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Solute mass transfer from a spherical fluid-filled rigid capsule subjected to shear flow is studied
numerically, while considering unsteady, continuous and nonuniform boundary conditions on its
surface. Here, the capsule acts as a reservoir with its initially encapsulated solute concentration
decaying over time. This scenario differs from the classical case study of either constant concen-
tration or constant mass flux at the surface of the particle. The flow and the concentration field
are computed using fully three-dimensional lattice Boltzmann simulations, where the fluid-structure
two-way coupling is achieved by the immersed boundary method. Effects of the flow and the bound-
ary conditions on mass transfer efficacy are quantified by the Sherwood number (the dimensionless
mass transfer coefficient), which is found to increase due to the combined effects of forced convection
and the rotation of the capsule. Having continuity of both the concentration and the mass flux on
the capsule significantly decreases the Sherwood number as compared to the case with constant
and uniform boundary condition. All the obtained results can be applied to heat transfer in case
of cooling an initially hot spherical particle, for which the concentration must be replaced by the
temperature and the Sherwood number by the Nusselt number.

I. PROBLEM STATEMENT

Mass transfer from particle suspensions under flow con-
ditions is encountered in many natural phenomena and
industrial processes. It has motivated multiple applied,
as well as fundamental studies. For example, mass trans-
fer from a spherical particle subjected to shear flow has
been studied theoretically by Acrivos and co-workers [1–
3] in the limit of small Reynolds numbers (Re→ 0), and
at either low Péclet numbers (Pe → 0) or high Péclet
numbers (Pe → ∞). They have derived analytically
asymptotic relations for the Sherwood number (Sh) or
the Nusselt number (Nu), which are respectively the mass
and the heat transfer dimensionless coefficients. Batche-
lor [4] has obtained similar correlations using a different
approach. Later, Polyanin and Dil’man [5] used an ad-
vanced fitting procedure to bridge the gap between the
correlations of Acrivos, which are derived in the limits of
Pe → 0 and Pe → ∞. Subramanian and Koch [6] have
extended these works to finite Reynolds numbers and to
report inertia effect. Longest and Kleinstreuer [7] have
investigated the effect of the walls using numerical simu-
lations. They have proposed Sherwood number correla-
tions as a function of the blockage ratio. Recently, Wang
and Brasseur [8] studied numerically mass transfer from
a freely rotating sphere in shear flow and have proposed
correlations valid over a wide range of the Péclet number.
All these studies, and others summarized in Ref. [9], are
limited to particles whose surface is maintained at either
constant concentration or constant mass flux.

In the present article, mass transfer from a spherical
particle freely suspended in shear flow is studied numeri-
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cally, while considering unsteady, continuous and nonuni-
form boundary conditions. Under these conditions a par-
ticle acts as a reservoir with an initial solute load that
decays over time. Such scenario is known for oxygen and
carbon dioxide transport by red blood cells, and it is
increasingly used in medicine for drug delivery by par-
ticles and in food and cosmetic industry for controlled
release of chemical substances using capsules. Design of
such particles with desired capacity of encapsulation and
release rate present technological challenges in absence
of models and studies that take into account the exact
conditions under which these particles operate.

One of the author has proposed numerical methods
based on the lattice Boltzmann method to study solute
release from steady and moving particles with unsteady
and nonuniform boundary conditions at their surface. He
has considered both particles with zero-thickness mem-
brane [10, 11] and with thick shell [12]. This latter has
then been recently extended to cover a larger range of
the Reynolds number and to highlight the contribution
of the shell solute permeability on mass transfer coeffi-
cient correlation [13]. Here, these studies are extended to
fully three-dimensional case of a neutrally-buoyant and
free-torque spherical rigid capsule rotating under sim-
ple shear flow, see Fig. 1. The present study focuses
on the effects of the shear flow and the unsteady, con-
tinuous and nonuniform boundary conditions on mass
transfer efficacy. The flow and the concentration field are
computed with fully three-dimensional lattice Boltzmann
simulations, where two-way fluid-structure coupling is
achieved using the immersed boundary method. The cap-
sule membrane is considered to be of zero thickness and
of infinite permeability to solute, and to be impermeable
to the solvent. The present used method and the ob-
tained results can be applied to the case of heat transfer
as well thanks to the mass/heat transfer analogy.
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FIG. 1. Numerical setup of the problem. A spherical rigid capsule of radius R is suspended in the center of a channel of length
L = 30R, width W = 10R and height H = 10R. The upper and lower walls translate in the x-direction at a velocity +U
and −U , respectively. This generates a simple linear shear flow that triggers the rotation of the capsule with respect to the
y-axis at an angular velocity ω. ρ and ν are respectively the mass density and the kinematic viscosity of the fluid. D is the
solute diffusion coefficient, and n the outward-pointing normal unit vector on the capsule surface. Subscripts “in” and “out”
refer respectively to the properties of the inner encapsulated fluid Ωin, and the outer surrounding fluid Ωout of the capsule.
Continuity of both the concentration and the mass flux is considered at the membrane, in contrast to the constant boundary
conditions largely used in the literature, see Subsection II D for more details.

