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This article presents a 3-D semi-analytical model of a partially superconducting axial flux modulation machine for the computation of 
the flux density distribution, the torque and the Eddy-current losses in the armature. The modulation of the superconducting coil 
magnetic field by the superconducting bulks is calculated by solving the Maxwell’s equations in scalar potential with the variable 
separation method. Using Fourier series analysis and the convolution theorem, the bulk region is modelled by a domain with a spatially 
variable magnetic permeability. This variable permeability enables considering a diamagnetic bulk as well as a more complex magnetic 
behavior using the Bean model. The results of the proposed model are compared with 3-D finite elements models and good agreement is 
obtained for a significantly reduced computation time. The proposed model appears to be a suitable tool for optimisation and sizing 
processes. 
 

Index Terms— Axial flux machine, high-temperature superconductivity, Semi-analytical model. 
 

I. INTRODUCTION 

The use of high temperature superconductors (HTS) in 
electrical machines is seen as a potential solution to enable 
aircraft electric propulsion [1]–[3]. To this end, HTS machines 
must reach a high specific power [4], recent studies have shown 
that power to mass ratios over 20 kW/kg are achievable for 
MW-class generators and motors using liquid hydrogen as 
coolant [5]–[7]. Among the technologies considered, the flux 
modulation machine is a promising candidate as shown by 
several projects and articles on its radial flux form [8]–[10] and 
axial flux form [11], [12] including a recently built 50 kW 
prototype [13]. 

This last configuration, presented in Fig. 1, is composed of a 
static HTS coil fed with DC current generating a magnetic field 
in the machine. The rotor consists of several HTS bulks  (one 
per pole pair) used in the superconducting mixed state. When 
the HTS bulks are subjected to the coil magnetic field, an 
electrical current is induced in the material to screen the 
magnetic field and the flux lines will concentrate in the 
apertures between the bulks. In the air gap, this flux 
concentration will generate a spatially variable magnetic field 
which generates an electromotive force in the two three-phases 
conventionnal armatures located on either side of the rotor 
when it rotates.  

Due to the large magnetic flux that can be generated with 
HTS, no ferromagnetic material is required to reach a 
consequent magnetic loading, thus making this air-cored 
topology very light. The HTS coil is a static component, hence 
the machine magnetisation can be controlled from the coil 
without any slip rings. The absence of slip ring is a major 
advantage of this structure for reliability reason. 

In order to properly exploit the potential of the flux 
modulation topology, an optimisation of the design must be 
performed and requires a precise and fast model. Numerical 
modelling using the finite element method (FEM) might be the 
most precise solution. However, the high computational cost of 
numerical method limits the number of parameter explored 

during the sizing process. Therefore, analytical and semi-
analytical modelling using the separation of variables method 
and Fourier series analysis can be used for the electromagnetic 
design of electrical machines [6], [14]. For common radial-flux 
structures such as induction machines, permanent magnet or 
wound rotor synchronous machines, cylindrical 2-D models are 
very efficient and have been extensively developed in the 
literature [15]–[18]. These topologies can also be modelled 
efficiently in 3-D [19]. 

 

Fig. 1. Exploded view of the active elements in a partially superconducting 
axial flux modulation machine. 

 
Nevertheless, axial flux machines do not have any 

symmetries that allow them to be accurately modelled in 2-D. 
Good results can be obtained under some assumptions to 
consider the end effects [20], though 3-D calculation is more 
suitable for that kind of problems. For the simulation of axial 
flux machines in 3-D there is typically two solutions, the first 
one being the use of a cylindrical frame which will lead to the 
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most precise results but requires to manipulate Bessel 
functions [21]. A second option would be the use of a cartesian 
coordinate system by linearisation at the average radius 
symplifying the model by neglecting the curvature effects [22], 
[23]. These assumptions will be described in more details 
further in this article.  

Moreover, flux modulation inductors have been analysed 
with analytical models, the radial flux topology has been solved 
in [10] while the axial flux topology with disk shaped bulks has 
been solved in [24]. In either case, the problem was adressed by 
superposing two 2-D models. The solution has been obtained 
by making the product of the magnetic field created by the 
superconducting coil(s) by a modulation function calculated by 
considering the bulks as perfectly diamagnetic domains. Both 
of these models have shown excellent results, but the perfect 
diamagnetism hypothesis is not necessarily verified in practice 
because it assumes an infinite or at least very high critical 
current density in the bulk [13], [25].  

More recently, various research groups have developed 
models including subdomains with a spatially variable 
permeability, thus reducing the number of domains required to 
simulate machine with slots or variable reluctances [26]–[30]. 
These models are based on the convolution therorem that allows 
considering complex space distribution of the magnetic 
permeability in the subdomains. Thanks to this method, it is 
possible to simply take into account the saturation of the 
magnetic circuit [27], [29] and numerous radial-flux topologies 
have been modelled in recent years [26], [30]. 

A 3-D model of the axial flux modulation machine shown in 
Fig. 1 is presented in this paper. In section 2, the 
electromagnetic problem as well as the required assumptions 
are presented. In section 3, the magnetic field distribution of the 
inductor is calculated with the variable separation method, 
Fourier series analysis and the convolution theorem for 
perfectly diamagnetic bulks. The section 4 presents the 
calculation of the machine power from the electromotive force 
as well as the eddy current losses in the armature. The results 
and the accuracy of this model will be discussed in the 
section 5. Finally, the model is improved in section 6 using the 
Bean model to consider the penetration of the magnetic field in 
the HTS bulks. 

 

 
Fig. 2. Geometrical parameters of the inductor modelled parts according to 
the symmetries. 
 

II. PROBLEM DESCRIPTION 

The axial flux modulation inductor with ring segment shaped 
bulks has an inherent 3-D geometry and cannot be simply 
described in 2-D as was done for the axial flux inductor with 
round shaped bulk using two axisymmetric models [24]. Yet, 
some symmetries can still be exploited to simplify the problem. 
Indeed, due to the periodicity along azimuthal direction and to 
the symmetry in the axial direction, only half of a pole pair need 
to be considered. Thus, the geometrical problem to be solved 
according to the symmetries is presented in Fig. 2 with the 
geometrical parameters. The inner and outer radius of the bulk 
are Ri and Re, respectively. The inner radius of the coil is Rb 
and its thickness Wb. The cylindrical frame is centred at the 
middle of the machine so Z1 represent half of the bulk thickness 
and Zb half of the coil length. Finally, a bulk has an opening 
angle of 𝛼2𝜋/𝑝 with p being the number of pole pairs and α is 
the bulk pole-arc to pole-pitch ratio. 

To simplify the resolution, the flux density distribution 
produced by the inductor will be obtained by separately 
calculating the magnetic field created by the coil and the 
deflection of the flux lines due to the bulks. The first problem 
is a 2-D axisymmetric model of the coil alone, which has 
already been described in [24] and will not be detailed in this 
paper. The second problem is a 3-D model of a bulk placed in a 
homogeneous external magnetic field from which a modulation 
function will be extracted. This modulation function represents 
the ability of the bulk to divert flux lines. Similar methods have 
already been applied in 2-D for various flux modulation 
machines [10], [24]. The calculation of the modulation function 
will be described in detail in this article. Ultimately, the actual 
flux density in the air gap is obtained by multiplying the 
magnetic field created by the coil by the modulation function. 

 

 
Fig. 3. Representation of the equivalent bulk geometry in the cartesian 
frame. 
 
Considering the geometry, the more intuitive way to 

calculate the modulation function would be in a cylindrical 
coordinate system (r,θ,z). However, it would lead to a complex 
system of differential equations to solve and requires the use of 
the Bessel functions. It has been observed in several references 
[22], [23], [31] that the curvature effects can be neglected by 
slightly changing the geometry from a cylindrical problem to a 
cartesian problem using a linearisation at the mean radius  
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𝑅௠ = (𝑅௘ + 𝑅௜)/2. Thus, the new geometry is presented in 
Fig. 3, the y-coordinate represents the radial direction while the 
x-coordinate represents the azimuthal direction. The 
x-coordinate is related to the θ-coordinate by 𝑥 = 𝑅௠𝜃, the 
y-coordinate is related to the r-coordinate by 𝑦 = 𝑟 − 𝑅௠ and 
the z-coordinate is identical for both frames. The height of the 
rectangle shaped bulk is 𝐷 = 𝑅௘ − 𝑅௜ and its length is 𝛼𝜏, 𝜏 =
ଶగ

௣
𝑅௠ being the length of a pole pair. The impact of these 

assumptions on the model precision will be discussed in 
section 5. 

