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Dynamical effects as a window into van der Waals interactions in fast He diffraction
from KC1(001)
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In this work we address, both experimentally and theoretically, the very grazing scattering of
He atoms off KC1(001) with incidence along the (100) channel. Our theoretical model combines a
semiquantum description of the scattering dynamics and a high-precision interaction potential. By
means of a thorough analysis of the quantum phase for in-plane scattering and rainbow trajectories,
we are able to connect the presence of the physisorption well with the significant enhancements of
the corrugation and rainbow angle, relative to the hard corrugated wall predictions. We trace this
connection to dynamical effects on the incident and scattered beams due to their traversing of the
physisorption well. Finally, we show that the inclusion of vdW interactions in the potential improves
the theoretical accord with experiments for both the corrugation and the rainbow angle.

PACS numbers: 34.35.+a, 34.50.-s, 79.20.Rf, 79.60.Bm

I. INTRODUCTION

Physisorption wells are a well known feature of He-
surface systems [1], traditionally attributed to polar-
ization and vdW attractive terms in the potential. De-
spite their typical shallowness (depth ~ 10 meV), a recent
study of grazing incidence fast atom diffraction (GIFAD)
for the He-KC1(001) system showed that this potential
feature results in a sharp increase of the surface corru-
gation and rainbow angle for incidence along the (110)
channel with very low normal energy (E; < 60 meV)
[2]. The key factor enabling this unexpected connec-
tion, besides GIFAD’s high sensitivity to details of the
surface electronic density, was the soft character of the
He-surface interaction, i.e. dynamical effects.

An additional appealing aspect of physisorption wells
is their location, at He-surface distances where both po-
larization and van der Waals (vdW) interactions are ex-
pected to significantly contribute to the potential, a fact
that has been mentioned in recent GIFAD studies for
He-LiF(001) [3], Ne-LiF(001) [4] and He-KC1(001) [2].
However, all three cases focused on the (110) incidence
channel, where the leading order dispersive force is likely
given by polarization [5], which may hide vdW contri-
butions. In fact, in Ref. [2], calculations performed
with a density functional theory (DFT) potential in
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which the Perdew-Burke-Ernzenhof (PBE) [6] exchange-
correlation functional implicitly includes polarization but
neglects vdW contributions, quantitavely captured the
experimental corrugation and rainbow features, while al-
ternative functionals that included vdW yielded no sig-
nificant improvement on the theory-experiment accord.

In this context, in the present article we address the
very grazing (low normal energy E, = E'sin®6; with
E the impact energy and 6; the glancing incidence an-
gle) scattering of He atoms off KC1(001) with incidence
along the (100) channel. We perform a thorough anal-
ysis of the role dynamical effects play as probes of the
physisorption well. The relevant physical quantities for
this study are the surface corrugation and the rainbow
angle, given their already reported sensitivity to dynam-
ical effects which, for normal energy E| < 60 meV, are
particularly enhanced by the attractive potential [2].

Concerning vdW interactions, heretofore they have
proven rather elusive for GIFAD [2, 4, 7-11]. In this re-
gard, the considered grazing incidence atom-surface scat-
tering problem presents a combination of very favorable
conditions for their exploration: i) a polarization-free in-
cidence channel, ii) scattering conditions which keep He-
surface distances large enough for vdW to be relevant,
iii) significant changes in the physisorption region when
potentials that include vdW interactions are used instead
of the reference PBE one, and iv) dynamical effects on
the He beam which allow for changes in the physisorption
region to result in alterations in the surface corrugation
and the rainbow angle.

The pillars supporting our analysis are a DFT-based
high precision potential built without incorporating ex-
perimental information of any sort, the surface initial



value representation (SIVR) [12, 13] which is a semi-
quantum approach to describe the scattering dynamics
and GIFAD experimental patterns for E; < 200 meV.
Additional literature regarding GIFAD studies of the He-
KC1(001) system can be found in Refs. [2, 9, 14-17].

This article is organized as follows: In Secs. II and
IIT we briefly summarize the experimental method and
theoretical model; in Sec. IV.A we present and discuss
experimental and simulated diffraction charts for the ref-
erence PBE potential; in Sec. IV.B we analyze the poten-
tial energy surfaces (PESs) obtained from different vdW
approaches; in Sec. IV.C we investigate dynamical con-
tributions to the surface corrugation, as well as to the
quantum phase; in Sec. IV.D we focus on the dynamical
effects on the rainbow angle; in Sec. IV.E we address
vdW contributions to the surface corrugation and the
rainbow angle; and in Sec. V we review our main results
and outline our conclusions.

