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Abstract—Surrogate modelling based on generalized polynomial 
chaos expansion has emerged as a suitable alternative to 
standard Monte Carlo based methods that are accurate but 
computationally cumbersome. However, if there are non-
linearities in the relationship between model inputs and model 
output, building a single generalized polynomial chaos 
expansion model leads to poor predictions. This paper 
investigates a Mixture-of-Experts approach based on machine-
learning methods to divide the input space into subspaces that 
do not feature non-linearities. Then, generalized polynomial 
chaos expansions are built on each of these regions. This 
approach is applied to a reach of the Garonne River where the 
floodplain water height is non-linear with respect to the 
uncertain inputs (bottom roughness and upstream discharge), 
especially in locations where the topography features a strong 
gradient. 

I. INTRODUCTION 
Real-time forecasting is an important component of flood 

risk management, but it is subject to multiple uncertainties 
caused by model inputs, initial states, model structures, and 
model parameters [9]. Knowledge of the type and magnitude 
of these uncertainties is crucial to understand and interpret the 
model’s results. 

The key part of an uncertainty quantification (UQ) analysis 
is the propagation of the uncertainties through the simulation 
model [8]. Due to the high computational cost of two-
dimensional hydrodynamic simulators, the direct use of 
methods based on Monte Carlo sampling is excluded. 
Surrogate models are thus used to overcome this issue [4] [16].  

From the class of surrogate models, generalized 
polynomial chaos expansions (gPCE) has proven useful in a 
wide range of applications for emulating responses of 
computational models with random input, quantifying output 
uncertainty, and providing sensitivity indices with, in 
particular, an analytical formula for expectation, variance and 
Sobol’ indices [3]. This surrogate model relies on a functional 
representation of output random variables as an expansion in 
terms of orthonormal basis functions and is built on an 
efficient space-filling sampling of the uncertain parameter 
space. However, the gPCE model tends to struggle when 
applied to problems related to unsteadiness, stochastic 
discontinuities, long-term integration, and large perturbation 
[25].  

Different approaches with varying degrees of complexity 
have been proposed in the literature to address this kind of 
behavior. Examples include multi-resolution / multi-element 
polynomial chaos expansions [20] [25], regression trees [10] 
[17], multivariate adaptive regression splines [13], among 
others. They rely on the idea of partitioning the input 
parameter space into (often disjoint) subspaces, followed by 
the use of regression-based surrogates in each subspace with 
an intrusive approach. In this paper, we propose a non-
intrusive Mixture-of-Experts (MoE) approach based on 
machine-learning tools to handle non-linearities in a gPCE-
UQ workflow that stands on the “divide-and-conquer” 
principle. The general outlines of gPCE modeling are first 
introduced. This is followed by a description of the different 
blocks of the MoE. Finally, the Garonne River (Southwest 
France) hydrodynamic test case, where the floodplain water 
height is non-linear due to the combination of random model 
inputs (bottom roughness and upstream discharge) and 
properties of the terrain, is used to show the effectiveness of 
the proposed approach. 

II. PROBLEM SPECIFICATION  

A.  Study area 
The study area extends over a 50 km reach of the Garonne 

River (France) between Tonneins (upstream), downstream of 
the confluence with the River Lot, and La Réole 
(downstream). This part of the valley was equipped in the 19th 
century with infrastructure to protect the Garonne flood plain 
from flooding events. A system of longitudinal dykes and 
weirs was progressively constructed after the 1875-flood to 
protect the floodplains and organize submersion and flood 
retention areas. 
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Figure 1: Zoning of the roughness coefficient over the study area. 

