Synthesis of NiMo catalysts supported on Mn-Al2O3 for obtaining green diesel from waste soybean oil I. Vázquez-Garrido, A. López-Benítez, Alfredo Guevara-Lara, G. Berhault # ▶ To cite this version: I. Vázquez-Garrido, A. López-Benítez, Alfredo Guevara-Lara, G. Berhault. Synthesis of NiMo catalysts supported on Mn-Al2O3 for obtaining green diesel from waste soybean oil. Catalysis Today, 2021, 365, pp.327-340. 10.1016/j.cattod.2020.06.001. hal-03443794 HAL Id: hal-03443794 https://hal.science/hal-03443794 Submitted on 23 Nov 2021 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Synthesis of NiMo Catalysts supported on Mn-Al₂O₃ for obtaining Green Diesel from Waste Soybean Oil I. Vázquez-Garrido¹, A. López-Benítez¹, A. Guevara-Lara^{1,*}, G. Berhault^{2,*} ¹ Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, México. ² Institut de Recherches sur la Catalyse et l'Environnement de Lyon, CNRS – Université Lyon I, 02 avenue Albert Einstein, 69100 Villeurbanne, France All correspondence should be sent to: Alfredo Guevara-Lara: Ph: (+52) 7717172000 ext 2202. Fax: (+52) 7717172000 ext 6502 E-mail: <u>guevaraa@uaeh.edu.mx</u> Or to: Gilles Berhault Ph: (+33) 472 44 53 07 Fax: (+33) 472 44 53 99 E-mail: gilles.berhault@ircelyon.univ-lyon1.fr #### **Abstract** The influence of adding manganese to an Al_2O_3 support for preparing NiMo catalysts for the hydroconversion of soybean oil was herein evaluated. Two different Mn contents (1 and 5 mol % Mn) were used while Al_2O_3 -Mn_x (x = 1 or 5 % mol Mn) were obtained by sol-gel method. The NiMo catalysts were obtained by wetness co-impregnation of nickel and molybdenum precursors onto the as-formed supports considering two different pH of impregnation (5 or 9). Solids were then characterized at the oxide state at different stages of preparation before being sulfide at 400°C for 4 h with 10% H_2S/H_2 . Catalysts were then characterized at the sulfide state and evaluated for the hydroconversion of new and waste soybean oil at 380°C, P_{H2} = 40 bars. Results show clearly the superiority of NiMo catalysts supported on Al_2O_3 with 1% mol Mn for the hydroconversion of new and waste soybean oil due to the stabilization of manganese oxide species on the alumina support helping to redisperse the Ni-promoted MoS₂ active phase. This study shows that through a precise control of the addition of manganese to Al_2O_3 , it is possible to obtain very highly active NiMo catalysts for the hydroconversion of vegetable oils. # **Keywords** NiMo; Hydrodeoxygenation; Manganese; Soybean Oil; Green Diesel #### 1. Introduction Transesterification of triglycerides with methanol is the standard way to produce biodiesel. However, this reaction presents several disadvantages including the formation of large amount of glycerol as by-product [1]. The main products of the transesterification reaction, methyl esters of fatty acids, are oxygenated compounds presenting a cetane index unsuitable for direct use in diesel engines [2, 3]. Moreover, the transesterification yield decreases when using waste vegetal oil [4]. Waste oils are residues of the food industry presenting high humidity and acidity indexes [4]. Catalytic hydroconversion is able to transform fatty acids into linear chain alkanes with characteristics similar to commercial diesel but with better cetane index and better cold flow properties [4]. Catalytic hydroconversion can be performed in a hydrotreating unit with an heterogeneous catalyst (generally NiMo, CoMo, or NiW hydrotreating catalysts), high temperatures (320-410°C) and high hydrogen pressures (30 to 80 bars) [5, 6]. The reaction mechanism occurring during the catalytic hydroconversion of triglycerides is shown in Figure 1. The first step is the hydrogenation of the C=C bonds of triglycerides followed by a C-O hydrogenolysis reaction leading to the formation of three moles of fatty acids and one mole of propane [1]. In a second step, oxygen atoms from fatty acid molecules are removed in order to form liner chain hydrocarbons through a deoxygenation reaction. Fatty acid deoxygenation can occur through three main mechanisms. Hydrodeoxygenation (HDO) leads to octadecane, hexadecane and water. On the contrary, heptadecane, pentadecane, CO and CO₂ are formed through decarboxylation (DCO₂) and decarbonylation (DCO) [5-12]. Catalytic hydroconversion can be performed using sunflower [1], soybean [13], palm [14], colza [15] or jatropha [16] oils with commercial NiMo/Al₂O₃ catalysts in order to generate green diesel. Catalysts based on noble metals like Pd/C [17], Pt/C [18], Pt/Al₂O₃ [19], Pt/Zeolite [20] and Pd/SiO₂ [21] present better selectivity along the DCO and DCO₂ pathways with a minor hydrogen consumption than NiMo catalysts. However, in this case, a lower cetane index is obtained due to the formation mainly of heptadecane and pentadecane. Moreover, Pd/C catalysts strongly deactivate in the presence of high fatty acid concentrations [17] while Pt/C, Pd/SiO₂ and Pt/zeolite catalysts exhibit a high hydrocracking activity unsuitable for green diesel production [18, 20, 21]. Nickel catalysts have also been envisaged since more cost effective than noble metals. In this respect, Liu et al. [22] have used Ni and NiAg catalysts supported on zeolites for the conversion of castor oil. Ni/C [23], Ni supported on carbon nanotubes [24], Ni/Al₂O₃ and Ni/SiO₂ [25] catalysts have also been studied with encouraging results. Nickel phosphides supported on zeolites have also been investigated for biodiesel production [26]. Ren et al. [27] also studied molybdenum carbide for propanal deoxygenation. They observed a higher propensity for C-O than for C-C bond hydrogenolysis. However, these latter catalysts can suffer from sintering while being more costly and with a lower activity compared to promoted molybdenum sulfides. MoS₂ catalysts promoted by nickel have been used in a large extent for hydroconversion applications due to their high intrinsic activity [1, 5-12, 14-16]. Their interesting catalytic properties are related to the presence of the so-called promoted NiMoS phase. This active phase is generally described as being formed of more or less stacked MoS₂ slabs with promoting atoms located at the edges of molybdenum sulfide layers [28-36]. Active sites on the NiMoS phase are generally recognized to be coordinatively unsaturated sites (or CUS) localized at the edges of Ni-promoted MoS₂ slabs [37, 38]. In this respect, Veriansyah et al. [39] demonstrated the interest of using the Al₂O₃-supported NiMo catalysts by comparison to different other alumina-supported systems for the hydrotreatment of soybean oil. They observed that the activity of the different catalysts decreases in the following order: NiMo (92.9%) > Pd (91.9%) > CoMo (78.9%) > Ni (60.8%) > Pt (50.8 %) > Ru (39.7%). They also found that the final composition of the biodiesel was directly related to the type of catalysts used. Biodiesels obtained using Pd, Ni, Pt and Ru present a higher proportion in heptadecane while the use of NiMo leads to a high activity along the HDO pathway. The high deoxygenation efficiency as well as the low cost of NiMo and CoMo catalysts would then make particularly suitable for triglyceride hydroconversion. The nature of the promoter atom used in combination with MoS₂ catalysts has been also evaluated. Kim et al. [8] studied the differences in distribution products when using Co or Ni as promoter of MoS₂ catalytic systems. The NiMo catalyst leads to a lower content of alkenes while using CoMo results in a higher amount of isoalkanes. They therefore concluded that the biodiesel obtained using the NiMo catalyst has better properties under cold flow conditions. Zhang et al. [9] studied the effect of the promoter for the hydroconversion of vegetable oils using bulk molybdenum sulfide catalysts in order to disregard any interfering effect coming from the support. The Ni promotion led to a higher selectivity along the HDO pathway while the Co promoter favored the DCO and DCO₂ pathway. They ascribed these differences to a higher propensity of NiMo catalysts to form CUS active sites. Moreover, Toba et al. [40] emphasized the fact that the CoMo catalytic system exhibits a lower resistance to deactivation than NiMo due to the formation of water during the reaction. This work is in agreement with a study made by Senol et al. [41] showing that the addition of water engenders a higher deactivation of CoMo catalysts than of NiMo even if a sulfiding agent is present. In catalytic hydroconversion reactions, the nature of the support plays an important role towards activity and selectivity. Different types of supports have then been studied like zeolites, silica, alumina, or titania. In this respect, Mikulec et al. [12] studied the influence of the support using NiW and NiMo catalysts. They found a relationship between the variation of the C17/C18 ratio and the nature of the support. The tendency to decarboxylation/decarbonylation decreases in the following order: NiW/NaY > NiW/TiO₂ > NiMo/TiO₂ > NiW/ZrO₂ > NiMo/Al₂O₃ showing a correlation with the acidity of the support. This latter parameter also influences the degree of hydrocracking and isomerization. Qian et al. [42] synthesized NiMo catalysts supported on bifunctional zeolites and found higher hydrocracking and isomerizing activities than for NiMo/Al₂O₃ due to the enhanced Brönsted acidity