II. EXPERIMENTAL METHOD

The experiments were performed in a setup already
described in Refs. [2, 18]. A brief outline of the pro-
cedure follows. The KC1(001) sample was cleaved in air
and immediately introduced into the ultra-high-vacuum
chamber, to be mounted on a five-axis manipulator. It
was prepared by annealing at about 650 K and its clean-
ness and crystallographic order were verified from the
resulting well-defined GIFAD patterns. The “He® beam
was obtained by the neutralization of a He™ beam (with
300 to 600 eV primary energies) and subsequent colli-
mation to a beam divergence lower than 1 mrad by a
set of apertures of 0.4 x 0.09 mm? placed 0.36 m apart.
The two-dimensional angular distributions of scattered
projectiles were collected by a detector formed by Mi-
crochannel plates, a phosphor-coated screen and a CCD
camera placed in the forward direction at a distance of
1.27 m. From the recorded GIFAD patterns, the effec-
tive surface corrugation and rainbow angle were derived
as explained in detail in Refs. [2, 19] (Particularly, see
Supp. Mat. of Ref. [2]).

III. THEORETICAL MODEL

The simulations of the scattering process yielding the
GIFAD patterns were performed by means of the SIVR
method combined with high-precision DFT-based PESs
for the He-KC1(001) system. Following, we give a brief
description of both of these ingredients.

A. SIVR approach

The SIVR method is a semiquantum model for graz-
ing atom-surface scattering that takes into account quan-
tum effects, such as interferences, coherence lengths and

classically forbidden transitions, without loosing the ap-
pealing and easily understandable description in terms
of classical scattering trajectories. The SIVR approxima-
tion is based on the well-known IVR approach [20] which,
within a Feynman path integral formulation of quantum
mechanics, introduces Van Vleck’s approximation [21] for
the quantum time-evolution operator, without the addi-
tional stationary phase approximation, of customary use
in semiclassical methods. The IVR method provides re-
sults in excellent agreement with the full quantum val-
ues for a wide variety of atomic, molecular and nuclear
processes [20, 22-27], which demostrates its ability to de-
scribe quantum effects in complex systems evolving over
time.

Within the SIVR model, the IVR time-evolution oper-
ator acts on the initial unperturbed state of the imping-
ing projectile, giving rise to the SIVR scattering state
as a function of the time ¢, |[PSTVR(1)), with outgo-
ing asymptotic conditions. This scattering state can be
expressed in terms of an ensemble of classical trajecto-
ries with different initial conditions, where the correlation
among nearby trajectories is introduced by a determi-
nant associated with the Maslov function. Within the
quantum time-dependent distorted-wave formalism [28],
’\IJ(SIVR) (t)) is used to produce the SIVR transition am-

plitude AGTVE) that reads

ABIVE) _ /dI‘o fs(ro)/dko fm (ko) alSTVH) (ro, ko),
(1)

where a3V (r, k,) is the partial transition ampli-
tude associated with the classical projectile path r; =
r+(ro,k,), with r, and k, respectively being the starting
(at ¢ = 0) position and momentum. The correspond-
ing functions fs(r,) and f,(k,) describe the spatial and
momentum profiles of the initial coherent wave packet
at a fixed distance Zy from the surface where the time
evolution is started.

From Eq. (1) it is clear that the transition amplitude
ABIVE) contains the interference among different partial
amplitudes a(*TV ) associated with a given incident wave
packet, which is the ultimate origin of quantum effects.
Therefore, the diffraction is mainly governed by the t¢-
evolution of the phase of a(STVHE) (ro, ko), which is given,
except for the Maslov phase (i.e., an integer number times

7/2), by
SIVR SIVR
o1V = PV — Q- (2)
where Q = Ky —Kj is the projectile momentum transfer,

with K; (K;) the final (initial) projectile momentum,
and

t
1
gszvz?,) _ /dt’ [2 (K —pt')2 —Vps(ry)|, (3)
mp
0

with p; = mpdr;/dt being the classical projectile mo-
mentum, mp the projectile mass, and Vpg(ry) the



projectile-surface interaction along the trajectory. For
more details of the SIVR model we refer the reader to
Refs. [12, 13].