 
 

Fig. 4. Sectional view of the cartesian problem in the (xz) plane with the 
different regions and boundary conditions. 

 
 

Fig. 5. Sectional view of the cartesian problem in the (yz) plane with the 
different regions and boundary conditions. 

III. . 3-D SEMI-ANALYTICAL MODEL 

The cross-sectional views of the cartesian problem for the 
modulation function are shown in Fig. 4 and Fig. 5 in planes 
(xz) and (yz) respectively. The external homogeneous magnetic 
field will be modelled here by a permanent magnet placed on a 
ferromagnetic plate with an assumed infinite permeability 

creating a magnetic field along the z-axis which is modulated 
by the HTS shield. The iron plate and the magnet must be 
located far enough from the bulk surface otherwise the plate 
disturbs the magnetic field distribution and the result would not 
correspond to the modulation of a homogeneous field. This 
distance has been set at 𝑍ଶ = 5𝑅௘ to avoid such issues. The x 
and z components of the modulation function will be obtained 
by dividing the x and z components of the flux density in the 
presence of the bulk with the z-component of the flux density 
in the absence of the bulk. The ferromagnetic plate and the 
magnet surface are at a distance Z3 and Z2 from the bulk centre 
respectively. The magnet remanent magnetization is written 

Brem and the magnetization 𝑀ሬሬ⃗  is in the opposite direction to the 

z-axis, 𝑀ሬሬ⃗ = −𝐵௥௘௠ 𝜇଴⁄ 𝑢௭ሬሬሬሬ⃗ .  
It should be noted that the uniform applied magnetic field 

could have been modelled by applying a Dirichlet condition on 
the scalar potential on the boundary at Z2. However, it has been 
decided to model it through a magnet for the sake of 
understanding. 

In this section, the bulk is considered as an almost perfect 
diamagnetic material with a relative permeability 𝜇௥ = 10ିସ 
while the other parts of the problem have a relative permeability 
equal to 1. The whole geometry is divided into three regions: 

The HTS bulk region (region I) 
The air gap region (region II) 
The magnet region (region III) 

Since there is no current in any of the regions, 𝐻ሬሬ⃗ ௜ , the 
magnetic field in region i, will be expressed in term of a 
magnetic scalar potential Φi, which is defined as: 

 

𝐻ሬሬ⃗ ௜ = −∇ሬሬ⃗ × 𝛷௜ (𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) (1) 

A.  Boundary conditions 

Solving this problem requires the definitions of boundary 
conditions. The boundaries on the x-direction and y-direction 
will define the Sturm-Liouville problem eigenvalues and define 
the general solution form while the boundary and interface 
conditions in the z-direction will be used to calculate the 
unknown coefficients. 

Due to the bulks periodicity in the x-direction, the magnetic 
problem presents even boundary conditions in the x-direction. 
Thus, the domains are limited to 𝑥 ∈ [−𝜏/2 ;  𝜏/2], and the 
boundary conditions are: 

 

𝛷௜(−𝜏/2, 𝑦, 𝑧) =  𝛷௜(𝜏/2, 𝑦, 𝑧)  (2) 

 
The conditions in the y-direction appear less naturally. 

Indeed, far enough from its surface, the bulk has no more 
influence on the magnetic field. Hence, we define the limits of 
the domain in the y-direction as −𝐿/2 and 𝐿/2 on which the 
boundary conditions are imposed as: 

 

𝛷௜(𝑥, −𝐿/2, 𝑧) =  𝛷௜(𝑥, 𝐿/2, 𝑧) = 0  (3) 

 
The value of L, which is the domain size, must be chosen 
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carefully. If the domain limits are too close to the bulk, the 
boundaries will have a significant impact on the result and will 
lead to errors. However, if L is too large, too many harmonics 
would be required to solve the problem, thus increasing the 
computational cost of the model. For the rest of the article, the 
value 𝐿 = 3𝐷 has been chosen after trials and errors. 

Eventually, in the z-direction, the ferromagnetic plate and the 
axial symmetry in 𝑧 = 𝑍ଷ and 𝑧 = 0, respectively, lead to the 
orthogonality of the magnetic field for both cases that expressed 
in scalar potential give: 

𝛷ூ(𝑥, 𝑦, 0) =  0  (4) 

𝛷ூூூ(𝑥, 𝑦, 𝑍ଷ) =  0 (5) 

B. Separation of variables and Fourier series 
representation 

The magnetic scalar potential solution in each domain is 
obtained using the separation of variables. Considering the 
boundary conditions in the x and y directions, Φi is expressed 
in terms of 2-D complex Fourier series: 

𝛷௜(𝑥, 𝑦, 𝑧) = ෍ ෍ 𝜑ො ௜
௡,௞

(𝑧)𝑒௝
ଶగ௡

ఛ
௫𝑒௝

ଶగ௞
௅

௬

ே

௞ୀିே

ே

௡ୀିே

 (6) 

The harmonics ranks are denoted by n and k for the x and y 
directions respectively. N represents the highest spatial 
harmonic considered in both directions. Ideally, the value of N 
should be infinite. In practice, it is selected to satisfy the balance 
between accuracy and computational cost. The impact of N on 
the computation time and model precision will be discussed 

further. Similarly the magnetic field 𝐻ሬሬ⃗ ௜ components are also 
expressed as Fourier series: 

𝐻ሬሬ⃗ ௜ = 𝐻௫
௜ 𝑢௫ሬሬሬሬ⃗ + 𝐻௬

௜ 𝑢௬ሬሬሬሬ⃗ + 𝐻௭
௜ 𝑢௭ሬሬሬሬ⃗  (7) 

𝐻௫
௜ (𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐻෡௫
௜

௡,௞
(𝑧)𝑒௝

ଶగ௡
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(8) 

𝐻௬
௜ (𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐻෡௬
௜

௡,௞
(𝑧)𝑒௝

ଶగ
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(9) 

𝐻௭
௜ (𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐻෡௭
௜

௡,௞
(𝑧)𝑒௝

ଶగ
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(10) 

 

Whereas the flux density 𝐵పሬሬሬሬ⃗  components are expressed as: 
 

𝐵పሬሬሬሬ⃗ = 𝐵௫
௜ 𝑢௫ሬሬሬሬ⃗ + 𝐵௬

௜ 𝑢௬ሬሬሬሬ⃗ + 𝐵௭
௜𝑢௭ሬሬሬሬ⃗  (11) 

𝐵௫
௜ (𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐵෠௫
௜

௡,௞
(𝑧)𝑒௝

ଶగ௡
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(12) 

𝐵௬
௜ (𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐵෠௬
௜

௡,௞
(𝑧)𝑒௝

ଶగ௡
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(13) 

𝐵௭
௜(𝑥, 𝑦, 𝑧)

= ෍ ෍ 𝐵෠௭
௜

௡,௞
(𝑧)𝑒௝

ଶగ௡
ఛ

௫𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

ே

௡ୀିே

 
(14) 

 

 

Fig. 6. Magnetic permeability distribution in the region I over the (xy) 
plane. 
 
Thanks to the Fourier series representation, only the 

z-dependant coefficients of the scalar potential 𝜑ො ௜
௡,௞

(𝑧), the 

magnetic field components 𝐻෡௫
௜

௡,௞
(𝑧), 𝐻෡௬

௜
௡,௞

(𝑧), 𝐻෡௭
௜

௡,௞
(𝑧) and 

the flux density components 𝐵෠௫
௜

௡,௞
(𝑧), 𝐵෠௬

௜
௡,௞

(𝑧), 𝐵෠௭
௜

௡,௞
(𝑧) 

remain to be determined. 

