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aSorbonne Université, Laboratoire d’Ecogéochimie des environnements benthiques (LECOB), Observatoire Océanologique, F-66650
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Abstract

Oxygen-isotope measurements of fossil carbonates remain the most common method for paleoclimatic temperature recon-
structions. A well-known limitation of this approach is the influence of the oxygen isotope composition of water in which
mineralization occurs, which may vary significantly through space and time, and is often difficult to constrain precisely. Car-
bonate clumped-isotope thermometry is an alternative approach applicable to many carbonates. It is based on measurements
of D47 (a tracer of small statistical anomalies in the abundance of rare, doubly-substituted carbonate isotopologues), and
requires no independent information on the oxygen-isotope composition of parent waters. Here, we report new calibration
observations of clumped isotopes in four species of calcitic marine bivalves (A. colbecki, N. cochlear, S. cucullata, M. gigas)
from various ecosystems including coastal and deep-sea environments, with calcification temperatures ranging from �2 �C to
27 �C and very different amplitudes of seasonal temperature variability. At two localities with large seasonal temperature vari-
ability, calcification time intervals were constrained using a sclerochronological approach to test whether seasonal gradients of
temperature can be accurately quantified based on D47 measurements.

Our results indicate that the mature bivalves we analyzed have clumped-isotope compositions entirely consistent with ear-
lier calibration studies processed in the I-CDES reference frame and based on biogenic/abiotic/synthetic materials. By con-
trast, juvenile M. gigas oysters yield substantially lower D47 values than expected based on their calcification environments,
suggesting that their early growth phase is associated with yet poorly understood isotopic biases affecting both d18Ο and D47

values. The link between seawater temperatures and bivalve D47 values is thus potentially applicable to seasonal reconstruc-
tions, but only if shell sections formed in cold seasons are precisely identified and precisely sampled, and taking into account
that winter calcification is likely to be biased due to reduced growth rate. Moreover, the excellent agreement between our
observations and the existing I-CDES calibrations further demonstrates the efficacy of the I-CDES standardization approach,
https://doi.org/10.1016/j.gca.2021.09.019
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and adds to the evidence that many different types of carbonates conform to statistically indistinguishable relationships
between D47 and crystallization temperature.
� 2021 Elsevier Ltd. All rights reserved.

Keywords: Clumped isotopes; Mollusk; Paleoclimate; Temperature
1. INTRODUCTION

The oxygen-isotope composition of carbonate minerals
has long remained the most common tool for environmen-
tal paleotemperature reconstructions. Its general principle
rests on the fact that the oxygen-18 composition (d18O) of
carbonates varies with mineralization temperature. A note-
worthy limitation of this method is that carbonate d18O val-
ues also depend on the isotopic composition of ambient
water (d18Ow), which often varies both in space, as it is
function of the latitude and the balance between evapora-
tion and precipitation (i.e., salinity) and in time, e.g., as a
function of the glacial effect (i.e., the global fraction of
water stored as continental ice). Thus, local d18Ow values
are often difficult to quantify precisely, which constitutes
a large source of uncertainty in past seawater temperature
reconstructions (Shackleton, 1967; Cramer et al., 2011).
Additional issues to consider are to what extent oxygen iso-
topes, particularly in biogenic carbonate, may record other
parameters beyond temperature and water d18O, and
whether/how calibration relationships between calcification
temperature and oxygen isotopes vary between different
taxa.

Alternative paleotemperature proxies were developed
over the last few decades, such as trace element ratios
(e.g., Mg/Ca, Sr/Ca, Li/Mg) in biocarbonates, or organic
tracers such as alkenones and TEX86 (Prahl and
Wakeham, 1987; Schouten et al., 2007; Gentry et al.,
2008; Mouchi et al., 2013; Rollion-Bard and Blamart,
2015). These approaches yield promising results, but they
are not without limitations, particularly concerning their
precision, accuracy, and applicability to various settings.
For examples, Mg/Ca, one of the most used temperature
proxies in bivalve shells, exhibits various temperature rela-
tionships for different oyster species and/or between
younger and older specimens, and is heavily reliant on sea-
water composition changes, making difficult its use for past
climate reconstructions (see review in Mouchi et al., 2013;
Tynan et al., 2017).

