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Abstract  34 

The genitalia present some of the most rapidly evolving anatomical structures in the animal 35 

kingdom, possessing a variety of parts that can distinguish recently diverged species. In the 36 

Drosophila melanogaster group, the phallus is adorned with several processes, pointed 37 

outgrowths, that are similar in size and shape between species. However, the complex three-38 

dimensional nature of the phallus can obscure the exact connection points of each process. 39 

Previous descriptions based upon adult morphology have primarily assigned phallic processes 40 

by their approximate positions in the phallus and have remained largely agnostic regarding 41 

their homology relationships. In the absence of clearly identified homology, it can be 42 

challenging to model when each structure first evolved. Here, we employ a comparative 43 

developmental analysis of these processes in eight members of the melanogaster species group 44 

to precisely identify the tissue from which each process forms. Our results indicate that adult 45 

phallic processes arise from three pupal primordia in all species. We found that in some cases 46 

the same primordia generate homologous structures whereas in other cases, different 47 

primordia produce phenotypically similar but remarkably non-homologous structures. This 48 

suggests that the same gene regulatory network may have been redeployed to different 49 

primordia to induce phenotypically similar traits. Our results highlight how traits diversify and 50 

can be redeployed, even at short evolutionary scales. 51 

  52 

Key Words: Homology, Drosophila, Genitalia, rapid evolution  53 
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Research Highlight: 54 

By incorporating developmental analysis, we find that genital structures previously identified as 55 

homologs are novel structures. This highlights how developmental analysis can help resolve 56 

contentious claims of homology.  57 
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Introduction: 58 

Most studies of developmental evolution depend on our ability to precisely compare the 59 

same body parts in different species or populations. Rigorously establishing such homology 60 

relationships allows us to identify novel traits, which are often defined by their lack of 61 

homology (Reviewed in Moczek, 2008; G. Wagner, 2007). Many of the current model systems 62 

for the study of novelty focus on traits that arose in the distant past (Bruce & Patel, 2020; Clark-63 

Hachtel & Tomoyasu, 2020; Emlen, Szafran, Corley, & Dworkin, 2006; Hinman, Nguyen, 64 

Cameron, & Davidson, 2003), making the investigation of their molecular origins difficult. These 65 

traits likely arose through a multitude of genetic changes and exist in organisms that are less 66 

amenable to genetic studies. Recently evolved traits found in the rapidly evolving tissues of 67 

model organisms can provide qualitative changes in morphology produced by genomes that are 68 

easily compared and modified. However, rapidly evolving anatomical structures pose a distinct 69 

challenge. When differences between the anatomy of two species are numerous, it can be 70 

difficult to disentangle which structures are ancestral and which represent newly derived 71 

novelties. Thus, while macroevolutionary novelties often appear as clear discontinuities in the 72 

evolutionary record, the more molecularly tractable micro- and mesoevolutionary novelties 73 

require us to consider their relationships in a rich and complicated comparative context 74 

(Abouheif, 2008; Church & Extavour, 2020). Overcoming this challenge is thus critical to develop 75 

a genetic portrait of morphological novelty. 76 

Most assertions of homology are defined through establishing that the structure in 77 

question connects to an unambiguously homologous tissue in both species (Moczek, 2008). 78 

Contentious claims of homology often revolve around the question of whether a set of traits 79 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2021. ; https://doi.org/10.1101/2021.04.14.439817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439817
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

are formed by the same cells or tissues. These assertions can be strengthened through 80 

developmental analysis, where the primordium that initially forms the trait in question can be 81 

determined (Tanaka, Barmina, & Kopp, 2009). This type of analysis is especially important in 82 

complex three-dimensional traits, as resolution in the X, Y, and Z axes may be required. The 83 

high spatial resolution of confocal microscopy generates three-dimensional renderings of entire 84 

body parts, allowing us to define the position of structures relative to tissues that have 85 

straightforward homology assignments (Klaus, Kulasekera, & Schawaroch, 2003). Many 86 

developing tissues progressively become more complex over developmental time. The 87 

formation of specific traits is often established only after the tissue that encompasses that trait 88 

is identifiable, providing clear anchor points in a conserved tissue to establish homology. Thus, 89 

developmental trajectories provide a rich context in which to disentangle ambiguous 90 

relationships among rapidly evolving structures.  91 

The terminalia (genitalia and analia) of drosophilids host an extensive assortment of 92 

rapidly evolving morphological structures. Variation of terminal structures is often one of the 93 

most reliable ways to differentiate species of Drosophila based on adult morphology (Bock & 94 

Wheeler, 1972; Hsu, 1949; Markow & O’Grady, 2006; Okada, 1954). The male genital structures 95 

are often divided into two major compartments: the periphallic parts surrounding the anus, 96 

which mostly play a role in grasping the external surface of the female genitalia (Acebes, Cobb, 97 

& Ferveur, 2003; Jagadeeshan & Singh, 2006; Kamimura & Mitsumoto, 2011; Masly & 98 

Kamimura, 2014; Mattei, Riccio, Avilaa, Wolfner, & Denlinger, 2015; Rhebergen, Courtier-99 

Orgogozo, Dumont, Schilthuizen, & Lang, 2016; Robertson, 1988; Yassin & Orgogozo, 2013), and 100 

the phallic parts (Figure 1), which comprise the intromittent organ. While the homology of the 101 
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periphallic organs has always been relatively straightforward, the phallus itself has posed 102 

several challenges in this regard. In particular, the homology of the various phallic processes, 103 

pointed outgrowths, remains controversial (Figure 2, Supplementary videos) (reviewed in Rice 104 

et al., 2019). These outgrowths have been implicated in sexual conflict between males and 105 

females, and in some species have been shown to physically interact with corresponding 106 

pockets in the female genitalia (Kamimura, 2016; Muto, Kamimura, Tanaka, & Takahashi, 2018; 107 

Yassin & Orgogozo, 2013) or induce copulatory wounds (Kamimura, 2007). Male seminal 108 

proteins are associated with increased ovulation and reduced remating rates and can enter the 109 

female circulatory system through these copulatory wounds (Avila, Sirot, Laflamme, Rubinstein, 110 