B. Potential energy surface

In order to build the PES we considered a relaxed
KC1(001) surface and a three-dimensional (3D) grid of
positions R; for the He atom. By means of DFT, as im-
plemented in the QUANTUM ESPRESSO package [29],
we calculated the potential energy for each of these con-
figurations. From the resulting energy grid the projectile-
surface potential of an arbitrary configuration Vpg(R)
can be evaluated using the corrugation reducing proce-
dure [30] and a 3D cubic spline interpolation. We per-
formed the DFT calculations with the PBE exchange-
correlation functional [6], which leaves vdW interactions
out. We built three additional PESs, labeled vdW1,
vdW2 and vdW3, which include vdW interactions re-
spectively using the rVV10 [31], DF2b86r [32] and D2
[33] approaches. Further details regarding the four PESs
can be found in Refs. [2, 17, 34].

IV. RESULTS AND DISCUSSION

In this section we present our experimental and simu-
lated GIFAD charts for “He— (100)KC1(001), to then
focus on the surface corrugation and the rainbow an-
gle, both of them being GIFAD-related properties. By
means of a detailed analysis of the potential features
and SIVR GIFAD simulations, we expose the different
effects and interactions that contribute to these proper-
ties when derived from the processing of experimental
GIFAD patterns in the 5-200 meV normal energy range.
Simulations have been carried out for an impact energy
E = K?/(2mp) = 600 eV, within the validity range of
the semiquantum SIVR method and corresponding to the
highest value used in the experiments. Regarding SIVR,
note that the key assumption of this theoretical model is
the use of the IVR time-evolution operator [20], whose
range of validity extends beyond the limits of most semi-
classical theories [22, 35-37].

The fact that experimental and theoretical results are
obtained independently, i.e. without incorporating infor-
mation of one another to ensure and/or optimize their
mutual accord, is central to the analysis here reported.
The geometry of GIFAD for “He— (100)KC1(001) is de-
picted in Fig. 1 together with relvant angles and crystal-
lographic parameters. Note that the scattering process
is depicted with a broad line to represent the entangle-
ment of classical trajectories of similar initial conditions,
discussed in Sec. III.A.

FIG. 1: (Color online) Sketch of the GIFAD geometry and
sample pattern. He-KCl(001) system and incidence along
(100).

A. Diffraction charts

Recent articles [2, 9, 17] for the He-KC1(001) system
show that the overall features of the experimental GIFAD
patterns are reasonably well described by means of the
PBE PES. Hence, in this article, we use this potential as
a reference to study dynamical effects as well as the role
of vdW interactions in the physical quantities of interest.

In Fig. 2 we depict the experimental and theoretical
diffraction charts, in terms of the normal energy E, and
the final azimuthal angle ¢;. The experimental chart
was built from azimuthally-projected patterns for differ-
ent normal energies, normalized to their respective total
intensities. An analogous procedure was used for the sim-
ulated chart, obtained from the SIVR approach with the
PBE PES (henceforth PBE-SIVR).

The azimuthal positions of the bright streaks are de-
termined by the Bragg (interchannel) interference among
equivalent parallel channels, satisfying sin ¢y = nA/D
with A = 27 /K;, D the channel width and n the Bragg
order (n = 0 for the in-plane reflection). The inten-
sity modulation (both azimuthal and in normal energy)
of the Bragg orders is in contrast ruled by intrachannel
interference, a well-known challenge for all GIFAD mod-
els [4] due to its extraordinary sensitivity to the potential
features and the description of the rainbow region. Intra-
channel interference is given by the potential landscape
within a single channel, which gives rise to the rainbow
and supernumerary rainbows maxima. The intrachan-
nel pattern acts as an envelope function for the Bragg
maxima, determining their intensities.

The simulated chart in Fig. 2 fairly reproduces the
experimental trend despite some noticeable differences,
such as the apparent shift to lower £ | by about 20 meV
in the outermost peaks of the simulated chart (similar
to those present in Refs. [9, 17]), the high intensity of
these peaks at the highest F; values, and the azimuthal
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FIG. 2: (Color online) Two-dimensional diffraction charts, in
terms of the normal energy E; and the azimuthal angle ¢y
for impact energy E = 600 eV. (a) Experiment and (b) SIVR
simulation with the PBE PES.

width of the streaks. These quantitative discrepancies
might be the result of processes not contemplated by our
model, such as inelastic effects, defects, vdW interaction,
etc. Concerning inelastic mechanisms, fingerprints of the
physisorption well have been recently explored in polar
profiles [38]. Note as well that, given the reported sen-
sitivity of the streaks azimuthal width to the collimation
setup [13, 39], our simulations were carried out under
the same collimation conditions as the experiment.