Clumped-isotope carbonate thermometry is an alterna-
tive isotopic method constraining the crystallization tem-
perature of carbonate minerals. It is based on the
measurement of subtle statistical anomalies (D47) in the
abundance of doubly substituted carbonate isotopologues
such as 13C18O16O16O, relative to a purely stochastic distri-
bution of isotopes (Ghosh et al., 2006; Eiler, 2011). For fun-
damental thermodynamic reasons, D47 values are expected
to decrease systematically with crystallization temperature
(Schauble et al., 2006). A notable advantage of this
approach compared to others (e.g., d18O or Mg/Ca) is the
fact that clumped-isotope reconstructions do not require
any knowledge on seawater composition (d18Ow). Combin-
ing D47 and d18O measurements of marine carbonates thus
makes it possible to constrain past values of both seawater
temperature and d18Ow.

Over the past 15 years, many studies have documented
the relationship between D47 values and mineralization tem-
peratures for a broad variety of materials, including inor-
ganic carbonates (e.g., Ghosh et al., 2006; Daëron et al.,
2011; Kele et al., 2015; Bonifacie et al., 2017; Kelson
et al., 2017) and biogenic carbonates such as foraminifera
(Tripati et al., 2010; Grauel et al., 2013; Peral et al., 2018;
Piasecki et al., 2019; Meinicke et al., 2020), coccoliths
(Tripati et al., 2010; Katz et al., 2017), marine mollusks
(Eagle et al., 2013; Henkes et al., 2013; Petrizzo et al.,
2014) and land snails (Zaarur et al., 2011; Zhai et al.,
2019). Overall, these studies suggest that, except for some
specific types of carbonates such as corals (Thiagarajan
et al., 2011; Spooner et al., 2016), brachiopods (Henkes
et al., 2013; Came et al., 2014; Bajnai et al., 2018), or spe-
leothems (e.g., Affek et al., 2008; Daëron et al., 2011;
Affek and Zaarur, 2014; Meckler et al., 2015), D47 values
in many types of natural carbonates are quasi-exclusively
controlled by calcification temperature, to the exclusion
of other environmental parameters such as water d18O,
salinity or pH.

Clumped-isotope carbonate thermometry is still rela-
tively young, however. Precisely comparing D47 values mea-
sured in different laboratories has historically been
somewhat problematic, but this issue has rapidly and con-
sistently improved over the past decade (Dennis et al.,
2011, Defliese et al., 2015; Daëron et al., 2016; Schauer
et al., 2016; Fernandez et al., 2017; Bonifacie et al., 2017;
Bernasconi et al., 2018; Petersen et al., 2019), culminating
in the results of the InterCarb inter-comparison exercise
(Bernasconi et al., 2021), which demonstrated that D47 mea-
surements performed in 22 different laboratories using very
different methods, then normalized to the ‘‘InterCarb Car-
bon Dioxide Equilibrium Scale” (I-CDES) using a common
set of carbonate reference materials, are fully consistent
within analytical errors.

Compared to other taxonomic groups such as forami-
nifera, relatively few studies of clumped isotopes in
bivalves have been published so far. Bivalves are however
widely used to constrain paleo-temperature in the littoral
realm, as most species calcify shell material quasi-
continuously throughout the year, allowing for the recon-
struction of past seasonal variability (Purton and Brasier,
1997; Kirby et al., 1998; Kobashi et al., 2001; Harzhauser
et al., 2010; Briard et al., 2020; Uvanović et al., 2021).
Several clumped isotopes calibrations have already been
established for marine mollusks (Eagle et al., 2013;
Henkes et al., 2013; Petrizzo et al., Caldarescu, 2014).
However, directly using these past results and quantita-
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Fig. 1. A: Location of the sampling sites of the mollusks analyzed in this work. B: Location of the French sites where bivalves were sampled,
corresponding to C: the Baie des Veys in Normandy, D: Tes in the Arcachon basin, and E: the Lacaze-Duthiers Canyon in the northwestern
Mediterranean Sea.
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tively comparing them to modern analyses remains chal-
lenging due to the standardization issues mentioned
above. Moreover, despite promising potential for paleocli-
mate reconstructions, the use of clumped isotopes for
reconstructing past seasonal contrasts has received little
attention so far, even if some works showed the high
potential for seasonal reconstruction with D47 at high-
resolution (Hren et al., 2013; Ghosh et al., 2018; Van
Plantinga and Grossman, 2018; Zhang et al., 2018;
Briard et al., 2020; Caldarescu et al., 2021; de Winter
et al., 2021). Among technical limitations, D47 generally
requires an amount of carbonate powder unsuitable for
seasonal analyses (de Winter et al., 2018). But to date,
we still lack this type of approach on specimens from
the field. Moreover, even if we do have examples of
clumped measurements for some species, there are a lot
of type of bivalves, living in various environments and
characterized by different calcification behaviors. There-
fore, calibrations on other species are required.