& Wolfner, 2011; Kamimura, 2010). To better understand how genital morphology may 111 

coevolve we must better establish which homologous tissues have been modified in each sex. 112 
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Figure 1: 113 

 114 

Figure 1: The D. melanogaster pupal phallus is produced by three primordia 115 
 116 
A) Left: A schematic representation of the adult phallus of D. melanogaster, the median 117 
gonocoxite outlined in dark blue, the pregonites highlighted in light blue, the postgonal sheath 118 

in light purple, the ventral postgonal process in magenta, the dorsal postgonal process in violet, 119 

and the aedeagus in light green. Right: the adult phallus of a yw;+:+ line of D. melanogaster. B) 120 
Left: A schematic representation of the early developing pupal genitalia of D. melanogaster. 121 

The primordia of developing phallus with the ventral primordium in blue, the dorsolateral 122 
primordium in purple, and the central primordium in green. Right: Developing pupal phallus of 123 

a D. melanogaster arm-GFP transgenic line. Apical cellular junctions are shown, highlighting the 124 
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overall morphology. White arrows indicate the position of the pregonal bristles. Aedeagal 125 

sheath is an alternative term for postgonal sheath, ventral postgonite is an alternative term for 126 
ventral postgonal process, and dorsal postgonite is an alternative term for dorsal postgonal 127 

process. The images of the developing phallus are shown with ventral view on top to match the 128 
orientation of the phallus during copulation.  129 
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Figure 2: 130 

 131 

Figure 2: The rapidly evolving phallus is composed of three main components 132 

 133 
A) Phylogeny for eight species of the melanogaster species group based on Obbard et al., 2012 134 

with nodes that contain the melanogaster species subgroup and melanogaster species group 135 
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indicated by arrows. B)  A schematic breakdown of the adult phalluses of each species. C) Light 136 

microscopy images of the whole adult phallus for each species. Image stacks that show the 137 
relative position of each part can be found in Supplementary videos. D) Schematic 138 

representation of the ventral portion of the phallus (dark blue) which contains the pregonites 139 
(light blue) and processes (filled in dark blue) in D. erecta and D. ananassae. Light blue asterisks 140 

designate the position of the pregonites. E, G, I: Light microscopy images of microdissections of 141 

the adult phallus (here in lateral view, distal end pointing downward) separated in the ventral, 142 
central, and dorsolateral portions. E) Microdissections of the ventral portion processes shows 143 

the processes of D. erecta and D. ananassae are connected to the pregonites. Light blue 144 
asterisks designate the position of the pregonites. F) Schematic representation of the central 145 

portion of the phallus (light green), which contains processes (filled in light green) in D. 146 
santomea, D. teissieri, D. orena, and D. malerkotliana. G) Microdissections of the aedeagus 147 

confirm that the processes are physically attached to aedeagus. The aedeagus of the D. 148 

malerkotliana is translucent (dashed line) with only the process sclerotized. H) Schematic 149 
representation of the dorsolateral portion of the phallus (light purple), which contains two pairs 150 

of processes (filled in light purple) in D. melanogaster, and one pair in D. santomea, D. teissieri, 151 
D. erecta, and D. orena. I) Microdissection confirms that the processes are physically attached 152 

to postgonal sheath. In D. santomea, D. teissieri, D. erecta, and D. malerkotliana portions of the 153 

anterior postgonal sheath are translucent (outlined with dashed lines). The image of the D. 154 
orena dorsolateral portion was created by copying and mirroring one side of the structure, as it 155 

was difficult to flatten intact for imaging. Aedeagal sheath is an alternative term for postgonal 156 
sheath.   157 
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Two major sources have contributed to confusion regarding homology of phallic 158 

processes. The first is the relationship of the postgonal sheath (referred to as aedeagal sheath 159 

in Rice et al., 2019) with respect to these processes (Figure 2 H-I). Several authors consider the 160 

postgonal sheath and postgonal processes (referred to as postgonites in Rice et al., 2019) of D. 161 

melanogaster as substructures of a unified tissue that was usually referred to as the “posterior 162 

parameres” (Bock & Wheeler, 1972; Okada, 1954; Tsacas, Bocquet, Daguzan, & Mercier, 1971). 163 

While others designated the postgonal sheath as a separate tissue from the postgonal 164 

processes (Al Sayad & Yassin, 2019; Bächli, Vilela, Andersson Escher, & Saura, 2004; Lachaise et 165 

al., 2004). The three-dimensional nature and the presence of transparent cuticle has made it 166 

difficult to determine the precise connection points of the processes to the tissues of the 167 

phallus. Determining whether these processes were formed by a single or separate primordium 168 

would help resolve this discordance. The second source of confusion is in regard to the 169 

nomenclature used to compare the phallic processes in different members of the melanogaster 170 

species group. The term “basal process” has been used to refer to a number of pointed 171 

outgrowths that are attached to different phallic tissues in different species (Kamimura, 2007, 172 

2010, 2016; Kamimura & Mitsumoto, 2011, 2012a, 2012b; Kamimura & Polak, 2011). Such a 173 

designation implies a concept of homology independent of the exact anatomical position. 174 

Yassin & Orgogozo (2013) sought to provide distinct terms, such as “spurs” and “hooks” for 175 

outgrowths emanating from the same tissue, implying the potential for non-homology. Building 176 

upon our recent revision of the male terminalia nomenclature of D. melanogaster (Rice et al., 177 

2019), developmental studies presented here allow us to provide a more detailed, homology-178 

informed nomenclature for these structures. 179 
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In this study, we characterized both the adult morphology and the development of the 180 

pupal genitalia in five members of the melanogaster species subgroup and three outgroup 181 

members from the larger melanogaster species group. This analysis allows us to determine 182 

whether processes are homologous or of different origins. Tracing the development of the 183 

phallus by confocal microscopy showed that all processes arise from three distinct pupal 184 

regions that likely represent primordia for three subdivisions of the phallus in all species. We 185 

found both that several similarly shaped processes arise from distinct primordia, whereas in 186 

other cases, distinct processes arise from different parts of the same primordium. In light of 187 

these analyses, we refined the identity and terminology of the phallic processes and identify 188 

distinct homology groups. We map these different morphologies on previously established 189 

phylogenies and identified multiple gain, loss, and homoplastic events in the history of these 190 

diverse structures. Thus, our results demonstrate how developmental approaches can resolve 191 

unclear relationships among rapidly evolving structures.  192 
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Materials and Methods: 193 