associated with the use of zeolites. Coumans et al. [43] investigated the effect of different supports (carbon, SiO₂, amorphous silica-alumina and Al₂O₃) on the catalytic activity of NiMo systems for the hydrodeoxygenation of methyl oleate used as a representative molecule of the transformation of triglycerides into green diesel. They observed the following tendency for the initial rate of hydrodeoxygenation: NiMo/ Al₂O₃ > NiMo/ASA > NiMo/C > NiMo/SiO₂. Moreover, they found that the nature of the support also influences significantly the morphology of the active phase (dispersion and stacking of the MoS₂ slabs). The NiMo/Al₂O₃ catalyst presents a lower initial stacking than the other catalysts. However, after 7 days of reaction, the NiMo/C catalyst showed the highest activity. This effect was attributed to a better dispersion associated with a minor stacking of the MoS₂ slabs promoted by Ni. In the same way, the addition of manganese can enhance the hydrodesulfurization activity of NiMo/Al₂O₃ thanks to a better dispersion of the NiMoS active phase. In this respect, López-Benítez et al [44] demonstrated that the addition of 1% mol of Mn (as MnO) to the alumina support increases significantly the hydrodesulfurization of dibenzothiophene. Based on these previous findings, the objective of this study will be to characterize NiMo catalysts supported on Mn-Al₂O₃ mixed oxide at the sulfide state and to evaluate their catalytic performance for the hydroconversion of new and waste soybean oil. #### 2. Experimental #### 2.1. Synthesis of the supports The Al₂O₃ support used as reference was prepared by a sol-gel method. First, aluminum isopropoxide (Al(OC₃H₇)₃) was first dissolved in 1-propanol (1 g alkoxide/10 ml alcohol). The gel was obtained through hydrolysis by addition of deionized water dropwise. The gel was then dried at 120°C for 12 h and then calcined at 500°C (5°C/min) for 4 h. The Mn-Al₂O₃ supports were prepared by the sol-gel method developed by López-Benítez et al [44]. Aluminum isopropoxide and manganese acetate (Mn(C₂H₃O₂)₂) were dissolved separately in 1-propanol (1 g alkoxide/10 ml alcohol). After homogeneization, the two solutions were mixed. The gel was obtained through hydrolysis by addition of deionized water dropwise. The solid was then dried at 120°C for 12 h and calcined at 500°C (5°C/min) for 4 h. The supports with 1 and 5% mol Mn (as MnO) were called Al₂O₃-Mn₁ and Al₂O₃-Mn₅, respectively. # 2.2. Synthesis of catalysts Catalysts were prepared by wetness co-impregnation with 14 wt % MoO₃ loading and using a Ni/(Ni + Mo) molar ratio of 0.3. Two impregnation solutions were prepared by dissolving nickel nitrate hexahydrate (Ni(NO₃)₂•6H₂O) and ammonium heptamolybdate tetrahydrate ((NH₄)₆Mo₇O₂₄•4H₂O) in 1) deionized water at pH = 5 and 2) in an NH₄OH aqueous solution adjusted at pH = 9. After impregnation, the catalysts were dried at 120°C for 12 h before being calcined at 400°C for 4 h. The catalysts prepared at pH = 5 were called NiMo/Al₂O₃-pH5, NiMo/Al₂O₃-Mn₁-pH5 and NiMo/Al₂O₃-Mn₅-pH5. The catalysts impregnated with the solution at pH = 9 were called NiMo/Al₂O₃-pH9, NiMo/Al₂O₃-Mn₁-pH9 and NiMo/Al₂O₃-Mn₅-pH9. Finally, catalysts were sulfided at 400°C (5°C/min) for 4 h using a 10 % (v/v) H₂S in H₂ mixture (4L/h). ## 2.3. Support characterization The supports were characterized by ζ -potential and N₂ physisorption measurements. Zeta potential measurements were performed using a Malvern ZetaSizer Nano ZS90 equipment. 0.02 g of each support was dispersed in 200 mL of a NaNO₃ 0.01 M electrolyte solution at 25°C. The pH was adjusted with aqueous solutions of 0.1 M NH₄OH and 0.1 M HNO₃. N_2 physisorption measurements were performed using an ASAP 2020 Micromeritics apparatus. Before measurement, the samples were treated at 300°C for 4 h down to $P = 30 \times 10^{-5}$ mm Hg. The specific surface areas and pore sizes were calculated applying the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (NJH) models respectively. ## 2.4. Catalyst characterization at the oxide state. The catalysts at the oxide state have been characterized by UV-vis diffuse reflectance (UV-Vis DRS) and Raman spectroscopies. The UV-vis DR spectra were obtained using a Perkin-Elmer Lambda 35 spectrophotometer equipped with an integration sphere. Spectralon SRS-99-010 (99% of reflectance) was used as standard. The data obtained were treated using the Kubelka-Munk function: $$F(R\infty) = \frac{(1 - R\infty)^2}{2R\infty} \tag{1}$$ where $R\infty$ is the reflectance at infinite depth. The Raman spectra were obtained with a Raman BWTEK-iplus spectrometer equipped with a 20, 50 and 100 x microscope, a 532 nm laser and a HQE-CCD detector. An accumulation of 10 scans was obtained for each sample. The laser intensity was limited to 50 mW to avoid any damage of the samples. ## 2.5. Catalyst characterization at the sulfide state. The catalysts at the sulfide state were characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and pyridine adsorption followed by infrared spectroscopy. The amounts of Ni, Mo, and Mn were determined by ICP-OES analysis using a Horiba Jobin Yvon Activa spectrometer. Before analysis, the samples were treated with a H₂SO₄-HNO₃-HF mixture (1:1:0.5 v/v/v ratio) followed by maximum evaporation. The XPS study was performed on an Axis Ultra DLD (Kratos analytical) spectrometer with an Al K α radiation (1486.6 eV). The catalysts at the sulfide state were manipulated under argon atmosphere (without air contact) and were placed on a sample holder covered with indium foil. The binding energies were fixed according to the adventitious C 1s level at 284.6 eV. Mo 3d and Ni 2p spectra were decomposed using mixed Gaussian-Lorentzian functions after a Shirley-type baseline subtraction treatment (CasaXPS software, version 2.0.71) [45, 46]. The atomic percentages [i] were determined considering the total area of the Ai corresponding peak and using a sensitive factor Si: $$[i] = \frac{\frac{A_i}{S_i}}{\sum_{i=1}^n \left(\frac{A_i}{S_i}\right)} \tag{2}$$ The Mo 3d and Ni 2p core level spectra can be decomposed into three contributions corresponding to MoS₂, MoO_xS_y and MoO₃ for Mo and to NiS_x, NiMoS, and NiO_x for Ni [47, 48]. The proportion of NiMoS phase was determined as follows: $$\%NiMoS = \frac{A_{NiMoS}}{A_{NiMoS} + A_{NiOX} + A_{NiSX}} x \ 100 \tag{3}$$ where A_{NiMOS} , A_{NiOx} y A_{NiSx} correspond respectively to the NiMoS, NiO_x and NiS_x species. HRTEM images were acquired using a JEOL 2010 (200 kV) microscope. Sulfided catalysts were first dispersed ultrasonically in ethanol. The suspension was then deposited onto a C-covered Cu grid. Molybdenum sulfide based catalysts present a layered structure with particles forming stacked slabs. Statistical analyses were performed considering 10 different micrographs (5170 nm² for each micrograph) coming from various regions of the studied samples (600-800 counted particles). The average stacking number and the average slab length were obtained using the following equations [49]: $$\overline{N} = \frac{\sum_{i=1}^{n} n_i N_i}{\sum_{i=1}^{n} n_i} \tag{4}$$ $$\bar{L} = \frac{\sum_{i=1}^{n} n_i l_i}{\sum_{i=1}^{n} n_i} \tag{5}$$ with N_i and l_i representing the stacking number and the MoS₂ slab length directly determined from TEM images, n is the number of particles measured in a size interval or the stacking number of index i. The acid properties of the sulfided catalysts were analyzed by lutidine (2,6-dimethylpyridine) adsorption followed by infrared spectroscopy following the methodology reported by Berhault et al. [50, 51], varying the adsorption temperature at constant concentration in lutidine. The infrared spectra were obtained with a Perkin-Elmer FTIR spectrophotometer. Disks were prepared with a 15% wt/wt mixture of the catalyst in inert alumina. Samples were pressed in disks of 0.6 cm radius, with a 5.10⁻³ cm thickness and a 17 mg weight. Disks were then placed on a sample holder inside a tubular cell equipped with calcium fluoride (CaF₂) windows. The disks were then in situ resulfided with a 4 L/h flux of a 10% mol H₂S/H₂ mixture at 200°C for 4 h. The temperature was then decreased to 30°C under a 4 L/H N₂ flux. The cell temperature was then increased to 200°C (5°C/min) and the system was maintained under high vacuum (P = 1.9.10⁻⁸ bar) for 2 h using a turbomolecular Pfeiffer pump. The temperature was then decreased to 30°C before being isolated from vacuum. Lutidine contained in a capillary tube was then added to the closed cell for 30 min. The pressure was then reduced to 1.10⁻⁵ bar for 30 min in order to remove the lutidine in excess using an Edwards E2M2 pump. The IR analysis was then performed with 30 μL of lutidine at different temperatures (30, 50, 75 and 100°C). The values of integrated absorbance were obtained using the Perkin Elmer Spectrum software. The Brönsted acidity was measured considering the area of the adsorption band between 1620 and 1660 cm⁻¹. The Lewis acidity was measured using the area of the adsorption band at 1603 cm⁻¹ [52]. The integrated absorbance values were reported in function of the temperature of measurement. The methodology used for calculating the concentration of acid sites is similar to the one reported by Emeis [53]. The Lewis and Brönsted acidities were calculated using the following equation: $$C(x) = IMEC(x)^{-1} IA(x) \frac{\pi R^2}{m}$$ (6) where C(x) is the concentration of Brönsted and Lewis acid sites (μ mol/g), IA(x) is the value of integrated absorbance, R is the disk radius, m is the catalyst weight and IMEC(x) is the integrated molar extinction coefficient for the Brönsted acid sites ($IMEC(B) = 6.8 \text{ cm/}\mu\text{mol}$) and for the Lewis ones ($IMEC(L) = 4.4 \text{ cm/}\mu\text{mol}$) [52]. # 2.6. Catalytic evaluation The catalytic activity evaluation of