B. PES analysis

The He-surface potential Vpg is a central ingredient
in our GIFAD simulations, which consider its full 3D
character. The scattering process in GIFAD however is
mainly ruled by the axial potential V2P (Y, Z), obtained
from averaging Vpg along the channeling direction (Z)
[40], with Y the position across the channel and Z the
vertical He-surface distance. In Fig. 3 we plot the axial
PBE, vdW1, vdW2 and vdW3 potentials as functions of
Z. The displayed curves correspond to Y values across
the (100) channel, with Y =Yg =0and Y =Y, = D/2

4

respectively its border (B) and middle (M) (see Fig. 4).
Note that rows of alternating K+ and CI~ ions run along
the borders of the (100) channel, while there are no sur-
face atoms in its middle.

(a)

o
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Axial Potential (meV)
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FIG. 3: (Color online) Axial potential as a function of the He-
surface distance Z for fixed values of the coordinate Y across
the (100) channel. Different exchange-correlation functionals
are considered in each panel: (a) PBE, (b) vdW1, (c) vdW2,
and (d) vdW3 (See text for the labeling of vdW approaches).

The salient feature in Fig. 3 is the physisorption well,
particularly its presence in Fig. 3(a). Attractive con-
tributions to the potential are typically assumed to be
polarization and/or vdW in nature. However, notwith-
standing the no-polarization no-vdW scenario respec-
tively ensured by the (100) channel and the PBE po-
tential, Fig. 3(a) exhibits a shallow well, around 5 meV
deep in the 3.2-3.5A Z range, which provides evidence
for an additional attractive contribution, likely exchange-
correlation in origin [41]. Regarding dispersion contribu-
tions to the axial potential for He-KC1(001), polarization
effects have been reported along (110) [2], while vdW
effects are visible in Figs 3(b), 3(c) and 3(d), when com-
pared to Fig. 3(a). In all cases, vdW dispersion forces
result in a deeper well and a larger variation of its loca-
tion Z with the coordinate Y across the channel.

Physisorption wells can be probed by low normal en-
ergy He atoms with high sensitivity, through the dynami-
cal effects they induce on GIFAD-related properties such
as the surface corrugation and the rainbow angle. The
processing of an experimental GIFAD pattern [2] yields
the shape of an equipotential curve (associated to a given
normal energy) from the modulation of the Bragg pat-
tern along the azimuthal angle. The surface corrugation
and rainbow angle are then respectively derived from the
amplitude and maximum slope of this effective poten-
tial. Within a hard corrugated wall (HCW) model [42]
however, these quantities can be determined, for a given
E., from geometric properties of the V2P(Y,Z) = E|
equipotential curve, as illustrated in Fig. 4 for the (100)
channel and PBE potential. The intrinsic corrugation



AZHCWNE ) = Zmax — Zmin is determined by the
Z positions of this curve’s maximum (Zyax) and mini-
mum (Zpnip ), while its maximum slope max(dZ/dY") gives
the angle of maximal deflection, i.e. the rainbow an-
gle ©,5(E,). Note that within this HCW description
the rainbow maximum can also be described in classical
terms as resulting from the accumulation of trajectories
reflected near an inflection point in Z(Y).

Noteworthily, the HCW (intrinsic) corrugation and
rainbow, derived directly from the axial potential (and
hence alternatively referred to as PES corrugation and
rainbow), cannot provide a complete picture of the scat-
tering process as they do not take into account either the
persistence of the He-surface interaction throughout the
scattering process or the quantum effects involved in the
rainbow scattering. Instead, within the SIVR approach,
the surface corrugation is associated with the in-plane in-
tensity, at ¢y = 0, of the simulated GIFAD pattern, while
the rainbow angle is determined by the bright outermost
maximum in the intrachannel pattern, which takes into
account quantum effects like the dark side of the classical
rainbow angle [12, 43].
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FIG. 4: (Color online) PBE equipotential curves of the axial
potential along (100) depicting the HCW (intrinsic) corruga-
tion, the rainbow angle and in-plane B and M trajectories for
a given F/;. Normal energy values are in meV. Non-labeled
curves correspond to values -1, -2, -3 and -4 meV.

C. Surface corrugation: Dynamical effects and
phase analysis

In this section we will restrict our theoretical analy-
sis to SIVR simulations with the PBE potential to show
how dynamical effects contribute to the surface corruga-
tion derived from experimental GIFAD patterns. Then,
by means of a detailed monitoring of the evolution of the
phase associated with relevant trajectories, we will prove
the direct connection between the behavior of the exper-
imental (effective) corrugation at low normal energy and
the physisorption well.

