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Design and characterisation of capsules is not an easy task owing to the multiple involved prepa-
ration factors and parameters. Here, a novel method to characterise capsule membrane permeability
to solute molecules by an inverse approach is proposed. Transport of chemical species between the
capsule core and the surrounding medium through the membrane is described by the Fick’s second
law with a position-dependent diffusion coefficient. Solutions are computed in spherical coordinates
using a finite difference scheme developed for diffusion in multilayer configuration. They are vali-
dated using semi-analytical solutions and fully three-dimensional lattice Boltzmann simulations. As
a proof of concept, the method is applied to experimental data available in the literature on the
kinetics of glucose release and absorption to determine the membrane permeability of capsules. The
proposed method is easy to use and determines correctly the permeability of capsule membranes for
controlled drug release and absorption applications.

Keywords: Controlled release; absorption; capsules; membrane permeability; computer simulations

I. INTRODUCTION

The last decades have known an increasing interest in using capsules, closed polymeric membranes, to encapsulate
active agents, which has led to a large amount of publications and patents. Capsules are composed of an inner
core, where active molecules are encapsulated, and an outer protective thick shell or thin membrane, as illustrated
in Fig. 1. The main advantage of capsules is their ability to monitor the release of their cargo in a controlled
manner. Moreover, their membrane improves the mechanical robustness and protects the encapsulated material
against undesired external chemical and mechanical damages. Applications of capsules span from food industry to
medicine, with capsule size ranging from few millimeters down to few nanometers. They are fabricated through
diverse techniques [1, 2], including emulsification in flow focusing microfluidic devices [3–5]. Capsules with more
complex structures are being developed by adding multiple extra layers or chemically reinforced shells to meet specific
performance requirements [6–8]. Capsules are also used as miniaturised bioreactors, where living cells are enclosed to
carry biochemical reactions as a response to specific applied stimuli [9, 10].

!"#"$%"

&'%()*+,(-

R
Rc

Rb

r

./#0

1()"

23"##

!$4,$#

5(()4,-$+"

δ

FIG. 1. Scheme showing the structure of a core-shell capsule with radius R. Rc is the radius of the core and Rb the radius
of the bulk where the capsule is immersed. The shell is supposed to be homogeneous with a uniform thickness δ. The scheme
also shows the mass transport directions of the release and absorption of a solute.
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Design and optimisation of capsules is challenging due to the multiple physico-chemical and geometrical parameters
involved. The release kinetics of the encapsulated solute is influenced by the capsule membrane properties, which
have to be optimised in order to deliver molecules at desired rates. For example, for medical applications, a poorly
designed capsule may lead to an inefficient treatment, and even worse, to drug concentration exceeding the toxicity
threshold. The main role of capsule membrane is to moderate the exchange of chemical species between the capsule
inner core and the outer surrounding medium. This depends strongly on the permeability of the membrane, which
is paradoxically not known a priori. It is dictated by multiple factors, such as the local curvature, the porosity and
the tortuosity of the membrane resulting from the quality of the cross-linking of the polymer, of which the membrane
is made. Thus, the permeability is not a universal determined property. It depends rather on the material and
the conditions under which a capsule is fabricated. It differs from a population of capsules to another due to slight
accidental changes in the fabrication process. The capsule permeability cannot be measured directly because of the
impossibility of accessing the protected inner core, for example, to place a probe apparatus. The closed topological
character of the capsules leaves only the option to access physically their external surrounding environment.
The state-of-the-art approach to determine capsule permeability consists in measuring the evolution over time of