B. Hydraulic modeling 
The TELEMAC-2D (T2D) model, constituted by a 

triangular mesh of the study area of some 41 000 nodes with a 
refined mesh size near the dykes (see Fig. 1), has an upstream 
discharge imposed at Tonneins, and downstream, a stage-
discharge rating curve corresponding to the stream gauge at La 
Réole. This hydraulic model has been realized by Besnard and 
Goutal (2008) [1]. The dynamic is solved by the 2D solver of 
the TELEMAC software [11] based on the resolution of the 
shallow water equations in the non-conservative form using 
the finite element method. The results of the simulation are 
water height and mean velocity on the vertical axis at each 
node in the mesh [14].  In this paper, a focus will be given to 
the water height in node 35067 (NoI) located on a ditch 
downstream of a dyke (see Fig. 1) in Sainte-Bazeille 
commune. 

C. Model uncertainties characterization 
In this study, we consider the effect of two sources of 
uncertainty on water height ℎ for flood events, respectively 
Strickler roughness coefficient 𝐾𝑠 which characterizes the  

 
Figure 2: The uncertain input variable 𝑄𝑢𝑝 is a steady-state value reached 

through a ramp function. 

roughness of the river bottom, and the upstream discharge 𝑄𝑢𝑝  resulting from the establishment of the steady-state 
regime, as shown in Fig. 2 for the node NoI. The ramp lasts 
one day and the constant hydraulic inflow two days at 𝑄𝑢𝑝.  

The Strickler roughness coefficient 𝐾𝑠 is defined according 
to 4 areas, as shown in Fig. 1: grey for the floodplain (𝐾𝑠,1), 
and blue, purple, and orange for the upstream (𝐾𝑠,2), middle 
( 𝐾𝑠,3 ), and downstream ( 𝐾𝑠,4 ) parts of the main channel 
respectively. Its distribution is assumed to be uniform, and its 
range is set to cover the calibration values. The upstream 
discharge is assumed to follow a Gaussian distribution 
centered around the biennial flood at Tonneins 3 300 𝑚3𝑠−1, 
of a standard deviation of 1 100 𝑚3𝑠−1. Moreover, to avoid 
too high or too low values, the probability density is truncated 
at 600 𝑚3𝑠−1, corresponding to the annual mean discharge, 
and 6 000 𝑚3𝑠−1 , corresponding to the vicennial flood at 
Tonneins. Tab. 1 summarises the distribution of uncertain 
model inputs. 

TABLE 1: PROBABILITY DITRIBUTION OF THE UNCERTAIN INPUT VARIABLES 

Uncertain variable Calibration values Distribution 𝐾𝑠,1 [𝑚1/3𝑠−1] 17 𝒰[5, 20] 𝐾𝑠,2 [𝑚1/3𝑠−1] 45 𝒰[40, 50] 𝐾𝑠,3 [𝑚1/3𝑠−1] 38 𝒰[33, 43] 𝐾𝑠,4 [𝑚1/3𝑠−1] 40 𝒰[35, 45] 𝑄𝑢𝑝 [𝑚3𝑠−1] __ 𝒩(3 300, 1 100) 

D. Computing environment  
CERFACS’s cluster has been used to run T2D simulations. 

Simulating the river and the floodplain dynamics takes about 
6 minutes on 15 cores, for the study case presented in Sect. II. 
A over three days. This cost is not practical in the context of 
the UQ framework requiring thousands of T2D simulations to 
estimate statistics. Hence the importance of replacing the 
numerical simulator with a surrogate model [18]. 

III. GENERALIZED POLYNOMIAL CHAOS EXPANSION-
BASED UNCERTAINTY PROPAGATION 

A. Generalized Polynomial Chaos Expansion  
Let us consider a computational model ℳ: 𝑥𝒟𝑋 ⊂ℝ𝑑 ↦ 𝑦 = ℳ(𝑥)ℝ.  Suppose that the uncertainty in the 

input parameters is modeled by a random vector 𝑋  with 
prescribed joint probability density function (PDF) 𝑓𝑋(𝑥) . 
The resulting (random) quantity of interest 𝑌 =  ℳ(𝑋)  is 
obtained by propagating the uncertainty in 𝑋  through ℳ . 
Assuming that 𝑌 has a finite variance (which is a physically 
meaningful assumption when dealing with hydrodynamical 
systems), it belongs to the so-called Hilbert space of second-
order random variables, which allows for the following 
spectral representation to hold [7]:  