Drosophila strains: 194 

To study the evolution of the phallic processes in the melanogaster species subgroup we used 195 

the following species, representing all major complexes: D. santomea (Lachaise et al., 2000), D. 196 

teissieri (Tsacas, 1971), D. orena (Tsacas & David, 1978), D. erecta (Tsacas & Lachaise, 1974), D. 197 

melanogaster (Meigen, 1830) from the melanogaster species subgroup and the following 198 

outgroup species D. biarmipes (Malloch, 1924) from the suzukii subgroup, D. ananassae 199 

(Doleschall, 1858), and D. malerkotliana (Parshad & Paika, 1964) from the ananassae subgroup. 200 

Previous work has investigated the function of the copulatory anatomy of all species we 201 

analyzed (Kamimura, 2007, 2016; Muto et al., 2018; Yassin & Orgogozo, 2013). Stocks were 202 

obtained from both the National Drosophila Species Stock Center at Cornell (D. santomea 203 

(14021-0271.01), D. teissieri (14021-0257.01), D. orena (14021-0245.01), D. erecta (14021-204 

0224.01), D. biarmipes (14023-0361.09), D. ananassae (14024-0371.13), the Bloomington 205 

Drosophila Stock Center D. melanogaster armadillo-GFP, arm-GFP, (Bloomington stock number 206 

#8556), and from the lab of Dr. Thomas Williams, D. malerkotliana. 207 

  208 

Sample collection, dissection, and fixation: 209 

Male white pre-pupae were collected at room temperature and incubated in a petri dish 210 

containing a moistened Kimwipe at 25°C prior to dissection. After incubation, pupae were 211 

impaled in their anterior region and immobilized within a glass dissecting well containing 212 

Phosphate Buffered Saline (PBS). The posterior tip of the pupa (20–40% of pupal length) was 213 

separated and washed with a P200 pipette to flush the pupal terminalia into solution. Samples 214 
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were then collected in PBS with 0.1% Triton-X-100 (PBT) and 4% paraformaldehyde (PFA, E.M.S. 215 

Scientific) on ice, and multiple samples were collected in the same tube. Samples were then 216 

fixed in PBT + 4% PFA at room temperature for 30 min, washed three times in PBT at room 217 

temperature, and stored at 4°C. 218 

  219 

Immunohistochemistry and microscopy: 220 

After fixation developing pupal genitalia of all species except D. melanogaster were stained 221 

with rat anti-E-cadherin, 1:100 in PBT (DSHB Cat# DCAD2,RRID:AB_528120) overnight at 4°C, 222 

followed by an overnight at 4°C incubation with anti-rat 488, 1:200 (Invitrogen, Carlsbad, CA) to 223 

visualize apical cell junctions. For D. melanogaster, an armadillo-GFP tagged line (Bloomington 224 

stock number #8556) was used to visualize apical cell junctions (Huang et al., 2012). 225 

Fluorescently labeled samples were mounted in glycerol mounting solution (80% glycerol, .1M 226 

Tris, pH 8.0) on microscope slides coated with poly-L-lysine (Thermo Fisher Scientific #86010). 227 

Samples for all species except D. melanogaster were imaged at 20X on a Leica TCS SP8 confocal 228 

microscope. D. melanogaster samples were imaged at either 20X or 40X on an Olympus 229 

Fluoview 1000. As the imaged structures are three-dimensional in nature, we used the 230 

MorphoGraphX program (de Reuille et al., 2015) to render and manipulate images in three-231 

dimensions. This allowed us to rotate the samples to better present the most informative 232 

perspectives of the various phallic structures.  233 

For light microscopy of adult phallic microdissections, samples were mounted in PVA 234 

Mounting Medium (BioQuip) until fully cleared and imaged at 20X magnification on a Leica DM 235 

2000 with a Leica DFC450C camera and the resulting images were enhanced using Adobe 236 
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Photoshop. For light microscopy images and videos of the whole phallus, genitalia were 237 

dissected in water, cleared overnight in 10% KOH at RT. These were them mounted in a drop of 238 

Dimethyl Hydantoin Formaldehyde (Steedman, 1958) on a coverslip and oriented using 2 239 

mounting needles before the resin hardened. Coverslip were positioned on a microscope slide, 240 

the hard drop facing away from the microscope lens. Images were acquired on Ti2-Eclipse 241 

Nikon microscope equipped with a 20x plan apochromatic lens and a 5.5 M sCMOS camera 242 

(PCO, Kelheim, Germany). Each preparation was imaged as a z-stack (z-step = 2 µm). The stacks 243 

are presented as raw images. Stacks of images were also projected into single extended depth-244 

of-field images using Helicon Focus software (HeliconSoft) and the resulting projections were 245 

enhanced using Adobe Photoshop. 246 

 247 

Establishing landmarks for early, middle, and late timepoints: 248 

We used confocal microscopy to chart a time course of the developing phallus (Figures S1-S3). 249 

To compare the development of the phallus of these species, we needed to examine whether 250 

all analyzed species develop at the same rate after pupal formation. Due to the large-scale 251 

changes in the phallus of these species, we used two stable features found outside of the 252 

phallus to calibrate developmental timing. In all analyzed species, the epandrial ventral lobe 253 

(lateral plate) and surstylus (clasper) first appear as a single continuous structure early in 254 

development, but then separate from each other as development progresses (Figure S2). We 255 

use the beginning of this separation as a landmark for the “early” developmental timepoint. We 256 

also used the midpoint of this progression to approximate the “mid” timepoint. This 257 

intermediate timepoint is useful in showing which tissue the phallic processes protrude from 258 
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during development. In all species, the adult cerci (anal plates) directly abut against one 259 

another but during “early” and “mid” development, these structures are separated from one 260 

another by a large gap (Figure S3). We designate “late” timepoint as directly preceding the 261 

closing of this gap between the cerci.  262 
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Results: 263 