the different samples was performed in a fixed bed continuous flow micro-reactor. A 0.4 ml/min flux of new or waste soybean oil solution (10% v/v in heptane with 0.05 % of dimethyldisulfide, DMDS) as well as a 35 ml/min H₂ flux were fed to the reactor containing 0.01 g of previously sulfided catalyst. The catalysts were indeed first activated by sulfidation with a 4 L/h flux of a 10 mol % H₂S in H₂ mixture at 400°C (5°C/min) for 4 h. The reaction was carried out at temperatures between 380 and 410°C and a 40 Bar H₂ pressure. The free fatty acid and triglyceride concentrations were measured by infrared spectroscopy. The triglyceride concentration was measured using a linear calibration curve of the area of the C=O stretching vibration band of the ester group at 1750 cm⁻¹. The free fatty acid concentration was determined considering a calibration curve of the area of the C=O stretching band of the carbonyl group at 1714 cm⁻¹. The products of the deoxygenation reaction were determined by gas chromatography. Based on the reactants, reaction intermediates and products observed in this study, a mechanism was proposed comprising two pseudo-first order consecutive reactions. The kinetic model was developed considering the following assumptions: - 1) the hydrogenation reaction occurs at the beginning of the reaction with $k_{HYD}>>>k_1$ and $k_{HYD}>>>k_2$. Therefore, the initial triglyceride concentration (C_{Tgo}) is equal to the concentration of hydrogenated triglycerides (C_{HTgo}) at the beginning of the reaction. - 2) the rate constant of the hydrogenolysis reaction (k_1) is higher than the deoxygenation rate constant (k_2) then with $k_1 > k_2$, - 3) the hydroconversion of hydrogenated triglycerides occurs with two first order consecutive reactions - 4) secondary reactions (isomerization, hydrocracking, dehydrogenation and aromatization) do not occur in the kinetic regime but only at high conversions. The evaluation of the k_1 and k_2 rate constants allows to determine and to compare the activity of the catalysts for the hydroconversion of soybean oil. The hydrogenolysis reaction was evaluated considering a first order rate (r_1) according to the following equation: $$-r_1 = k_1 C_{Tg_0} (1 - x_1) (7)$$ where k_1 is the hydrogenolysis rate constant (s⁻¹.g⁻¹) calculated using equation 8, x_1 is the hydrogenated triglyceride conversion calculated using equation 9, F_{Tg_0} is the molar flux of initial triglycerides (mol.s⁻¹), C_{Tg_0} and C_{Tg} are the molar concentrations of triglycerides (mol/L) initially and at equilibrium, m_c is the catalyst weight (g). $$k_1 = -\frac{F_{Tg_0}}{m_c \, c_{Tg_0}} \ln(1 - x_1) \tag{8}$$ $$x_1 = \frac{c_{Tg_0} - c_{Tg}}{c_{Tg_0}} \tag{9}$$ The deoxygenation reaction allows to convert fatty acids in green diesel. The free fatty acid deoxygenation rate (r_2) is of first order and was calculated using equation 10: $$-r_2 = k_2 C_{FA_0} (1 - x_2) \tag{10}$$ $$x_2 = \frac{c_{FA_0} - c_{FA}}{3c_{Tg_0}} \tag{11}$$ $$k_2 = -\frac{F_{FA_0}}{m_c \, c_{FA_0}} \ln(1 - x_2) \tag{12}$$ where x_2 is the free fatty acid conversion calculated using equation 11, k_2 (s⁻¹.g⁻¹) is the rate constant of the free fatty acid deoxygenation reaction calculated using equation 12, F_{FA_0} is the molar flux of free fatty acids initially (mol.s⁻¹), C_{FA_0} and C_{FA} are the molar concentrations of free fatty acids (mol/L) initially and at equilibrium, m_c is the catalyst weight (g). The total yield Y_D (green diesel concentration obtained with respect to the initial triglyceride concentration) was determined as follows: $$Y_D = \frac{C_{diesel}}{C_{Tap}} \tag{13}$$ where C_{diesel} is the alkane concentration obtained indirectly from the concentration of converted free fatty acids $(C_{FA_0}-C_{FA})$. The selectivity in hydrocarbons in the green diesel (S_x) was determined as follows: $$S_{\chi} = \frac{A_{\chi}}{\sum A_{\chi}} \tag{14}$$ where A_x is the area of the peak corresponding to the as-obtained x alkane. The efficiency in hydrodeoxygenation (HDO) with respect to decarboxylation and decarbonylation S_{HDO} was measured as follows: $$S_{HDO} = \frac{S_{C18}}{S_{C17}} \tag{15}$$ where S_{C18} is the octadecane selectivity and S_{C17} is the heptadecane selectivity. The % deactivation (%D) due to waste oil is determined as follows: $$\%D = \frac{Y_{D (new oil)} - Y_{D (waste oil)}}{Y_{D (new oil)}}$$ (16) where Y_D is the total yield with new and waste oil, respectively. #### 3. Results and discussion # 3.1. Characterization of supports Supports were first characterized by zeta potential in order to determine their net surface pH (Figure 2). The addition of various amounts of manganese can generate different superficial properties. The point of zero charge can be associated with the net surface pH of the support [54]. The sol-gel Al₂O₃ support presents a net surface pH of 8.8 whereas the Al₂O₃-Mn₁ support has a value of 8.7 showing no noticeable differences between these two supports. However, the Al₂O₃-Mn₅ support exhibits a net surface pH of 7.6, then with more acidic properties than the Al₂O₃ and Al₂O₃-MnO₁ supports. The decrease of the net surface pH of the Al₂O₃-Mn₅ support may be associated with a higher amount of Mn⁴⁺ as in MnO₂ since this latter oxide has an isoelectric point of 4.5 [55]. Figure S1 reports the nitrogen adsorption-desorption isotherms of the three supports. Isotherms are of type IV corresponding to mesoporous solids. Moreover, hysteresis loops are of H1 type. This kind of hysteresis is associated with the presence of uniformly distributed cylindrical pores [56]. Table 1 summarizes the textural properties of the Al₂O₃, Al₂O₃-Mn₁ and Al₂O₃-Mn₅ supports. Specific surface area values do not exhibit a clear trend with the Mn amount while the pore volumes and average pore sizes decrease when increasing the Mn amount. These results may suggest that manganese can block partly the pore apertures of the Al₂O₃ support. The UV-vis DR spectra of the supports are reported in Figure S2. The Al_2O_3 support does not present bands in the 200-1100 nm interval. The Al_2O_3 -Mn₁ support exhibits two bands at 252 nm and 485 nm which are associated respectively to the presence of the $O^{2-} \rightarrow Mn^{2+}$ charge transfer band and to the formation of Mn³⁺ species stabilized on the alumina support (Mn³⁺-Al₂O₃) [44]. The Al₂O₃-Mn₅ support presents three bands at 265 nm, 380 nm and 471 nm. The 265 nm band is associated with the $O^{2-} \rightarrow Mn^{2+}$ charge transfer band. The 471 nm band corresponds to the presence of Mn⁴⁺ species stabilized on alumina (Mn⁴⁺-Al₂O₃). The 380 nm signal is due to free Mn³⁺ species as in Mn₂O₃. # 3.2. Characterization of the impregnation solutions In order to identify the nature of the different Ni and Mo species that would be able to be deposited onto the surface of the supports, impregnation solutions at pH=5 and pH=9 were analyzed by UV-vis and Raman spectroscopies. Figure S3 reports the UV-vis spectra of the different impregnation solutions. The UV-vis spectrum of the impregnation solution at pH=5 shows bands at 240 and 300 nm corresponding to a mixture of tetrahedral (T_d) and octahedral (O_h) Mo⁶⁺ [57]. The octahedral Mo⁶⁺ (O_h) signal refers to Mo₇O₂₄⁶⁻ species while the tetrahedral (T_d) one is due to MoO₄²⁻. Ni species exhibit bands at 370 nm and 400 nm corresponding to Ni(H₂O)₆]²⁺ and at 660 nm and 720 nm bands associated to Ni²⁺ with local octahedral symmetry [Ni²⁺6O²⁻] [58]. On the other side, the UV-vis spectrum of the impregnation solution at pH=9 shows only few bands. One band in the UV region is found at 250 nm and is associated to the presence of tetrahedral (Td) Mo⁶⁺ species while octahedral ones only lead to a shoulder around 300 nm. The band observed at 610 nm corresponds to tetrahedral Ni²⁺ (Td) species [58]. Figure 3 reports the Raman spectra of the impregnation solutions. First of all, all the spectra show a contribution at 1048 cm⁻¹ due to nitrate ions. The solution at pH=5 presents bands at 944 and 894 cm⁻¹ corresponding to Mo=O stretching vibration modes of the Mo₇O₂₄⁶⁻ ion [57, 58]. On the other side, the spectrum of the solution at pH=9 exhibits two bands at 894 and 830 cm⁻¹ due to Mo=O stretching vibrational modes of the MoO₄²⁻ ion with local tetrahedral symmetry. This latter point is corroborated by the presence of a band at 320 nm associated to a Mo=O bending vibrational mode [59]. In conclusion, the solution at pH=5 mainly contains $Mo_7O_{24}^{6-}/Ni_{2}^{2+}(O_h)$ species while the solution at pH=9 comprises $MoO_4^{2-}/Ni_{2}^{2+}(T_d)$ species. # 3.3. Characterization of the catalysts at the oxide state The influence of the pH of the impregnation solution and of the Mn content of the supports on the nature of the Ni and Mo species deposited on dried and calcined catalysts was analyzed by UV-vis diffuse reflectance and Raman spectroscopies. Results were compared to the NiMo/Al₂O₃-pH5 and NiMo/Al₂O₃-pH9 reference catalysts. ## 3.3.1. NiMo/Al₂O₃ reference catalysts Figure 4 reports the UV-vis DR spectra of the NiMo/Al₂O₃–pH5 and NiMo/Al₂O₃–pH9 catalysts at the dried state (D). Both dried catalysts show bands at 280 and 288 nm associated mainly to a mixture of Mo⁶⁺(O_h) and Mo⁶⁺(T_d) [57]. Moreover, a band at 660 nm is observed in both cases corresponding to octahedral (O_h) Ni²⁺ species [60]. UV-vis DR results of the calcined catalysts are reported in Figure 5. After calcination, two bands are observed at 280 and 310 nm corresponding respectively to tetrahedral and octahedral Mo⁶⁺ species. Moreover, two signals are found at 710 and 770 nm and are characteristic of octahedrally distorted Ni²⁺ species [44]. The Raman spectra of the NiMo/Al₂O₃–pH5 and NiMo/Al₂O₃–pH9 catalysts at the dried state are shown in Figure S4. The NiMo/Al₂O₃–pH5-D sample exhibits two main bands, one at 1048 cm⁻¹ corresponding to the NO₃⁻ ion and one at 941 cm⁻¹ corresponding to the Mo=O