The article is organized as follows. The problem setup
and the mathematical formulation are introduced in Sec-
tion II. Results and discussions are reported in Section
III, where the effects of the flow and the boundary condi-
tions on mass transfer are quantified and analyzed. Con-
clusions are given in Section IV. The details about the
numerical method and its validation are given in the Ap-
pendix.

II. MATHEMATICAL FORMULATION

A. Problem setup

Figure 1 shows the numerical setup of the problem. A
non-Brownian neutrally-buoyant spherical rigid capsule
of radius R is placed at the center of a channel of length
L = 30R and of equal width and height W = H = 10R.
The top and bottom walls translate along the x-axis
at constant velocity U , but in opposite directions so
that they generate simple linear shear flow. By setting
H = 10R, the walls are placed far enough from the par-
ticle to have negligible effect. Because the center of mass
of the capsule is set at the zero velocity plane of the flow,
the capsule will not translate. It can only rotate with an
angular velocity ω. The capsule is initially loaded with
a uniform solute concentration c0, while the surrounding
medium is free from solute. This establishes a concentra-
tion gradient that triggers unsteady solute diffusion from
the capsule towards the bulk. The initial encapsulated
load is not sustained, but it decays over time. Continuity
of both the concentration and the mass flux at the mem-
brane of the capsule is considered in this study, and how
it alters the mass transfer efficacy in comparison with the

constant surface concentration is reported.

B. Governing equations

The encapsulated and the external fluids are assumed
to be incompressible Newtonian fluids, of the same type,
and their flow is described by the Navier-Stokes equa-
tions,

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u + f , (1)

∇ · u = 0, (2)

where u = u(r, t) is the local fluid velocity, p = p(r, t) is
the local pressure and f = f(r, t) the local body force act-
ing on the fluid at the position r = (x, y, z) and at time t.
ρ and ν are the mass density and the kinematic viscos-
ity of the fluid, respectively. The mass transfer, inside
and outside the capsule, is governed by the advection-
diffusion equation,

∂c

∂t
+ u · ∇c = ∇ · (D∇c) , (3)

where c = c(r, t) is the instantaneous solute concentra-
tion and D = D(r) the local diffusion coefficient. All
these equations are solved in both the external medium
Ωout, as well as inside the capsule Ωin. In the follow-
ing, the inner and the outer fluids are assumed to have
the same physical properties, and, thus, ν = νin = νout,
ρ = ρin = ρout and D = Din = Dout. In the present ar-
ticle, the solutions of these equations are computed with
the lattice Boltzmann method (LBM), see the Appendix
for more technical details.
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C. Initial conditions

The initial condition for the mass transfer part is,

c(r, t = 0) =

{
c0, if r ∈ Ωin

0, if r ∈ Ωout
. (4)

This condition models a uniformly loaded capsule im-
mersed in a solute-free fluid. It establishes a gradient
that triggers mass transfer of the solute from the capsule
to the external fluid. In this study, the surface of the
capsule is not maintained at either constant concentra-
tion or mass flux in contrast to previous studies. Thus,
the concentration within the sphere decays over time un-
til reaching equilibrium with the external fluid concen-
tration. For the flow part, the velocity field is initialized
with the linear shear flow in the whole domain,

u(r, t = 0) = (γz, 0, 0) , (5)

where γ = 2U/H is the shear rate.