C. Convolution theorem 

The  magnetic permeability is homogeneous in the regions II 
and III and equal to 𝜇଴. However in the region I, the 
permeability is equal to 𝜇௥𝜇଴ with 𝜇௥ = 10ିସ at the bulk 
location and μ0 elsewhere as shown in Fig. 6. The permability 
in the region I is inhomogeneous and must be decomposed in 
Fourier series as well: 

 

𝜇ூ(𝑥, 𝑦) = ෍ ෍ �̂�௡,௞𝑒௝
ଶగ௡

ఛ
௫𝑒௝

ଶగ௞
௅

௬

ே

௞ୀିே

ே

௡ୀିே

 (15) 

 
Where the coefficients �̂�௡,௞ are expressed as: 

�̂�௡,௞ =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝜇଴ ቆ1 + 𝛼

𝐷

𝐿
(𝜇௥ − 1)ቇ

𝑓𝑜𝑟  𝑛 = 𝑘 = 0

,

𝜇଴𝐷

𝜋𝑛𝐿
(𝜇௥ − 1) sin(𝑛𝜋𝛼),

 𝑓𝑜𝑟 𝑛 ≠ 0 & 𝑘 = 0
 

𝜇଴𝛼

𝜋𝑘
(𝜇௥ − 1) 𝑠𝑖𝑛 ൬𝑘𝜋

𝐷

𝐿
൰

𝑓𝑜𝑟 𝑛 = 0 & 𝑘 ≠ 0 
,

𝜇଴

𝜋𝑛𝑘
(𝜇௥ − 1) sin(𝑛𝜋𝛼) sin ൬𝑘𝜋

𝐷

𝐿
൰ ,

𝑓𝑜𝑟 𝑛 ≠ 0 & 𝑘 ≠ 0

 (16) 
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It should be noted here that the bulk relative permeability 𝜇௥  
cannot be equal to zero as the resolution of the magnetostatic 
problem will involve the inverse of the permeability. Therefore, 
the permeability value must be small enough to behave almost 
as a perfect diamagnetic material. Conversely, a too small value 
of 𝜇௥  would cause numerical problems. Thus, the value 𝜇௥ =

10ିସ has been chosen after trials. 

The constitutive relation between 𝐵ሬ⃗  and 𝐻ሬሬ⃗  in non-
magnetized regions is: 

𝐵ூሬሬሬሬ⃗ = 𝜇ூ(𝑥, 𝑦)𝐻ூሬሬሬሬ⃗  (17) 

 
The right part of (17) being the product of two Fourier series 

decomposition, the convolution theorem can be applied 

allowing to express the coefficients of each component of 𝐵ሬ⃗  as 
follows: 

𝐵௫
ூ෢

௡,௞
(𝑧) = ෍ ෍ �̂�௡ି௡ᇲ,௞ି௞ᇱ𝐻௫

ூ෢
௡ᇱ,௞ᇱ

(𝑧)

ே

௞ᇱୀିே

ே

௡ᇱୀିே

 (18) 

𝐵௬
ூ෢

௡,௞
(𝑧) = ෍ ෍ �̂�௡ି௡ᇲ,௞ି௞ᇱ𝐻௬

ூ෢
௡ᇱ,௞ᇱ

(𝑧)

ே

௞ᇱୀିே

ே

௡ᇱୀିே

 (19) 

𝐵௭
ூ෢

௡,௞
(𝑧) = ෍ ෍ �̂�௡ି௡ᇲ,௞ି௞ᇱ𝐻௭

ூ෢
௡ᇱ,௞ᇱ

(𝑧)

ே

௞ᇱୀିே

ே

௡ᇱୀିே

 (20) 

It can be seen from equations (18) to (20) that each harmonic 

of 𝐵ሬ⃗  depends on all harmonics of 𝐻ሬሬ⃗ , whereas for homogeneous 
permeability regions, only harmonics of the same rank are 
interdependent. Hence, the application of Maxwell's equations 
in this region leads to a system of differential equations to solve. 

D. Matrix form 

In order to solve the system of differential equations, (18), 
(19) and (20) are rewritten in matrix form: 

𝑩𝒙
ூ = 𝝁௖

ூ 𝑯௫
ூ  (21) 

𝑩𝒚
ூ = 𝝁௖

ூ 𝑯௬
ூ  (22) 

𝑩𝒛
ூ = 𝝁௖

ூ 𝑯௭
ூ  (23) 

In matrix form, every quantity 𝑋(𝑥, 𝑦, 𝑧) expressed as 
Fourier series (𝐵௫, 𝐵௬, 𝐵௭, 𝐻௫ , 𝐻௬, 𝐻௭  and 𝛷)  with coefficients 

𝑋௡,௞ 
෣(𝑧) can be represented in matrix form by gathering the 
coefficient in a column vector X as follows: 

𝑿 = 𝑋௠ = 𝑋௡,௞ 
෣(𝑧) (24) 

 
The relations between the vector element index m and the 

harmonic ranks n and k are: 

𝑘 = 𝑓𝑖𝑥 ൬
𝑚 − 1

2𝑁 + 1
൰ − 𝑁 (25) 

𝑛 = 𝑚𝑜𝑑(𝑚 − 1,2𝑁 + 1) − 𝑁 (26) 

The functions fix(u) and mod(u,v) are the rounding toward 
zero of u and the remainder of the division of u and v, 
respectively.  

The matrix 𝝁௖
ூ  is the permeability convolution matrix and is 

defined according to (18), (19) and (20): 

𝝁௖
ூ = 𝜇௖

ூ
௠,௟

= �̂�௡ି௡ᇲ,௞ି௞ᇱ (27) 

The relations between the matrix element indexes m, l and 
the harmonic ranks n, k, n’, k’ are: 

𝑘 = 𝑓𝑖𝑥 ൬
𝑚 − 1

2𝑁 + 1
൰ − 𝑁 (28) 

𝑛 = 𝑚𝑜𝑑(𝑚 − 1,2𝑁 + 1) − 𝑁 (29) 

𝑘′ = 𝑓𝑖𝑥 ൬
𝑙 − 1

2𝑁 + 1
൰ − 𝑁 (30) 

𝑛′ = 𝑚𝑜𝑑(𝑙 − 1,2𝑁 + 1) − 𝑁 (31) 

In the regions II and III, the matrix form will also be used 
although the permeability convolution matrixes 𝝁௖

ூூ and 𝝁௖
ூூூ    

are much simpler: 

𝝁௖
ூூ = 𝝁௖

ூூூ = 𝜇଴𝑰(𝟐𝑵ା𝟏)𝟐 (32) 

With 𝑰(𝟐𝑵ା𝟏)𝟐 the (2𝑁 + 1)ଶ 𝑏𝑦 (2𝑁 + 1)ଶ identity matrix.  

E. Magnetostatic field equation 

Using the matrix form described above, the relation (1) 
becomes: 

𝑯𝒙
௜ = −𝑗

2𝜋

𝜏
𝑵𝒙𝜱𝒊 (33) 

𝑯𝒚
௜ = −𝑗

2𝜋

𝐿
𝑵𝒚𝜱𝒊 (34) 

𝑯𝒛
௜ = −

𝜕𝜱𝒊

𝜕𝑧
 (35) 

With the matrices Nx and Ny being defined as: 

𝑵𝒙 = 𝑁௫ ௠,௟
= ቐ

𝑚𝑜𝑑(𝑚 − 1,2𝑁 + 1) − 𝑁
𝑓𝑜𝑟 𝑚 = 𝑙

 

0 𝑓𝑜𝑟 𝑚 ≠ 𝑙
  (36) 

𝑵𝒚 = 𝑁௬ ௠,௟
= ൞

𝑓𝑖𝑥 ൬
𝑚 − 1

2𝑁 + 1
൰ − 𝑁

𝑓𝑜𝑟 𝑚 = 𝑙
 

0 𝑓𝑜𝑟 𝑚 ≠ 𝑙

 (37) 

The magnetostatic field equation in scalar potential is then 
derived from the Gauss law for magnetism: 

∇ ∙ 𝐵ሬ⃗ ௜ = 0 (38) 

Substituting (21), (22) and (23) into (38) leads to the 
following equation since the divergence of the magnetization is 
equal to zero in each region: 

𝝁௖
𝒊 డ𝑯𝒛

೔

డ௭
+ 𝑗

ଶగ

ఛ
𝑵𝒙𝝁௖

𝒊 𝑯௫
ூ + 𝑗

ଶగ

௅
𝑵𝒚𝝁௖

𝒊 𝑯௬
ூ = 0  (39) 

 
Finally, the magnetostatic equation to solve in scalar 

potential is obtained by substituting (33), (34) and (35) in (39): 
𝜕ଶ𝜱𝒊

𝜕𝑧ଶ
− (𝑽௜)ଶ𝜱𝒊 = 0 (40) 

Where in the region I: 