the solute concentration in the external surrounding medium, which is then fit with an equation. This approach has
been employed in many studies [11–19]. For the release case, the most widely used equation is the analytical solution
of the Fick’s second law for solute diffusion from a sphere to a well-stirred solution of finite volume [20],
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where Ct is the solute concentration in the bulk at time t, which is assumed to be uniform due to stirring. Ceq is
the expected concentration at equilibrium, i.e. as t → ∞. R is the radius of the sphere, D is the solute diffusion
coefficient in the sphere, and α = Vb/V is the ratio of the volumes of the bulk and the sphere, when assuming the
partition coefficient is unity. qn is the nth non-zero positive root of tan qn = 3qn/(3+αq2n). Ceq depends on the initial
concentration C0 within the sphere. It can be deduced from the mass conservation C0V = Ceq(Vb + V ) that leads to
Ceq = C0/(α+ 1). For the absorption case, namely for diffusion from a well-stirred bulk solution to the capsule, the
analytical solution is rather [20],
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where C0 is, here, the initial concentration in the bulk. However, Eqs. (1) and (2) are not derived originally for a
capsule with a composite core-shell structure, but simply for a homogeneous sphere (see Ref. [21] for the mathematical
derivation). The diffusion coefficient D is then considered by most authors as the effective diffusion coefficient of the
overall capsule (core and membrane altogether). In this way, the fit enables the determination of an effective diffusion
coefficient for the whole capsule, and not specifically for the membrane. However, the membrane permeability is a key
parameter in designing, for example, capsules as bioreactors encapsulating cells and moderating the nutrients exchange
rate via their membrane [9]. Only few authors have attempted to fit their experimental data with mathematical models
derived for membranes. Kondo [22] has used a model for a planar membrane by assuming negligible effects of the
capsule curvature when the aspect ratio of the membrane thickness δ to the capsule radius R tends to zero (δ/R → 0).
Henning et al. [23] have measured concentration profiles using the NMR technique, and have fitted their experimental
data with numerical solutions computed with the Matlab pdepe solver [24], instead of Eq. (2).
The present article proposes a novel straightforward and correct methodology to characterise capsules permeability

by an inverse approach, using solutions of the diffusion equation computed with the finite difference method. This
article is organised as follows. The proposed method is explained in details in Sec. II, where the governing equations,
the numerical scheme and its validation are presented. The efficiency of the suggested method is then demonstrated
in Sec. III by applying it to numerical data and available experimental data in the literature (e.g. Refs. [12, 18]).
Finally, conclusions are drawn in Sec. IV.

II. METHOD

Governing equations - Diffusion of chemical species in a medium composed of an inner core and an outer domain
separated by a shell that moderates mass exchange between these two compartments is governed by the Fick’s second
law in absence of advection,

∂c

∂t
= ∇ · (D∇c) , (3)
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where t is the time and c the local concentration. D is the position-dependent diffusion coefficient taking different
values in the core (0 ≤ r ≤ Rc), in the shell (Rc < r ≤ R) and in the surrounding bulk (R < r ≤ Rb),

D(r) =











Dc, 0 ≤ r ≤ Rc

Dm, Rc < r ≤ R

Db, R < r ≤ Rb

, (4)

with r being the distance from the centre of the capsule. As the shell is a cross-linked gel or a porous rigid wall,
its diffusivity to the solute Dm is expected to be lower than the diffusivities in the core and the bulk, if these are
liquids. We refer to the diffusion coefficient Dm as the permeability of the capsule membrane to solute, see for example
[22, 23], while having in mind other definitions such as the ratio of the diffusion coefficient Dm to the shell thickness
δ [25]. All these definitions are adapted to cases where the shell thickness is not negligible compared to the size of the
capsule δ/R ≫ 0.1. The problem presents a spherical symmetry. Thus, the diffusion is expected to be purely radial
with c = c(r, t). Equation (3) is consequently expressed only as a function of its radial derivative terms,

∂c
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Initial condition - Diffusion from and to capsules is considered in the present study. For the release case, i.e.
diffusion from the capsule to the bulk, the core of the capsule is initially loaded with a uniform concentration C0, and
the concentration is zero elsewhere,

c(r, t = 0) =

{

C0, 0 ≤ r ≤ Rc

0, r > Rc

. (6)

This establishes a concentration gradient that triggers diffusion from the core to the bulk. For the absorption case,
i.e. diffusion into the capsule, the core and the membrane are initially free of solute while the concentration is uniform
and equal to C0 in the bulk,

c(r, t = 0) =

{

0, r ≤ R

C0, r > R
. (7)

This condition, on the contrary, induces diffusion from the bulk to the capsule.
Boundary conditions - The resulting spatial distribution of the concentration depends also on the boundary condi-

tions. Here, unsteady continuous concentration and mass flux boundary conditions emerge in the absence of interfacial
mass resistance at the core-shell interface r = Rc,

c(R−

c , t) = c(R+
c , t) and Dc
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∣
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∣
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c