D. Boundary conditions

The two parallel plates that bound the domain in the
z-direction (see Fig. 1) move in opposite directions along
the x-axis at constant velocity U ,

u(x, y,±H/2) = (±U, 0, 0). (6)

No-slip boundary conditions and impermeability to fluid
are set on the membrane of the capsule,

um = uin = uout on ∂Ωin, (7)

where um is the velocity of the capsule membrane. uin

and uout are respectively the velocities of the fluid ad-
jacent to the inner and outer sides of the capsule mem-
brane. As the capsule center of mass is located in the
middle of the computational domain, the whole capsule
rotates with respect to the y-axis without translating.
Periodic velocity boundary conditions are set at the do-
main edges x = ±L/2 and y = ±W/2. For the mass
transfer part, the boundaries of the channel are main-
tained at constant concentration c∞ = 0 to model sink
condition that corresponds to placing a small particle in
a large domain. Moreover, continuity of both the con-
centration and the mass flux emerges spontaneously at
the capsule membrane in absence of any interfacial resis-
tance,

c(Rin, t) = c(Rout, t) and Din
∂c

∂n

∣∣∣∣
Rin

= Dout
∂c

∂n

∣∣∣∣
Rout

,

(8)
where Rin and Rout refer respectively to the inner and the
outer sides of the membrane. ∂c/∂n refers to the deriva-
tive of the concentration in the direction normal to the

outer surface of the capsule. These continuous bound-
ary conditions are unsteady and lead to different mass
transfer scenarios compared to the largely used constant
Dirichlet boundary condition. They enable to model so-
lute release, in contrast to assuming constant concen-
tration and solving the concentration field only in the
external medium.

E. Key physical quantities

The present problem is expected to be governed by
two key dimensionless parameters, the particle-based
Reynolds number Re,

Re =
γR2

ν
, (9)

and the Schmidt number Sc,

Sc =
ν

D
. (10)

The explored range of the Reynolds number is 0.01 ≤
Re ≤ 1, while the Schmidt number is hold constant at
Sc = 10. Re and Sc are related via the Péclet number
Pe = ReSc = γR2

D that measures the relative importance
of advection and diffusion. The time t is scaled and ex-
pressed as T = Dt

R2 .
Three local observable quantities are measured at the

surface of the capsule to characterize and analyze the
mass transfer. The instantaneous surface concentration
cs(θ, φ, t), which is evaluated using trilinear interpola-
tion of the concentration computed with the LBM at
on-lattice grid points. The variables θ and φ refer respec-
tively to the colatitute and the longitude of the spherical
coordinates on the capsule surface. From cs(θ, φ, t), one
can compute the mass flux at the surface of the capsule
as,

ϕ(θ, φ, t) = −D ∂c

∂n

∣∣∣∣
r=Rout

. (11)

The local Sherwood number that is the dimensionless
mass transfer coefficient is defined as,

Sh(θ, φ, t) =
2R

D

[
ϕ(θ, φ, t)

cs(θ, φ, t)− c∞

]
. (12)

The instantaneous average Sherwood number is com-
puted by integration of Sh (θ, φ, t) over the surface of the
capsule ∂Ωin,

Sh(t) =
1

4πR2

∫
∂Ωin

Sh(θ, φ, t)dS. (13)

The present mathematical formulation holds also for heat
transfer problem, by replacing the concentration by the
temperature, the solute diffusion coefficient by the ther-
mal diffusivity, the Schmidt number by the Prandtl num-
ber, and the Sherwood number by the Nusselt number.
The initial and boundary conditions studied in this ar-
ticle correspond to cooling a hot spherical particle by a
cold sheared fluid.
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FIG. 2. Induced flow streamlines inside and around the capsule under applied shear flow at Re = 1. Left: streamlines in the
x-z plane passing by the center of the capsule. Right: streamlines in the y-z plane exhibiting the spiraling nature of the flow.
Similar type of streamlines topology is obtained within the range 0.01 ≤ Re ≤ 1.

III. RESULTS AND DISCUSSIONS

The effect of flow on solute mass transfer from a spher-
ical capsule freely suspended in a sheared fluid is studied
here. The Reynolds number is varied within the range
0.01 ≤ Re ≤ 1 by varying solely the wall velocity U , while
keeping all the other parameters constant. The Schmidt
number is set to Sc = 10 so that the Péclet number varies
from 0.1 to 10 in order to cover both diffusion and ad-
vection dominated regimes. The initial concentration of
the solute in the capsule is set to c0 = 1.

