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Abstract

Machine learning (ML) methods are becoming the state-of-the-art in numerous

domains, including material sciences. In this manuscript, we demonstrate how

ML can be used to efficiently predict several properties in solid-state chemistry

applications, in particular, to estimate the heat of formation of a given complex

crystallographic phase (here, the σ−phase, tP30, D8b). Based on an indepen-

dent and unprecedented large first principles dataset containing about 10,000

σ−compounds with n = 14 different elements, we used a supervised learning

approach to predict all the ∼500,000 possible configurations. From a random

set of ∼1000 samples, predictions are given within a mean absolute error of

23 meV at−1 (∼2 kJ.mol−1) on the heat of formation and ∼0.06 Å on the tetrag-

onal cell parameters. We show that deep neural network regression results in

a significant improvement in the accuracy of the predicted output compared to

traditional regression techniques. We also integrated descriptors having phys-

ical nature (atomic radius, number of valence electrons), and we observe that

they improve the model precision. We conclude from our numerical experiments

that the learning database composed of the binary-compositions only, plays a
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major role in predicting the higher degree system configurations. Our results

open a broad avenue to efficient high-throughput investigations of the combi-

natorial binary computations for multicomponent complex intermetallic phase

prediction.
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1. Introduction

Machine learning, being a domain of artificial intelligence, revolutionised re-

search in many fields (image processing, natural language, speech processing,

biology and medicine, etc. [1, 2, 3]), and the number of publications introducing

new statistical methods has exploded within the last decades. Strange but true

that the applications of the machine learning methods to the material sciences,

although more and more visible [4], are still falling behind compared to other

applications. The statistical machine learning (ML) is the art to construct sta-

tistical models from observational data. Among the successful applications of

the ML to the materials science, is automatic extraction of predictive models

from existing materials data [5, 6], and discovery of new classes of promising ma-

terials or composition, such as the high entropy alloys (HEA) [7, 8, 9, 10]. So far,

materials scientists have used ML to build predictive models for a few applica-

tions such as to predict heat capacity [11], semiconducting band gap [12, 13] etc.,

but also the heat of formation of intermetallic compounds [14, 15, 16, 17]. All

these recent studies have emerged with the powerful use of high-throughput cal-

culations, such as density functional theory (DFT) impulsed for large projects

in the last decade (AFLOW [18], OQMD [18], NOMAD [19] etc.). In fact, the

increasing availability of DFT data, combined with modern data mining and ML

techniques, has enabled the construction of a predictive model to replace DFT

calculations and accelerate data generation [20]. Prediction of crystal structure

is still the holy Grail in inorganic chemistry, while the component prediction is

one promising approach [21]. However, in a recent work of Kim et al. [22], the

effect of the space quality has been investigated, and it was reported that ML
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performance can be rather poor if there are several bad (noisy) training data

quite close to good candidates [23].

The contribution of the current work is two-fold: (i) we introduce a general

high performance ML-based framework for predicting the heat of formation,

corresponding to the energy scale which measures the strength of chemical bonds

in a compound, where an input to the ML methods are the combinations of

the elements in a given crystal structure; and (ii) we present and explore new

original data set that we constructed and manage.

Note that the heat of formation prediction was the aim of several studies

and attempts, like the semi-empirical Miedema’s model [24]. In fact, this fun-

damental value, called also enthalpy of formation (∆fH in meV) is the key

parameter in thermodynamics modelling, such as in the calculation of phase

diagrams (Calphad method) [25]. We have applied the ∆fH determination to a

large combinatorial challenge, yielded by the distribution of every atom from a

given space (n-base) into every s non-equivalent crystallographic sites of a given

phase. This kind of description is well known in thermodynamic modelling for

addressing the energy of a multicomponent and non-stochiometric phases and

is called the Compound Energy Formalism (CEF) [26]. In CEF, each crystal

site is considered as a sublattice and the distribution of every atom generates ns

unique configurations, called end-members, the ∆fH of which has to be given

to use this model.

Figure 1: Representation of the primitive cell of the crystal phase σ−phase (D8b), with its
5 non-equivalent sites: 2a (red balls), 4f (black), 8i1 (blue), 8i1 (orange) and 8j (green).
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To illustrate the efficiency of our ML framework, we investigated an im-

portant intermetallic phase in the field of metallurgy: the σ−phase (D8b). Its

complex crystallographic structure is composed of 30 atoms in its tetragonal

cell, occupying s = 5 distinct sites (i, j, k, l, m), as shown in Figure 1. The

σ−phase belongs to the FrankKasper or topologically close packed phases, char-

acterized by the unique presence of tetrahedral interstices, and a limited number

of coordination polyhedra. Its features has been discussed in details [27]. Some

details are summarized in Supplementary Materials A, SM-A.