       𝑌 = ∑ 𝑦𝑗𝑍𝑗 .∞𝑗=0                          () 
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The random variable 𝑌 is therefore cast as an infinite series, 
in which {𝑍𝑗}𝑗=0∞   are multivariate orthonormal polynomials 
in the input vector 𝑋, i.e., 𝑍𝑗 = Ψ𝑗(𝑋).  

We assume that the input variables are statistically 
independent so that the joint PDF is the product of the 𝑑 
marginal distributions: 𝑓𝑋(𝑥) = ∏𝑖=1𝑑 𝑓𝑋𝑖(𝑥𝑖) , where the 𝑓𝑋𝑖(𝑥𝑖)  are the marginal distributions of each variable {𝑋𝑖 , 𝑖 = 1, … , 𝑑} defined on 𝒟𝑋𝑖 . It can be proven that the set 
of all multivariate polynomials in the input random vector 𝑋 
forms a basis of the Hilbert space in which 𝑌 =  ℳ(X) is to 
be represented [7]: 

   𝑌 = ∑ 𝑦𝛼Ψ𝛼(𝑋),𝛼∈ℕ𝑑         () 

where Ψ𝛼 =  ∏ 𝜙𝛼𝑖𝑑𝑖=1  and (𝜙𝛼𝑖)𝑖≥0is an orthonormal basis 
for 𝑋𝑖. 
For standard uncertain input distributions, the associated 
families of orthonormal polynomials are well known [5]. 
Given the set of these polynomial bases (Ψ𝛼(𝑋)), the next step 
is to compute the gPCE coefficients (𝑦𝛼) . In this study, we 
focus on a particular non-intrusive approach based on the 
least-square analysis to compute the coefficients of gPCE from 
repeated evaluations of the existing model ℳ considered as 
a black-box function. By selecting an orthonormal basis with 
respect to the input parameter distributions, the corresponding 
coefficients can be given a straightforward interpretation: the 
first coefficient 𝑦0  is the mean value of the model output, 
whereas the variance is the sum of the squares of the remaining 
coefficients [5]. Similarly, the Sobol’ indices, commonly used 
for sensitivity analysis study, are obtained by summing up the 
squares of suitable coefficients [3].  

A. Error metrics  
In the present study, two standard metrics are used to measure 
the quality of the gPCE surrogate model: the 𝑄2 predictive 
coefficient and the Root Mean Squared Error (RMSE).  The 
validation is carried out over an input-output validation 
database 𝐷𝑣  of size 𝑁𝑣. 
At the kth mesh node, the 𝑄2  predictive coefficient reads: 𝑄2 = 1 − ∑ (ℎ𝑘(𝑖)−ℎ̂𝑘(𝑖))2𝑁𝑣𝑖=1∑ (ℎ𝑘(𝑖)−ℎ̅(𝑖))2𝑁𝑣𝑖=1 , 

Where ℎ̅(𝑖) =  1𝑁𝑣 ∑ ℎ𝑘(𝑖)𝑁𝑣𝑘=1 . 

B. Hydrodynamic uncertainty propagation using gPCE 
[19] showed that, in a two-dimensional hydrodynamic 

steady regime, the gPCE model drastically reduces the number 
of runs needed for propagating uncertainty and could be 
applied to more complex studies. Moreover, [23] highlights 
that considering the large dimension of the water height, 
combining the surrogate model with a space reduction method 
allows good learning at a reduced computational cost.  