stretching vibration of the Mo₇O₂₄⁶- ion [44, 57]. Moreover, two additional bands of lower intensity at 860 and 840 cm⁻¹ are observed and are due to asymmetric Mo-O-Mo stretching vibrations. Identical results are found for NiMo/Al₂O₃–pH9-D. Figure S5 reports the Raman spectra of the calcined NiMo/Al₂O₃-pH5 and NiMo/Al₂O₃-pH9 catalysts. The Raman spectrum of NiMo/Al₂O₃-pH5-C presents three bands at 944, 860 and 840 cm⁻¹ associated with the presence of Mo₇O₂₄⁶ species. The band at 961 cm⁻¹ can be attributed to Mo₈O₂₆⁴ species [59]. Finally, the signals at 933 cm⁻¹ (Mo=O stretching) and 720 cm⁻¹ (asymmetric Mo-O-Mo stretching) can be related to MoO₄ species [59]. Once again, similar conclusions can be reached for NiMo/Al₂O₃-pH9-C. Based on these UV-vis DR and Raman results, polymerization of Mo species is clearly evidenced after calcination. Predominant species present on NiMo/Al₂O₃-pH5-C and NiMo/Al₂O₃-pH9-C calcined catalysts are octahedral Ni²⁺ species in interaction with Mo₇O₂₄⁶. However, the most important conclusion is also that the pH used for the impregnation solution does not play a significant role since all Ni and Mo species are identical on both dried and calcined catalysts. This suggests that the nature of the Ni and Mo species is here mainly governed by the net surface pH of the Al₂O₃ support. ## 3.3.2. NiMo catalyst supported on Al₂O₃-Mn₁ Figure 6 reports the UV-vis diffuse reflectance spectra of the dried NiMo/Al₂O₃-Mn₁-pH5-D and NiMo/Al₂O₃-Mn₁-pH9-D catalysts. Both spectra present a main band at 280 nm corresponding to tetrahedral (T_d) Mo⁶⁺ species [57] with a hardly perceptible shoulder at 252 nm due to Mn²⁺ [61]. Moreover, a band at 478 nm can be observed in both cases resulting from a mixture of Mn⁴⁺ and Mn³⁺ species stabilized on alumina [44]. Two low intense bands are also found on both catalysts at 660 and 750 nm and correspond respectively to octahedral and distorted octahedral Ni²⁺ species interacting with Mo⁶⁺ entities. However, a significant difference can be noted when analyzing the NiMo/Al₂O₃-Mn₁-pH9-D sample. Indeed, in this case, an additional band is observed at 383 nm due to the interaction of free Mn³⁺ species interacting with nickel to form a NiMn₂O₄ spinel phase [44]. After calcination, the NiMo/Al₂O₃-Mn₁-pH5-C sample still presents the 280 nm band due to tetrahedral Mo⁶⁺ species (Figure 7). A new band is also observed at 320 nm due to O²⁻ \rightarrow Mn³⁺ charge transfer band. Additionally, another band which was not observed at the dried state is also found at 420 nm. This band is related to the presence of Mn²⁺ species as in MnO. The appearance of these new manganese bands suggests some migration of manganese species to the surface of the support during calcination [44]. Finally, a weak band at 770 nm is also observed and corresponds to the presence of distorted octahedral Ni²⁺ species. The NiMo/Al₂O₃-Mn₁-pH9-C sample presents the same contributions at 280 and 320 nm as for NiMo/Al₂O₃-Mn₁-pH5-C. However in the present case, an additional band can be found at 370 nm which is associated to the presence of free Mn³⁺ species as in Mn₂O₃ [44, 58]. Moreover, the NiMo/Al₂O₃-Mn₁-pH9-C UV-vis spectrum presents some unresolved contributions between 380 and 600 nm. In this region, one can expect contributions of Mn²⁺, Mn³⁺ and Mn⁴⁺ species in interaction with the support and giving rise to signals respectively at 422, 485 and 470 nm with the Mn²⁺ contribution prevailing. The increasing intensity of these contributions after calcination can be once again due to a migration of manganese to the surface of the support. Finally, the nickel species give rise to two contributions at 680 and 780 nm due respectively to octahedral and distorted octahedral Ni²⁺ species [44, 58]. The Raman spectra of the dried NiMo/Al₂O₃–Mn₁–pH5-D and NiMo/Al₂O₃–Mn₁–pH9–D catalysts are shown in Figure 8. The NiMo/Al₂O₃–Mn₁–pH5-D sample still presents the characteristic signal at 1048 cm⁻¹ due to nitrate ions. The broad band with a maximum absorbance at 940 cm⁻¹ corresponds to the Mo=O stretching vibration of Mo₇O₂₄⁶- species. This last assignment can be corroborated by the presence of a band at 340 cm⁻¹ associated with the corresponding Mo=O bending vibration. The broad band at 940 cm⁻¹ also presents a shoulder centered at 920 cm⁻¹ associated with the Mo=O stretching vibration of MoO₄²- species. The NiMo/Al₂O₃–Mn₁–pH9-D sample exhibits similar bands at 1048, 940 and 920 cm⁻¹. However, one should notice a shift of the Mo=O bending vibration band from 340 to 334 cm⁻¹ which is related to a higher proportion of tetrahedral Mo⁶⁺ like MoO₄²⁻ species in this latter case. Finally, in both catalysts, a band at 229 cm⁻¹ can be found corresponding to the deformation vibrational mode of Mo-O-Mo bonds. Raman spectra of calcined NiMo/Al₂O₃-Mn₁-pH5-C and NiMo/Al₂O₃-Mn₁-pH9-C catalysts are shown in Figure 9. In both cases, calcination leads to the disappearance of the band at 1048 cm⁻¹ due to nitrate ions. Moreover, the NiMo/Al₂O₃-Mn₁-pH5-C sample presents two intense bands associated to Mo=O stretching vibrational modes, one at 947 cm⁻¹ due to Mo₇O₂₄⁶⁻ and one at 933 cm⁻¹ due to MoO₄²⁻. Additional bands at 897 and 850 cm⁻¹ related to asymmetric Mo-O-Mo stretching vibrations can also be noted. The presence of Mo₇O₂₄⁶⁻ species is confirmed by the appearance of a band at 340 cm⁻¹. A shoulder at 320 cm⁻¹ can also be corroborated with the presence of MoO₄²⁻ species with tetrahedral coordination. Moreover, a band at 646 cm⁻¹ is mainly due to Mn³⁺ species stabilized by alumina [62]. The presence of Mn³⁺ stabilized by alumina can induce important surface structural modifications due to the Jahn-Teller effect like favoring a higher dispersion of nickel species [63, 64]. The Raman spectrum of the NiMo/Al₂O₃–Mn₁-pH9-C sample exhibits similar bands to NiMo/Al₂O₃–Mn₁-pH5-C. However, the Mo=O stretching band slightly shifts from 933 to 925 cm⁻¹. # 3.3.3 NiMo catalysts supported on Al₂O₃-Mn₅ UV-vis diffuse reflectance spectra of the dried NiMo/Al₂O₃–Mn₅–pH5-D and NiMo/Al₂O₃–Mn₅–pH9-D catalysts are reported in Figure 10. First of all, as noticed previously in [44], UV-vis diffuse reflectance spectra of Al₂O₃-Mn₅ is dominated by manganese oxide charge transfer bands. The NiMo/Al₂O₃–Mn₅–pH5-D sample shows two bands at 263 and 470 nm corresponding respectively to the $O^{2-} \rightarrow Mn^{2+}$ charge transfer band and to Mn⁴⁺ species stabilized by the alumina support (Mn⁴⁺-Al₂O₃). The 470 nm band also extends to longer wavelengths up to 600 nm suggesting the presence of other Mn species in lower proportions [44]. Moreover, a band at 295 nm can be observed which is associated mainly with octahedral Mo⁶⁺ species. The NiMo/Al₂O₃–Mn₅–pH9-D sample shows bands at 272 nm and at 326 nm corresponding to $O^{2-} \rightarrow Mn^{2+}$ and to $O^{2-} \rightarrow Mn^{3+}$ charge transfer bands. The bands at 290 and 308 nm correspond to molybdenum oxide species mainly with local octahedral symmetry. Moreover, the presence of a clear signal at 383 nm is characteristic of the presence of a NiMn₂O₄ spinel phase. Finally, clear bands are detected at 420 and 470 nm and are related to the presence of Mn²⁺ and Mn⁴⁺ species in interaction with alumina (Mn²⁺-Al₂O₃ and Mn⁴⁺-Al₂O₃) [44, 61]. Once again, the 470 nm band tends to extend to higher wavelengths suggesting the presence of other Mn species like Mn³⁺. This also leads to an overlap with the weak signals expected for nickel making their detection unfeasible in the present case. Figure 11 reports the UV-vis diffuse reflectance spectra of the calcined NiMo/Al₂O₃–Mn₅-pH5-C and NiMo/Al₂O₃–Mn₅-pH9-C catalysts. After calcination, the NiMo/Al₂O₃–Mn₅-pH5-C sample presents one band at 290 nm due mainly to $O^{2-} \rightarrow Mo^{6+}$ octahedral molybdenum oxide species. A second charge transfer band but due to $O^{2-} \rightarrow Mn^{3+}$ transition can be observed at 320 nm. Two intense bands are also observed at 425 and 470 nm and correspond to Mn^{2+} and Mn^{4+} in interaction with alumina [44, 58]. An important feature on this UV-vis DR spectrum is the presence of a band at 380 nm characteristic of the formation of a NiMn₂O₄ spinel phase and resulting from the interaction of free Mn^{3+} species with nickel species. The presence of such a phase is of considerable importance since it leads