Unpigmented cuticle reveals undescribed connection points in the phallus 264 

In order to better understand how the processes surrounding the aedeagus are 265 

physically connected to the neighboring tissues of the phallus, we imaged whole (Figure 2 B,C) 266 

and micro-dissected adult phalluses in eight members of the melanogaster species group 267 

(Figure 2 D-I).  The phallus of each species can be partitioned into three discrete parts. The 268 

ventral portion (Figure 2 D,E) contains the pregonites, an outgrowth that contains three 269 

bristles, and the median gonocoxite (the central section of the shield shaped hypandrium). The 270 

central portion (Figure 2 F,G) contains the aedeagus, through which sperm is transferred. The 271 

dorsolateral portion contains the postgonal sheath (referred to as aedeagal sheath in (Rice et 272 

al., 2019)), a flat sheet that wraps around the aedeagus, and the pair of processes known as the 273 

postgonal processes (referred to as postgonites in Rice et al., 2019) (Figure 2 H,I).  Analysis of 274 

these dissections support the designation of the postgonal sheath and postgonal processes as a 275 

single tissue (Bock & Wheeler, 1972; Okada, 1954; Tsacas et al., 1971). Furthermore, we found 276 

that certain species had processes connected to different portions of the phallus— a ventral 277 

portion (D. erecta, D. ananassae), a central portion (D. santomea, D. teissieri, D. orena, and D. 278 

malerkotliana), and a dorsolateral portion (all members of the melanogaster subgroup).  279 

While imaging, we observed that parts of the postgonal sheath in the melanogaster 280 

species subgroup and D. malerkotliana were partially translucent, and only detectible after 281 

microdissection. It is this translucent tissue of the postgonal sheath that physically connects to 282 

the postgonal processes in D. melanogaster (Figure2I). These observations highlight that, due to 283 

their transparency, determining the exact connection points between the processes and the 284 
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rest of the phallus can be difficult to visualize by traditional light microscopy approaches. To 285 

test whether the different connection points of the phallic processes observed in the adult 286 

reflect separate homology groups we investigated whether these phallic processes were 287 

initially produced by the same or different primordia during development. 288 

 289 

Phallic structures develop from three primordia in D. melanogaster 290 

To date, the morphogenesis of the three-dimensional adult phallic structures from the 291 

epithelium of the larval genital disc has been investigated only in D. melanogaster (Ahmad & 292 

Baker, 2002; Epper, 1983). Additionally, using surgical fragmentation of the larval genital disc, 293 

Bryant & Hsei, 1977 provided a fate map for the different adult structures. They showed that 294 

the phallus is situated at the subcenter of the symmetrical imaginal disc and is surrounded on 295 

each side by a primordium that will produce the medium gonocoxite and pregonites. However, 296 

the sequence and timing of the appearance of the various substructures of the phallus during 297 

development, remains unknown. By finding the key points in development where substructures 298 

first emerge, we can determine the primordium from which each process initially forms. 299 

Early in D. melanogaster pupal development (see timepoint determination in the 300 

Materials and Methods) the phallus is separated into three stereotypic regions that likely 301 

represent primordia: ventral, dorsolateral and central (Figure 1B). As the pupal phallus 302 

continues to develop from this point, the ventral primordia form a pair of processes (Figure 1A). 303 

This pair develops into the small processes known as the pregonites that can be recognized 304 

from the presence of minute bristles (Figure 1B arrows), while the remainder of the primordia 305 

forms the median gonocoxite (Figure S4). The dorsolateral primordia produce two processes 306 
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(one dorsal and one ventral) (Figure 3B). These processes ultimately develop into the ventral 307 

and dorsal postgonal processes (referred to as ventral postgonite and dorsal postgonite in Rice 308 

et al., 2019) (Figure 1A) The remaining parts of the dorsolateral tissue develop into the large 309 

flaps of the postgonal sheath (Figure 1A, Figure S5). The central primordium of D. melanogaster 310 

develops into the aedeagus and lacks a process (Figure 1A, Figure S6). The three primordia are 311 

conserved across species 312 

 Several studies have analyzed pupal development of the terminalia in species outside of 313 

D. melanogaster, but did not investigate phallic structures (Glassford et al., 2015; Hagen et al., 314 

2019; Smith, Davidson, & Rebeiz, 2020). To determine whether the features of phallic 315 

development observed in D. melanogaster are conserved in members of the melanogaster 316 

species group, we produced a developmental time course for the remaining seven species 317 

studied here (Figure S1-S3). Our time course indicates that all adult phallic organs develop from 318 

three regions that are similar in size and shape to the ones described in D. melanogaster and 319 

thus likely represent homologous primordia. The ventral, dorsolateral, and central primordia 320 

produce the median gonocoxite (Figure S4), pregonal sheath (Figure S5), and aedeagus (Figure 321 

S6), respectively in all species. Nonetheless, significant interspecific differences were observed 322 

regarding the timing of development (Figure S1). As we only used one strain per species, we 323 

cannot comment if these are particular properties of the strains/laboratory conditions we used 324 

or are general differences between the species. We found that most species had early, mid, and 325 

late developmental timepoints within a six-hour window of each other (Figure S1-S3). 326 

 327 

Different processes emerge from different primordia 328 
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 The developmental analysis of the eight species used in this study allowed us to test 329 

whether the phallic processes seen in the adults of each species were produced by the same 330 

primordia. We began by investigating the ventral primordium (Figure 3, Figure S4), which 331 

develops into the pregonites in all analyzed species. While the size of the pregonites varies 332 

between species, during mid-development (Figure 4B) we can identify recognizable outgrowths 333 

from the ventral primordium, consistent with a highly conserved developmental trajectory. 334 