1. Dynamical contribution to the effective corrugation

The SIVR specular intensity of a GIFAD pattern is
determined from the interference between partial transi-
tion amplitudes corresponding to trajectories contained
in the scattering plane, i.e. impinging along the channel
border (B) or middle (M) (see Fig. 4). The phase dif-
ference between B and M trajectories is associated with
their respective reflection distances to the surface Z,ax
and Zpyin and hence we define the SIVR corrugation in a
manner analogous to the HCW one [42]. That is:

(SIVR) _

(SIVR)
AZSIVR) _ 9B M

where (;SSBSIVR) and qbg\}qIVR) are the respective phases for

B and M trajectories, given by Eq. (3) for ¢ — o0,
and K;, = v/2mpFE | is the component of the initial mo-
mentum perpendicular to the surface plane. Despite this
HCW-like definition, the SIVR corrugation is not propor-
tional to the intrinsic one as B and M trajectories expe-
rience different potential landscapes and these dynamical
effects also contribute to their phase difference. Conse-
quently, the SIVR corrugation contains information of
both the intrinsic corrugation and dynamical effects and
can then be expressed as

AZSIVR) _ A 7(HCW) L A 7(dyn) (5)

The effective (from experiments), intrinsic (from the
PES) and SIVR corrugations for He-KC1(001) have re-
cently been addressed for (110) incidence [2] and in Fig.
5 we analogously show these quantities as functions of
E, along (100). Upon decreasing E | , experiments show

0.6 T T T T
Experiment: © E= 300 eV
=z O E=400eV
N A E=600eV
<
[
.% 0.4r PBE-PES’ - = 1
S /
o 03} PBE-SIVR -
O
7
0.2 ‘ : : :
0 40 80 120 160 200

E, (meV)

FIG. 5: (Color online) Surface corrugation as a function of
the normal energy E | obtained from experimental GIFAD
patterns, the PBE PES (HCW value) and SIVR simulations
(with the PBE PES), the latter given by Eq. (4).

a slightly decreasing behavior down to 30 meV when
the tendency reverts and corrugation starts to increase,
though in a less eye-catching fashion than the one ob-
tained for (110). However, there is more to this behavior



than this first glance impression. The intrinsic corruga-
tion AZHEW)(E, ), obtained from the axial PBE PES,
monotonically decreases thus failing to capture the low
E, experimental increase. In contrast, the SIVR corru-
gation AZSIVR)(E|) is in almost quantitative accord
with the experiment in the whole E| range considered,
which, combined with Eq. (5), means that dynamical
effects are the origin of the increase in the experimental
corrugation for £, < 30 meV.

A measure of the increasing importance of dynamical
effects for low £| can be obtained from the relative differ-
ence AZ W) /A ZHEW) which reaches 20% for £, = 10
meV and 46% for £, = 5 meV, lower though compara-
ble to the respective 38% and 55% reported for (110) [2].
When compared with (110) [2], the corrugation increase
appears at lower F| and is less intense for (100) due
to the monotonically decreasing behavior of its intrinsic
corrugation. Nevertheless, dynamical effects along (100)
are intense enough to produce the slope inversion of the
experimental and SIVR corrugations.

2. Analysis of the SIVR phase

As previously stated, the origin of the observed dy-
namical effects for low E is related to the physisorption
well. Following, we prove this claim through the analysis
of SIVR phases (ngVR) and ngVS[IVR) (see Eq. (4)).

Within a HCW scattering the phase ¢(¢W) is given
by:

d)(HCW)(Z) [ 2K,,(Zy—Z) incoming path (6)
j 2K, (Zy — Zy,) outgoing path,

J
with Z, the trajectory’s turning point (Z(B)

tp
Zt(M) = Zmin for B and M trajectories respectively), and

Zy the initial and final He-surface distance, for which Vpg
is negligible. The difference

¢(dyn) _ Q/)(SIVR) _ ¢(HCW) (7)

= Zmax and

thus isolates the dynamical contribution to the SIVR
phase, which evolves steered by the potential landscape
experienced by the projectile along the trajectory (see
Eq. (3)). In Fig. 6 this effect is visualized for B and
M trajectories with F| = 10 meV, whose phases ¢(%™)
are plotted as functions of the He-surface distance Z, to-
gether with the respective axial potential curves.