𝑽ூ = ൬ቀ
ଶగ

ఛ
ቁ

ଶ
(𝝁௖

𝑰 )ିଵ𝑵𝒙𝝁௖
𝑰 𝑵𝒙 +

ቀ
ଶగ

௅
ቁ

ଶ
(𝝁௖

𝑰 )ିଵ𝑵𝒚𝝁௖
𝑰 𝑵𝒚൰

భ

మ
  

(41) 

 
Whereas in the region II and III, the matrix V is diagonal: 
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𝑽ூூ = 𝑽ூூூ = ቆ൬
2𝜋

𝜏
൰

ଶ

(𝑵𝒙)𝟐 + ൬
2𝜋

𝐿
൰

ଶ

൫𝑵𝒚൯
𝟐

ቇ

ଵ
ଶ

 (42) 

F. General solution to the magnetostatic equation 

In each region i, the general solution of (40) is: 

𝜱𝒊 = 𝑒𝑽೔௭𝑪𝟏
𝒊 + 𝑒ି𝑽೔௭𝑪𝟐

𝒊  (43) 

Where 𝑪𝟏
𝒊  and 𝑪𝟐

𝒊  are column vectors with unknown 
coefficients of each region. In order to evaluate the matrix 
exponentials involved in (43), eigendecomposition is applied to 

𝑒𝑽೔௭: 

𝑒𝑽೔௭ = 𝑷𝒊𝑒𝑫೔௭(𝑷𝒊)ି𝟏 (44) 

Where 𝑫௜  and 𝑷𝒊  are the diagonal eigenvalue matrix and the 
eigenvector matrix of 𝑽௜ , respectively. As a result, the general 
solution (43) becomes: 

𝜱𝒊 = 𝑷𝒊𝑒𝑫೔௭(𝑷𝒊)ି𝟏𝑪𝟏
𝒊 + 𝑷𝒊𝑒ି𝑫೔௭(𝑷𝒊)ି𝟏𝑪𝟐

𝒊  (45) 

As 𝑽ூூ and 𝑽ூூூ  are diagonal matrices, their eigenvector 
matrices are equal to the identity matrix 𝑰(𝟐𝑵ା𝟏)𝟐  and 

𝑽ூூ, 𝑽ூூூ, 𝑫ூூand 𝑫ூூூ are equal.  

G. Calculation of the coefficients 

The determination of the six vectors of coefficients of the 
general solution will require the resolution of a system of linear 
equations and the inversion of a 6(2𝑁 + 1)ଶ 𝑏𝑦 6(2𝑁 + 1)ଶ 
matrix [28]. Thus, for 𝑁 = 10, the solution will involve the 
inversion of a 2646 by 2646 matrix which would have an 
important computational cost. Nevertheless, it is possible to 
drastically reduce the size of the linear system by rewriting (45) 
according to the boundary conditions in the z-direction.  

In matrix form, the boundary conditions (4) and (5) as well 
as the conditions between each domains lead to the following 
equations: 

𝜱𝑰|௭ୀ଴ = 𝟎  (46) 

𝜱𝑰|௭ୀ௓భ
= 𝜱𝑰𝑰|௭ୀ௓భ

 (47) 

𝝁௖
𝑰

𝜕𝜱𝑰

𝜕𝑧
ቤ

௭ୀ௓భ

= 𝜇଴

𝜕𝜱𝑰𝑰

𝜕𝑧
ቤ

௭ୀ௓భ

 (48) 

𝜱𝑰𝑰|௭ୀ௓మ
= 𝜱𝑰𝑰𝑰|௭ୀ௓మ

 (49) 

𝜕𝜱𝑰𝑰𝑰

𝜕𝑧
−

𝜕𝜱𝑰𝑰

𝜕𝑧
ቤ

௭ୀ௓మ

= 𝑴ூூூ (50) 

𝜱𝑰𝑰𝑰|௭ୀ௓య
= 𝟎 (51) 

Where 𝑴ூூூ  is the vector representing the magnetization in 
the region III expressed as: 

𝑴ூூூ = 𝑀௠
ூூூ = ቐ

−𝐵௥௘௠

𝜇଴

, 𝑚 = 2𝑁ଶ + 2𝑁 + 1

  0      , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 (52) 

In the region I, according to the conditions (46) and (47) and 
to the superposition theorem, the general solution can be 
rewritten as: 

𝜱𝑰 = 𝑷ூ
sinh (𝑫ூ𝑧)

sinh (𝑫ூ𝑍ଵ)
(𝑷𝑰)ି𝟏𝒂ூ (53) 

In the region II, according to the conditions (47) and (48):  

𝜱𝑰𝑰 =
sinh (𝑫ூூ(𝑧 − 𝑍ଶ))

sinh (𝑫ூூ(𝑍ଵ − 𝑍ଶ))
𝒂ூூ

+
sinh (𝑫ூூ(𝑧 − 𝑍ଵ))

sinh (𝑫ூூ(𝑍ଶ − 𝑍ଵ))
𝒃ூூ  

(54) 

Eventually, in the region III, according to (49) and (51): 

𝜱𝑰𝑰𝑰 =
sinh (𝑫ூூூ(𝑧 − 𝑍ଷ))

sinh (𝑫ூூூ(𝑍ଶ − 𝑍ଷ))
𝒃ூூூ (55) 

The function 𝑠𝑖𝑛ℎ(𝑿) is the hyperbolic sine of the matrix 𝑿 
and defined similarly to the hyperbolic sinus for scalar values. 
The function hyperbolic cosine of the matrix 𝑿 𝑐𝑜𝑠ℎ(𝑿) can 
also be defined. 

Thanks to the reformulations of the general solutions, the 
relations (53), (54) and (55) show only 4 coefficients vectors to 
be determined, 𝒂ூ, 𝒂ூூ , 𝒃ூூ  and 𝒃ூூூ. Furthermore, substituting 
(53) and (54) into (47) results in the relation: 

𝒂ூ = 𝒂ூூ (56) 

In a similar way, (54) and (55) into (49) lead to: 

𝒃ூூூ = 𝒃ூூ (57) 

As a result, there are only two coefficients vectors remaining. 
Ultimately, the conditions (48) and (50) are used to calculate 
𝒂ூூ  and 𝒃ூூ . These two relations are expressed as the following 
system: 

൤
𝑬ଵଵ 𝑬ଵଶ

𝑬ଶଵ 𝑬𝟐𝟐
൨ ቀ𝒂ூூ

𝒃ூூቁ = ൬
𝟎

(𝑫ூூூ)ିଵ𝑴ூூூ൰ (58)  

Where the component of the matrix E are: 

𝑬ଵଵ = 𝝁௖
𝑰 𝑷ூ𝑫ூ

cosh (𝑫ூ𝑍ଵ)

sinh (𝑫ூ𝑍ଵ)
(𝑷𝑰)ି𝟏

− 𝜇଴𝑫ூூ
cosh (𝑫ூூ(𝑍ଵ − 𝑍ଶ))

sinh (𝑫ூூ(𝑍ଵ − 𝑍ଶ))
 

(59) 

𝑬ଵଶ = −𝜇଴𝑫ூூ
𝑰(𝟐𝑵ା𝟏)𝟐

sinh (𝑫ூூ(𝑍ଶ − 𝑍ଵ))
 (60) 

𝑬𝟐𝟏 = −
𝑰(𝟐𝑵ା𝟏)𝟐

sinh (𝑫ூூ (𝑍ଵ − 𝑍ଶ))
 (61) 

𝑬𝟐𝟐 =
cosh (𝑫ூூூ(𝑍ଶ − 𝑍ଷ))

sinh (𝑫ூூூ(𝑍ଶ − 𝑍ଷ))

−
cosh (𝑫ூூ(𝑍ଶ − 𝑍ଵ))

sinh (𝑫ூூ(𝑍ଶ − 𝑍ଵ))
 

(62) 

The linear system (58) has 2(2𝑁 + 1)ଶ unknown coefficients 
and requires, for 𝑁 = 10, the inversion of only a 882 by 882 
matrix. It should be noted that the zero harmonics cause the 
matrix E to be non-invertible since the solution (43) is only 
valid for non-zero harmonics. To overcome this issue, a very 
small value is given to the zero harmonics such as 10-5 instead 
of absolute zero [26]. 