This phase appears in many types of engineering alloys and its formation

prediction requires reliable thermodynamical description. It is shown that it is

important to keep a 5-sublattice model in CEF to properly describe the con-

figuration of the σ−phase in multicomponent alloys [28, 29]. The difficulty lies

in the large number of end members which must be considered in multicompo-

nent systems. In fact, the description for a binary system (2 elements) leads to

the generation of 25 = 32 different ordered configurations to express, but this

number rapidly increases with the degree of the system: ternary with 35 = 243,

quaternary with with 45=1024, ... up to a real alloys with ∼ 14 different el-

ements and its 145 = 537, 824 configurations. Since the corresponding huge

number of ∆fH cannot be calculated by classical DFT, their prediction using

ML is computationally tractable and, therefore, looks attractive and is one of

the major contributions of this paper.

2. Computational methods

2.1. General-purpose approach

The originality of current work is in construction of our learning database.

Instead of a mishmash of massive data coming from several independent phases

and from various high-throughput sources (calculated using different parame-

ters), we built an original single σ-phase oriented database with our own con-

sistent massive DFT calculations. In addition to some additional physical pa-

rameters, the main descriptors are the combination of n = 14 different elements
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on the different s = 5 crystallographic sites that described the σ-phase. Among

the combinatorial set (described in SM-B), a selection of data in the training

set includes all the possible binary compositions (system degree d = 2), which

represents only 0.5% of the all possible configurations (
(
14
2

)
= 91 purely bi-

nary systems with 30 unique configurations each). A graphical chart-flow of the

present methodology is given on Figure 2.

Figure 2: Chart-flow of the methodology presented in the paper. (i) The crystal structure is
summarized as a s non-equivalent sites figure; (ii) from n available elements, a given system
of system degree d is selected (e.g. d = 2 for binary); (iii) the permutation leads to d5 unique
configurations ; (iv) every configuration is calculated by DFT, forming a unit of data; (v) the
stack of all

(n
d

)
units forms a learning database; then (vi) a supervised machine learning is

used to predict multicomponent configurations.

2.2. Training database from DFT calculations

First, a database from DFT calculations has been compiled. Since 2008,

many active groups have calculated σ-phase configurations in binary [33, 34,

32, 35, 36], ternary [37, 38, 39, 40] and quaternary systems [41]. Since all

these sparse studies were calculated with different methods and parameters,
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our present original database includes only new calculations obtained under the

same conditions, and required millions of hours of CPU time to construct. The

DFT methodology applied is a classical approach and its details are explained

in SM-C. The heat of formation, ∆fH, of every configuration is given by the

difference of its total DFT energy related to the element energies in their stable

reference state.

The learning database includes n = 14 different elements: Al, Co, Cr, Fe,

Mn, Mo, Nb, Ni, Pt, Re, Ru, V, W, Zr, and contains 9974 unique configurations

embracing all the
(
14
2

)
= 91 binaries (degree d = 2), 33 on the

(
14
3

)
= 364

ternaries (d = 3), 9 on the 1001 quaternaries (d = 4) and only 1 on the 2002

possible quinaries (d = 5, see SM-D for the detailed list of included systems

in our training database). The elemental distribution is not uniform because

of some chemical reasons explaining that we wanted to have more data for

pertinent systems (e.g. Zr-based σ-phase is not frequent). This analysis is

illustrated on Figure 3 and could be seen in details from SM-D. In addition,

an independent testing set for 1001 randomized configuration were calculated

(detailed in SM-E).

Figure 3: Occurrence of the n = 14 elements in the training database (9974 entries).
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2.3. Database construction format

In a second step, data was arranged as a learning database, Xijklm ∈

R(n+2)s×N . The n = 14 elements are categorical variables but need to be treated

with analytical methods that require numbers. Thus, each of the 5 crystal sites

(i, j, k, l, m) has been considered as a 14-dim vector of dummies (spin variables:

0 or 1) by the one hot encoding method. In addition, because it is well known

that the stability in this kind of compounds is driven by the two geometric and

electronic constraints [27] (e.g. large electropositive atoms have a preference on

high coordination sites), atom size and electron concentration have been used

as additional descriptors. In total, we use a set of p = (n+ 2)s = 80 attributes

corresponding to the following features for each configuration Xijklm, with (i,

j, k, l, m) ∈ { Al, Co, Cr, . . . , V, W, Zr }:

• Ordering configuration of atoms in the crystal (14×5 vectors of dummies)

• Atomic radius (5 normalized values, related to the 5 atoms in ijklm con-

figuration)

• Number of valence electrons (5 normalized values)

leading to a 9974 × 80 matrix as the learning database, associated to the tar-

get yijklm vector, here the heat of formation, ∆fH(ijklm), but could be any

crystallographic properties such as cell parameters.