Interestingly, an additional pregonal process is found in two distantly-related species, D. erecta 335 

and D. ananassae. Both D. erecta and D. ananassae, produce two processes from their ventral 336 

primordia, a large pregonal medial process and a second smaller pregonal lateral process which 337 

contains the three pregonal bristle cells (Figure S7) and overall resembles the pregonites of 338 

other species. To determine whether this additional process was produced by duplication or 339 

fission of the pregonite we inspected early pupal timepoints. We found that initially a single 340 

process is formed (Figure 3A), which during mid-development asymmetrically splits along the 341 

medial-lateral axis to form the distinct lobe-like pregonal medial process (Figure 3B). These 342 

asymmetric projections then extend in late development to form the larger pregonal medial 343 

process and smaller pregonite (Figure 3C). Thus, although the ventral primordium produces the 344 

pregonite in all species we examined, in D. erecta and D. ananassae the ventral primordium is 345 

split into the pregonite and a pregonal medial process.  346 
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Figure 3: 347 

 348 
Figure 3: Processes developing from the ventral primordium are found in all members of the 349 
melanogaster species group.  350 
 351 
A-C) Signal from the apical cellular junctions was used to highlight the overall morphology of 352 
developing pupal genitalia. D. teissieri, D. orena, D. erecta, D. biarmipes, and D. ananassae were 353 

stained for ECAD while apical cell junctions were visualized in D. melanogaster by detecting 354 
arm-GFP (see methods). A) Early in development, a pair of processes, that will form the 355 

pregonites, can be visualized in the ventral primordia in all species shown (light blue). B) By 356 

mid-development, large processes can be found in all species shown except D. melanogaster. In 357 
D. erecta and D. ananassae, the pregonite is split into a large pregonal medial process and a 358 

small lateral bristle-bearing process (teal). C) By late development, the pregonites have 359 
extended to their full adult size and shape. The pregonites are connected to the medial-ventral 360 

portion of the median gonocoxite, see Figure S4. D) Schematic representations of the 361 

pregonites (blue) and pregonal lateral process (teal) showing their approximate size, number, 362 
and connections to the medial gonocoxite (outlined in black). All images have the same axes, V 363 

(Ventral), A (Anterior), M (Medial) and are the same scale.  364 
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 The dorsolateral primordium (Figure 4, Figure S5) showed a number of large 365 

evolutionary changes within the melanogaster species group. We found that no species, other 366 

than D. melanogaster, develop the ventral process that forms the ventral postgonal process 367 

(Figure 4). By contrast, all members of the melanogaster species subgroup form dorsal 368 

postgonal processes. Outside of the melanogaster subgroup, we did not find any modifications 369 

of the dorsolateral primordium, which develops into a single thin, strongly sclerotized structure 370 

in those species that resembles the postgonal sheath of D. melanogaster. However, the size, 371 

and shape of these homologous structures significantly differ among species (Figure 2 H,I), 372 

ranging from the flat rod-like processes in D. biarmipes, to the strongly pointed sinuate 373 

processes in D. ananassae, and the minute, transparent sclerites in D. malerkotliana. 374 
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Figure 4: 375 

 376 
Figure 4: Processes produced by the dorsolateral primordium are found only in the 377 
melanogaster subgroup.  378 
 379 
A-C) Signal from the apical cellular junctions was used to highlight the overall morphology of 380 

developing pupal genitalia. D. santomea, D. teissieri, D. orena, and D. erecta, were stained for 381 

ECAD while D. melanogaster samples used arm-GFP. A) Early in development, the dorsolateral 382 

primordium is a smooth lobe like structure in all analyzed species. B) By mid-development, all 383 

shown species form processes in the dorsal portion of the dorsolateral primordium (violet). D. 384 

melanogaster also forms an additional pair of processes in the ventral portion of dorsolateral 385 
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primordium (magenta). C) By late development, the dorsal and ventral processes have 386 

extended to a long thin shape. Both the ventral and dorsal processes are connected to the 387 

medial-anterior part of the postgonal sheath which is formed by the remaining tissue of the 388 

dorsolateral primordium. D) Schematic representations of the dorsal (violet) and ventral 389 

(magenta) postgonal process showing where they connect to the postgonal sheath (outlined in 390 

black). All images have the same axes, V (Ventral), A (Anterior), M (Medial) and are the same 391 

scale. Ventral postgonite is an alternative term for ventral postgonal process, and dorsal 392 

postgonite is an alternative term for dorsal postgonite (Table 1).  393 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2021. ; https://doi.org/10.1101/2021.04.14.439817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439817
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

While the central primordium (Figure 5, Figure S6) forms a simple aedeagus that lacks 394 

processes in D. melanogaster, we note processes which develop in D. santomea, D. teissieri, D. 395 

orena and D. malerkotliana. Early in development, the central primordia of all species analyzed 396 

are similar in size and shape (Figure 5A). However, during mid-development, in D. santomea, D. 397 

teissieri, and D. orena, the ventral side of the central primordium elongates to form a process 398 

(Figure 5B). The process of D. teissieri and D. orena splits along the ventral midline to form a 399 

pair of processes, while in D. santomea, it forms one rounded structure. These processes 400 

further elongate in late development to more closely resemble the size and shape of their adult 401 

counterparts (Figure 5C).   402 
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Figure 5: 403 

 404 
Figure 5: Processes developing from the central primordium are found in the yakuba/erecta 405 
and bipectinata complexes. 406 
  407 
A-C) Signal from the apical cellular junctions (ECAD) was used to highlight the overall 408 

morphology of developing pupal genitalia. A) Early in development, the central primordium 409 
forms a flat donut-shaped structure in all species shown. B) By mid-development, the ventral 410 

portion of the aedeagus is extended in D. santomea, D. teissieri, and D. orena in what will form 411 
the aedeagal ventral process (dark green). In D. malerkotliana the lateral edges of the central 412 
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primordium extend anteriorly in what will form the aedeagal lateral process (yellow-green). C) 413 

By late development, the aedeagal ventral process and the aedeagal lateral process further 414 
extend from the aedeagus. D) Schematic representations of the aedeagal ventral process (dark 415 

green) and aedeagal lateral process (yellow-green) showing where they connect to the 416 
aedeagus (outlined in black). All images have the same axes, V (Ventral), A (Anterior), M 417 