From Fig. 6 the evolution of the phase ¢(%™) with Z
can be directly associated with the features of the po-
tential and, for very low F |, this significantly involves
the attractive region. For the incoming M trajectory
(9™ increases from Zy down to the position of the well
bottom Z,,;, together with its first derivative, while the
kinetic energy of the normal motion increases. Note that
at Z,p there is an inflection point in ¢(®™ . From Z,
to the position of the potential root Z,. (well edge) the
derivative 9¢(®™) /0Z decreases as does the normal ki-
netic energy and at Z,. the phase ¢(®™ reaches a local
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FIG. 6: (Color online) For border (B) and middle (M) tra-
jectories, with £; = 10 meV and the PBE potential, we show
(a) the phase Pl = pSIVE) _ g (HCW) que to dynamical
effects and (b) the axial potential along each trajectory. Both
quantities are plotted as functions of Z.

maximum. The last incoming interval is from Z,, to Zy,
where ¢(%™) and its derivative decrease as does the nor-
mal kinetic energy. In summary, 0¢(%™ /0Z follows the
normal kinetic energy (Fig. 6(b)) and is proportional to
the momentum p, throughout the incoming part of the
M trajectory and an analogous direct connection can be
made for its outgoing part, as well as for the complete B
trajectory.

As enlightening as Fig. 6 is, it still does not by itself
provide the explanation of the experimental corrugation
depicted in Fig. 5. The next step in our analysis is then
to separate the accumulated phase resulting from the at-

tractive part of the potential, @fﬁ?")

from the repulsive part, ¢$i%”), associated with the re-
flection process. Given the symmetry of the problem,
we can restrict our analysis to the incoming part of the

trajectory. The accumulated phases are then given by

, from that resulting

oL = W) (Z,,) — ¢\ (Zy),
‘I’Sii’)n) = ¢(dyn)(th)_¢(dyn)(Zw6)> (8)

and they are plotted, as functions of F,, for B and M



trajectories in Fig. 7.

N

T

trajectory B
trajectory M
t ]

=
T

Accumulated phase (rad)
o

Ssss p@m
~ re|
1k = < P 4
-2 , , —y
0 20 40 60 80 100
E, (meV)

FIG. 7: (Color online) Accumulated phase ®%¥™ for border
(B) and middle (M) trajectories (incoming path) as functions
of E. . Solid and dashed lines respectively correspond to %"
evaluated in the attractive and the repulsive regions.

From Fig. 7 we can obtain the difference of the accu-
mulated phase along B and M trajectories for both the
attractive and repulsive regions,

dyn dyn
AR = (BF") - B4F) ey,

dyn dyn dyn
ADGM = (@ — B i 9)
Then, adding up these contributions we get

AQU™ =A@l 1 AGLY™ (10)
and, through Eq. (4), the phase difference 2A®(#™) (the
2 factor is required to include the outgoing part of the
trajectory) provides the dynamical contribution to the
corrugation. It is clear in Fig. 7 that A@g‘égn) becomes
negligible in the low E; limit. Thus it is A@fﬁi’”) that
determines the low F; behavior of the SIVR and exper-
imental corrugations displayed in Fig. 5. This proves
that the experimental corrugation increase for low E
results from dynamical effects due to the physisorption
well. What is more, a similar analysis easily extends the
validity of the result to the (110) channel.

At this point it is worth noting that the role of the
physisorption well as the dominant source of dynamical
effects is restricted to the low E, region, £, < 30 meV.
For higher normal energies, the repulsive region of the
axial potential provides the dominant dynamical contri-
bution to A®(@™) as it is straightforwardly deduced from
Fig. 7.

D. Dynamical contribution to the rainbow angle

Within the SIVR approximation, the rainbow peak is
the intense outermost maximum in the intrachannel con-
tribution to a GIFAD pattern. In this section we will

address how SIVR trajectories differ from HCW paths
regarding the predicted location of the rainbow peak. As
in the previous section, we restrict our analysis to SIVR
simulations with the PBE potential.

The surface corrugation and the rainbow angle comple-
ment each other as the former probes the flatter regions
of the potential landscape, while the latter examines the
steepest ones. Another relevant difference is that SIVR
trajectories contributing to the rainbow peak inspect a
much more extended area across the channel than their
corrugation counterparts (B and M trajectories which
run along the channel), making the rainbow angle much
more sentient to dynamical effects and changes in the
potential.

In Fig. 8 we show the rainbow angle O,; obtained
from the processing of experimental GIFAD patterns as
a function of E |, contrasting it with the HCW rainbow

®£1;ICW)7 geometrically obtained from the potential (see

Fig. 4), and the SIVR rainbow, @i,fIVR), evaluated from
simulated pure intrachannel patterns.