to a loss of Ni not available as promoter for the MoS_2 phase after sulfidation. Finally, the overlap of Mn signals at high wavelengths with nickel species hampers the detection of these latter compounds. On the NiMo/Al₂O₃–Mn₅-pH9-C sample, apart from the O²⁻ \rightarrow Mo⁶⁺ charge transfer band of octahedral molybdenum oxide species at 300 nm, two charge transfer bands due to manganese are observed at 262 nm (O²⁻ \rightarrow Mn²⁺) and at 326 nm (O²⁻ \rightarrow Mn³⁺). Moreover, the bands at 420 and 470 nm due to Mn²⁺ and Mn⁴⁺ in interaction with alumina are also found. Finally, once again, the signal at 380 nm due to the spinel phase is detected. Weak signals due to nickel cannot be observed. The Raman spectra of the dried NiMo/Al₂O₃–Mn₅-pH5-D and NiMo/Al₂O₃–Mn₅-pH9-D samples are reported in Figure 12. Both catalysts present similar profiles with a broad band with maximum at 930-933 cm⁻¹ characteristic of MoO₄²⁻ species [58]. This last assignment is confirmed by the presence of a band at 328 cm⁻¹ due to Mo=O bending vibration of such MoO₄²⁻ species. Figure 13 reports the Raman results of the calcined NiMo/Al₂O₃–Mn₅-pH5-C and NiMo/Al₂O₃–Mn₅-pH9-C samples. After calcination, the NiMo/Al₂O₃–Mn₅-pH5-C catalyst presents a substantial polymerization of the molybdenum oxide species giving rise to a band at 961 cm⁻¹ due to Mo₈O₂₆⁴⁻ species. The polymerization process resulting from the calcination appears slightly less advanced in the case of the NiMo/Al₂O₃–Mn₅-pH9-C solid with a band centered at 946 cm⁻¹ due to Mo₇O₂₄⁶⁻ species. Table 2 summarizes the different Mo and Mn species present on the different catalysts. On
the reference catalysts without Mn, the main Mo species are Mo₇O₂₄⁶⁻ whatever the pH of the impregnation solution showing that the net surface pH of the alumina support plays a more definite role in controlling the nature of the main Mo species deposited. On the catalysts deposited on Al₂O₃-Mn₁, the effect of adding 1% Mn does not really modify the nature of the Mo species present. This result confirms that the net surface pH of the support plays a major role here contrary to the pH of impregnation since here zeta potential measurements shows point-of-zero charge values almost unchanged compared to the Al₂O₃ support without Mn. About manganese species, at the dried state, Mn²⁺ and Mn⁴⁺ species stabilized by alumina predominate. After calcination, the situation remains relatively similar for NiMo/Al₂O₃-Mn₁-pH₅-C while free Mn³⁺ species favoring the formation of the spinel phase are also partly present on NiMo/Al₂O₃-Mn₁-pH₉-C. On the catalysts deposited on Al₂O₃-Mn₅, as expected, the change of the net surface pH of the support when adding 5% Mn has effects on the nature of the Mo species at least for NiMo/Al₂O₃-Mn₅-pH5 with the formation of Mo₈O₂₆⁴⁻ species. About the manganese species, increasing the Mn content to 5 mol % leads to an increased proportion of Mn²⁺ and Mn³⁺ species not stabilized by the alumina support. In this respect, a higher proportion of free Mn³⁺ species is formed on NiMo/Al₂O₃-Mn₅-pH9 than on NiMo/Al₂O₃-Mn₅-pH5. The presence of such free Mn³⁺ species allows the formation of the spinel phase (in higher proportion on NiMo/Al₂O₃-Mn₅-pH9). #### 3.4. Catalyst characterization at the sulfide state # 3.4.1. ICP-OES Analysis and X-ray Photoelectron Spectroscopy The results obtained by UV-vis diffuse reflectance and Raman spectroscopies for the catalysts at the oxide state suggest that the addition of manganese can influence the distribution of the Ni and Mo species at the surface of the supports after calcination. Moreover, the different Ni and Mo species formed on the calcined catalysts may induce various proportions of promoted NiMoS phase after sulfidation. In order to identify and quantify the different Ni and Mo sulfide species formed after sulfidation, the different sulfided catalysts have been investigated by XPS and ICP-OES. The results of elemental analysis obtained by ICP-OES are reported in Table 3. The ICP-OES results show a relatively good agreement between the experimental values in Mo, Ni, and Mn and those expected theoretically (Mn= 0.4 wt % and 2.0 wt%, Mo=9.3 wt% and Ni=2.4 wt%). If in the case of nickel, the experimental values are always very close to the theoretical ones, one should note slightly lower experimental values for Mo on the Al₂O₃-Mn₁ support. Similarly, the Mn content is quite close to the theoretical one on the Al₂O₃-Mn₁ support but slightly deficient on the Al₂O₃-Mn₁ support. Finally, in all cases, the Ni/(Ni+Mo) molar ratio is always equal to the value of 0.30 expected for optimized promotion. Mo 3d XPS core level spectrum of the NiMo/Al₂O₃-pH5 catalyst is presented in Figure 14 as an example. The NiMo/Al₂O₃-Mn₁-pH5, NiMo/Al₂O₃-Mn₁-pH9, NiMo/Al₂O₃-Mn₅-pH5 and NiMo/Al₂O₃-Mn₅-pH9 catalysts exhibit similar spectra. Mo 3d core level spectra present for each species two Mo 3d_{5/2} and Mo 3d_{3/2} doublets. Spectra decomposition allows to distinguish three different species: Mo⁴⁺ as in MoS₂ with the two doublets at binding energies of 229.0 and 232.0 eV, Mo⁵⁺ as in MoO_xS_y oxysulfides with binding energies at 230.0 and 233.4 eV, and finally Mo⁶⁺ as in MoO_x with binding energies at 232.1 and 235.3 eV. One should note also the presence of a signal at 226.6 eV due to the S 2s contribution. Figure 15 reports an example of decomposition of the Ni 2p_{3/2} core level spectrum for the NiMo/Al₂O₃-pH5 catalyst. The NiMo/Al₂O₃-Mn₁-pH5, NiMo/Al₂O₃-Mn₁-pH9, NiMo/Al₂O₃-Mn₅-pH5 and NiMo/Al₂O₃-Mn₅-pH9 show similar spectra. The Ni 2p_{3/2} core level region comprises three main contributions: 1) the non-promoted NiS_x phase with a binding energy at 852.7 eV, 2) the promoted NiMoS phase with a binding energy at 853.8 eV, and finally 3) the NiO_x phase with a binding energy at 855.4 eV. Contributions at 856.5, 859.4 and 861.9 eV are due to shake-up satellites. The results of the Mo 3d and Ni 2p core level spectra decomposition are shown in Table 4. The Mo 3d decomposition results do not show any significant variations among all the different catalysts investigated with for instance the MoS₂ proportion remaining similar in all cases (71-78%). About Ni 2p core level decomposition results, adding 1% Mn does not modify the proportion of the promoted phase (around 70%) compared to the NiMo/Al₂O₃-pH5 reference. One should only note a lower proportion of non-sulfided NiO_x phase for the NiMo catalysts supported on Al₂O₃-Mn₁ but without consequences on the proportion of promoted phase. On the contrary, the addition of 5% Mn leads to a decrease of the proportion of the promoted phase to 62% for NiMo/Al₂O₃-Mn₅-pH5 and to 54% for NiMo/Al₂O₃-Mn₅-pH9. This last result can be related to the formation of the NiMn₂O₄ spinel phase observed at the oxide state and limiting the availability of nickel to promote MoS₂ slabs [44]. ## 3.4.2. High resolution transmission electron microscopy (HRTEM) results HRTEM analysis allows to evaluate the influence of the addition of manganese to the Al₂O₃ support on the dispersion and morphology of the MoS₂ particles. Statistical results of the HRTEM analysis are reported in Table 5. Note that the HRTEM analysis was not performed on the NiMo/Al₂O₃-Mn₅-pH9 solid due to its poor catalytic performances (vide infra). The statistical analysis was performed for each catalyst on 600-800 particles counted on 10 different micrographs (area of 5170 nm²). The addition of 1% Mn does not modify significantly the average stacking degree of the MoS₂ slabs by comparison to the NiMo/Al₂O₃-pH5 reference. However, a significant influence on the average slab length can be noticed with values around 2.3 nm versus 2.9 nm for the reference. This higher degree of dispersion can be related to the more important stabilization of manganese species on the alumina support (Table 2) at least at the dried state for both NiMo/Al₂O₃-Mn₁-pH5 and NiMo/Al₂O₃-Mn₁-pH9 catalysts and for NiMo/Al₂O₃-Mn₁-pH5 at the calcined state. This also results in a higher density of stacks per 1000 nm² for NiMo/Al₂O₃-Mn₁-pH5 (14.2) while a lower value of 11.4 was found for NiMo/Al₂O₃-Mn₁-pH9 probably due to a higher destabilization of Mn species as reflected by the appearance of a signal due to free Mn³⁺ species (Table 2). On the opposite, adding 5% Mn leads to average stacking degree and slab length similar to the NiMo/Al₂O₃-pH5 reference showing that an excess of Mn by increasing the proportion of manganese species which are not stabilized by alumina contributes to the loss of any beneficial effect on the dispersion of the active phase. # 3.4.3. Analysis of the acid properties by lutidine adsorption followed by infrared spectroscopy. The acidity of the different catalysts at the sufide state was studied using Fourier transform infrared spectroscopy with lutidine as probe molecule. The v(8b) and v(8a) vibrational modes of lutidine and of the lutidinium ion (in-plane vibrations of the C6 aromatic ring) are generally used for the analysis of the Brönsted and Lewis sites by infrared spectroscopy. The 1603 cm⁻¹ band is associated with the Lewis acid sites while the bands at 1620 and 1640 cm⁻¹ are related to Brönsted acid sites [50-52]. As an example, the FTIR spectra of adsorbed lutidine on the NiMo/Al₂O₃-pH5 catalysts are reported Figure 16 in function of the temperature of desorption. Both bands due to