The present study aims to reassess the D47 calibration for
marine mollusk shells, robustly anchored to the I-CDES.
We selected specimens characterized by well-constrained
growth conditions, allowing a precise report of clumped-
isotope compositions with growth, using D47 values normal-
ized by comparison to three international carbonate refer-
ence materials ETH-1, ETH-2 and ETH-3 (Bernasconi
et al., 2021). By combining clumped-isotope measurements
with a sclerochronological study of the analyzed shells, we
assess whether seasonal gradients of temperature may be
reliably derived from D47 in marine mollusk shells, thus
potentially constraining paleo-environments at the intra-
annual scale.
2. SPECIES AND SAMPLING SITES

Calibrating the clumped-isotope thermometer in mol-
lusk shells requires reliable constraints on calcification tem-
peratures. Specimens analyzed here were sampled from
localities where seawater temperatures were monitored con-
tinuously except for one site. Thirty-one individual speci-
mens of four bivalve species were analyzed for carbon-13,
oxygen-18 and clumped isotopes, with water depths ranging
from 0 to 270 m, and calcification temperatures from
�1.8 �C to 27 �C (Table 1). All shells were sampled alive
from their natural environments, avoiding aquaria culture
experiments which may induce strong deviation in shell
oxygen isotopes compared from predicted equilibrium,
likely due to changes in growth rates that result in kinetic
effects (Owen et al., 2002). A subset of these samples
(Ad, PY, TW) was previously described by Daëron et al.,
(2019), in the context of a comparison between biogenic
carbonates and slow-growing inorganic calcites from Devils
Hole and Laghetto Basso. Table 1 lists all bivalve samples
analyzed in the present study, grouped by species, locality,
shell growth period, and calcification temperature.

2.1. Adamussium colbecki

Three specimens of the Antarctic scallop species
Adamussium colbecki were collected by scuba divers in
January 2007 at the French Antarctic station Dumont
d’Urville (Fig. 1; 66�39.46S, 140�0.5E). The shells were
collected from a depth of 15 m. Sensors deployed at this
depth measured a mean annual seawater temperature of



Fig. 2. Temperature and salinity of the sampling sites of the mollusks. Temperature at the Dumont d’Urville Antarctic station is from
Lartaud et al. (2010a); from Chapron et al., 2020 for the Lacaze-Duthiers Canyon; from McClanahan et al. (2007) for Tiwi Beach (Kenya)
(mean of measurements performed in 1982–1983, 1987–1988 and 1997–1998) and from Huyghe et al. (2019) for the Baie des Veys. For
Magallana gigas, the periods corresponding to the winter (blue lines) and summer (red lines) samplings are reported. For oysters of the Baie
des Veys, a picture of the hinge area observed under cathodoluminescence with the illustration of the Mn2+ chemical markings that allow
illustrate for an attribution of an absolute age to each sampling is reported. The same has been done for oysters from Tes.
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�1.8 ± 0.3 �C, with short-term temperatures ranging
between �2.1 �C and brief seasonal warming peaks around
�0.5 �C between January and March due to warmer
freshwater input (Fig. 2; Lartaud et al., 2010a).
Seawater oxygen-isotope (d18Ow) measurements from
15 km to the NE of the sampling site yield a mean value
of �0.2 ± 0.2‰ (1SD) relative to VSMOW (Srivastava
et al., 2007; https://data.giss.nasa.gov/o18data). In situ cal-
cein markings of different specimens from the same site
revealed slow but uninterrupted shell growth with fortnight
related growth increments (Lartaud et al. 2010a).

2.2. Neopycnodonte cochlear

Five specimens of the deep-sea oyster species Neopycn-

odonte cochlear were collected in March 2010 at 270 m
depth in the Lacaze-Duthiers canyon, in the NW Mediter-
ranean Sea, �20 km east from the French coast offshore of
Banyuls-sur-mer (Fig. 1E; 42�32.10 N, 03�27.19E). Except
for brief (i.e., hours to days), very occasional temperature
drops of � 1 �C due to downwelling currents, mean local
temperature remained constant at 13.44 ± 0.10 �C (1SE),
as did salinity at 38.52 ± 0.04 psu (Fig. 2Durrieu de
Madron et al., 2013; Chapron et al., 2020).