(Medial) and are the same scale.   418 
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Okada, 1954 and Bock & Wheeler, 1972 suggested that the aedeagus in the 419 

melanogaster species group were of two types: fused like in D. ananassae and split like in D. 420 

malerkotliana. Indeed, we did not observe any process in the central primordium of D. 421 

ananassae, whereas a pair of processes develops in D. malerkotliana. Kamimura, 2007 422 

suggested that the aedeagus of D. malerkotliana has degenerated and was replaced by a pair of 423 

lateral processes. During early development, the central primordium of D. malerkotliana is 424 

similar to all other analyzed species (Figure 5A). However, by mid-development, the lateral 425 

sides of the central primordium extend, forming a pair of processes, while the medial-dorsal 426 

and medial-ventral sides of the central primordium fail to extend (Figure 5B). Late in 427 

development, the proximal-dorsal side of the lateral process constricts, conferring a hook like 428 

shape (Figure 5C). As this substructure is produced from the lateral portions of the central 429 

primordium and not from the ventral portion, it is likely non-homologous to the aedeagal 430 

ventral processes of the yakuba and erecta complexes. We therefore propose the term 431 

aedeagal lateral process for this substructure of D. malerkotliana.  432 
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Discussion: 433 

         The rapid evolution of morphological structures is an attractive subject for study, as it 434 

allows us to glimpse at the molecular and genetic causes of remodeled and restructured 435 

anatomical forms. Here, we examined some of the most rapidly evolving morphologies of 436 

Drosophila melanogaster and its close relatives. Despite decades of research, many of the 437 

intricate phallic processes have eluded our ability to clearly classify their homology 438 

relationships. By studying the developmental trajectories of these processes in multiple species, 439 

we have better defined their physical connections, and clarified which structures most likely 440 

share ancestry. This research highlights the distinct challenges in studying novelties at 441 

mesoevolutionary scales, specifically that traits may be rapidly gained and lost between closely 442 

related species making it difficult to discern between true homology and convergence 443 

(Abouheif, 2008).   444 

 445 

Classification and nomenclature of rapidly evolving phallic structures 446 

Our results suggest that the great diversity of the phallic structures of the eight species 447 

studied here cluster into three homology groups corresponding to the three pupal primordia, 448 

leading us to propose revised naming conventions. First, our developmental analysis supports 449 

the notion, initially suggested by Okada, 1954, that the weakly sclerotized postgonal sheath and 450 

strongly sclerotized postgonal processes in D. melanogaster, are both parts of the same tissue, 451 

which Drosophila systematists called the “posterior paramere” e.g. (Bock & Wheeler, 1972; 452 

Tsacas et al., 1971). Because the term “posterior paramere” is itself synonymous to the term 453 

“postgonite” in Dipteran systematics (Tsacas et al., 1971; van Emden & Hennig, 1970), we 454 
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suggest using the term “postgonite” to encompass the combined tissue produced by the 455 

dorsolateral primordia in species of the melanogaster group (including both the postgonal 456 

sheath and the processes), and the term “postgonal processes” to designate the strongly 457 

sclerotized branches emerging from this tissue in the melanogaster subgroup. Second, our 458 

results also show that the structures previously called the “basal processes” (Kamimura, 2007, 459 

2010, 2016; Kamimura & Mitsumoto, 2011, 2012a, 2012b; Kamimura & Polak, 2011), develop 460 

from different primordia and are therefore most likely non-homologous. We suggest therefore 461 

to give them distinct names that directly relate to the tissues that produce them: aedeagal 462 

ventral process in species of the yakuba complex (synonymous to Yassin & Orgogozo, 2013 463 

phallic spur) and D. orena (synonymous to Yassin & Orgogozo, 2013 phallic hook), the pregonal 464 

medial process in D. erecta and D. ananassae, and aedeagal lateral process in D. malerkotliana 465 

and species of the bipectinata complex (Table 1). Future work that establishes the extent of cell 466 

migration between or with the three regions that we designate as primordium will further 467 

improve our resolution of the homology of these phallic processes. 468 

 469 

Evolution of the phallic structures 470 

Mapping character states over robust phylogenies provide the opportunity to 471 

distinguish novel from recurrent (homoplastic) states as well as derived states (synapomorphic) 472 

from ancestral (symplesiomorphic) ones. Our findings have led us to propose a model for the 473 

evolution of the phallic processes found in the melanogaster species subgroup (Figure 6). For 474 

example, our demonstration of the development of an additional pregonal process in D. erecta 475 

and D. ananassae (Figure 3, S4) is likely recurrent, as illustrations from Bock & Wheeler, 1972 476 
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suggest that this configuration of the pregonites might have recurrently evolved in this clade. 477 

Reversals to ancestral states through secondary losses represent another mechanism of 478 

recurrent evolution. The lack of the aedeagal ventral processes in D. erecta, is more likely due 479 

to loss rather than an independent gain of the aedeagal ventral process in D. orena. 480 
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Figure 6: 481 

 482 
Figure 6: A model of the evolution of phallic processes in the melanogaster species group  483 
 484 
A,C,E) Phylogeny of the 8 analyzed species based on Obbard et al., 2012. A) Parsimony suggests 485 

that the pregonites originated outside of the D. melanogaster species group. B) Light blue 486 
represents the pregonites and teal represents the pregonal lateral process. C) Parsimony 487 

suggests that the ventral postgonites originated in the melanogaster complex (D. melanogaster, 488 

D. simulans, D. mauritiana, D. sechellia) and that the dorsal postgonal process originated in the 489 
melanogaster subgroup. D) Magenta represents the ventral postgonal process, violet 490 

represents the dorsal postgonal process. E) Parsimony suggests that the aedeagal ventral 491 
process originated at the base of the erecta and yakuba complexes. Additionally, parsimony 492 

suggests that the aedeagal lateral process originated in the bipectinata complex. F) Dark green 493 

represents the aedeagal ventral process and yellow-green represents the aedeagal lateral 494 
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process. Ventral postgonite is an alternative term for ventral postgonal process, and dorsal 495 

postgonite is an alternative term for dorsal postgonite. Future developmental analysis across 496 
more members within and outside of the D. melanogaster species group will be required to 497 

better establish when these distinct phallic processes first originated.   498 
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In the melanogaster subgroup, all species contain a strongly-sclerotized dorsal 499 

postgonal process which develops as a localized extension within the dorsolateral primordium. 500 