, (8)

and at the shell-bulk interface r = R,

c(R−, t) = c(R+, t) and Dm
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∣

∣

∣

∣
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, (9)

where the superscripts (−) and (+) refer to the inner and outer sides of the interfaces, respectively. These boundary
conditions relax the constraints of imposing perfect sink or well-stirred boundary conditions. These latter could, in
principle, be fulfilled in an experiment, but not necessarily under operational conditions. They limit the computation
to the capsule by excluding the bulk. The perfect sink conditions can be modeled with a Dirichlet boundary condition
at the capsule surface,

c(R, t) = 0, (10)

and the well-stirred solution with the boundary condition,
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∂t
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, (11)
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to be set at the surface of the capsule (see Ref. [21] for the mathematical derivation of this equation). When the study
considers three layers (core, shell and bulk), no mass flux is imposed at the domain edge (r = Rb),

∂c

∂r

∣

∣

∣

∣

r=Rb

= 0. (12)

The condition,

∂c

∂r

∣

∣

∣

∣

r=0

= 0, (13)

is set at the origin (r = 0) in all the simulations to fulfill the radial symmetry.

Numerical FD solver - The governing equations are solved numerically using the finite difference method (FD),
while considering continuity of both the concentration and the mass flux at the inner and the outer interfaces of the
shell. The discretisation of the equations is adopted from the scheme proposed by Hickson et al. [26] for diffusion
in one-dimensional multilayer slabs. It is adapted, here, to one-dimensional spherical coordinates that introduce
additional terms. The diffusion equation in spherical coordinates, Eq. (5), is discretised at the inner points of each
subdomain (represented as filled circles in Fig. 2) by a central finite difference approximation in space.
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FIG. 2. Scheme showing the spatial discretisation in the vicinity of the interface ∂Ωi between two adjacent layers i and i+ 1,
where the solute diffusivities are respectively Di and Di+1. The inner points are represented with filled circles, and the point
at the interface is shown as an empty circle. The space step ∆r is uniform in the whole domain.

The capsule is considered to be constituted of homogeneous layers, i.e. layers of constant diffusivity, which leads
to,

∂cj
∂t

=
Di

∆r2

[(

j − 1

j

)

cj−1 − 2cj +

(

j + 1

j

)

cj+1

]

, (14)

for the discretisation at the inner points of layer i. Here, cj is the local concentration at a given inner point j of
the layer i, Di is the diffusion coefficient in the layer i, and ∆r the space step, which is set uniform in the whole
domain. The discretisation of the domain proposed by Hickson et al. assumes one grid-point j lies on the interface
∂Ωi between the layers i and i + 1, as illustrated in Fig. 2. Taking a central difference scheme in space to discretise
Eq. (5) at the interface ∂Ωi, and then taking first-order forward and backward differences for the spatial derivatives
of the concentration gives,
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(
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]
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}

. (15)
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Equations (14) and (15) can be written together under the form of a single linear system,
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where cj is the concentration at the interface ∂Ωi located at the node j (see Fig. 2), χi = Di

∆r2
, χi+1 = Di+1

∆r2
,

a = χi

2

(

j−1
j

)2

, and b = χi+1

2

(

j+1
j

)2

. The concentration at iteration n + 1 is computed using a standard Euler

scheme,

Cn+1 = Cn +∆tMCn, (17)

where Cn is the column vector containing the values of the concentration at each grid-point at iteration n, ∆t is the
timestep, and M the tridiagonal matrix in Eq. (16). Here, M includes extra terms compared to the matrix given in
Ref. [26] because of the spherical coordinates for which is derived.
Validation - The FD scheme is validated by comparing the computed concentration profiles with semi-analytical

solutions of Ref. [27], with Rc = 1.5mm, δ = 0.2mm, Rb = 30mm, Dm = 0.5 × 10−10m2/s, and Dc = Db =
3×10−10m2/s. The concentration profiles at times t = 5, 50 and 150min are presented in Fig. 3a. For clarity reasons,
the figure is truncated at r/R = 3 beyond which the concentration is almost zero. The membrane location is depicted
by the light grey rectangle. The expected physics is well recovered with continuous and discontinuous variations of
respectively the concentration and its derivative across the membrane. Perfect agreement with the semi-analytical
solution is achieved, as well. The profiles are computed using the Matlab script diffusion FD.m provided in Ref. [28].
For this simulation, the space step is set to ∆r = 10−5m which corresponds to 3000 elements. A grid independence
study has been conducted to make sure the obtained results are reliable and invariant of grid resolution. Figure 3b