Brönsted acidity (between 1620 and 1660 cm⁻¹) and to Lewis acidity (1603 cm⁻¹) can be detected for NiMo/Al₂O₃-pH5. The band at 1585 cm⁻¹ is associated to lutidine adsorption through H-bonding. Based on the different recorded FTIR spectra and using the methodology of Emeis [53], the concentrations of Brönsted and Lewis acid sites were calculated for each catalyst at the different temperatures of desorption of lutidine. One should note that the concentration in Brönsted acid sites does not change with the increasing desorption temperature contrary to what is observed for the Lewis acid sites. Therefore, Figure 17 reports the evolution of the concentration of Lewis acid sites in function of the lutidine desorption temperature for each catalyst. At a temperature of desorption of 30°C, the NiMo/Al₂O₃-pH5 and NiMo/Al₂O₃-Mn₁-pH5 catalysts exhibit similar concentration of Lewis acid sites (29 and 26 μmol/g respectively). On the opposite, the NiMo/Al₂O₃-Mn₅-pH5 catalyst presents a lower amount of Lewis acid sites (15 μmol/g). A similar effect can be noticed Figure S6 for the same series of catalysts but following an impregnation at pH=9. Moreover, with the increasing temperature of desorption, the amount of Lewis acid sites on the NiMo/Al₂O₃-Mn₅-pH5 and NiMo/Al₂O₃-Mn₅-pH9 catalysts decreases less rapidly than for the other two series of catalysts (reference without Mn and supported on Al₂O₃-Mn₁) suggesting a higher Lewis acid strength of the sites located on Al₂O₃-Mn₅. This effect can be related to the significant migration at the surface of the support of manganese oxide species in the case of the addition of 5 mol% as observed by UV-vis DR results. This would suggest the replacement on the surface of the catalysts of Lewis acid sites due to alumina by those coming from manganese oxide species in lower amount but with a higher strength. On the contrary, for NiMo catalysts supported on Al₂O₃-Mn₁, the migration of manganese species remains much more limited as shown by UV-vis DR results leading to acid properties closer to those observed for the NiMo/Al₂O₃ reference catalysts. The concentrations of Lewis and Brönsted acid sites after desorption at 30°C are summarized in Table 6. The addition of 1% Mn to the Al₂O₃ support does not
lead to any significant variation in Lewis acid site concentration. On the opposite, the amount of Brönsted acid sites decreases by 40% for NiMo/Al₂O₃-Mn₁-pH5 and NiMo/Al₂O₃-Mn₁-pH9 compared to the reference catalysts without Mn. Moreover, the addition of 5% Mn leads to a significant decrease of both Lewis and Brönsted acid concentrations. While the NiMo/Al₂O₃-Mn₅-pH5 catalyst shows a 50% decrease of the Lewis acidity concentration, the amount of Lewis acid sites on NiMo/Al₂O₃-Mn₅-pH9 diminishes in a lower extent by 20%. The decrease in Brônsted acidity concentration appears here more drastic with losses respectively of 67% and 50% for NiMo/Al₂O₃-Mn₅-pH5 and NiMo/Al₂O₃-Mn₅-pH9. # 3.5. Catalytic hydroconversion of soybean oil In order to evaluate the effect of the addition of manganese to the alumina support as well as the influence of the pH of the impregnation solutions, the different NiMo catalysts supported on Al₂O₃-Mn₁ and on Al₂O₃-Mn₅ were tested by comparison to the NiMo/Al₂O₃ reference catalysts for the catalytic hydroconversion of new and waste soybean oil. Table 7 reports for each catalyst the results for the conversion of triglycerides (x_1) and of free fatty acids (x_2) , the green diesel Y_D yield, as well as the deactivation parameter (D). Results show undoubtedly the superiority of the NiMo catalysts supported on Al_2O_3 -Mn₁ whatever the pH of impregnation solution. The triglyceride conversion (x_1) of new soybean oil decreases in the following order: $NiMo/Al_2O_3$ -Mn₁-pH5 > $NiMo/Al_2O_3$ -Mn₅-pH5 > $NiMo/Al_2O_3$ -Mn₅-pH5 > $NiMo/Al_2O_3$ -Mn₅-pH9. Using the waste soybean oil, the triglyceride conversion follows: $NiMo/Al_2O_3$ -Mn₁-pH5 > $NiMo/Al_2O_3$ -Mn₁-pH5 > $NiMo/Al_2O_3$ -Mn₁-pH9 > $NiMo/Al_2O_3$ -pH5 > $NiMo/Al_2O_3$ -pH5 > $NiMo/Al_2O_3$ -pH5 > $NiMo/Al_2O_3$ -pH5 > $NiMo/Al_2O_3$ -pH9 > $NiMo/Al_2O_3$ -Mn₅-pH5 > $NiMo/Al_2O_3$ -Mn₅-pH9. The situation differs when using 5% Mn. The NiMo/Al₂O₃-Mn₅-pH5 catalysts still presents a higher triglyceride conversion than the reference catalysts for new soybean oil even if lower than for the NiMo catalysts supported on Al₂O₃-Mn₁. However, with waste soybean oil, the conversion of NiMo/Al₂O₃-Mn₅-pH5 severely drops. Moreover, in any case (new or waste soybean oil), the NiMo/Al₂O₃-Mn₅-pH9 catalyst presents a poor triglyceride conversion. This last result can be correlated to the formation of the NiMn₂O₄ spinel phase resulting in a lower proportion of the NiMoS promoted phase, formation being even higher on NiMo/Al₂O₃-Mn₅-pH9 than on NiMo/Al₂O₃-Mn₅-pH5. Concerning the severe loss of conversion of NiMo/Al₂O₃-Mn₅-pH5 when passing from new to waste soybean oil, this can result from the higher Lewis acid strength of the Al₂O₃-Mn₅ support as shown by lutidine adsorption which would favor coke formation when using waste soybean oil. In terms of free fatty acids conversion (x₂), the same tendency was observed with both new and waste soybean oils with NiMo catalysts supported on Al₂O₃-Mn₁ showing a higher conversion whatever the pH of impregnation used. The NiMo/Al₂O₃-Mn₅-pH5 still presents a severe loss in conversion when passing from new to waste soybean oil even if its conversion remains higher than for the reference catalysts with waste soybean oil. Finally, the NiMo/Al₂O₃-Mn₅-pH9 catalysts exhibits very poor performance particularly with the waste soybean oil. These last results are also confirmed when considering the green diesel yield (Y_D) with values much higher with the NiMo catalysts supported on Al_2O_3 -Mn₁ (0.80-0.82) than on NiMo/Al₂O₃-pH5 (0.51) using new soybean oil. Similar observations can be made with the waste soybean oil (0.60-0.65 vs 0.24). The NiMo/Al₂O₃-Mn₅-pH5 also presents a higher Y_D value with new soybean oil (0.72) but loses any advantage on the reference catalysts with waste soybean oil. Finally, the NiMo/Al₂O₃-Mn₅-pH9 performs particularly poorly with waste soybean oil (0.09). The deactivation (D) values also show a lower tendency to deactivate for the NiMo catalysts supported on Al₂O₃-Mn₁ than for the reference catalysts while the NiMo catalysts supported on Al₂O₃-Mn₅ strongly deactivate confirming the harmful effect related to the increased Lewis acid strength of these latter catalysts. The rate constants, k₁ for the hydrogenolysis of triglycerides into free fatty acids and k₂ for the deoxygenation of free fatty acids into hydrocarbons were also determined for each catalyst was well as the corresponding activation energies Ea₁ and Ea₂. Results are reported in Table 8. The evolution of the rate constant values confirm the previous observations with a clear superiority of NiMo catalysts supported on Al₂O₃-Mn₁ using both new and waste soybean oil. The analysis of Table 8 however shows a better activity of NiMo/Al₂O₃-Mn₁-pH5 than NiMo/Al₂O₃-Mn₁-pH9 for the first step, the hydrogenolysis of triglycerides into free fatty acids while activities are similar for the deoxygenation of free fatty acids into hydrocarbons. The NiMo/Al₂O₃-Mn₅-pH5 catalyst loses any beneficial effect when using waste soybean oil with rate constants even lower than for the reference catalysts. Finally, the NiMo/Al₂O₃-Mn₅-pH9 catalyst almost loses any activity for the deoxygenation of free fatty acid into hydrocarbons using waste soybean oil. Finally, the analysis of activation energy values does not show any striking variation when passing from new to waste soybean oil suggesting an absence of modification of the nature of the active sites when changing the nature of the oil. The nature of the different hydrocarbons formed during the deoxygenation of free fatty acids was analyzed by gas chromatography and results are reported in Table S1. Only linear hydrocarbons from C18 to C15 were obtained. The main effect observed is related to the pH of impregnation used for preparing the NiMo catalysts supports on Mn-containing Al₂O₃. Indeed, whatever the Mn amount, NiMo catalysts prepared at a pH of impregnation of 9 show a better HDO selectivity in C18 hydrocarbons using new soybean oil. However, this effect is lost when using waste soybean oil. One should also note a higher selectivity in pentadecane with NiMo/Al₂O₃-Mn₅-pH9 probably related to the higher acid strength of this latter catalyst. #### **5. Conclusion** In the present study, the interest of adding manganese to an Al₂O₃ support was evaluated in order to obtain new supported NiMo catalysts for the hydroconversion of new and waste soybean oils. Two different Mn contents were used (1 or 5 mol % Mn as MnO) while two different pHs of impregnation (5 and 9) were employed for preparing the supported NiMo catalysts. The catalytic systems were then investigated at both the oxide and sulfide states. The pH of impregnation plays a minor role on the nature of the Mo and Ni species deposited on the different supports since the net surface pH of the support mainly governs the distribution of Mo and Ni species to be obtained. While adding 1% Mn to Al₂O₃ results in the stabilization of various Mn oxide species on the alumina support, adding 5% Mn results in the formation of free Mn²⁺ and Mn³⁺ species, not stabilized by the support. Mn³⁺ species are then available to react with nickel to form a NiMn₂O₄ spinel which limits the possibility for nickel to form a promoted NiMoS phase as revealed by XPS. Adding 1% Mn also helps to better disperse the Ni-promoted MoS₂ active phase. The analysis of new and waste soybean oil hydroconversion results shows clearly the superiority of NiMo catalysts if supported on Al₂O₃ with 1% Mn added for both new and waste soybean oils, for both triglyceride hydrogenolysis and fatty acid deoxygenation. On the contrary, NiMo catalysts supported on Al₂O₃ with 5% Mn suffer from lower activities due to the formation of the NiMo₂O₄ spinel phase limiting the formation of the NiMo₃ active phase and from severe deactivation when using waste soybean oil. # Acknowledgements The authors gratefully acknowledge for their financial support ECOS Nord through programs referenced M16P01 (France) and referenced No. 275186 (ANUIES-CONACYT, Mexico) and No. 256345/CB-2015-01. ## References - [1] G.W. Huber, P. O'Connor, A. Corma, Appl. Catal. A 329 (2007) 120-129. - [2] G. Knothe, Prog. Energ. Combust. 