The development of a strongly-sclerotized ventral postgonal process is a definitive novelty in D. 501 

melanogaster and allied species of the melanogaster complex. Although we did not find 502 

structures resembling the dorsal postgonal processes in members outside of the melanogaster 503 

species subgroup that we studied here, polarization remains difficult. Indeed, Okada, 1954 and 504 

Bock & Wheeler, 1972 reported the presence of “basal processes of the posterior parameres” 505 

in multiple members of the melanogaster species group. Similarly, Bächli et al., 2004 illustrated 506 

the presence of “ribbon-shaped process” in several members of the obscura group which is 507 

sister to the melanogaster species group. Further taxonomic sampling and better phylogenetic 508 

resolution of those clades are required to draw a more complete picture of the evolution of the 509 

postgonal differentiation outside the melanogaster subgroup. The novel structures described 510 

here may present an excellent model to study the molecular mechanisms producing novelty. 511 

Although we do not address the function of the phallic processes, other research groups 512 

have demonstrated that the rapid evolution of male genital sclerites in arthropods were most 513 

likely driven by selection (Eberhard, 1985; Hosken, Archer, House, & Wedell, 2019; Simmons, 514 

2014). These included groups as diverse as spiders (Huber, 2005), damselflies (Cordero-Rivera, 515 

2017), waterstriders (Rowe & Arnqvist, 2012), moths (McNamara, Dougherty, Wedell, & 516 

Simmons, 2019) and beetles (Simmons & Fitzpatrick, 2019). This unique mechanism is 517 

remarkable given the diverse developmental origin of the rapidly evolving male structures in 518 

these groups, being pedipalps in spiders (Quade et al., 2019), cerci in damselflies (McPeek, 519 

Shen, & Farid, 2009), pregenital segments in waterstriders (Perry & Rowe, 2018), chitinous 520 
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spermatophores in butterflies (Sánchez & Cordero, 2014), or aedeagii of appendicular and non-521 

appendicular origins in bugs and beetles (Aspiras, Smith, & Angelini, 2011). However, the exact 522 

form of selection, e.g., cryptic female choice, sexual conflict, etc., remains debated in the 523 

literature (Ah-King, Barron, & Herberstein, 2014; Brennan & Prum, 2015; Eberhard, 1985; 524 

Masly, 2012).  525 

In Drosophila, the various processes of the phallus have been implicated in copulatory 526 

wounding of the female (Kamimura, 2007, 2016; Muto et al., 2018; Yassin & Orgogozo, 2013). 527 

Furthermore, studies have found that some of the phallic processes pivot from pointing 528 

posteriorly to pointing laterally, when the phallus is everted during copulation, thus directing 529 

how they interact with the female reproductive tract (Kamimura, 2010). The ability to pivot 530 

during copulation correlates with the homology groups we have found in this study. The ventral 531 

and dorsal postgonal processes, and pregonites pivot during copulation while the aedeagal 532 

ventral process does not change orientation. This may be due to the direct connection of the 533 

aedeagal ventral process to the aedeagus. Surprisingly the aedeagal lateral process, which is 534 

also directly connected to the aedeagus, pivots laterally during copulation, which may only be 535 

possible due to the loss of aedeagal sclerotization, making the tissue between the aedeagal 536 

lateral processes flexible. Co-evolution between the phallic processes and the female genitalia 537 

has been suggested and several novel modifications of the female genitalia have been 538 

identified (Kamimura, 2007; Yassin & Orgogozo, 2013). A developmental analysis of the female 539 

genitalia of these species along with three-dimensional analysis of copulating flies similar to 540 

studies in D. melanogaster (Mattei et al., 2015; Shao et al., 2019) would provide vital context 541 

for the potential co-evolution of novel male and female structures.  542 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2021. ; https://doi.org/10.1101/2021.04.14.439817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439817
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36

Developmental mechanisms underlying phallic evolution 543 

A major challenge in the evo-devo field has been to identify the molecular mechanisms 544 

driving morphological novelty (Linz, Hu, & Moczek, 2020; Moczek, 2008; Rebeiz, Patel, & 545 

Hinman, 2015; G. P. Wagner & Lynch, 2010). While macroevolutionary novelties have been the 546 

focus of coarse-grained molecular study (Bruce & Patel, 2020; Clark-Hachtel & Tomoyasu, 2020; 547 

Emlen et al., 2006; Hinman et al., 2003; Prud’Homme et al., 2011), much hope has been placed 548 

on rapidly diverging structures in molecularly amenable systems (Rebeiz & Tsiantis, 2017). 549 

Recent work in Drosophila genital evolution has highlighted how quickly changes in cellular 550 

morphology (Green et al., 2019; Smith et al., 2020), and genetic networks (Glassford et al., 551 

2015; Hagen et al., 2021; Nagy et al., 2018) can lead to shifts in morphology in closely related 552 

species. Our work highlights distinct underexplored challenges to interpreting and advancing 553 

these model systems. The ambiguous ancestry of similar parts which appear in different 554 

locations causes us to consider multiple models to explain their emergence. These parts may 555 

arise by parallelism – a predisposition to drive similar new structures by co-opting the same 556 

networks (Abouheif, 2008). Alternately, it is entirely possible that these structures are indeed 557 

ancestral but have undergone massive tissue reorganizations to reposition their attachment 558 

points. Such repositioning could be caused by moving the location of a critical signal or 559 

transcription factor within the tissues. Alternately, these structures could be specified before 560 

the discernable tissues of the phallus are separated, and their migration could be caused by 561 

differences in tissue folding. Under this scenario, we would anticipate that critical tissue 562 

patterning regulators of these processes are activated before these tissues become discernable. 563 