(a) (b)

FIG. 3. (a) Concentration profiles computed at times t = 5, 50 and 150min. The red solid line curves represent the numerical
solution of Eq. (5) obtained with the proposed finite difference scheme (FD), while the green dashed lines represent the semi-
analytical solution taken from Ref. [27]. The dark grey solid line gives the local solute diffusion coefficient D(r). The light
grey rectangle depicts the location of the membrane. Excellent agreement is achieved between the FD and the semi-analytical
solutions. (b) Concentration computed at the center of the capsule at t = 50min for various grid resolutions. The result
converges to a unique value at high grid resolutions.
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shows the concentration at the capsule center (r = 0) at time t = 50min computed for different grid resolutions using
the same simulation parameters as in Fig. 3a. The results are not affected when refining the discretization further
than ∆r = 10−5m (3000 elements), which is a good compromise between accuracy and computing time.
Permeability characterisation - The proposed method is based on an inverse analysis approach. The required

inputs are the experimental data providing either the release or the uptake kinetics of a solute, and the geometrical
characteristics of the studied capsule. A wide interval of the fitting parameter space (Dm, Dc) is scanned, and the
resulting output release or uptake curves are then compared against the experimental data to quantify the root mean
square error (RMSE),

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Cexp(i)− Cnum(i))
2
, (18)

where N is the number of the input experimental data points Cexp, and Cnum the numerical solution. Only cases with
Dm ≤ Dc are considered because diffusion in the membrane is expected to be slower than in the core, since the role
of the membrane is to moderate mass exchange. The optimal values of the diffusivities (Dm, Dc) are those leading
to the minimal error between the numerical solution and the experimental input data. They are computed using the
Matlab script compute permeability.m provided in Ref. [29].

III. RESULTS

A. Application based on numerical data

First, the method is tested on numerical data computed with a fully three-dimensional lattice Boltzmann simula-
tion (LB), for which the diffusion coefficients are set and known in advance by the authors. Further details on the
LB method can be found in Refs. [30, 31]. The geometrical parameters used in the LB simulation are Rc = 1mm,
δ = 0.5mm, and Rb = 12mm. The diffusion coefficients are Dc = Db = 2 × 10−10m2/s and Dm = 0.6× 10−10m2/s
corresponding to the diffusion of insulin in an aqueous solution and a polymeric membrane, respectively [32]. Con-
tinuous boundary conditions, Eqs. (8) and (9), are considered. The resulting concentration field in the capsule and

in its surrounding medium is given in Fig. 4a at various times. The release kinetics is quantified by
(

1− Mt

M0

)

,

where Mt = 4π
∫ R

r=0
r2c(r, t)dr is the mass of the solute that remains within the capsule at time t. It is denoted by

grey-colored square symbols in Fig. 4b. The characterisation method consists in taking these data (as if they were
experimental data Cexp) and fit them with FD numerical solutions using the solute diffusivity in both the membrane
and the core (Dm, Dc) as fitting parameters, while holding constant the values of the geometrical parameters Rc, δ
and Rb. Figure 4c reports the RMSE measuring how much the obtained FD solutions deviate from the LB solution.
The red solid line gives the value of the membrane diffusivity Dm which minimises the RMSE at a given core dif-
fusivity Dc. The global minimum of the RMSE is obtained at Dc = 2.1 × 10−10 m2/s and Dm = 0.6 × 10−10m2/s
(symbol ⊗). This estimated value of the membrane diffusivity is exactly equal to the value set in the LB simulation,
and the small difference obtained for the core diffusivity represents a relative error of only 5%, which is satisfactory.
The line Dm = Dc corresponds to the case of having a homogeneous sphere, as usually assumed in the literature.
The local minimum of RMSE on this line gives the effective diffusivity D for the whole capsule. It is located at
Dm = Dc = D = 1.1 × 10−10m2/s (symbol ⊕). The RMSE is strongly sensitive to changes in the membrane diffu-
sivity Dm, and it is weakly affected by variations of the core diffusivity Dc, especially at low membrane diffusivities.
This means that the release process is mainly controlled by the membrane permeability.
The release curve computed for Dc = 2.1 × 10−10m2/s and Dm = 0.6 × 10−10m2/s fits perfectly the input LB

release data (see Fig. 4b), in contrast to the one of a homogeneous sphere. This example has allowed us to validate
the proposed method and to demonstrate its efficiency to characterise the membrane permeability of capsules.