H. Calculation of the flux modulation function 

The flux modulation function is to be calculated in the region 
II as it corresponds to the location of the airgap and the 
armature. In order to compute the torque, only the axial 
component of the magnetic flux density is required while the 
eddy current losses in the windings involve the tangential 
component in the θ-direction as well. Thus, in the cartesian 
frame, only the x-component and z-component of the magnetic 
field in the region II have to be calculated. As the magnetic 
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scalar potential is now known in each region, the vectors 𝑩𝒙
ூூ  

and 𝑩𝒛
ூூ are obtained by: 

 

𝑩𝒙
𝑰𝑰 = −𝜇଴𝑗

2𝜋

𝜏
𝑵𝒙𝜱𝑰𝑰 (63) 

𝑩𝒛
𝑰𝑰 = −𝜇଴

𝜕𝜱𝑰𝑰

𝜕𝑧
 (64) 

 
The transition from the matrix form to the spatial form is 

made using the relations: 
 

𝐵௫
ூூ(𝑥, 𝑦, 𝑧) = (𝑩𝒙

𝑰𝑰)்𝑒
௝ቆ

ଶగௗ௜௔௚(𝑵𝒙)𝒙
ఛ

ା
ଶగௗ௜௔௚൫𝑵𝒚൯𝒚

௅
ቇ
 

(65) 

𝐵௭
ூூ(𝑥, 𝑦, 𝑧) = (𝑩𝒛

𝑰𝑰)்𝑒
௝ቆ

ଶగௗ௜௔௚(𝑵𝒙)𝒙
ఛ

ା
ଶగௗ௜௔௚൫𝑵𝒚൯𝒚

௅
ቇ
 

(66) 

 
Where the function 𝑑𝑖𝑎𝑔(𝑿) returns a column vector 

composed of the elements of the diagonal of the matrix 𝑿 and 
𝑿்  is the transpose of matrix 𝑿. 

Eventually, x-component and the z-component of the flux 
modulation function are the ratio of 𝐵௫

ூூ(𝑥, 𝑦, 𝑧) and 𝐵௭
ூூ(𝑥, 𝑦, 𝑧) 

respectively and the magnetic flux density generated by the 
magnet without the bulk B0: 

 

𝐹𝑀௫
ூூ(𝑥, 𝑦, 𝑧) =

𝐵௫
ூூ(𝑥, 𝑦, 𝑧)

𝐵଴

 (67) 

𝐹𝑀௭
ூூ(𝑥, 𝑦, 𝑧) =

𝐵௭
ூூ(𝑥, 𝑦, 𝑧)

𝐵଴

 (68) 

Where B0 is obtained from the Ampere law: 

𝐵଴ = −
𝐵௥௘௠(𝑍ଷ − 𝑍ଶ)

𝑍ଷ

 (69) 

I. Magnetic field of the whole inductor 

Once the flux modulation function is determined in the 
cartesian frame, the transition to the cylindrical frame is 
achieved by using the following relations between the 
coordinates: 

𝑟 = 𝑅௠ + 𝑦 (70) 

𝜃 =
𝑥

𝑅௠

 (71) 

In the cylindrical frame, the z-component of the modulation 
function is identical to that of the cartesian frame 𝐹𝑀௭

ூூ(𝑥, 𝑦, 𝑧)  
and the θ-component is equal to the x-component 𝐹𝑀௫

ூூ(𝑥, 𝑦, 𝑧).  
Ultimately, the magnetic flux density generated by the whole 

inductor is obtained from the following relations: 

𝐵௥௢௧௢௥௭(𝑟, 𝜃, 𝑧) = 𝐵௖௢௜௟௭(𝑟, 𝑧) × 𝐹𝑀௭
ூூ(𝑥, 𝑦, 𝑧) (72) 

𝐵௥௢௧௢௥ఏ(𝑟, 𝜃, 𝑧) = 𝐵௖௢௜௟௭(𝑟, 𝑧) × 𝐹𝑀௫
ூூ(𝑥, 𝑦, 𝑧) (73) 

Where 𝐵௥௢௧௢௥௭  and 𝐵௥௢௧௢௥ఏ  are the z-component and the 
θ-component respectively of the magnetic flux density 
produced by the inductor while 𝐵௖௢௜௟௭ is the magnetic flux 
density in the z-direction generated by the HTS-coil alone. 
𝐵௖௢௜௟௭ is obtained using the 2-D axisymmetric model presented 
in [24]. 

 

 

Fig. 7. Geometrical parameter of an armature coil. 

IV. ELECTROMAGNETIC POWER AND EDDY-CURRENT LOSSES 

CALCULATION 

In a three-phase electrical machine, the electromagnetic 
torque 𝑇௘௠  can be calculated from: 

 

𝑇௘௠ =
3𝐸ଵ𝐼௥௠௦

𝛺
 (74) 

 
Where Ω is the rotational speed , Irms is the rms value of the 

armature electrical current and E1 is the rms value of the 
fundamental component of the electromotive force which is 
obtained from: 

𝐸ଵ =
𝑝𝛺𝜆ଵ

√2
 (75) 

Where λ1 is the phase flux linkage amplitude due to the 
fundamental spatial harmonic of the inductor. In the present 
case, the air cored stator complexify the calculation of 𝜆ଵ. 
Indeed, the inhomogeneity of the magnetic field in the armature 
region means that each turn of the windings has a different 
electromotive force. The expression used to account for the 
magnetic field inhomogeneities and calculate λ1 is: 

𝜆ଵ =
𝑁௦𝐾௣𝐾ௗ

𝐿௖௢௜௟

×  

න න න 𝐾௛(𝑟)𝐵ଵ
෢(𝑟, 𝑧) cos(𝑝𝜃) 𝑟𝑑𝑟𝑑𝜃𝑑𝑧

గ
௣

௅೎೚೔೗

ோೢ೐ାௐ೓

ோೢ೔ିௐ೓

 
(76) 

 

 
The geometric parameters involved in (76) are detailled in 

Fig. 7. 𝑅௪௜  and 𝑅௪௘ are respectively the inner and outer radius 
of the inner turn of a coil composing the armature. 𝑊௖௢௜௟  is the 
width of a coil conductor bundle in the θ-direction,  𝐿௖௢௜௟  the 
thickness of a coil along the z-direction, 𝑊௛ the thickness of the 
coil head, 𝜃௖ the opening angle of a stator coil and 𝑁௦ the 
number of turns per phase.  
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Fig. 8. Function 𝐾௛(𝑟) accounting for the coil head influence on the flux 
linkage. 
 
Several kinds of windings can be modelled from (76) through 

the winding coefficients 𝐾௣ and 𝐾ௗ. 𝐾ௗ is the distribution factor 
while 𝐾௣ is the pitch factor whose calculation is detailed for 
several types of axial flux air cored windings in [32]. In the 
following, only the case of a concentrated winding in which 
𝑊௛ = 𝑊௖௢௜௟   will be detailed but conventional overlapping 
stator windings can be considered as well. 

The value of 𝐾ௗ can be classicaly calculated for differents 
windings according to [33]. In the case of concentrated 
windings, 𝐾௣ is expressed as: 

 

𝐾௣ =
2

𝑝𝜃௠

sin ቆ
𝑝

2
(𝜃௖ − 𝜃௠)ቇ 𝑠𝑖𝑛 ൬

𝑝𝜃௠

2
൰ (77) 

 
Where the angle 𝜃௠ is defined as: 
 

𝜃௠ =
𝑊௖௢௜௟

𝑅௠

 (78) 

The fundamental spatial harmonic of the inductor 𝐵ଵ
෢(𝑟, 𝑧) is 

obtained from the previous section inductor model as follows: 
 

𝐵ଵ
෢(𝑟, 𝑧) = 𝐵௖௢௜௟௭(𝑟, 𝑧)  × 

൭ ෍
𝐵௭

ூ෢
ଵ,௞

(𝑧)

𝐵଴

𝑒௝
ଶగ௞

௅
௬

ே

௞ୀିே

+
𝐵௭

ூ෢
ିଵ,௞

(𝑧)

𝐵଴

𝑒௝
ଶగ

௅
௬൱ 

(79) 

 
The integrals over r and θ in (76) allow the calculation of the 

flux under a pole. Since the flux value changes in the 
z-direction, the third integral over z is made to calculate the 
average of this flux in the armature. 

The function 𝐾௛(𝑟) accounts for the coil heads influence on 
the flux linkage. Indeed, the outermost region of the windings 
enclose more flux than the innermost region. Thus, 𝐾௛(𝑟) is 
represented in Fig. 8. 