A. Fully developed flow pattern

Figure 2 shows the flow streamlines computed at Re =
1, which are the typical patterns in the range 0.01 ≤ Re ≤
1. The left panel of Fig. 2 depicts the streamlines in the
x-z plane that passes by the center of the capsule. The
encapsulated fluid flow exhibits closed ellipsoidal lines as
the capsule membrane rotates under the applied external
shear flow. There is a region of closed streamlines around
the particle, that tend to elongate and adopt an eye-
shaped pattern. Because closed streamlines are known
to hinder transport by advection, mass transfer is thus
diffusion-dominated in the vicinity of the particle. The
region of closed streamlines is surrounded by a pair of
recirculating wakes, originating from inertial forces [6].
These recirculations are expected to transport the solute
far away from the capsule and to enhance mass transfer
by forced convection. The streamlines remain parallel
to the channel walls far away from the particle, as in a
simple shear flow in absence of any obstacle. The rota-
tion of the capsule membrane generates a spiraling flow
in its neighborhood, as illustrated in the right panel of
Fig. 2. The streamlines emerge from the surface of the
capsule forming spirals up to the far flow field. The com-
puted streamlines within the present study have similar
topology as in Refs. [6, 8, 14, 15].

B. Effect of flow on solute spatial distribution

The effect of flow on the solute spatial distribution is
shown in Fig. 3 by reporting the concentration isocon-
tours at various Reynolds numbers Re = 0.01, 0.4 and
1 computed at the same arbitrary dimensionless time
T = 0.65. For comparison purposes, simulations per-
formed with constant concentration at the capsule sur-
face, as extensively considered in the literature, are also
shown at the steady regime (right column). Qualita-
tively the obtained concentration distribution, outside
the capsule, is almost similar for both boundary con-
ditions. However, the overall concentration is higher for
the case of Dirichlet boundary condition that sustains
the initial concentration to c0 = 1. For Re = 0.01, mass
transfer is dominated by diffusion. Thus, the resulting
concentration contours are radial and centered with re-
spect to the capsule center of mass. At higher Reynolds
numbers, advection is the dominant mass transfer mech-
anism. The solute is transported efficiently by the flow
far away from the capsule. It exhibits stretched concen-
tration isocontours along the elongational direction of the
shear flow. This direction inclines towards the channel
centerline as the Reynolds number is increased since the
solute has less time to diffuse in the transverse direction.
The concentration is nonuniform inside the capsule and
decays over time when considering continuous boundary
conditions (left column), compared to the case of Dirich-
let boundary condition (right column).

C. Surface mass transfer quantities

The concentration cs(θ, φ, t), the mass flux ϕ(θ, φ, t)
and the Sherwood number Sh(θ, φ, t) at the surface of
the capsule measured at an arbitrary dimensionless time
T = 0.65 are plotted in Fig. 4 for various Reynolds num-
bers Re = 0.01 (left column), 0.4 (middle column) and
1 (right column). At low Reynolds numbers, for exam-
ple at Re = 0.01, these quantities are uniform all over
the surface of the capsule because the solute mass trans-
fer takes place mainly by diffusion. At high Reynolds
numbers, the contribution of advection to mass transfer
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FIG. 3. Snapshots of solute concentration fields computed at an arbitrary dimensionless time T = 0.65 under various Reynolds
numbers Re = 0.01, 0.4 and 1 when considering continuous boundary conditions (left column). The steady concentration fields
compted under the same Reynolds numbers, but with constant Dirichlet boundary condition (right column) at the surface of
the capsule. The Schmidt number is set to Sc = 10 so the Péclet number Pe varies from 0.1 to 10 to cover both diffusion and
advection dominated regimes.

becomes important and the resulting local surface quanti-
ties show strong spatial variations. The surface concen-
tration is maximal in the two dark red opposite areas,
where the solvent pressure is low. There, mass trans-
fer is dominated by diffusion and the released solute is
weakly transported by convection. Thus, the solute ac-
cumulates and remains in these regions resulting in weak
mass flux and Sherwood number. The areas of maxi-
mal concentration inclines towards the channel center-
line (z = 0) as the Reynolds number is increased. On the
contrary, the concentration is minimal on the two dia-
metrically opposed surfaces that are the most exposed to
the flow (dark blue). They are located at approximately
90 degrees from the regions of maximal concentration. In
these regions, advection prevails and the newly released
solute is efficiently transported by the flow. The mass
flux is, thus, particularly high there resulting in a max-
imal Sherwood number. The shear flow enhances mass
transfer in these regions on the capsule, which renders all
the mass transfer quantities anti-symmetric with respect

to the plane of zero velocity.