60 : , , ,
= Experiment: O E=300eV
S O E=400eV
250 A E=600eV
® o ]
2 O PBE-PES _ — —
g) 40 2 k()) -
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x
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FIG. 8: (Color online) Rainbow angle as a function of E, .
Symbols and lines analogous to Fig. 5

The experimental rainbow angle in Fig. 8 is approxi-
mately constant for £, > 60 meV and slowly increasing
for lower /| . In this latter region the data spread a little,
and this spreading is larger than the one obtained for the
corrugation, due to the larger uncertainty involved in the

evaluation of a second derivative (the maximum slope).

The rainbow angle @chw) obtained from the potential

(PBE PES) corresponds to an unrealistic HCW dynam-
ics and yields, for decreasing F/| , a monotonic decreasing
behavior in poor accord with the experiment. Instead,
GSIVR) obtained from simulated intrachannel patterns
greatly improves the agreement with the experimental
data as they both include dynamical effects.

As was the case for the corrugation, dynamical effects
for low E| can be traced to the presence of the physisorp-
tion well. This is clearly visualized in Fig. 9 where,
in the top panel (Fig. 9(a)), a selection of trajectories
contributing to the rainbow peak is plotted within an



equipotential map, while the bottom panel (Fig. 9(b))
depicts the corresponding axial potential curves. Any of
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FIG. 9: (Color online) (a) SIVR trajectories deflected to

Of ~ O, with E; = 10 meV and the PBE potential. (b)
Axial potential along each of the depicted rainbow trajectories

2t(Yt)-

these trajectories z;(y;) can be split into three sections
- incoming, reflection and outgoing - where the poten-
tial V2P (yy, z¢) is respectively attractive, repulsive and
attractive again. Note that in the latter region, the tra-
jectory’s inflection point, determined from the maximum
of dz:/dyy, occurs at (Y, Z) coordinates giving the min-
imum potential along the trajectory. Another feature
worth mentioning is that the maxima of the potentials
along the selected trajectories are slightly below 10 meV
because trajectories transfer a little momentum to the
direction across the channel (p, — p,) before reaching
their turning points, where p, = 0.

At this point we will return to Fig. 8 where it is ev-
ident that for the (100) channel, dynamical effects are
not limited to the low FE| region but rather they are
clearly visible in the whole normal energy range consid-
ered. However, for £, 2 100 meV, rainbow trajectories
are not altered by the shallow attractive potential and
dynamical effects take place in the reflection region, due
to the repulsive potential. We can then conclude that the
relevance of the attractive and repulsive regions depends
on the E| value, this being observed both for the cor-
rugation and the rainbow angle through the respective
analysis of the SIVR phase and the rainbow trajectories.

E. The role of van der Waals interactions

Heretofore, our theoretical analysis of the surface cor-
rugation and rainbow angle has been made with a PBE
potential, which disregards interactions between induced
dipoles, i.e. vdW interactions. This level of approxima-
tion yielded an excellent agreement with experiment for
the (110) channel [2] and it also performed very well for
the corrugation along (100), as shown in Fig. 5. How-
ever, the SIVR-Experiment accord for the rainbow angle
depicted in Fig. 8 was not as rewarding. This discrep-
ancy could be associated with the higher sensitivity of the
rainbow angle to details of the potential, in particular
the neglect of vdW interactions, which markedly affect
the physisorption well, as shown in Fig. 3. Therefore, in
this section we will study the role of vdW interactions on
the corrugation and rainbow angle for the (100) channel.

Motivated by the unsatisfactory description of low
electron-density regions provided by local and semi-local
exchange-correlation functionals, several approaches
have been developed to incorporate vdW interactions
within DFT [31-33, 44-49]. In this work we compare the
performance of three of them, already introduced in Sec.
ITII.B and IV.B. Note that, while both vdW1 and vdW2
incorporate vdW interactions in a self-consistent fashion
and may additionally alter (i.e., improve) the PBE func-
tional in regions where vdW contributions are negligible,
vdW3 was the method used in early GIFAD and rainbow
scattering studies of He-KCI1(001) [14], which introduces
a semiempirical correction at large distances, is not self-
consistent and is matched to the PBE potential at small
distances.