36 (2010) 364-373. - [3] S. Bezergianni, A. Dimitriadis, Renew. Sust. Energ. Rev. 21 (2013) 110-116. - [4] B.E.H.P. Freedman, E.H. Pryde, T.L. Mounts, J. Am. Oil Chem. Soc. 61 (1984) 1638-1643. - [5] M. Ameen, M.T. Azizan, S. Yusup, A. Ramli, M. Yasir, Renew. Sust. Energ. Rev. 80 (2017) 1072-1088. - [6] A. Ishihara, N. Fukui, H. Nasu, T. Hashimoto, Fuel 134 (2014) 611-617. - [7] M.F. Wagenhofer, E. Baráth, O.Y. Gutiérrez, J.A. Lercher, ACS Catal. 7 (2017) 1068-1076. - [8] S.K. Kim, J.Y. Han, H.S. Lee, T. Yum, Y. Kim, J. Kim, Appl. Energ. 116 (2014) 199-205. - [9] H. Zhang, H. Lin, Y. Zheng, Appl. Catal. B 160 (2014) 415-422. - [10] R. Sotelo-Boyas, Y. Liu, T. Minowa, Ind. Eng. Chem. Res. 50 (2010) 2791-2799. - [11] M. Anand, A.K. Sinha, Bioresource Technol. 126 (2012) 148-155. - [12] J. Mikulec, J. Cvengroš, L. Joríková, M. Banič, A. Kleinová, J. Clean. Prod. 18 (2010) 917-926. - [13] E. Kordouli, L. Sygellou, C. Kordulis, K. Bourikas, A. Lycourghiotis, Appl. Catal. B 209 (2017) 12-22. - [14] V. Itthibenchapong, A. Srifa, R. Kaewmeesri, P. Kidkhunthod, K. Faungnawakij, Energ. Convers. Manage. 134 (2017) 188-196. - [15] J. Hancsók, T. Kasza, S. Kovács, P. Solymosi, A. Holló, J. Clean. Prod. 34 (2012) 76-81. - [16] R. Kumar, S.A. Farooqui, M. Anand, R. Kumar, R. Joshi, A. Khan, A.K. Sinha, Catal. Comm. 98 (2017) 102-106. - [17] B. Rozmysłowicz, P. Mäki-Arvela, S. Lestari, O.A. Simakova, K. Eränen, I.L. Simakova, T.O. Salmi, Top. Catal. 53 (2010) 1274-1277. - [18] T. Morgan, D. Grubb, E. Santillan-Jimenez, M. Crocker, Top. Catal. 53 (2010) 820-829. - [19] L. Zhou, A. Lawal, Appl. Catal. A 532 (2017) 40-49. - [20] R. Sotelo-Boyas, Y. Liu, T. Minowa, Ind. Eng. Chem. Res. 50 (2010) 2791-2799. - [21]
N.A. Grosso-Giordano, T.R. Eaton, Z. Bo, S. Yacob, C.C. Yang, J.M. Notestein, Appl. Catal. B 192 (2016) 93-100. - [22] S. Liu, Q. Zhu, Q. Guan, L. He, W. Li, Bioresour. Technol. 183 (2015) 93-100 - [23] T. Morgan, D. Grubb, E. Santillan-Jimenez, M. Crocker, Top. Catal. 53 (2010) 820-829 - [24] Y. Duan, R. Ding, Y. Shi, X. Fang, H. Hu, M. Yang, Y. Wu, Catalysts 7 (2017) 81. - [25] I. Hachemi, N. Kumar, P. Mäki-Arvela, J. Roine, M. Peurla, J. Hemming, J. Salonen, D. Y. Murzin, J. Catal. 347 (2017) 205-221. - [26] Y. Yang, J. Chen, H. Shi, Energy Fuels 27 (2013) 3400-3409. - [27] H. Ren, W. Yu, M. Salciccioli, Y. Chen, Y. Huang, K. Xiong, D. G. Vlachos, J. G. Chen, ChemSusChem, 6 (2013) 798-801. [28] N.Y. Topsøe, A. Tuxen, B. Hinnemann, J.V. Lauritsen, K.G. Knudsen, F. Besenbacher, H. Topsøe, J. Catal. 279 (2011) 337-351. - [29] B. Hinnemann, J.K. Nørskov, H. Topsøe J. Phys. Chem. B 109 (2005) 2245–2253. - [30] J.V. Lauritsen, M. Nyberg, J.K. Nørskov, B.S. Clausen, H. Topsøe, E. Laegsgaard, F. Besenbacher, J. Catal. 224 (2004) 94–106. - [31] N.Y. Topsøe, A. Tuxen, B. Hinnemann, J.V. Lauritsen, K.G. Knudsen, F. Besenbacher, H. Topsøe, J. Catal. 279 (2011) 337–351. - [32] P.G. Moses, B. Hinnemann, H. Topsøe, J.K. Nørskov, J. Catal. 248 (2007) 188–203. - [33] P.G. Moses, B. Hinnemann, H. Topsøe, J.K. Nørskov, J. Catal. 268 (2009) 201–208. - [34] A. Tuxen, H.G. Füchtbauer, B. Temel, B. Hinnemann, H. Topsøe, K.G. Knudsen, F. Besenbacher, J.V. Lauritsen, J. Catal. 295 (2012) 146–154. - [35] L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, Catal. Lett. 64 (2000) 95–99. - [36] J.V. Lauritsen, S. Helveg, E. Laegsgaard, I. Stensgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, J. Catal. 197 (2001) 1–5. - [37] S. Rangarajan, M. Mavrikakis, ACS Catal. 7 (2016) 501-509. - [38] I. Vázquez-Garrido, A. López-Benítez, G. Berhault, A. Guevara-Lara, Fuel 236 (2019) 55-64. - [39] B. Veriansyah, J.Y. Han, S.K. Kim, S.A. Hong, Y.J. Kim, J.S. Lim, Y.W. Shu, S.G. Oh, J. Kim, Fuel 94 (2012) 578-585. - [40] M. Toba, Y. Abe, H. Kuramochi, M. Osako, T. Mochizuki, Y. Yoshimura, Catal. Today 164 (2011) 533-537. - [41] O. Senol, T.R. Viljava, A.O.I. Krause, Catal. Today 106 (2005) 186-189. - [42] E.W. Qian, N. Chen, S. Gong, J. Mol. Catal. A 387 (2014) 76-85. - [43] A.E. Coumans, E.J.M. Hensen, Catal. Today 298 (2017) 181-189. - [44] A. López-Benítez, G. Berhault, A. Guevara-Lara, Appl. Catal. B 213 (2017) 28-41. - [45] A.D. Gandubert, C. Legens, D. Guillaume, E. Payen, Surf. Interf. Analysis 38 (2006) 206-209. - [46] P.C. Yen, Y.S. Huang, K.K. Tiong, J. Phys.: Cond. Matter 16 (2004) 2171-2180. - [47] Y. Okamoto, T. Imanaka, S. Teranishi, J. Catal. 65 (1980) 448-460. - [48] T. Weber, J.C. Muijsers, J.H.M.C. Van Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet, J. Phys. Chem. 100 (1996) 14144-14150. - [49] E. Payen, R. Hubaut, S. Kasztelan, O. Poulet, J. Grimblot, J. Catal. 147 (1994) 123-132. - [50] G. Berhault, M. Lacroix, M. Breysse, F. Maugé, J.C. Lavalley, H. Nie, L. Qu, J. Catal. 178 (1998) 555-565. - [51] M. Breysse, G. Berhault, S..Kasztelan, M. Lacroix, F. Maugé, G. Perot, Catal. Today 66 (2001) 15-22. - [52] T. Onfroy, G. Clet, M. Houalla, Microp. Mesop. Mater. 82 (2005) 99-104. - [53] C.A. Emeis, J. Catal. 141 (1993) 347-354. - [54] R.J. Hunter, in: Zeta potential in colloid science: principles and applications (Vol. 2). Academic press, 2013. - [55] T. Morimoto, S. Kittaka, Bull. Chem. Soc. Japan 47 (1974) 1586-1588. - [56] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41 (1998) 207-219. - [57] H. Jeziorowski, H. Knözinger, J. Phys. Chem. 83 (1979) 1166-1173. - [58] A. Guevara-Lara, R. Bacaud, M. Vrinat, Appl. Catal. A 328 (2007) 99-108. - [59] G. Mestl, T.K.K. Srinivasan, Catal. Rev. 40 (1998) 451-570. - [60] F. Iova, A. Trutia, Optical Mater. 13 (2000) 455-458. - [61] S. Velu, N. Shah, T.M. Jyothi, S. Sivasanker, Microp. Mesop. Mater. 33 (1999) 61-75. - [62] D.T. Zahn, Phys. Chem. Chem. Phys. 1 (1999) 185-190. - [63] D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, - J. Li, M. Greenblatt, G.C. Dismukes, J. Am. Chem. Soc. 135 (2013) 3494-3501. - [64] W. Han, F. Dong, W. Han, Z. Tang, New J. Chem. 43 (2019) 12846-12857. **Table 1.** Textural properties of the different supports. | % mol
Mn | BET surface area (m ² /g) | Pore volume (cm ³ /g) | Average Pore Size (nm) | |-------------|--------------------------------------|----------------------------------|------------------------| | 0 | 385 | 1.9 | 8 | | 1 | 317 | 1.6 | 8 | | 5 | 358 | 1.4 | 6 | Table 2. Summary of the Mn and Mo species present on the different catalysts. | Catalyst | Dried | Calcined | |---|--|--| | NiMo/Al ₂ O ₃ -pH9 | Mo ₇ O ₂₄ ⁶ - | Mainly Mo ₇ O ₂₄ ⁶⁻ | | NiMo/Al ₂ O ₃ -pH5 | Mo ₇ O ₂₄ ⁶ - | $Mo_7O_{24}^{6-}$ | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | Mo ₇ O ₂₄ ⁶ - | $MoO_4^{2-} + Mo_7O_{24}^{6-}$ | | | Mn^{2+} - Al_2O_3 | Mn^{3+} | | | Mn^{4+} - Al_2O_3 | Mn^{2+} - Al_2O_3 | | | Spinel | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH5 | Mo ₇ O ₂₄ ⁶ - | $MoO_4^{2-}+ Mo_7O_{24}^{6-}$ | | | Mn^{2+} - Al_2O_3 | Mn^{3+} | | | Mn^{4+} - Al_2O_3 | Mn^{2+} - Al_2O_3 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | MoO ₄ ²⁻ | Mo ₇ O ₂₄ ⁶ | | | Mn^{2+}, Mn^{3+} | Mn^{2+}, Mn^{3+} | | | Mn^{2+} - Al_2O_3 | Mn^{2+} - Al_2O_3 | | | Mn^{4+} - Al_2O_3 | Mn^{4+} - Al_2O_3 | | | Spinel | Spinel (higher than at pH 5) | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | MoO4 ²⁻ | ${ m Mo}_{ m 8}{ m O}_{ m 26}{}^{ m 4-}$ | | • | Mn^{2+} | $\mathrm{Mn}^{\mathrm{3+}}$ | | | Mn^{2+} - Al_2O_3 | Mn^{2+} - Al_2O_3 | | | Mn^{4+} - Al_2O_3 | Mn^{4+} - Al_2O_3 | | | | Spinel | **Table 3.** Ni, Mo and Mn amounts as well as the Ni/(Ni+Mo) atomic ratio determined by ICP-OES for the different NiMo catalysts supported on Al₂O₃-Mn₁ and Al₂O₃-Mn₅ supports. Results for NiMo/Al₂O₃-pH5 are given for comparison purposes. | | ICP-OES | | | | | | | |---|---------|-------|-------|----------------|--|--|--| | Catalyst | Mo | Ni | Mn | Ni/(Ni+Mo) | | | | | | (wt%) | (wt%) | (wt%) | 141/(141+1410) | | | | | NiMo/Al ₂ O ₃ -pH5 | 8.2 | 2.1 | 0.0 | 0.30 | | | | | $NiMo/Al_2O_3-Mn_1-pH5$ | 7.7 | 2.1 | 0.3 | 0.31 | | | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | 7.5 | 2.1 | 0.3 | 0.31 | | | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | 9.1 | 2.5 | 1.5 | 0.31 | | | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | 9.1 | 2.4 | 1.5 | 0.30 | | | | **Table 4.