D. Steady Sherwood number

The instantaneous average Sherwood number Sh(t),
Eq. (13), reaches a steady value Sh as the concentra-
tion boundary layer adopts a steady thickness around
the capsule. For the unsteady continuous boundary con-
ditions, the concentration boundary layer is steady only
for a while during the release of the encapsulated solute
and before its complete exhaustion inside the capsule. Sh
is reported in Fig. 5 as a function of the Reynolds and
the Péclet numbers in logarithmic scale with Sc = 10.
Because forced convection and rotation of the particle en-
hance the mass transfer, the steady value increases with
the Reynolds number. For comparison purposes, the val-
ues of Sh computed when considering constant concen-
tration at the surface of the capsule are also represented,
along with the correlations of Wang and Brasseur [8],
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FIG. 4. Local mass transfer quantities computed on the capsule surface at arbitrary dimensionless time T = 0.65 for various
Reynolds numbers Re = 0.01 (left column), Re = 0.4 (middle column) and Re = 1 (right column). From top to bottom:
normalized surface concentration cs(θ, φ, t)/c0, surface mass flux ϕ(θ, φ, t) and local Sherwood number Sh(θ, φ, t). The shear
flow enhances mass transfer in some regions on the capsule, which renders these quantities nonuniform. The Schmidt number
is Sc = 10. [l.u.] means LBM lattice units.

Polyanin and Dil’man [5], and Longest and Kleinstreuer
[7], which are given by,

• Correlation of Wang and Brasseur [8]:

Sh = Sh0 + 0.03748Pe0.674Re0.583−0.032 ln Pe, (14)

where Sh0 is the Sherwood number in the limit of
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FIG. 5. The steady average Sherwood number Sh vs. the Reynolds number Re and the Péclet number Pe computed at a Schmidt
number Sc = 10, while considering either unsteady continuous (circles) or constant Dirichlet (triangles) boundary conditions at
the surface of a spherical capsule rotating under shear flow. The correlations of Wang and Brasseur [8], Polyanin and Dil’man
[5], and Longest and Kleinstreuer [7] are obtained for constant boundary condition and are shown for comparison purposes. Sh
is dramatically altered by the type of the boundary conditions set at the particle surface. It is lower for continuous boundary
conditions. The figure suggests Sh ∝ Re0.59 for continuous boundary conditions and Sh ∝ Re0.19 for Dirichlet boundary
condition in the advection-dominated regime (Pe > 1). This latter is consistent with the exponent 0.187 obtained by Wang
and Brasseur [8].

Re→ 0,

Sh0 =


2 + 0.580Pe0.5 Pe ≤ 5

2.438Pe0.187 5 ≤ Pe ≤ 100

9− 16.128Pe−0.349 Pe ≥ 100

(15)

• Correlation of Polyanin and Dil’man [5]:

Sh = 2 +
0.52Pe1/2

1 + 0.057Pe1/2
, Re→ 0, 0 < Pe <∞ (16)

• Correlation of Longest and Kleinstreuer [7]:

Sh = C1 + C2ReC3

d Sc0.333, (17)

with,

C1 = 1.92 + 1.03B, (18)

C2 = 0.42 exp (−2.08B) , (19)

C3 = 0.53 + 0.47B, (20)

where Red = γd2

ν , h is the half distance between
the moving walls, d is the particle diameter and
B = d/h is the blockage ratio. This correlation is
valid for 0 ≤ Red ≤ 32, and 0.1 ≤ B < 1.

For both boundary conditions, two distinct behaviors are
observed depending on the Péclet number. When Pe < 1,
mass transfer is dominated by diffusion and the Sher-
wood number is barely affected by the flow. It is rela-
tively low and increases slowly with Re. For Pe > 1, ad-
vection becomes the dominant mass transfer mechanism
and the resulting Sh increases linearly in the logarithmic
scale. These two characteristic behaviors have also been
reported for other types of particles subjected to vari-
ous flow conditions, see e.g. Ref. [9]. However, Fig. 5
highlights for the first time how the Sherwood number
depends strongly on the boundary conditions set at the
surface of a particle. Because the mass flux is lower when
the concentration at the capsule surface is not sustained
at its initial high value, the unsteady continuous bound-
ary conditions show a dramatic reduction in Sh. But,
they lead to a stronger dependency of Sh on Re in the
advection-dominated regime (Pe > 1),

Sh ∝ Re0.59, (21)

with a greater exponent than 0.19 obtained when setting
constant concentration at the capsule surface. By the
way, this latter is consistent with 0.187 obtained by Wang
and Brasseur [8] (dotted line).