Finally, it is entirely possible that completely different networks account for the appearance of 564 
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these unique structures. Developmental genetic analysis of the genes that produce the phallic 565 

processes described above will aid us in distinguishing these models. Recent work has identified 566 

several genes that are spatially restricted to the pregonites and postgonal processes of D. 567 

melanogaster providing an ideal set of candidates to examine (Vincent et al., 2019). Thus, we 568 

envision that detailed mechanisms of parallelism, repositioning, and novelty will emerge from 569 

studying systems where both network architecture is accessible, and genetic manipulations can 570 

be introduced to test the sufficiency of these mechanisms to produce these novel 571 

morphological structures.  572 
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Tables: 843 
New nomenclature Previous terminology 

postgonite posterior paramere (Bock & Wheeler, 1972; Tsacas et al., 1971) 

dorsal postgonal process dorsal postgonite (Rice et al., 2019; Vincent et al., 2019)  

dorsal branch (Kamimura, 2010, 2016; Kamimura & Mitsumoto, 2011) 

dorsal paramere (Bryant & Hsei, 1977) 

ventral postgonal process ventral postgonite (Rice et al., 2019; Vincent et al., 2019)  

ventral branch (Kamimura, 2010; Kamimura & Mitsumoto, 2011) 

ventral paramere (Bryant & Hsei, 1977) 

aedeagal ventral process phallic spur (Yassin & Orgogozo, 2013)  

phallic hook (Yassin & Orgogozo, 2013)  

ventral branch (Kamimura, 2012, 2016; Kamimura & Mitsumoto, 2012b, 

2012a; A. E. Peluffo et al., 2015; A. Peluffo et al., 2021) 

aedeagal lateral process basal process (Kamimura, 2007; Kamimura & Polak, 2011) 

pregonal medial process basal process (Kamimura, 2007), ventral branch (Kamimura, 2016) 

Postgonal sheath Aedeagal sheath (Rice et al., 2019; Vincent et al., 2019) 

Table 1: Table of correspondence between terms previously used in publications and proposed 844 
nomenclature.  845 
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Supplemental figures: 846 

Figure S1: 847 

 848 
 849 
Figure S1: 850 
 851 
A summary of our designations of early (beige) mid (brown) and late (orange) developmental 852 
timepoints for each species. The early timepoint was designated when a cleavage between the 853 
epandrial ventral lobe (lateral plate) and surstylus (clasper) first forms. The mid timepoint was 854 
designated by when the cleavage of the epandrial ventral lobe and surstylus reached half of its 855 
total length. The late time point was designated as directly preceding when the cerci (anal 856 
plates) close over the gap between them.  857 
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Figure S2: 858 

  859 
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Figure S2:  860 
 861 
Full ECAD time course of ventral genitalia across the melanogaster species group. 862 
Developing pupal genitalia of D. santomea, D. teissieri, D. orena, D. erecta, D. biarmipes, D. 863 
ananassae, and D. malerkotliana stained for ECAD, apical cellular junctions, highlighting the 864 
overall morphology. Note that D. melanogaster samples use a transgenic line arm-GFP that also 865 
labels the apical cell junctions. Colored boxes highlight our three designated developmental 866 
timepoints for each species: early (beige) mid (brown) and late (orange) as shown in Figure S1. 867 
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Figure S3:  868 

 869 
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Figure S3:  870 
 871 
Full ECAD time course of dorsal genitalia and analia across melanogaster species group. 872 
Developing pupal genitalia of D. santomea, D. teissieri, D. orena, D. erecta, D. biarmipes, D. 873 
ananassae, and D. malerkotliana stained for ECAD, apical cellular junctions, highlighting the 874 
overall morphology. Note that D. melanogaster samples use a transgenic line arm-GFP that also 875 
labels the apical cell junctions. Colored boxes highlight our three designated developmental 876 
timepoints for each species: early (beige) mid (brown) and late (orange) as shown in Figure S1. 877 
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Figure S4:  878 
 879 

 880 
Figure S4:  881 
 882 
Developing ventral primordia of all analyzed species. A-C) The median gonocoxite is 883 
highlighted in dark blue, the pregonite is highlighted in with light blue, and the pregonal lateral 884 
process is highlighted in teal D) Schematic representation of the median gonocoxite (dark blue), 885 
the pregonite (light blue), pregonal lateral process (teal). Note that D. melanogaster samples 886 
use a transgenic line arm-GFP, while all other samples are stained for E-cadherin, both of which 887 
label apical cell junctions.  888 
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Figure S5:  889 

 890 
 891 
Figure S5: 892 
 893 
Developing dorsolateral primordia of all analyzed species. A-C) The postgonal sheath is 894 
highlighted in light purple, the ventral postgonal process is highlighted in magenta, and the 895 
dorsal postgonal process is highlighted in violet D) Schematic representations of the postgonal 896 
sheath (light purple), the ventral postgonal process (magenta), and dorsal postgonal process 897 
(violet). Aedeagal sheath is an alternative term for postgonal sheath, ventral postgonite is an 898 
alternative term for ventral postgonal process, and dorsal postgonite is an alternative term for 899 
dorsal postgonal process. Note that D. melanogaster samples use a transgenic line arm-GFP, 900 
while all other samples are stained for E-cadherin, both of which label apical cell junctions. 901 
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Figure S6:  902 

 903 
 904 
Figure S6:  905 
 906 
Developing central primordia of all analyzed species.  A-C) The aedeagus is highlighted in light 907 
green, the aedeagal ventral process is highlighted in with dark green and the aedeagal lateral 908 
process is highlighted in yellow-green. D) Cartoon representations of the aedeagus (light green) 909 
aedeagal ventral process (dark green) and aedeagal lateral process (yellow-green). Note that D. 910 
melanogaster samples use a transgenic line arm-GFP, while all other samples are stained for E-911 
cadherin, both of which label apical cell junctions.  912 
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Figure S7:  913 

 914 
 915 
Figure S7:  916 
 917 
A zoom in on the developing pregonites of D. erecta and D. ananassae. Apical cell junctions 918 
are labeled through ECAD staining. White arrows indicate the location of the three developing 919 
pregonal bristles found on the pregonal lateral process. 920 
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