In that respect, a reduced gPCE is used here to replace the 
T2D model to propagate uncertainty at a reduced cost for the 
transitional flow regime. Learning and validation databases of 
size 1 000 and 500 respectively are considered. The inputs are 
sampled according to an optimized LHS [26] following their  

 
Figure 3: The PDF and the response of the water height in the node NoI to 

the upstream discharge. 

PDF defined in Tab. 1. The gPCE surrogate is computed for 
each time step of the integration from time 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 0 second 
corresponding to the time of injection of the flow discharge 
upstream of the study area, to time 𝑡𝑓𝑖𝑛𝑎𝑙   = 3 days 
corresponding to the setting up of the steady-state regime.  
While the predictive coefficient 𝑄2 , evaluated on the 
validation database considering all mesh nodes for 𝑡𝑓𝑖𝑛𝑎𝑙  is 
equal to 1, it is significantly smaller than 1 during the 
transition phase before setting up the steady-state regime.  
In order to understand why the gPCE surrogate model does not 
correctly predict the water height ℎ simulated with the T2D 
during the transient phase, a time of this latter has been chosen  𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 = 1 day 2 hours, and only one mesh node has 
been selected which is the NoI node. This is the configuration 
where the worst RMSE value has been recorded. The gPCE 
degree 𝑃 was varied between 0 and 24. The optimal 𝑃  in 
this case is 4 allowing to have a 𝑄2 of 0.54, and an 𝑅𝑀𝑆𝐸 
of 0.92 𝑚, which is statistically not satisfactory.   

Furthermore, as shown in Fig. 3, the PDF of ℎ at node 
NoI is bimodal and the response function according to 𝑄𝑢𝑝 is 
non-linear. Indeed, as the node NoI is on a ditch, upstream 
discharge values that are lower than 3 000 𝑚3𝑠−1  lead to 
almost zero water depth. And upstream discharge values 
higher than 3 000 𝑚3𝑠−1 lead to water depth values higher 
than 4 𝑚 . Thus, the gPCE surrogate model is not a good 
choice to approach non-linear functions because of its inherent 
smoothness. 

Advanced strategies should then be applied. In this study, 
a Mixture-of-Experts (MoE) approach is used in order to 
improve gPCE performance. This approach is based on 
machine-learning methods allowing to decompose the random 
inputs space into subspaces over which the solution varies 
smoothly and consequently build a global representation as a 
collection of smooth representations defined over subspaces. 
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Figure 4: Illustration of the Mixture-of-Experts approach. 

IV. MIXTURE OF GPCE EXPERTS FOR UQ 

A. Workflow of the MoE 
The proposed approach for handling non-smooth functions 

consists of the following steps, as illustrated in Fig. 4: 

• Learning: 

1) Clustering: this is the first step of the approach when 
the analyst attributes to each output observation y(i), i = {1, … N}  a class that corresponds to an 
identified behavior of the system. In the ideal case, 
this can be done manually using expert knowledge.  

In the general case, it is more convenient to rely on 
an automated approach where the K  classes are 
directly learned from the data using unsupervised 
learning algorithms [6] as K-Means [2] and 
DBSCAN [15].  

2) Classification: once the classes are identified, they 
are mapped to the input space. This latter is then split 
according to the labels resulting from the clustering 
of the output space. This can be done via the SVM 
algorithm [12] [24]. 

3) Regression: the dataset is split into the different 
groups identified in the previous two steps. For each 
group, a local gPCE {ℳ̂k, k = 1, … , K} is built.   

• Predicting: 
Once the local models are built, it is necessary to 

recombine them when evaluating a new point from the input 
space. This is achieved in three steps: 

1) Identification: this involves identifying the class to 
which belongs the new point. The previously built 
classifier can be used in that respect. 

2) Evaluation: the new point is then projected in the 
output space using the appropriate gPCE model.  

 

Figure 5: A) The top curve represents the evolution of the two metrics: the 
sum of squared errors in red, and the silhouette coefficient in blue for the K-
Means clustering method. B) The result of the clustering of the water height 

according to the upstream discharge, left: K-Means; right: DBSCAN. In 
blue, the first class detected by the algorithm and in red the second class. 