In the advection-dominated regime, the present numer-
ical data obtained for constant boundary condition (tri-
angle symbols) are slightly lower than the correlations of
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Polyanin and Dil’man [5] (continuous line) and Longest
and Kleinstreuer [7] (dashed line). But, this deviation is
not as significant as the one induced by the type of the
boundary conditions set at the capsule surface. For con-
stant boundary condition, Sh → 2 as Re → 0, which is
the expected known value for pure diffusion from a sphere
sustained at constant concentration [9]. For the unsteady
continuous boundary conditions, Sh tends rather to a
lower value than 2 as Re→ 0.

IV. CONCLUSIONS

A numerical method is proposed to study unsteady so-
lute release from a spherical rigid capsule subjected to
shear flow. It is based on three-dimensional and two-
component lattice Boltzmann method to compute both
the flow and the solute advection-diffusion inside as well
as outside the capsule, and on the immersed boundary
method for the fluid-structure interaction two-way cou-
pling. The method allows to model unsteady and contin-
uous boundary conditions on the membrane of the cap-
sule, which differ from the constant and uniform surface
concentration (Dirichlet boundary condition) or mass
flux (Neumann boundary condition) largely considered in
the literature. These boundary conditions are adapted to
model solute release from particles, for which the solute
concentration inside decays over time.

The effect of the flow on concentration, mass flux and
Sherwood number at the capsule surface are also reported
and discussed. Continuity of both the concentration and
the mass flux at the surface of the capsule leads to sig-
nificantly lower Sherwood numbers compared to surface
constant concentration. Unsteady continuous boundary
conditions also result in a stronger dependency of the
global Sherwood number on the Reynolds number mea-
sured by a larger exponent. In the advection-dominated
regime, Sh is found to scale with a large exponent Re0.59

under the continuous boundary conditions, while it scales
as Re0.19 under constant Dirichlet boundary condition.
The present numerical method remains valid when con-
sidering solute absorption by a capsule or heating/cooling
of a sphere.
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APPENDIX A: NUMERICAL METHOD

1. Lattice Boltzmann method

Both the flow and the solute advection-diffusion are
computed using the lattice Boltzmann method (LBM)
[17–21], which is based on the lattice Boltzmann equa-
tion (A1) that gives the evolution in time and space of a
distribution function χi,

χi(r + ei, t+ 1)− χi(r, t) = Ωi, (A1)

where r is the discrete position, ei is the ith discrete ve-
locity direction, t is the time, and Ωi the collision opera-
tor. In this study, Ωi is approximated by the Bhatnagar-
Gross-Krook (BGK) collision operator [22],

Ωi = −χi − χ
eq
i

τ
, (A2)

with χeq
i the equilibrium distribution function, and τ the

microscopic characteristic relaxation time.
The present studied problem is multiphysics. It cou-

ples fluid flow, mass transfer and fluid-structure inter-
action. It requires solving two lattice Boltzmann equa-
tions: one for the flow Eq. (A3), and the other for the
concentration field Eq. (A9). This two-component LBM
approach has already been successfully used by the au-
thors in Refs. [10–13, 16]. The associated distribution
functions for the flow and mass transfer parts are respec-
tively fi and gi. Here, the D3Q19 lattice is opted with
19 discrete velocity directions i = 0− 18.

The distribution function fi represents physically the
probability to find a population of pseudo-fluid particles
at position r, at time t, and with the discrete velocity ei.
The lattice Boltzmann equation associated to fi is,

fi(r+ei, t+1)−fi(r, t) = −fi − f
eq
i

τν
+
ωi
c2s

(f · ei) , (A3)
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where f is the body force exerted on the fluid. For the
D3Q19 lattice, the lattice speed of sound is cs = 1/

√
3,

and the weight factors ωi are 1/3 for i = 0, 1/18 for
i = 1 − 6 and 1/36 for i = 7 − 18. The relaxation time
τν is related to the fluid kinematic viscosity via the rela-
tionship,

ν = c2s

(
τν −

1

2

)
, (A4)

and the equilibrium distribution function f eq
i is given by,

f eq
i = ωiρ

(
1 +

ei · u
c2s

+
(ei · u)

2

2c4s
− u · u

2c2s

)
. (A5)

The local mass density ρ and the local velocity u are
respectively computed as the zeroth and the first order
moments of fi,

ρ(r, t) =

18∑
i=0

fi(r, t), (A6)

u(r, t) =
1

ρ(r, t)