Fig. 9. Representation of the two main arrangements of the armature in 
relation to the bulks. (a) The bulks cover only the purely radial part of the 
armature giving the relations: 𝑅௘ = 𝑅௪௘ and 𝑅௜ = 𝑅௪௜.  (b) The bulks also 
cover the coil heads giving the relations:  𝑅௘ = 𝑅௪௘ + 𝑊௛ and 𝑅௜ = 𝑅௪௜ −
𝑊௛. 

 
The influence of the coil heads depends on the machine 

arrangement, of which the two main ones are shown in Fig. 9. 
On the one hand, in the case of Fig. 9 (a) where the coil heads 
are not covered by the bulks, their impact on the flux linkage is 
small and not considering 𝐾௛(𝑟) would not lead to a significant 
error on the torque. On the other hand, for Fig. 9 (b) where the 
coil heads are covered, omitting 𝐾௛(𝑟) could lead to an 
underestimation of the torque depending on the machine 
geometry. In any case, the computation of the triple integral of 
(76) is done numerically. 

Another important consequence of the air cored armature 
topology is that the copper conductors are directly subjected to 
the magnetic field of the inductor. Hence, the eddy-current 
losses in the windings are higher than in iron cored armatures 
and the calculation of these losses is an important part of this 
machine sizing process. 

The computation of the losses is done by neglecting the 
magnetic field generated by the armature currents and the 
associated losses as the main contribution to these losses comes 
from the inductor. The calculation is done for each turn by using 
the formula for the losses in a conductor subjected to an external 
magnetic field which can be found in [34]. The latter method 
for axial flux machines with an air cored armature is described 
in detail in [35]. 

Fig. 10. Geometry and mesh of the CFEM (a) and SFEM (b). The grey 
regions are not simulated thanks to the symmetries. 
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Fig. 11. Axial component of the inductor flux density at the average radius, 
3 mm from the bulk surface (𝑟 = 𝑅௠ and 𝑧 = 𝑍ଵ + 3 𝑚𝑚). 

Fig. 13. Axial component of the inductor flux density around the outer bulk 
radius, 3 mm from the bulk surface (𝑟 = 𝑅௘ − 10 𝑚𝑚 and 𝑧 = 𝑍ଵ + 3 𝑚𝑚). 

 
 

Fig. 12. Azimuthal component of the inductor flux density at the average 
radius, 3 mm from the bulk surface (𝑟 = 𝑅௠ and 𝑧 = 𝑍ଵ + 3 𝑚𝑚). 

Fig. 14. Axial component of the inductor flux density around the inner bulk 
radius, 3 mm from the bulk surface (𝑟 = 𝑅௜ + 10 𝑚𝑚 and 𝑧 = 𝑍ଵ + 3 𝑚𝑚). 

V. COMPARISON WITH 3-D FEM SIMULATIONS 

In this section, the precision and efficiency of the proposed 
method will be assessed through the comparison of the three 
following models: 

 The semi-analytical model (SAM) in which the 
inductor magnetic field is obtained from the model 
proposed in section 3 while the torque and the eddy 
current losses are calculated from the armature 
model of section 4. This model is implemented on 
the software MATLAB 2019. 

 A semi-FEM model (SFEM) in which the inductor 
magnetic field is obtained from a 3-D stationary 
model in A-formulation with the software 
COMSOL Multiphysics while the torque and the 
eddy current losses are calculated from the armature 
model of section 4.  

 A complete FEM model (CFEM) in which the 
inductor and the armature are simulated on 
COMSOL with the torque being calculated using 
the Laplace force on the windings. The eddy current 
losses are not computed for this model. 

Fig. 10 shows the mesh and simulated geometry of the CFEM 
(a) and SFEM (b). As the winding layout represented is 
concentrated, the armature periodicity is different from the rotor 
periodicity. Therefore, the only symmetry plane is (𝑟𝜃) in the 
CFEM whereas the SFEM model only need to consider 1 4⁄  of 
a bulk and the corresponding portion of the coil. 

This study will identify the consequences of the different 
assumptions from which the SAM is derived. The different 
models will be tested with the parameters listed in Table. 1. 

A. Flux density distribution in the air gap 

Fig. 11 and Fig. 12 show the axial and azimuthal components 
of the flux density in the air gap at the mean radius obtained 
with the SAM for 5 and 20 harmonics and by the numerical 
models (SFEM and CFEM). For 𝑁 =  20, a good agreement is 
observed with the numerical simulations while 𝑁 =  5 also 
gives a reasonable estimate of the flux density distribution but 
does not allow predicting precisely the maximum value of the 
tangential component.  

Fig. 13 and Fig. 14 show the axial component of the flux 
density in the air gap around the bulk outer and inner radii 
respectively. In both cases, the effects of the linearisation at the 
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mean radius can be seen as the analytical curves slightly differ 
from the numerical curves. Nonetheless, the accuracy of the 
results seems to be more than satisfactory. 

Additionally, Fig.15 shows the flux density norm in the 
winding region computed by the CFEM. It appears that the flux 
density is higher on the top portion of the armature compared 
to the lower part.   

 
Fig. 15. Flux density norm distribution over the winding region from 
the CFEM model 

 
TABLE. 1. 

 PARAMETERS OF THE STUDIED MACHINE. 

Symbol Description Value 

𝑅௘ Bulk outer radius 148 mm 

𝑅௜  Bulk inner radius 85 mm 
𝑅௠ Bulk average radius 116.5 mm 
𝑅௕ HTS coil inner radius 176 mm 
𝑅௪௘ Outer radius of the armature coil inner turn 148 mm 
𝑅௪௜ Inner radius of the armature coil inner turn 85 mm 
𝑝 Number of pole pairs 5 
𝛼 Bulk pole-arc to pole-pitch ratio 0.5 
𝑊௖௢௜௟  Armature coil thickness 18 mm 
𝐿௖௢௜௟ Armature coil length 20 mm 
𝑊௕ HTS coil thickness 8.8 mm 
𝑍௕ HTS coil half length 53.5 mm 
𝑍ଵ Bulk half thickness 10 mm 
𝐸௚ Air-gap length 3 mm 
𝑑௦ Winding strand diameter 0.25 mm 
𝐾௖௨ Winding filling factor 0.7 
𝑁௦𝐼௥௠௦ Ampere-turns per phase 60.5 kA 
𝐽௕ HTS coil current density 613 A/mm2 

𝛺 Mechanical rotational speed 5000 rpm 

 

B. Precision on the torque and the eddy current losses 

Observing the flux density distribution in the air gap is not 
sufficient to properly assess the model precision. For this 
purpose, the torque and the eddy current losses are more 
relevant values. Indeed, the torque indicates the overall 
accuracy of the fundamental over the whole armature area while 
the eddy current losses inform on the harmonic’s precision.  

First of all, Fig. 16 shows the computational time of the 
different models as a function of the number of harmonics. 

Various elements can be observed. Firstly, the computation 
time of the SFEM increases a little with the number of 
harmonics while the CFEM time is constant. This is because the 
spectral analysis is only made for the eddy current losses 
computation in the SFEM while they are not calculated in the 
CFEM. In addition, the computation time of the SFEM is more 
important than CFEM because of this spectral analysis. 
Subsequently, the calculation time of the SAM rises 
exponentially with N as it strongly increases the matrices sizes. 
However, the resolution of the SAM remains below the 
numerical methods for 𝑁 <  20 and is of the order of a second 
for 𝑁 <  10. Thus, as long as it is accurate enough for 10 
harmonics, the proposed model is significantly faster than 
numerical methods. 

In order to ascertain the latter condition for the torque, 
Fig. 17 shows the relative error in absolute value of the SAM 
compared to the SFEM and the CFEM as a function of N. The 
CFEM is here taken as a reference since it simulates the exact 
geometry of the inductor and armature. Thus, the comparison 
of the SAM and the CFEM provides the overall accuracy of the 
model while the comparison of the SAM and the SFEM only 
gives the inductor precision. The inductor model appears to be 
precise even for 𝑁 =  5 as the error between the SAM and the 
SFEM is below 4 %. Additionally, for 𝑁 =  30, the error 
between the SAM and the SFEM drops to 0.15 %. The overall 
accuracy of the model is also good as the maximum error is 
below 7 %. Eventually, it should be noted that the error between 
the SFEM and the CFEM is not influenced by N as it 
corresponds to the armature model error and accounts for 3.2 % 
of the overall error. 
 