In order to constrain the oxygen-isotope composition of
seawater at the site where the five N. cochlear were collected
in the Mediterranean Sea, twenty-two water samples of
20 mL each were collected in situ. They were stored at low
temperature to avoid fractionation effects caused by evapo-
ration. Analyses were performed at the Institut d’Ecologie et
des Sciences de l’Environnement de Paris at Grignon by
CO2-H2O equilibration (Epstein and Mayeda, 1953) using
an isotope ratio mass spectrometer coupled to an Aquaprep
(Isoprime coupled to a Gilson X222, Micromass; analytical
reproductibility: 0.15‰). Values oscillate between 0.28 and
0.93‰ relative to VSMOW, with an annual average value
of 0.7 ± 0.2‰ (1SE, Supplementary material 1).

No precise calibration of growth for N. cochlear exists
yet, but the congeneric species N. zibrowii has been shown
to be a very long-lived species (i.e., reaching > 500 years
old) with low growth rates (Wisshak et al., 2009), and
one may expect N. cochlear to have similarly slow calcifica-
tion rates.

2.3. Magallana gigas

The oysters of the speciesMagallana gigas (former Cras-
sostrea gigas, Salvi and Mariottini, 2017) analyzed in this
study are from in situ experiments conducted in two farm-
ing sites on French coasts, one in the English Channel
(Normandy, Baie des Veys) and the other on the Atlantic
coast, (Arcachon Basin, Tes) (Fig. 1B-D). Environmental
conditions including seawater temperature and salinity
were recorded every 15 min during the whole growth period
using a YSI multi-parameter probe directly attached to the
oyster tables (Fig. 2Lartaud et al., 2010b; Huyghe et al.,
2019).

We selected oysters bred between January 2005 and
November 2006 in the Baie des Veys (samples labelled
BDV) and between January 2005 and September 2006 in
the Arcachon basin (samples labelled TES). Collecting sea-
sonal samples for clumped-isotope analyses, required a pre-
cise, independent age model. Mn2+ chemical markings of
the shells were thus performed quasi-monthly during the
whole growing experiment period (Huyghe et al., 2019).
This Mn-based age model was demonstrated to align well
with high resolution d18O on other shells from the same site
(Huyghe et al., 2020), which gives confidence in applying it
to other shells from the same place. To this aim, oysters
were immerged during 4 hours in a tank filled with seawater
containing 90 mg L�1 of manganese chloride tetrahydeate
(MnCl2 4H2O), following the protocol of Lartaud et al.
(2010b). Before collecting samples for isotopic analyses,
the hinge area of each specimen was observed under
cathodoluminescence (CL) microscopy to precisely locate
the chemical markings, Mn2+ being an activator of lumines-
cence (Fig. 2). Absolute dates were attributed to each Mn2+

marking identified within the hinge, allowing precise micro-
sampling of specific time intervals (summer and winter)
within this area, with reliable correspondence between envi-
ronmental parameters and the collected samples (Fig. 2; see
Lartaud et al., 2010b; Huyghe et al., 2019 for more details
about age model construction).

At the BDV site, d18Ow values were measured monthly
and also reconstructed at sub-daily time scales based on
salinity measurements according to the equation of
Lartaud et al. (2010c). These d18Ow values range between
�0.33 and 0.13‰ relative to VSMOW (-0.09‰ on average,
Huyghe et al., 2020). At the TES site, d18Ow was recon-
structed from weekly local salinity measurements, also
according to the equation of Lartaud et al. (2010c).

Five BDV specimens were collected in November 2006.
At this site, seawater temperatures display seasonal, quasi-
sinusoidal fluctuations with minimum and maximum values
of 5 �C from January to March and 20 �C from July to
September, respectively, whereas salinity remained almost
constant throughout the year at � 33–34 psu
(Fig. 2Huyghe et al., 2019). Three time intervals were tar-
geted for isotopic measurements. The first one ranged from
January to the end of February 2005, during the juvenile
period (<1 year) of the life of these oysters. The second
and third intervals, corresponding to oyster ”adulthood”,
were associated to November 2005 to March 2006 (i.e., win-
ter period) and to July to September 2006 (i.e. summer per-
iod), respectively (Fig. 2). During the sampled winter
intervals, seawater temperature ranged between 5.9 and
8.9 �C (mean = 7.5, SD = 0.9 �C) in 2005 and between
5.3 and 13.4 �C (8 ± 0.4 �C) in 2006, whereas summer tem-
perature ranged between 16.3 and 20 �C (18.7 ± 0.2 �C).