B. Application to experimental data of glucose release

Here, the proposed method is used to determine the membrane permeability to glucose of hydrogel alginate capsules,
whose release kinetics has been measured experimentally by Rolland et al. [18]. In this study, the size of the capsules
is R = 1.73mm, and the thickness of the membrane varies within the range 45µm < δ < 100µm that leads to
0.026 < δ/R < 0.06. Only capsules of average membrane thickness δ = 50µm have been used. They have been
suspended in an aqueous solution whose glucose concentration is kept uniform thanks to stirring. For this case, the
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c(r,t)/C0
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Time t

t = 1h t = 3h t = 5h t = 7h

(a)

(b) (c)

FIG. 4. (a) Snapshots of the concentration field in three dimensions computed at various times by the lattice Boltzmann
method (LB) in the case of insulin release from a capsule. The black solid lines delimit the core and the shell of the capsule.
The domain is truncated at r/Rb = 1/2 for clarity reasons. The indicated times are rounded down to the nearest hour. (b)
The release kinetics curve. Squares correspond to the release kinetics computed by the LB method and used as input data for
the characterisation. The green solid curve corresponds to the best fit of the LB data when considering the capsule with a
composite structure, and the red solid curve corresponds to the best fit when assuming the capsule as a homogeneous sphere.
(c) The RMSE between the LB and the FD solutions over a wide range of the fitting parameters Dc and Dm. The red solid
line gives the value of the membrane diffusivity Dm that minimises the RMSE at a given core diffusivity Dc. The absolute
minimum is obtained at Dc = 2.1×10−10 m2/s and Dm = 0.6×10−10 m2/s (symbol ⊗), and that match the values set in the LB
simulation. These fit better the data than the solution obtained when considering the capsule as a homogeneous sphere with
D = Dm = Dc = 1.1× 10−10 m2/s (symbol ⊕). The core radius, the membrane thickness and the bulk radius are Rc = 1mm,
δ = 0.5mm and Rb = 12mm, respectively.

computational domain is limited only to two subdomain layers: the core and the shell excluding the bulk, where the
concentration Ct is forced to be uniform but yet varies over time. The well-stirred solution condition is modeled
by Eq. (11). The initial concentration is set to C0 = 0.1 g/mL in the whole capsule, i.e. in both the core and the
membrane.

The experimental data of Rolland et al. are reported in Fig. 5a as square symbols. They show the evolution in
time of the glucose concentration in the liquid surrounding the capsule. The fit of these experimental data, while
scanning the values of the diffusion coefficients in both the core and the membrane, leads to the RMSE reported in
Fig. 5b. The minimum of the RMSE located on the line Dm = Dc (symbol ⊕) corresponds to the assumption that
the capsule is a homogeneous sphere, as done by Rolland et al., whereas the minimum located in the area Dm < Dc

(symbol ⊗) considers the composite core-shell nature of the capsule. The estimated value for a homogeneous sphere
is D = 13.32 × 10−10m2/s, which is close to D = 14 × 10−10m2/s measured by Rolland et al. When taking into
account the real composite structure of the capsule, the estimated diffusivities are rather Dc = 17.11×10−10m2/s and
Dm = 7.54× 10−10m2/s. The corresponding release curve fits the experimental data better than the one obtained for
the homogeneous sphere, as demonstrated in Fig. 5a. Moreover, Rolland et al. have pointed out that their measured
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(a) (b)

FIG. 5. (a) The release kinetics of glucose from a hydrogel alginate capsule of size R = 1.73mm and membrane thickness
δ = 50µm. Square symbols correspond to experimental data taken from Ref. [18], whereas the solid lines correspond to fits
obtained with the present proposed method. (b) The RMSE error between the FD solution and the experimental data while
varying the solute diffusion coefficient in both the core and the membrane. The global minimum of RMSE (⊗) gives the
diffusion coefficients Dc = 17.11 × 10−10 m2/s and Dm = 7.54 × 10−10 m2/s that fit better the experimental data than the
effective diffusion coefficient D = 13.32 × 10−10 m2/s (⊕) obtained when assuming the capsule as a homogeneous sphere.