 

Fig. 16. Computational time of the different models versus the number of 
harmonics. 
 
Moreover, Table. 2 compares the torque calculated by the 

different models for the machine of Table. 1 with and without 
the covering of the coil heads as presented on Fig. 9. This table 
illustrate the impact of the coil heads on the torque as was 
described in section 4. When the coil heads are not covered, 
neglecting their impact, as done in the SFEM (b), lead to an 
additional 4 % error. In contrast, when the coil heads are 
covered, the additional error made by the SFEM (b) is 15.5 %. 
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This table also shows the significant performance improvement 
that can be achieved by covering the coil heads. 

 
TABLE. 2. TORQUE CALCULATED BY EACH MODEL FOR THE CASES 

WHERE THE COIL HEADS ARE COVERED AND UNCOVERED. (A) NORMAL 

SFEM. (B) SFEM MODEL WITH THE FLUX LINKAGE COMPUTED ONLY ON 

THE PURELY RADIAL PART OF THE WINDINGS. 

Model Coil heads uncovered Coil heads covered 

CFEM 1366 Nm 2206 Nm 
SAM N = 10 1301 Nm 2050 Nm 
SFEM (a) 1322 Nm 2114 Nm 
SFEM (b) 1254 Nm 1711 Nm 

 
Eventually, Fig. 18 presents the normalized eddy current 

losses obtained by the SAM and the SFEM as a function of the 
number of harmonics. For this analysis, the reference value is 
represented by the losses computed by the SFEM with 𝑁 =  30 
as it considers the exact magnetic field with a large number of 
harmonics. The first thing to observe here is the inaccuracy of 
the SAM for 𝑁 =  5. Indeed, the value calculated with the 
SAM is 27 % lower than the reference value but the spread 
decreases rapidly as the number of harmonics increase. Hence, 
while 5 harmonics are sufficient to get an accurate idea of the 
torque, taking less than 10 harmonics leads to a significant error 
on the eddy current losses.  

 

Fig. 17. Relative error in absolute value on the torque of the SAM 
compared to the SFEM and the CFEM. 
 
Nevertheless, it is important to distinguish between the two 

sources of error here. Firstly, the eddy current losses calculation 
requires a sufficient number of harmonics since high ranks 
harmonics still generate losses that are not negligible. This 
source of error is present even if the magnetic field distribution 
is completely accurate and corresponds to the error made by the 
SFEM. Thus, above N = 20, this error is almost null while it 
accounts for 18.4 % of the total error at 𝑁 =  5. Subsequently, 
the other source of error is the inaccuracy of the flux density 
distribution obtained from the SAM. As all harmonics are 
interdependent, a large number of harmonics is required to 
calculate their value accurately. It can therefore be deduced that 
this source of error is responsible for 8.6 % of the total error at 
𝑁 =  5. 

 

 
Fig. 18. Normalized eddy current losses calculated by the SAM and the 
SFEM versus the number of harmonics. 
 

C. Influence of the geometrical parameters 

According to the previous results, the SAM with 𝑁 =  10 
would appear to be a good compromise between accuracy and 
calculation speed. However, the geometrical parameters 
presented in Table. 1 are the result of an optimisation from 
previous works using the SFEM model. Therefore, it is 
important to investigate the sensitivity of the model's accuracy 
with the variation of the geometric parameters. For this purpose, 
the following parameters will be explored: 

 𝑅௪௘ in the range [100 mm : 250 mm]. 

 The ratio 𝑅௪௘
𝑅௪௜

ൗ  in the range [0.45 : 0.7]. 

 𝛼 in the range [0.3 : 0.7]. 

Fig. 19. Relative error on the torque of the SAM with N = 10 compared to 
the SFEM for the explored parameters. 
 
Additionally, the study will be performed for the cases 

represented in Fig. 9 (a) and Fig. 9 (b) with the coil heads 
covered or not by the bulks. Within this context, the aspect ratio 
of the bulk is defined as follows: 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑅௘ − 𝑅௜

𝛼𝜏
 (80) 

Since all the parameters explored affect the aspect ratio, the 
latter seems to be a relevant value to understand the results. 
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Fig. 19 shows the relative error on the torque of the SAM with 
𝑁 =  10 compared to the SFEM function of the aspect ratio. 
Several elements can be observed. Firstly, there is a clear 
correlation between the relative error and the aspect ratio as 
linearisation at the mean radius has less impact on bulks with 
low aspect ratios. For the same reason, the model is less precise 
for machines with coil heads covered. Secondly, it can be 
observed that the SAM has a strong tendency to underestimate 
the torque. Lastly, the SAM accuracy remains good even for 
large aspect ratios as the maximum error is inferior to 6 %. It 
should also be noted that, as for today, the use of bulks with 
very small or very large aspect ratios is unlikely since ring 
segment shaped bulks are mostly manufactured by machining 
disk or square shaped bulks [36]. Thus, HTS bulks with an 
aspect ratio close to 1 are easier to produce.  

Fig. 20 shows the relative error on the eddy current losses of 
the SAM with 𝑁 =  10 compared to SFEM function of the 
aspect ratio. The same observations as in Fig. 19 can be made. 
Indeed, there is a correlation between the error and the aspect 
ratio and the SAM tends to underestimate the losses. However, 
it is clear that the aspect ratio is not the only parameter 
influencing the error. Additionally, the average error is much 
higher for the losses than for the torque as was observed for the 
parameters of Table. 1. Indeed, as previously said, every 
harmonics of the SAM model are interdependent, which means 
that to obtain an accurate value of 10 harmonics, many more 
must be calculated.  

 

Fig. 20. Relative error on the eddy current losses of the SAM with N = 10 
compared to the SFEM for the explored parameters. 

VI. FLUX PENETRATION IN THE BULK 

The method described above as well as the numerical 
simulation are based on the main assumption that the bulk are 
perfectly diamagnetic which corresponds to type II 
superconductors with an infinite critical current density. 
However, even the most efficient superconductors does not 
have a perfect diamagnetic behaviour [36]. Therefore, it is 
important for the model to approach the bulk magnetic 
behaviour in order to have a more accurate idea of the 
performance of a flux modulation machine. The most common 
method to finely simulate this behaviour would be a time-

dependant H-formulation considering the E-J law [37]–[39]. 
However, the computation in 3-D takes several minutes making 
it difficult to integrate into a sizing study. Alternatively, the 
SAM can be improved using the Bean model [40] to account 
for the magnetic penetration in the bulk.  

 

Fig. 21. Implementation principle of the Bean model in the SAM model. 
The penetration of the magnetic field is modelled as a variation of the 
permeability instead of a current density. 

  
Fig. 21 presents the implementation principle of the Bean 

model in the SAM model. The Bean model considers a linear 
penetration of the magnetic field at the edges of the 
superconductor. The penetration depth of the magnetic field 𝑑௣ 
is linked to the bulk critical current 𝐽௖  and the applied magnetic 
field 𝐻௔ through the following relation: 

𝑑௣ =
𝐻௔

𝐽௖

 (81) 

In the SAM, complex permeability distributions can be 
considered. Hence, the penetration of the magnetic field is 
considered by a linear decline of the permeability with a 
penetration depth calculated from (81). The value of 𝐻௔ is 
computed using the coil axisymmetric model [24] giving the 
following relation: 

𝐻௔ =
𝐵௖௢௜௟௭(𝑅௠, 0)

𝜇଴

 (82) 

Thus, to include this feature in the SAM, only the matrix 𝝁௖
ூ  

has to be changed. To do so, the Fourier series coefficients �̂�௡,௞ 
of the permeability need to be recalculated. Fig. 22 shows the 
permeability distribution of the region I for an incomplete 
penetration of the bulk. Since the permeability is symmetric 
along x and y, only a quarter of the region I needs to be 
considered for the Fourier series coefficients calculation. The 
bulk centre is still diamagnetic but the permeability in the three 
sectors at the edges is expressed as: 

In sector (a): 

𝜇ூ(𝑥, 𝑦) =
𝜇଴

𝑑௣

൬𝑦 −
𝐷

2
+ 𝑑௣൰ (83) 

In sector (b): 

𝜇ூ(𝑥, 𝑦) =
𝜇଴

𝑑௣

ቀ𝑥 −
𝛼𝜏

2
+ 𝑑௣ቁ (84) 

In sector (c): 

𝜇ூ(𝑥, 𝑦) = 𝜇଴ ቌ1 −
ቀ𝑥 −

𝛼𝜏
2

ቁ ቀ𝑦 −
𝐷
2

ቁ

𝑑௣
ଶ

ቍ (85) 
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The coefficients �̂�௡,௞ are then calculated from: 
 
�̂�௡,௞ = 

4

𝜏𝐿
න න 𝜇ூ(𝑥, 𝑦)cos ቀ2𝜋

𝑛𝑥

𝜏
ቁ cos ൬2𝜋

𝑘𝑦

𝐿
൰

௅

଴

𝑑𝑥𝑑𝑦
ఛ

଴

 
(86) 

 
Care should be taken as Fig. 22 represents only the 

incomplete penetration case. Indeed, three other cases should 
be considered: 

The penetration is complete in the y-direction only (𝑑௣ >
஽

ଶ
 

and 𝑑௣ <
ఈఛ

ଶ
) and only sectors (a) and (c) are present in the bulk. 