At last, based on the ML best results, the learning on the whole database

(9974 configurations) was done and a final prediction of 1001 random configura-

tions among the 537,824 was estimated (details in SM-D and SM-E respectively).

2.4. Estimation of the machine learning models

The machine learning models are estimated using Scikit-Learn 0.23 library

in Python 3.5. Each approach offers different advantages, such as speed or in-

terpretability, but our main goal was the high accuracy. Figure 4 illustrates

the relationship between the model’s simplicity (interpretability) and the gen-

eralising performance for the machine learning methods we considered. Note
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Figure 4: A schematic representation of the models’ simplicity and the generalising accuracy
for the tested Machine Learning approaches.

that this scheme (Figure 4) is approximate. What is true for our results is that

the linear methods perform worse than the non-linear regressions. We also no-

ticed that the grid search for an optimal Multi-Layer Perceptron architecture

(number of hidden layers and units), as well as the number of trees and their

maximal depth in the Random Forest and Gradient Boosting, is important, and

the search for an optimal configuration can be computationally expensive.

For each method, the corresponding hyper-parameters were fixed using the

grid search module and the cross-validation error rate. The generalising perfor-

mance is the test accuracy using 10-fold cross validation (CV) procedure: the

database is randomly split into 10 subsets (folds), and the model is trained on

9 parts, and tested on 1 part. The procedure is repeated 10 times. The average

accuracy is the mean value over performances on the test data. All machine

learning methods used are described in SM-F.
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3. Results

The results of this study – our new and original data set, ML metrics used

to test the statistical methods, and the corresponding results – are described

below. We demonstrate its application to the heat of formation prediction, and,

finally, we report the prediction performance.

3.1. Prediction of the heat of formation

The observations are the independent variables from configurations Xijklm

of the training database with N ' 10,000 data, and the aim of the regression

analysis is to generate a statistical model that can predict a dependent vari-

able, yijklm (the heat of formation in our case). Several regression algorithms

have been investigated and for each of them, the (hyper)-parameters have been

choosing by a cross-validation grid-search method to produce the most accurate

generalising results. The evaluation of the prediction accuracy of a model is

characterized using the coefficient of determination R2, the mean absolute error

MAE, and the root mean squared error RMSE, given as:

R2 = 1−
∑

(yijklm − ŷijklm)
2∑

(yijklm − ȳ)
2 , (1)

MAE =
1

N

N∑
{i,j,k,l,m}

|yijklm − ŷ| , (2)

RMSE =

√√√√ 1

N

N∑
{i,j,k,l,m}

(yijklm − ŷijklm)
2
, (3)

where ŷ is the predicted value based on the learned model, and ȳ the mean of

the observed data.

First, we have estimated a number of regression models from our learning

database. Namely, we tested the Ridge Linear Regression, Elastic Net Lin-

ear Regression, Random Forest Regression (RFR), Multi-Layer Perceptron Re-

gression (MPR), Gradient Boosting Machine (GBM), Support Vector Machine

(SVM), K-Nearest Neighbours, Bayesian Ridge Regression, and Gaussian Pro-

cess Regression (GPR). Our averaged results from 10-fold cross validation are

9



summarized in Table 1, and also fully shown in SM-G. Classical regression with

various regularization such as LASSO (Least Absolute Shrinkage and Selection

Operator), Ridge regression, or their combination, also known as Elastic Net,

are not accurate enough, since the number of observations in the database is not

very big. Moreover, the sparsity inducing penalties (LASSO and Elastic Net)

are not very relevant to our case, since the number of parameters is quite small.

Table 1: Cross validation scores on the complete data set (average values from 10-
fold) using various machine learning methods. MAE, MSE and RMSE in meV/at
(1 meV∼0.0965 kJ/mol), illustrated in SM-G. An horizontal line separates the linear from
the non-linear methods.