** Results of the decomposition of the Mo 3d and Ni 2p core level spectra. | Catalyst |] | Mo3d _{5/2} (%) | | | Ni2p _{3/2} (%) | | | |---|------------------|---------------------------------|--|----|-------------------------|------|--| | Catalyst | MoS ₂ | MoO _x S _y | oO _x S _y MoO _x NiS _y | | NiMoS | NiOx | | | NiMo/Al ₂ O ₃ -pH5 | 76 | 14 | 10 | 7 | 70 | 23 | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH5 | 71 | 16 | 13 | 19 | 68 | 13 | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | 73 | 18 | 9 | 10 | 69 | 21 | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | 78 | 16 | 6 | 21 | 62 | 17 | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | 76 | 14 | 10 | 26 | 54 | 20 | | **Table 5.** Density of stacks per 1000 nm^2 , average number of layers per stack \overline{N} and slab length L of different NiMo catalysts supported on Mn-containing alumina. Comparison to the NiMo/Al₂O₃-pH5 reference. | Catalyst | Stacks per 1000 nm ² | \overline{N} | $ar{L}(nm)$ | |---|---------------------------------|----------------|-------------| | NiMo/Al ₂ O ₃ -pH5 | 10.9 | 1.56 | 2.91 | | $NiMo/Al_2O_3-Mn_1-pH5$ | 14.2 | 1.53 | 2.36 | | $NiMo/Al_2O_3-Mn_1-pH9$ | 11.4 | 1.47 | 2.28 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | 12.4 | 1.68 | 2.79 | **Table 6.** Concentration of Lewis (C_{LA}) and Brönsted (C_{BA}) acid sites, total acid concentrations, and C_{BA}/C_{LA} ratios for the NiMo catalysts supported on Al₂O₃, Al₂O₃-Mn₁, Al₂O₃-Mn₅ following impregnations at pH=5 and pH=9. Values are determined at a temperature of desorption at 30°C with 30 μ L of lutidine. | | C_{LA} | Сва | Total Acidity | | |---|-----------------------|----------------------------|---------------|-------------------| | Catalyst | $(\mu mol/g)$ | $(\mu mol/g)$ | $(\mu mol/g)$ | $C_{BA}/\ C_{LA}$ | | | 1603 cm ⁻¹ | 1620-1660 cm ⁻¹ | | | | NiMo/Al ₂ O ₃ -pH5 | 29 | 18 | 48 | 0.60 | | NiMo/Al ₂ O ₃ -pH9 | 26 | 14 | 40 | 0.53 | | $NiMo/Al_2O_3-Mn_1-pH5$ | 26 | 11 | 37 | 0.42 | | $NiMo/Al_2O_3$ - Mn_1 - $pH9$ | 27 | 9 | 36 | 0.30 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH ₅ | 15 | 6 | 21 | 0.40 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | 22 | 7 | 29 | 0.32 | **Table 7.** Conversions of triglycerides (x_1) and of free fatty acids (x_2) , green diesel yield (Y_D) , and deactivation (D) values for the NiMo catalysts supported on Al_2O_3 -Mn₁ and on Al_2O_3 -Mn₅. Comparison to the NiMo/Al₂O₃ reference catalysts $(T = 380^{\circ} \text{ C}, P = 40 \text{ bars})$. | Catalyst | | \mathbf{x}_1 \mathbf{x}_2 | | X 2 | 2 Y _D | | | |---|------|-------------------------------|------|------------|------------------|-------|----| | Catalyst | New | Waste | New | Waste | New | Waste | %D | | NiMo/Al ₂ O ₃ -pH5 | 34.7 | 38.0 | 17.3 | 8.0 | 0.51 | 0.24 | 52 | | NiMo/Al ₂ O ₃ -pH9 | 33.6 | 26.5 | 12.9 | 7.2 | 0.39 | 0.26 | 36 | | NiMo/Al ₂ O ₃ -Mn ₁ -pH5 | 48.8 | 43.8 | 27.3 | 20.1 | 0.82 | 0.60 | 27 | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | 42.1 | 41.3 | 26.8 | 21.5 | 0.80 | 0.65 | 19 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | 38.7 | 25.2 | 24.1 | 10.8 | 0.72 | 0.32 | 56 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | 29.6 | 20.2 | 18.4 | 2.9 | 0.55 | 0.09 | 83 | **Table 8.** Rate constants k_1 (hydrogenolysis
of triglycerides into free fatty acids) and k_2 (deoxygenation of free fatty acids into hydrocarbons) and the respective activation energies (Ea₁ and Ea₂) for the hydroconversion of new and waste soybean oils. | Catalyst | k ₁ (10 | ⁻⁴ g ⁻¹ .s ⁻¹⁾ | Ea ₁ (k | J.mol ⁻¹) | $k_2(10^{-4} g^{-1}.s^{-1})$ | | | Ea ₂ (kJ.mol ⁻¹) | | |---|--------------------|---|--------------------|-----------------------|------------------------------|-------|-----|---|--| | | New | Waste | New | Waste | New | Waste | New | Waste | | | NiMo/Al ₂ O ₃ -pH5 | 2.8 | 2.6 | 30 | 38 | 1.3 | 1.1 | 7 | 24 | | | NiMo/Al ₂ O ₃ -pH9 | 2.7 | 2.1 | 40 | 42 | 0.9 | 0.5 | 31 | 30 | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH5 | 4.5 | 3.8 | 50 | 54 | 2.1 | 1.5 | 13 | 17 | | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | 3.6 | 3.5 | 50 | 51 | 2.1 | 1.6 | 19 | 26 | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | 3.3 | 1.9 | 39 | 42 | 1.8 | 0.8 | 12 | 21 | | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | 2.3 | 1.5 | 34 | 38 | 1.3 | 0.2 | D* | D* | | ^{*}D: this catalysts deactivates in two hours of reaction. Secondary reactions R_{EA}=oleic, linoleic, linolenic or palmitic acid alkenyl groups. Deoxygenation products R_{HFA}=stearic or palmitic alkyl groups. -Hydrodeoxygenation(HDO) $\frac{k_3}{\text{Hydrocracking}}$ light alkanes *n*-C₁₈ *n*-C₁₆ $\frac{k_4}{\text{Isomerization}} \quad \textit{isoalkanes}$ H_2O -Decarbonylation(DCO) n-C₁₅ *n*-C₁₇ CO Soybean oil $\frac{k_6}{\text{Aromatization}} \xrightarrow{\textit{Aromatic}} \underset{\textit{compounds}}{\textit{Aromatic}}$ triglycerides (Tg) Hydrogenated -Decarboxylation(DCO₂) triglycerides(HTg) n-C₁₅ *n*-C₁₇ CO_2 Figure 1. Reaction scheme for the formation of green diesel from soybean oil triglycerides. Figure 2. Zeta potential curves of the supports calcined at 500°C: a) Al₂O₃ b) Al₂O₃-Mn₁ and c) Al₂O₃-Mn₅. Figure 3. Raman spectra of the impregnation solutions at pH=5 or 9. Figure 4. UV-vis diffuse reflectance spectra of dried NiMo/Al₂O₃-pH5-D and NiMo/Al₂O₃-pH9-D. $Figure~5.~UV-vis~diffuse~reflectance~spectra~of~calcined~NiMo/Al_2O_3-pH5-C~and\\ NiMo/Al_2O_3-pH9-C.$ $Figure~6.~UV-vis~diffuse~reflectance~spectra~of~the~dried~NiMo/Al_2O_3-Mn_1-pH5-D~and\\ NiMo/Al_2O_3-Mn_1-pH9-D~catalysts.$ Figure 7. UV-vis diffuse reflectance spectra of the calcined NiMo/Al₂O₃-Mn₁-pH5-C and NiMo/Al₂O₃-Mn₁-pH9-C catalysts. Figure 8. Raman spectra of dried NiMo/Al₂O₃–Mn₁-pH5-D and NiMo/Al₂O₃–Mn₁-pH9-D catalysts. Figure 9. Raman spectra of the calcined NiMo/Al₂O₃–Mn₁-pH5-C and NiMo/Al₂O₃–Mn₁-pH9-C catalysts. Figure 10. UV-vis diffuse reflectance spectra of the dried NiMo/Al₂O₃–Mn₅-pH5-D and NiMo/Al₂O₃–Mn₅-pH9-D samples. $Figure~11.~UV-vis~diffuse~reflectance~spectra~of~the~calcined~NiMo/Al_2O_3-Mn_5-pH5-C~and\\ NiMo/Al_2O_3-Mn_5-pH9-C~samples.$ Figure 12. Raman spectra of the dried $NiMo/Al_2O_3-Mn_5-pH5-D$ and $NiMo/Al_2O_3-Mn_5-pH9-D$ catalysts. $Figure~13.~Raman~spectra~of~the~calcined~NiMo/Al_2O_3-Mn_5-pH5-C~and~NiMo/Al_2O_3-Mn_5-pH9-C~catalysts.$ Figure 14. Example of decomposition of Mo 3d XPS core-level spectrum for the NiMo/Al₂O₃-pH5 catalyst sulfided at 400°C for 4 h. Figure 15. Example of decomposition of Ni $2p_{3/2}$ XPS core-level spectrum for the NiMo/Al₂O₃-pH5 catalyst sulfided at 400° C for 4 h. Figure 16. FTIR spectra of lutidine adsorbed on the NiMo/Al₂O₃-pH5 sulfided catalyst for different temperatures of desorption (30, 50, 75 and 100°C). Figure 17. Evolution of the concentration of Lewis acid sites (C_{LA}) in function of the desorption temperature for the NiMo catalysts supported on Al_2O_3 , Al_2O_3 - Mn_1 , Al_2O_3 - Mn_5 in the case of an impregnation at pH=5. ## Synthesis of NiMo Catalysts supported on Mn-Al₂O₃ for obtaining Green Diesel from Waste Soybean Oil ## **Supporting Information** I. Vázquez-Garrido¹, A. López-Benítez¹, A. Guevara-Lara^{1,*}, G. Berhault^{2,*} ¹ Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, México. ² Institut de Recherches sur la Catalyse et l'Environnement de Lyon, CNRS – Université Lyon I, 02 avenue Albert Einstein, 69100 Villeurbanne, France All correspondence should be sent to: Alfredo Guevara-Lara: Ph: (+52) 7717172000 ext 2202. Fax: (+52) 7717172000 ext 6502 E-mail: <u>guevaraa@uaeh.edu.mx</u> E-mail: <u>guevaraa@uaeh.edu.mx</u> ## Or to: Gilles Berhault Ph: (+33) 472 44 53 07 Fax: (+33) 472 44 53 99 E-mail: gilles.berhault@ircelyon.univ-lyon1.fr **Table S1.** Selectivity (S_x) in the different hydrocarbons formed by deoxygenation of free fatty acids using the NiMo catalysts supported on Al₂O₃-Mn₁ and on Al₂O₃-Mn₅. Comparison to the NiMo/Al₂O₃ reference catalysts $(T = 380^{\circ} \text{ C}, P = 40 \text{ bars})$. | Catalyst | | Selectivity (%) | | | | | |---|-------|-----------------|-----|-----|-----|-----------| | | Oil | C18 | C17 | C16 | C15 | S_{HDO} | | NiMo/Al ₂ O ₃ -pH5 | New | 12 | 76 | 3 | 9 | 0.16 | | | Waste | 11 | 71 | 2 | 16 | 0.16 | | NiMo/Al ₂ O ₃ -pH9 | New | 13 | 72 | 4 | 11 | 0.18 | | | Waste | 7 | 74 | 2 | 17 | 0.10 | | NiMo/Al ₂ O ₃ -Mn ₁ -pH5 | New | 9 | 91 | 0 | 9 | 0.09 | | | Waste | 8 | 69 | 3 | 20 | 0.12 | | NiMo/Al ₂ O ₃ -Mn ₁ -pH9 | New | 16 | 67 | 1 | 16 | 0.24 | | | Waste | 10 | 66 | 8 | 16 | 0.15 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH5 | New | 8 | 74 | 2 | 16 | 0.11 | | | Waste | 10 | 64 | 14 | 12 | 0.16 | | NiMo/Al ₂ O ₃ -Mn ₅ -pH9 | New | 14 | 62 | 7 | 17 | 0.23 | | | Waste | 11 | 62 | 4 | 22 | 0.17 | Figure S1. N_2 adsorption-desorption isotherms of the Al_2O_3 , Al_2O_3 - Mn_1 and Al_2O_3 - Mn_5 supports calcined at 500° C. Figure S2. UV-vis DR spectra of the Al_2O_3 , Al_2O_3 -Mn₁ and Al_2O_3 -Mn₅ supports calcined at 500° C. Figure S3. UV-vis spectra of the impregnation solutions at pH=5 or 9. $Figure~S4.~Raman~spectra~of~the~dried~NiMo/Al_2O_3-pH5-D~and~NiMo/Al_2O_3-pH9-D~catalysts.\\$ $Figure~S5.~Raman~spectra~of~the~calcined~NiMo/Al_2O_3-pH5-C~and~NiMo/Al_2O_3-pH9-C~catalysts.\\$ Figure S6. Evolution of the concentration of Lewis acid sites (C_{LA}) in function of the desorption temperature for the NiMo catalysts supported on Al₂O₃, Al₂O₃-Mn₁, Al₂O₃-Mn₅ in the case of an impregnation at pH=9.