3) Recombination: the final approximation is obtained 
by combining the different predictions as follows: 

              ℳ̂(𝑥) = ∑ 𝑤𝑘(𝑥)𝐾𝑘=1 ℳ̂𝑘(𝑥)                     () 𝑤𝑘(𝑥)  are weight functions defined such that ∑ 𝑤𝑘(𝑥)𝐾𝑘=1 =1. There are two main types of weight 
functions: binary approach and weighting approach. 
In the present study, only the first approach was 
investigated. 

B. Validation of the MoE on the hydraulic test case 
For the K-Means clustering algorithm, data are split into K 

clusters. Two methods are commonly used to evaluate the 
appropriate number K: The elbow method [22] and the 
silhouette coefficient [21]. 

For the elbow method, the x-value of the elbow point is 
thought to be a reasonable trade-off between error and the 
number of clusters. The red curve in Fig. 5. A. shows the 
evolution of the sum of squared errors (SSE) of classification 
according to the number of clusters K, and it indicates that the 
elbow point in the SSE curve is located at K = 2.  

The silhouette coefficient is a measure of cluster cohesion 
and separation. It quantifies how well a data point fits into its 
assigned cluster based on two factors:  
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Figure 6: SVM-based classification. 

• How close the data point is to other points in the 
cluster, 

• How far away the data point is far from points in 
other clusters.   

A high value of this coefficient indicates that samples are 
closer to their clusters than they are to other clusters. In Fig. 5. 
A., the blue curve represents the silhouette coefficient and 
shows that the best choice for K is 2 since it has the maximum 
score.  Thus, the best number of classes for the K-Means 
based on the results of those two metrics is K = 2. The resulting 
clustering is shown in Fig. 5. B as well as the clustering of the 
DBSCAN algorithm. Although the two algorithms do not 
process in the same way, their results are similar, with more 
cluster refinement for K-Means (silhouette = 0.9). Therefore, 
the clustering algorithm retained is K-Means with K = 2. 

Once these 2 clusters are defined according to the K-
Means clustering labels, these latter are mapped to the input 
space as shown in Fig. 6. The input space is then divided into 
two classes, blue and red. The separation hyperplane is mainly 
dependent on the upstream discharge injected at Tonneins and 
corresponds to a value of 𝑄 = 2700 𝑚3/𝑠 . This value is 
physically significant; it matches the bank-full discharge in the 
main channel. Thus, a possible interpretation of the hyperplane 
plotted in a black line in Fig. 6, is the stage at which the main 
channel and floodplain become connected.  

The next step is the construction of an appropriate gPCE 
surrogate model in each class. To have a good gPCE model, it 
is necessary to have an optimal degree P, and thus to loop to 
get the best P. For that purpose, the polynomial degree P was 
varied between 1 and 9, and the optimal degree selected is the 
one that gives an optimal 𝑅𝑀𝑆𝐸 and 𝑄2 calculated on the 
validation database. The proposed approach improves the 
prediction, as shown in Tab. 2.  

TABLE 2: COMPARISON OF THE RESULTING ERRORS 

Surrogate models’ 
performance gPCE MoE-gPCE 

RMSE [m] 0.92 0.02 𝑄2 0.54 0.98 

Figure 7: Sobol’ indices for water height at node NoI. 

Indeed, the RMSE of the MoE-gPCE model is 2 cm, 
contrary to the RMSE of the general model based on a single 
gPCE surrogate model, which is approximatively equal to 1 
m, and the 𝑄2 of the MoE-gPCE is 0.98 whereas it is 0.54 for 
the classic gPCE.  