Algorithm R2 MAE RMSE
Ridge Linear Regression 0.45 73 110
Bayesian Ridge Regression 0.45 73 110
Elastic Net Linear Regression 0.46 73 109
K-nearest neighbors 0.61 55 93
Gaussian Process Regression (GPR) 0.87 30 66
Random Forest Regressor (RFR) 0.89 31 56
Support Vector Machine Reg (SVM) 0.91 26 54
Gradient Boosting Machine (GBM) 0.95 19 37
Multi-layer Perceptron Regressor (MPR) 0.96 13 31

On the other hand, non-linear supervised learning methods achieve very

reasonable performance. The R2 closest to 1 are obtained with RFR, MPR,

GBM and SVM regression algorithms. The associated best MAE (average from

10-fold CV) are obtained for the MPR method with 13 meV (∼1 kJ mol−1) using

3 hidden layers, each containing 500 units.

3.2. Comparison of testing performance on unseen dataset

Random Forest Regression, Multi-Layer Perceptron Regression, Gradient

Boosting and Support Vector Machines have shown the best performance on the

data set containing 9974 inputs (our training database, SM-D). We tested these

regressors on a new, previously unobserved during the training procedure, set

of configurations: 1001 randomized observations (our testing database, SM-E)

among the 537,824 possible ones. Using MPR, the achieved accuracy of total

energy, and therefore heat of formation, with a MAE of about 23 meV at−1
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(Figure 5) provides a very reasonable accuracy compared to other ML methods

of the literature, where the standards are usually around MAE∼50 meV at−1

for systems higher than binaries [14, 15, 20, 30, 31].

Figure 5: Prediction of randomized 1001 configurations among the 537,824 ones from the
learning of the training database (9974 data in red). The tested 1001 configurations are
reported in colors (blue to yellow) corresponding to the degree d of their system (right side
legend). The diagonal line indicates the perfect agreement between DFT calculated and ML
predicted values.
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4. Discussion

4.1. Influence of the system degree

For the best method, here the regressor-type neural network MPR, the accu-

racy of prediction depends on the degree of the system of the tested configura-

tion, illustrated by the color code of Figure 5. As an example, the MAE∼23 meV

for the whole testing set could be decomposed as contribution depending of the

system degree d. It increases with d: 7 meV (d = 2), 22 (d = 3), 28 (d = 4) and

38 (d = 5). This result illustrates obviously that multi-component systems are

more difficult to predict.

Another question could be addressed to the learning weight of binaries: are

the whole d = 1 (14 elements) and d = 2 systems (here the 91 different sub-

systems ×30 configurations) are sufficient to predict higher degree systems? In

other words, is it possible to predict accurately the whole possible 145 combina-

tions only from all unary and binary configurations (2744 unique data), which

is representative of only 0.5% of the total set? In order to answer, we merged

our training and testing sets leading to 10941 unique configurations and split

them in the 5 sub-systems: 14 “d = 1” , 2730 “d = 2”, 5051 “d = 3”, 2571

“d = 4” and 575 “d = 5” configurations. Then, from the all unique unary and

binary configurations, we have tested the predictive behaviour for higher degree

systems as shown in Figure 6. Whereas the ternary and quaternary systems

are well predicted with MAE∼18 and 22 meV respectively, the quinaries still

present surprisingly reasonable results with MAE∼34 meV respectively. How-

ever, from higher to lower system degrees, a learning from a portion of the

ternary configurations (5051 among the 54,600 possible) gives larger dispersion

on prediction on the binaries with higher MAE∼40 meV and RMSE∼73 meV.

Other combinations of training/testing subsystems are illustrated in SM-H.

4.2. Contribution of additional descriptors

Introduction of additional physical descriptors improves slightly the learning

scores. As shown in SM-I, the prediction with neither atomic radius nor the
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Figure 6: From training on only binaries, prediction of ternaries, quaternaries or quinaries.
The diagonal line indicates the perfect agreement between predicted and real values.

number of valence electron is slightly worse (MAE∼24 with MPR). This result

might seem unexpected at first glance. In fact, it is well known that topologically

close packed (TCP) structures, as σ−phase, are driven by geometric arguments:

since atoms are in the center of a coordination sphere, the atomic radius reflects

the capability to occupy small or large coordination number (CN) sphere. The

number of valence electron is also known to be important. In fact, for similar

radius, a study has shown that the degeneracies of electronic levels play a role

on the site preference [32]. To summarize this point, it seems that the total

energy calculated by DFT contains these additional properties, and there is no

need to provide it as separate descriptors, especially while using a versatile deep

learning approach like the MPR.
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4.3. Crystallographic prediction

The ∆fH is only one predictive variable among many describing the crystal

structure of the σ phase. Considering the only crystal properties, 9 variables

are necessary to describe a configuration: 2 cell parameters (a, c) and 7 inter-

nal parameters (x4f , x8i1 , y8i1 , x8i2 , y8i2 , x8j , z8j). In the present work, the

supervised learning is optimized for predicting the ∆fH but was also applied

for every other variables. From our best model (optimized MPR) and from all

available learning sets (9974 + 1001 = 10975 data), the predictive ∆fH and the

9 other crystal variables are given for the every 537,824 configurations in SM-J.