Four oysters were sampled at TES in September 2006.
During the studied period, temperature fluctuated between
4.2 and 26.5 �C and salinity between 24.9 and 34.9 psu.
Here, the two sub-sampled intervals extended from Decem-
ber 2005 to February 2006 (winter), and from June to
September 2006 (summer), with temperatures ranging from
4.2 to 9.9 �C (7.4 ± 1.3 �C) and between 19.4 and 26.5 �C
(22.5 ± 2.1 �C) respectively. We did not sample the juvenile
interval for these oysters as these specimens had very little
thickness of foliated calcite, which restricted the carbonate
material available for precise clumped-isotope analysis.

https://data.giss.nasa.gov/o18data
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2.4. Saccostrea cucullata

The ‘‘warm” end-member specimens analyzed here are
from Tiwi Beach, on the Kenyan coast of the Indian Ocean
(4�14.316’S, 39�36.218’E). Four S. cucullata oysters were
collected from shallow intertidal waters in September
2005. In this area, monthly means of open seawater temper-
ature vary from 25.1 to 28.5 �C between August and Febru-
ary, with an annual mean of 26.8 ± 0.85 �C (1SE)
(Fig. 2McClanahan et al., 2007). Neither salinity nor
d18Ow observations are readily available for this site. The
shell growth model reported by Arkhipkin et al. (2017)
based on S. cucullata from the tropical Atlantic, is charac-
terized by slower growth rates than the temperate M. gigas

species (Lartaud et al., 2010b), but we still lack a precise
shell growth calibration for specimens from the Indian
ocean.

3. METHODS

3.1. Sample preparation and sampling

Once specimens were collected, soft tissues were manu-
ally removed from the shells, which were then cleaned using
de-ionized water. Organic matter was removed by soaking
in 5% H2O2 for 6 hours according to the protocol of
Lartaud et al. (2010c).

Different sampling strategies were used, depending on
mollusk species. The most classical way is sampling in the
outer shell layer from the hinge to the ventral margin. This
was the approach adopted for A. colbecki, which lives in
seawater with a constant temperature (Fig. 2) by breaking
off a 10-mm-long piece of the shell and ground it in an agate
mortar. For oysters (M. gigas, S. cuculata and N. cochlear),
calcite samples were collected from the hinge area, which
comprises both the complete ontogenetic record of oysters
and the record of environmental conditions experienced
throughout their life (Lartaud, et al., 2010b). As opposed
to most other bivalve studies, oyster studies often target
the hinge area instead of the whole shell section, providing
a condensed growth record on a small shell area, which is
usually less impacted by algal deposits and shell boring spe-
cies (Langlet et al., 2006; Lartaud et al., 2010c). Moreover,
because the hinge portion located under the ligamental area
has a homogeneous microstructure of foliated calcite
(Carter, 1980) it is more resistant to diagenetic alteration
than the rest of the shell (Lartaud et al., 2006). We collected
‘‘bulk” hinge samples from N. cochlear and S. cucullata,
which live in environments where temperature exhibit no
or few seasonal variations (Fig. 2). For M. gigas, we
micro-sampled with a Dremel the ‘‘summer”, ‘‘winter”,
and (in the case of BDV specimens) ‘‘juvenile” time inter-
vals identified from the Mn2+ markings (Fig. 2) using
cathodoluminescence observations.

3.2. Clumped isotope analyses

A total of 178 clumped-isotope analyses, comprising 109
shell analyses and 69 carbonate standard measurements,
were performed over three analytical sessions in late 2017
and early 2018 at the Laboratoire des Sciences du Climat
et de l’Environnement (LSCE), using the equipment and
protocols described by Peral et al. (2018) and Daëron
et al. (2019) (Supplementary data 1). In each analysis,
2.0–2.3 mg of carbonate powder were dissolved for 15 min-
utes in a common phosphoric acid bath at 90 �C. Water was
then cryogenically removed and the evolved CO2 passed
through a Porapak Q column (50/80 mesh, 1 m length,
2.1 mm ID) held at �20 �C under helium 6.0 flow
(25 mL/min). CO2 was then quantitatively recollected by
cryogenic trapping, and transferred by gas expansion into
an Isoprime 100 dual-inlet isotope ratio mass spectrometer
equipped with six Faraday collectors (m/z 44 to 49). Each
sample was analyzed for � 3 hours during which analyte
and working reference gases were allowed to flow from
matching, 10 mL reservoirs into the source through a pair
of fused silica capillaries (65 cm length, 110 mm ID). Every
20 minutes, gas pressures were adjusted to achieve a mass
44 current of 40nA, with differences between sample and
reference gas generally below 0.1nA. Background currents
were measured in all high-gain collectors (m/z 45 to 49)
before and after each pressure adjustment, with gas flowing
into the source, and are found to be strongly correlated
with mass 44 current.