The penetration is complete in the x-direction only (𝑑௣ <
஽

ଶ
 

and 𝑑௣ >
ఈఛ

ଶ
) and only sectors (b) and (c) are present in the bulk. 

The penetration is complete in both directions (𝑑௣ >
஽

ଶ
 and 

𝑑௣ >
ఈఛ

ଶ
) and the sector (c) recovers the whole bulk. 

Once again, 10ିସ𝜇଴ must be added to the �̂�଴,଴ coefficient 
such that the matrix 𝝁௖

ூ   is invertible. 
 

Fig. 22. Magnetic permeability distribution in a quarter of the region I for 
an incomplete penetration.  
 
In order to evaluate the relevancy of the improved SAM 

(ISAM), another reference model is made on COMSOL 
(HFEM). This model is a 3-D time dependant simulation of the 
inductor using an H-formulation of the Maxwell equations. The 
superconducting bulk is modelled through an E-J law with a 
constant 𝐽௖  [38] and the power law index equal to 20. The coil 
is supplied with a current ramp up to its nominal value in 60 s 
and then the current is kept constant for 60 s to reach the steady 
state at which the torque is computed using the armature model 
of section 4.  

Fig. 23 shows the current density distribution normalized to 
𝐽௖  in the bulk calculated by the HFEM. It should be noted that 
the symmetries exploited here are identical as in the SFEM, 
only 1 4⁄  is therefore simulated.  

 

Fig. 23. Normalized current distribution in 1 4⁄  the bulk at its centre 
calculated by the HFEM for 𝐽௖ = 1000 𝐴/𝑚𝑚ଶ : (a) corresponds to the (𝑟𝑧) 
cross section highlighted in red; (b) corresponds to the (𝑟𝜃)  cross section 
highlighted in cyan. 
 
 

Fig. 24. Axial component of the inductor flux density at the average radius, 
3 mm from the bulk surface (𝑟 = 𝑅௠ and 𝑧 = 𝑍ଵ + 3 𝑚𝑚) for  
𝐽௖ = 1000 𝐴/𝑚𝑚ଶ  and N = 20. 

 
Fig. 24 shows the axial component of the flux density in the 

air gap obtained with the SAM and ISAM for N = 20 compared 
to the HFEM for 𝐽௖ = 1000 𝐴/𝑚𝑚ଶ. It can be observed that 
the HTS bulk behaviour as predicted by the HFEM  is not 
completely diamagnetic for this 𝐽௖ . The modulation predicted 
by the ISAM differs from that of a diamagnetic bulk, though 
there is still a difference between the penetration calculated by 
the HFEM and the ISAM.  

Fig. 24 is not sufficient to properly assess the relevancy of 
the ISAM as the behaviour still seems to be closer to perfect 
diamagnetism than to the actual behaviour as calculated by the 
HFEM. For this purpose, Fig. 25 shows the electromagnetic 
torque calculated by the HFEM and the ISAM for N = 10 
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function of the bulk critical current density. The torque value is 
normalized to the diamagnetic torque as the latter represents the 
maximum achievable torque. In both cases, a transition is 
observed from complete penetration at low 𝐽௖  to close to 
diamagnetism behaviour at high 𝐽௖  and both models predict 
similar behaviours. Yet, the transition does not occur at the 
same 𝐽௖  values and there is an important difference between 
100 𝐴/𝑚𝑚ଶ and 1000 𝐴/𝑚𝑚ଶ which leads to an important 
error on the torque. Above the latter threshold, both curves are 
converging to the diamagnetic behaviour. Thus, the application 
of the Bean model in the ISAM allows to predict the global 
trend in magnetic behavior but cannot accurately calculate the 
torque for bulk with a small 𝐽௖ . This can be explained by the 
geometrical assumptions of the Bean model which can be 
applied for infinitely long bulks. In the present case, the bulk 
thickness in the z-direction is the smallest dimension of the 
bulk, hence the end effects are very important and cannot be 
accounted for as the convolution method only allows the 
permeability to be variable in the x and y directions.  

Indeed, as shown on Fig.23, altough the current density is 
located at the bulk edges as predicted by the Bean model, the 
latter predict that its value is either 𝐽௖  or 0 which is not exactly 
the case. Additionnaly, the currents also penetrate the bulk 
through the top and bottom surfaces of the bulk (i.e. surfaces 
along the (𝑟𝜃) plane) which is not taken into account in the 
HFEM. 

Fig. 25. Electromagnetic torque versus the bulk critical current density for 
the ISAM (N = 10) and the HFEM. The torque value is normalized to the 
diamagnetic torque. 
 
Nevertheless, the ISAM model is still more accurate than the 

SAM model and approaches the HFEM results for high 𝐽௖ . It 
should be noted that the materials most likely to be used for 
magnetic shielding are RE-Ba-Cu-O which have 𝐽௖  above 
3000 𝐴/𝑚𝑚ଶ at temperatures close to liquid hydrogen [25] 
which places them within the area of validity of the ISAM. 
Lastly, the ISAM requires around a second of computation time  
for 𝑁 =  10 while the HFEM requires between 15 minutes and 
3 hours to be solved depending on the  𝐽௖  value which makes it 
impossible to be integrated in an optimisation routine. 
Moreover, this high computationnal cost make is difficult to use 
a thin mesh which explain the rough aspect of the current 

density map of Fig.23. 
Therefore, the ISAM model appears to be the best 

compromise between precision and calculation time but must 
be used carefully as it is suitable only for bulks with a behaviour 
close to the diamagnetism. 

VII. CONCLUSION 

In this paper, a 3-D semi-analytical model of a 
superconducting axial flux modulation machine has been 
developed to calculate the torque and the eddy-current losses. 
The inductor model has been made using separation of variables 
method, Fourier series analysis and the application of the 
convolution theorem. This last tool allowed to consider 
domains with a variable permeability in two directions and 
enabled a resolution in 3-D using only 3 domains and therefore 
a drastically reduced computation time. The torque was derived 
from the electromotive force whereas the eddy-current losses 
were calculated from well known analytical formulas and the 
inductor flux density distribution. Eventually, as the variable 
permeability domains permit considering complex permeability 
distribution, the model has been improved using the Bean 
model to consider the magnetic penetration in the HTS bulk. 

Comparisons with the FEM simulations have shown the 
ability of the proposed model to quickly provide a precise result 
when the bulks are considered diamagnetic. Indeed, for 10 
harmonics, the torque and the eddy-current losses of the test 
machine can be predicted with less than 5 % error for the torque 
and 10 % error for the losses in less than 2 seconds. When the 
critical current density of the bulk is considered, the model has 
shown its ability to predict the trend in magnetic behaviour but 
does not accurately simulate bulks with low current densities. 
Thus, the validity area of this model still only comprises bulks 
with high critical current density and appears to be the best 
compromise between computation time and precision. In any 
case, the performances of the magnetic screens is the 
cornerstone of high specific power flux modulation machines. 
Thus, for aicraft applications, only large HTS bulks with large 
and homogeneous critical current density are relevant and likely 
to be used.  

The model presented in this article is a powerful tool for 
optimisation and sizing processes. It allows efficient design for 
prototypes as well as extrapolations and theoretical studies on 
the potential of this machine technology for aeronautical 
applications. Additionnaly, the modelling method in 3-D can be 
adapted to other kind of axial flux machines with region with a 
variable permeability such as axial flux permanent magnet 
machines or switch reluctance couplings. 
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