The intrinsic (PES) and SIVR corrugations obtained
with vdW1, vdW2 and vdW3 potentials are displayed
in Fig. 10 together with the effective corrugation de-
rived from experiments. The reference PBE-PES and
PBE-SIVR curves are included as well. The qualita-
tive behavior of the SIVR and intrinsic corrugations is
not altered upon switching from PBE to the vdW PESs.
When compared to the PBE SIVR corrugation, vdW1
and vdW3 yield a poorer agreement with experiment.
In contrast, vd W2 satisfactorily matches the experimen-
tal values which, for very low E, fall between the PBE
and vdW2 curves, suggesting this latter vdW functional
gives an appropriate representation of the flat regions in
the potential. However, the comparison of the corruga-
tions obtained with PBE-SIVR and vdW-SIVR allow for
no strong claims regarding the role of vdW in GIFAD for
He — (100)KC1(001).

In fact, the rainbow angle is, as previously mentioned,
a more interesting physical quantity for addressing vdW
effects and, in Fig. 11, experimental, PBE-SIVR and
vdWs-SIVR rainbow angles are displayed together with
the HCW values taken from the respective potentials.
From a first inspection it is clear that vdW3 does not
provide a good description of the rainbow angle, so we
will focus our discussion on vdW1 and vdW2 approaches.
The HCW rainbows obtained from vdW1 and vdW2 are
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FIG. 10: (Color online) Corrugation as a function of E .
Symbols and color lines analogous to Fig. 5 with (a) vdW1,
(b) vdW2, and (c) vdW3 potentials. In all panels, red
thin lines correspond to PBE-SIVR i (solid) and PBE-PES
(dashed) results, and are meant to be used as a reference.

very similar to the PBE reference, in poor accord with
the experimental data. This is to be expected as a sin-
gle equipotential curve determines the rainbow angle for
each E/; and therefore the effect of the physisorption well
is mostly neglected. In contrast, the SIVR rainbow an-
gle for a single E, carries information of the potential
throughout the rainbow scattering trajectories, resulting
in a much higher sensitivity. Remarkably, both vdW1-
SIVR and vdW2-SIVR improve the accord with experi-
ment, particularly so for £, < 80 meV. What is more,
vdW1 quantitatively reproduces the experimental rain-
bow for the whole normal energy range considered.

Combining the information obtained from Figs. 10 and
11 we can say that both vdW1 and vdW2 provide a sat-
isfactory description of the interaction potential. vdW1
gives a very good performance for the rainbow, i.e. better
describes the highest-slope regions of the potential land-
scape, while vdW2, though not as good as the vdW1
rainbow description, provides a more general improve-
ment over the PBE potential, involving both flat and
high-slope regions.

50 | . vdW1-SIVR vdW1-PES |

Rainbow angle ©_ (deg)

20 L L L 1 L L L 1 L L L 1 L L L 1

0 40 80 120 160 200
E_ (meV)

FIG. 11: (Color online) Rainbow deflection angle as a function
of ;. Symbols and lines analogous to Fig. 10.

V. CONCLUSIONS

In this article we have addressed fast He diffraction
from KC1(001) for grazing incidence conditions along the
(100) channel. Our study has focused on the physisorp-
tion well showing that, for low E |, it is a source of dy-
namical effects which deviate the surface corrugation and
rainbow angle from the HCW predictions, producing an
increase of both quantities. This connection is accom-
plished through respective thorough analysis of (a) the
SIVR phase associated to in-plane scattering and (b)
rainbow trajectories.

Upon inclusion of vdW interactions, the resulting
slight changes, of just a few meV, on the physisorption
region translate into alterations of the surface corruga-
tion and rainbow angle, the latter being particularly sig-
nificant. Therefore, the present work achieves a robust
description of the hitherto elusive vdW effects on GIFAD-
related physical quantities, thus positioning GIFAD and
the SIVR method in the map of sensitive quality checks
for different approaches aimed to describe vdW interac-
tions within DFT [50].

Additional points worth mentioning are (a) theoretical
and experimental results are obtained independently, (b)
the physisorption well persists even in a no-polarization



no-vdW scenario, such as that provided by the (100) in-
cidence and the PBE potential and, (c) for the (100)
channel, dynamical effects are not restricted to the low
E, region. For higher normal energies, £, 2 60 meV,
the repulsive potential is a relevant source of dynamical
effects, while the role of the physisorption well becomes
negligible.

As future perspectives, the analysis tools developed
in this work for He-KC1(001) could be applied to other
alkali-halide surfaces and/or noble gas atoms to check if
vdW interactions are also relevant for those systems and
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compare the performance of the different approaches.
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