18∑
i=0

fi(r, t)ei, (A7)

and the local hydrodynamic pressure is given by the equa-
tion of state p = ρc2s . The upper and the lower walls are
translated in opposite directions to generate shear flow
thanks to Ladd’s bounce-back boundary condition [23],

f−i(r, t+ 1) = f∗i (r, t)− 6ωiρ
ei · uw

cs
, (A8)

where e−i = −ei, uw is the desired wall velocity such as
uw = (U, 0, 0) at the top wall and uw = (−U, 0, 0) at the
bottom wall. The superscript ∗ refers to the postcolli-
sion state. For the mass transfer part, the corresponding
lattice Boltzmann equation is,

gi(r + ei, t+ 1)− gi(r, t) = −gi − g
eq
i

τD
, (A9)

with no source terms in absence of any interfacial resis-
tance [11], and where the relaxation time τD is related to
the solute diffusion coefficient by,

D = c2s

(
τD −

1

2

)
, (A10)

and the corresponding equilibrium distribution function
is,

geq
i = ωic

(
1 +

ei · u
c2s

+
(ei · u)

2

2c4s
− u · u

2c2s

)
. (A11)

The local concentration is computed as the zeroth order
moment of the distribution function gi,

c(r, t) =

18∑
i=0

gi(r, t). (A12)

Zero concentration is set at the simulation box edges us-
ing the Zhang’s bounce-back boundary condition [24],

g−i(r, t+ 1) = −g∗i (r, t) + 2ωicw, (A13)

where cw is the desired wall concentration. This scheme
has also been used to run simulations with constant con-
centration at the capsule surface, as largely used in the
literature and for comparison purpose with the unsteady
continuous boundary conditions studied in the present
article. The BGK relaxation times in the lattice Boltz-
mann equations (A3) and (A9) are set to τν = 1 and
τD = 0.55, respectively. These values are carefully cho-
sen to ensure both the accuracy of the computed solution
and the stability of the numerical scheme.

2. Immersed boundary method

The surrounding flowing fluid exerts a force on the
membrane of the capsule, which in turn exerts a feedback
reaction force on the fluid. The two-way coupling be-
tween the fluid flow and the capsule dynamics is achieved
with the immersed boundary method (IBM) [25]. The
capsule membrane is approximated by a set of marker
points {rj(t)} that constitute a Lagrangian mesh. This
mesh is generated by performing successive subdivisions
of a regular icosahedron [26], as illustrated in Fig. 6. At
each iteration, the edges of the polyhedron are split in
their midpoint, and the newly created vertices are ra-
dially projected on the circumscribed sphere of desired
radius R. This process ensures the perfect symmetry of
the mesh. The mechanics of the capsule’s membrane is
accounted for by a spring network connecting the La-
grangian markers, as represented in Fig. 6. The velocity
of each Lagrangian marker ṙj(t) is an interpolation of the
flow velocities u(r, t) computed on the Eulerian mesh grid
points with the LBM,

ṙj(t) =
∑
r

u(r, t)∆(rj(t), r), (A14)

where ∆ is a smooth approximation of the
Dirac distribution function given by ∆(r1, r2) =
δ(x1, x2)δ(y1, y2)δ(z1, z2) with,

δ (a, b) =

{
1
4

(
1 + cos π(a−b)

2

)
if |a− b| ≤ 2

0 else
.

(A15)
The new position of each Lagrangian marker at time t+1
is obtained using the explicit Euler scheme,

rj(t+ 1) = rj(t) + ṙj(t). (A16)

After the advection step, the Lagrangian markers exert
a force back on the fluid, which is obtained by extrapo-
lation using again the function ∆,

f(r, t) =
∑
j

fj(t)∆(rj(t), r), (A17)
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FIG. 7. Velocity profile of the linear shear flow computed by
the LBM (squares) along with the analytical solution (solid
line). Excellent agreement is achieved between the LBM
result and the analytical solution, which validates the flow
solver.

fj being the force acting by the Lagrangian marker j on
the Eulerian mesh points r. It is computed as the sum
of the spring forces acting on the node j, see Fig. 6,

fj = −
∑
i 6=j

κ
(
‖rij‖ − ‖r0

ij‖
) rij
‖rij‖

, (A18)

with κ the spring constant and rij = ri − rj . The sum-
mation is over nodes i that are connected to the node j
by a spring. Superscript “0” refers to the initial unde-
formed state. The force density f is then included into
the lattice Boltzmann equation (A3) to compute the new
flow field, modified by the capsule dynamics. The cap-
sule mesh is an icosphere with 320 triangular faces and
162 vertices (see Fig. 6) that allows a good compromise
between acceptable accuracy and reasonable simulation
run time. The spring constant is set to κ = 7 to model a
nondeformable spherical capsule.