As an example, the prediction of both a & c tetragonal cell parameters presents

a MAE ∼ 0.06 & 0.07 Å and a RMSE ∼ 0.08 & 0.10 respectively (Figures 7).

Figure 7: Prediction of both a and c tetragonal cell parameters of randomized 1001 testing
configurations from the MPR learning of the training database (9974 data in red).

The prediction of crystal properties by ML is also very useful to help the

initialization of new DFT input files and thus consequently reduces CPU times.

In fact, the crystal properties of the 1001 random configurations, constituting

the testing set, have been predicted from the learning database and were used as

starting structures of the DFT relaxation steps. Since the initial state was close

to the equilibrium structure for each configuration, we save about ∼10 times

of the CPU consumption for the only DFT relaxation steps. This kind of ML

approach can be thus conducted with a reinforcement learning to build a final

database with a considerable reduction of the CPU time for DFT calculations.
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4.4. Outlooks

Our ML approach, based on one-hot encoding from the only binary configu-

rations as a learning set, is efficient in the present example of the σ−phase which

is a complex TCP structure with 5 different Wyckoff positions. This method-

ology will be extended to other both simpler and more complex intermetallics,

such as C14, χ or µ−phases, to investigate the performance of the algorithms

in additional future works (e.g. learning rate as a function of database size)

in order to solve the issue of multicomponent ∆fH estimation for thermody-

namics database. As an outlook, the learning database size will be increased

up to twenty elements, including Ta and Si. Moreover, the magnetism will be

considered in future.
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5. Conclusion

This work addresses the issue of the crystal phase stability from the machine

learning viewpoint. Because the ∆fH is the key descriptor to model the forma-

tion of compounds, we have investigated the prediction of this variable using a

supervised approach, using a complex crystallographic structure as an example:

the σ-phase. Based on an unprecedented large first principled dataset containing

about 10,000 compounds with n = 14 different elements, we optimized several

supervised learning approaches, where the Multi-layers Perceptron Regressor

shows best results to predict all the ∼500,000 possible configurations within a

mean absolute error of 23 meV (∼2 kJ.mol−1) on the testing set. Additional

descriptors with roots in the physical nature of the problem are minor contri-

bution to the learning score in comparison with the only combinatorial DFT

set. It is shown that the training database from the only binary-compositions

(0.5% occurrence of whole set) are able to predict multicomponent configura-

tions with a high accuracy. This result suggests that several complex phases

including non-equivalent sites could be easily determined from the only binary

contribution.

In addition to the heat of formation, the prediction of the lattice parameters

and internal degrees of freedom seems to be very useful for reducing effort in

the DFT calculations.

This work will be extended to other complex TCP phases with more than

2 sites to demonstrate the efficiency of our approach, such as A12, C14, etc.

Indeed, it opens broad avenues in the study of complex structures with the only

binary configurations as a learning set, this could be efficient even with low

number of data.
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Data and code availability

All data produced in this study (DFT results, ML code and properties pre-

diction of every 145 configurations) are available on the code sharing platform

at https://github.com/crivello-jc/sigma-phase-prediction.

Acknowledgements

Calculations were performed using HPC resources from GENCI-CINES (No.

A0060906175) and supercomputer at IMR, Tohoku University (No. 16S0403).

In addition, we acknowledge the financial support from the CNRS (programs

MaLeFHYCe, PEPS, Cellule Energie CNRS and MALEpHYq, Emergence@INC).

Competing Interests

The authors declare no competing interests

17

https://github.com/crivello-jc/sigma-phase-prediction


Supplementary materials

The supplementary materials are available for this paper in several Appendix:

SM-A Crystal details of the σ-phase

SM-B Analysis of the combinatorial descriptions

SM-C DFT calculation methodology

SM-D The training database, 9974 configurations

SM-E The testing set, 1001 configurations

SM-F Machine learning methods

SM-G Cross validation results from the only training database

SM-H Prediction from several simulations of training and testing sets

SM-I Influence of additional physical featuring

SM-J Results of prediction of every 145 configurations
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