The computation of spatially aggregated first-order Sobol’ 
indices for sensitivity analysis from the gPCE coefficients 
shows that the water height at the node NoI is mainly governed 
by the upstream discharge injected at Tonneins (76%) and is 
weakly governed by the roughness at the bottom of this node 
(21%) as illustrated in Fig. 7.  The total order Sobol’ indices 
highlight the interaction of the variables 𝐾𝑠,1 and 𝑄 with the 
other variables. Indeed, the total order Sobol’ indices of  𝐾𝑠,1 
is 39%, which means a contribution of the interaction of this 
variable with the other variables on the variability of the water 
height at this node.  

 
Figure 8: Spatial aggregated Sobol’ indices, first at the top and total in the 

bottom, for the water height discretized over the mesh following the 
uncertain inputs: 𝐾𝑠,1 on the left, and 𝑄 on the right. 
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The MoE-gPCE proved to be robust for the NoI node 
where the water height is non-linear, so it was applied for all 
other points where the 𝑅𝑀𝑆𝐸  is greater than 0.3 m by 
applying a single reduced gPCE. This modeling over the 
whole mesh allowed to have the different statistics over the 
study area, in particular the mean, the upper quartile, the 
variance, and Sobol’ indices displayed for the uncertain 
variables 𝐾𝑠,1  and 𝑄  in Fig. 8. This figure shows that, for 
the transitional regime studied here, the variance of the water 
height over the study area is mostly explained (84% on 
average) by the upstream discharge 𝑄. Moreover, the water 
height variability in the floodplain near the liquid boundary 
condition at the upstream part of the numerical model is shared 
between the influence of the floodplain roughness coefficient 𝐾𝑠,1 and the upstream discharge 𝑄, which is consistent with 
the numerical artefact of the T2D modeling mentioned in [1] 
and related to the neighbourhood of the upstream liquid 
boundary. The large areas next to the edges of the study area 
show no influence either from the upstream discharge 𝑄 
either from the floodplain roughness coefficient because they 
are not wet at the time 𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒. Otherwise, the roughness 
coefficients of the bottom of the main channel 𝐾𝑠,2 , 𝐾𝑠,3 and 𝐾𝑠,4 have almost no influence on the variability of the water 
depth over the study area. 

Total order Sobol’ indices highlight the multivariate effects of 
the different input variables. Note that the results of the 
sensitivity analysis are dependent on the distribution of the 
uncertain input variables and the degree of truncation of 
polynomial expansion. 

V. CONCLUSION AND PERSPECTIVES 
This paper presents the Mixture of generalized polynomial 

chaos expansion experts approach (MoE-gPCE) allowing to 
deal with local non-linearities and to take advantage of the 
benefits of generalized polynomial chaos expansion (gPCE) 
model. Focus is given to the particular hydrodynamic case 
when multiple behaviors of the water height can be observed. 
The proposed approach consists of first identifying such 
behaviors and then classifying them using a support vector 
machine algorithm. The resulting prediction is obtained by 
building local gPCE in each subspace and then recombining 
them using a binary scheme. When applied to the water height 
at a node downstream of a dyke (NoI), this approach has led 
to the emergence of two classes in which the water height 
behaves differently depending on whether the upstream 
discharge is less or more the bank-full discharge in the main 
channel. The different statistical moments as well as the Sobol’ 
indices were computed via MoE-gPCE. The proposed 
approach has been extended to all points when a single gPCE 
gives poor predictions. 

However, the accuracy of the resulting predictions relies 
on the accuracy of the classification step. This step can be 
improved using adaptive sampling to better define the 
boundary between the two subspaces.    Furthermore, 
improving the performance of gPCE for all mesh nodes using 
the proposed approach is equivalent to construct 72 000 gPCE 
(3 000 nodes where a single gPCE is not accurate, 8 values of 
the gPCE degree P, 3 potential number of classes) which is 

relatively expensive, hence the need to find a method allowing 
the execution of MoE-gPCE at a reduced cost in the context of 
high output dimension. 
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