3. Validation of the numerical method

The validation of the numerical method consists of
three parts: the flow solver, the fluid-structure interac-
tion solver, and the mass transfer solver. First, the flow
solver is validated by comparing the velocity profile com-
puted in absence of the capsule to the expected analytical
solution for shear flow in the x-direction,

u = (γz, 0, 0) . (A19)

Figure 7 shows perfect match between the computed nu-
merical solution and theory. This confirms the imple-
mentation of the LBM flow solver is correct.

The next step in the validation process concerns the
fluid-structure coupling part, which is achieved by the
IBM. For this, a capsule is suspended in a fluid sub-
jected to simple shear. The resulting angular velocity ω

(a)

(b)

(c)

FIG. 8. (a) Snapshots showing the rotation of a spherical cap-
sule under shear flow. (b) Normalized position of the point
P0 initially located at r = (−R, 0, 0) on the capsule mem-
brane. (c) The instantaneous angular position θ of this point.
The capsule rotates around the y-axis at an angular velocity
ω = θ̇ = 6.227 × 10−4 l.u. for the applied wall velocity of
U = 0.05 l.u. (LBM lattice units). The figures demonstrate
the robustness and the numerical stability of the computer
code when the capsule undergoes multiple rotational cycles.

of the capsule is measured for various applied shear rates
γ. The latter is varied by varying solely the wall velocity
U from 0.01 to 0.05, while holding all the other param-
eters constant. For an unbounded domain, and in the
Stokes flow limit (Re � 1), the angular velocity ω of a
sphere rotating due to simple shear flow is [9], ω = γ/2.
Hereafter, it is explained how this quantity is computed
in the present work. Figures 8a and 8b represent the

U Re (×10−1) γ (×10−4) ω (×10−4) ω/γ E (%)

0.01 0.97 2.532 1.259 0.497 0.6
0.02 1.94 5.063 2.515 0.497 0.6
0.03 2.92 7.595 3.762 0.495 1.0
0.04 3.89 10.13 5.000 0.494 1.2
0.05 4.86 12.66 6.227 0.492 1.6

TABLE I. Angular velocity ω of a capsule under shear flow
at various wall velocities U . The ratios ω/γ are very close to
the expected theoretical value 1/2, which validates the imple-
mentation of the fluid-structure coupling. The relative error
E does not exceed 2% for the highest Reynolds number. U ,
γ and ω are expressed in LBM lattice units.
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FIG. 9. Computed concentration profiles by LBM (squares)
and FDM (solid lines) in the case of solute release from a
spherical capsule in a fluid at rest.

dynamics of a point P0 on the membrane of the capsule
that is initially located at r = (−R, 0, 0). For these sim-
ulations the spring stiffness is set to κ = 7, which is large
enough so that the capsule does not deform and remains
spherical. This allows to recover the analytical solution,
which is derived originally for a spherical rigid particle.
The x and z coordinates of the point undergo regular
oscillations, while the y coordinate stays at 0, indicating

the capsule does not translate along the y-axis. This con-
firms that the mesh remains symmetric and the computer
code is robust and numerically stable after many cycles of
rotations. Similar results, but with different oscillations
frenquencies are obtained at all other wall velocities. The
instantaneous angular position of the point is then com-
puted as θ = arctan

(
z
x

)
, and it is reported in Fig. 8c.

This figure shows periodic oscillations in time meaning
the capsule rotates at constant angular velocity ω = θ̇.
The obtained angular velocities ω at various flow shear
rates γ, and the ratios ω/γ are reported in Table I. The
computed ratios ω/γ are all very close to the expected
theoretical value 1/2, which means the fluid-structure in-
teraction part is well resolved. The slight deviation from
1/2 (that never exceeds 2%) observed when increasing
the Reynolds number is explained by the fact that the
theory is valid only in the Stokes flow limit (Re� 1)
and for an unbounded domain.

Finally, the mass transfer part is validated by com-
paring the concentration profile obtained by LBM with
the solution computed by the finite difference method
(FDM), in the case of solute release from a capsule in the
absence of flow (Re = 0). For this case, the diffusion is
purely radial and the solution adopts a spherical symme-
try. Figure 9 shows both the LBM and FDM normalized
concentration profiles computed at various dimensionless
times. Both solutions are in excellent agreement, and
thus, validating the mass transfer solver.
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