(a) (b)

FIG. 6. (a) Evolution of the normalized glucose concentration in the bulk solution over time. Squares: experimental data
taken from Ref. [12] showing the glucose absorption kinetics for capsules made of alginate and polyethylene glycol with core
radius Rc = 2.17mm and membrane thickness δ = 160µm. Solid line curves: fits obtained while considering the capsule as a
homogeneous sphere (red), and with its real core-shell composite structure (green). (b) RMSE between the input experimental
data points and the FD solutions obtained over a wide range of the fitting parameters Dc and Dm. The local minimum along
the line Dm = Dc (symbol ⊕) that corresponds to the case of a homogeneous sphere is obtained at D = 7.98 × 10−10 m2/s.
It is close to the value estimated by Koyama and Seki [12] (D = 7.9 × 10−10 m2/s). The global minimum is located at
Dc = 76.40 × 10−10 m2/s and Dm = 2.96 × 10−10 m2/s (symbol ⊗) that lead to a better fit of the experimental data than the
homogeneous sphere.

value is about two times larger than the one in an infinitely dilute solution, that is 6.75×10−10m2/s. They attributed
their observed increase in D to the stirring and motion of the capsule that speeds up the release. Here, the obtained
value of Dm is close to 6.75× 10−10m2/s, which is expectedly small. The flow around the capsule induced by stirring
is expected to enhance the release rate due to convection [25, 33, 34], but not to significantly increase the intrinsic
permeability of the capsule membrane.
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C. Application to experimental data of glucose absorption

The present characterisation method can also be used in the case of solute absorption. Here, it is applied to glucose
absorption by capsules made of alginate and polyethylene glycol using the experimental data of Koyama and Seki
[12]. In this study, the inner core radius of the capsules is Rc = 2.17mm and the membrane thickness is δ = 160µm.
The prepared capsules have been immersed into a well-stirred solution of glucose that diffuses to the inner core of
the capsules through their membrane. The authors have measured the variation of the glucose concentration in the
surrounding bulk over time, which is reported in Fig. 6a as square symbols. The RMSE between these experimental
data points and the numerical solution obtained by the FD method while varying the fitting parameters Dc and Dm

is shown in Fig. 6b. As in the case of solute release, the RMSE is very sensitive to the variations of the membrane
diffusivity Dm. However, it is slightly affected by changes in the core diffusivity Dc, especially at low membrane
diffusivities. The absorption process is thus mainly controlled by the membrane permeability. The global minimum
(symbol ⊗) is obtained at Dc = 76.40× 10−10m2/s and Dm = 2.96× 10−10m2/s. The local minimum along the line
Dm = Dc (symbol ⊕) that corresponds to a homogeneous sphere is located at Dm = Dc = D = 7.98×10−10m2/s, and
it is very close to D = 7.9× 10−10m2/s estimated by Koyama and Seki. The computed absorption curves are plotted
in Fig. 6a. The curve of the capsule model with an internal composite structure again fits perfectly the experimental
data.

IV. CONCLUSIONS

The proposed method has been applied to determine the permeability of capsules in the cases of release and
absorption of a solute, while considering continuous and well-stirred boundary conditions at the capsule membrane.
It determines the diffusion coefficient in both the membrane and the core, in contrast to the classically used approach
that can only give an effective diffusion coefficient for the whole capsule. The computed diffusion coefficients in the
membrane are smaller than the effective diffusion coefficients determined by the classical method. This is expected
since the membrane is a porous medium whose role is to control and slow down the mass transfer. Furthermore,
the present method recovers also the effective diffusion coefficients estimated by the classical method. Its ease-of-use
makes the proposed method an efficient tool for determining accurately the capsule membrane permeability for drug
delivery applications. It can also be used as a computer-aided tool in designing future capsules with desired release
or absorption kinetics. The corresponding Matlab script is provided in Ref. [29].
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