb|+ ε < 2r1

√
p . (66)

This yields a contradiction. Consequently, for all C2 paths
such that (64) holds, γ(·) takes values in O1.
Step 2: Let now T > 0 be a real number such that

X(x, t) ∈ O, ∀(x, t) ∈ O1 × [0, T ] . (67)

Such a T exists since there exists a minimal distance between
the boundary of the two sets, and O is bounded. Consider a
C2 path between (xa, xb) ∈ C2 satisfying (64). With Step 1,
we know that γ : [sa, sb] → O1. For all (s, t) ∈ [sa, sb] ×
[0, T ] we can define

Γ(s, t) := X(γ(s), t), ρ(s, t) :=

∣∣∣∣∂Γ

∂s
(s, t)

∣∣∣∣2
P(Γ(s,t))

.

Due to (67), Γ(s, t) ∈ O for all (s, t) ∈ [sa, sb]×[0, T ]. Then
ρ is C1 and equation (56) yields

∂ρ

∂t
(s, t) =

∂Γ>

∂s
(s, t)LfP(Γ(s, t))

∂Γ

∂s
(s, t)

≤ −q
∣∣∣∣∂Γ

∂s
(s, t)

∣∣∣∣2 ≤ −q

p̄
ρ(s, t),

which yields

d`(Γ(·, t))
dt

=
d

dt

∫ sb

sa

√
ρ(s, t)ds

=

∫ sb

sa

1

2
√
ρ(s, t)

∂ρ

∂t
(s, t)ds ≤ − q

2p̄
`(Γ(·, t)).

Hence `(Γ(·, T )) ≤ `(γ) exp(− q
2p̄T ). Choosing a sequence

of paths (γn)n∈N such that `(γn)→ dP(xa, xb) and satisfy-
ing (64) and passing to the limit, we obtain

dP(X(xa, T ), X(xb, T )) < κ dP(xa, xb). (68)
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for some 0 < κ < 1. This property is true for all (xa, xb)
in C2. Recalling the positive invariance of C, it implies that
(55) holds.

Proposition 8 (Non-uniform Global Contraction). Suppose
there exist a C1 function P : Rn → Rn×n taking positive
definite symmetric values, a C0 function q : Rn → R>0 and
positive real numbers p̄, p > 0, such that, for all x ∈ Rn, the
following properties hold

pIn ≤ P(x) ≤ p̄In , LfP(x) ≤ −q(x)In < 0 . (69)

Then, there exists k ∈ R>0 such that

|X(xa, t)−X(xb, t)| ≤ k|xa − xb| (70)

for all (xa, xb) in Rn × Rn and for all t ≥ 0. Moreover, if
there exists an equilibrium point x? ∈ Rn, then x? is unique
and it is globally attractive for system (54).

Proof of Proposition 8. Since system (54) satisfies (69), fol-
lowing the same steps that in Step 2 of the proof of Propo-
sition 7 it can be shown that picking any two points (xa, xb)
in Rn × Rn, it yields dP(X(xa, t), X(xb, t)) ≤ dP(xa, xb).
Employing equation (58), inequality (70) holds. In the partic-
ular case in which there exists an equilibrium x∗, then for all
x in Rn (70) yields dP(X(x, t), x∗) ≤ dP(x, x∗). Hence, for
all d ≥ 0, the set C := Cl{x, dP(x, x∗) ≤ d} is a compact
invariant subset of Rn. Let qO := min{x∈O} q(x) > 0, where
O := {x ∈ Rn,maxs∈C |x − s| < r, }, for some positive
real number r satisfying r >

√
p̄

2
√

p
max(x1,x2)∈C2 |x1 − x2| .

Hence, in view of Proposition 7 this implies that the system
(54) is δES on C, and application of Lemma 2 implies the
existence of a unique equilibrium which is attractive from C.
Since these arguments holds for any d ≥ 0, we conclude that
x? is the unique equilibrium globally attractive.

Example. As a simple example of application of Proposi-
tions 7 and 8, consider the following scalar system

ẋ = fw(x) = − arctan(x) + w, x ∈ R, (71)

where the function fw is parametrized by w ∈ R. The vector
field associated to system (71) is not a strictly contraction.
Indeed, Indeed, by selecting P (x) = 1, we obtain

LfP(x) = −(1 + x2)−1 := −q(x) < 0 ∀x ∈ R.

Since lim|x|→∞ q(x) = 0, inequality (56) is not verified,
although (69) does. Nonetheless, given any compact set
C = {|x| ≤ c}, c > 0, inequality (56) is verified on
C with q := 1

1+c2 . Hence, system (71) is δES on any
compact forward invariant set C, according to Proposition 7.
Furthermore, for any w satisfying |w| < π

2 , system (71)
admits an equilibrium x? = tan(w) which is globally
attractive by Proposition 8.
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