Background-corrected ion current values were processed
using the IUPAC isotopic parameters (Brand et al., 2010)
to compute d13CVPDB, d

18OVPDB and D47raw values for each
analyte. The single-isotope composition (d13C, d18O) of our
working reference CO2 was computed based on nominal
d13CVPDB, d

18OVPDB values reported by Bernasconi et al.
(2018) for carbonate standards ETH-1, ETH-2, and ETH-
3, and an oxygen-18 acid fractionation factor of 1.00813
(Kim et al., 2007). ‘‘Absolute” D47 values were computed
from D47raw by comparison to carbonate standards ETH-
1 to ETH-3 using the ‘‘pooled” standardization approach
of Daëron (2021) and are normalized to the InterCarb Car-
bon Dioxide Equilibrium Scale (I-CDES, Bernasconi et al.,
2021). All data processing was performed using the open-
source D47crunch library (Daëron, 2021), and all analytical
uncertainties reported here are based on the long-term
repeatability of D47 measurements and fully account for
the effects of standardization. The long-term repeatability
of D47 values was 15.4 ppm for the three carbonate stan-
dards (n = 69, Nf (Number of degrees of freedom) = 60),
and 13.8 ppm when taking all analyses into account
(n = 194, Nf = 148). The long-term external reproducibili-
ties of d13CVPDB and d18OVPDB measurements on the car-
bonate standards were 0.04‰ and 0.09‰, respectively.

3.3. Temperature estimates from d18O

All carbonate clumped isotope measurements also yield
d18O and d13C values. As a potential strategy to constrain
the mineralization temperatures of our bivalves (except
S. cucullata, for which water composition constraints were
insufficient), we computed temperature estimates using tra-
ditional oxygen-18 methods. For N. cochlear and M. gigas

from the BDV we used directly measured d18Ow values, and



Table 1
All bivalve samples analyzed in the present study, listed by locality, specimen, and shell growth period, and sorted into eight groups by calcification temperature. Temperature estimates preceded
by an asterisk are based on oxygen-18 fractionation between shell calcite and local water (Eq. (1)), to account for warm-biased calcification rates and potential subsampling imprecision (see
Section 5.1). All other temperature estimates are based on in situ temperature records. Sample group averages of D47 are computed using the D47crunch library to account for covariance in
analytical errors (Daëron, 2021).

Locality Lattitude Longitude Depth

(m)

Species Time

interval

Specimen Sample Replicate

analyses

d13C
(‰ VPDB)

d18O
(‰ VPDB)

D47 I-CDES

(‰ ±95%)

Sample

group

d18O
(‰, VSMOW)

Salinity

(psu)

Instrumentallymeasured

Temperature

(�C ± 1SD)

Temperature

from d18O (�C)
D47 I-CDES

(‰ ±95%)

Dumont d’Urville

station (Antarctica)

�66.657667� 140.008333� 15 A. colbecki Ad1 Ad1 4 2.10 4.66 0.6803 ± 0.0165 Ad 0.2 ± 0.2 - �1.80 ± 0.50 �1.88 0.6893 ± 0.0119

Ad3a Ad3a 4 1.99 4.68 0.6933 ± 0.0166

Ad3l Ad3l 4 1.97 4.67 0.6944 ± 0.0166

Lacaze- Duthiers

canyon (France)

42.545556� 3.420833� 270 N. cochlear PY1 PY1 4 0.51 2.82 0.6444 ± 0.0160 PY - 38.52 ± 0.04 13.44 ± 0.1 7.99 0.6397 ± 0.0097

PY2 PY2 4 0.64 2.64 0.6434 ± 0.0160

PY3 PY3 4 0.99 2.55 0.6353 ± 0.0159

PY4 PY4 4 1.13 2.59 0.6252 ± 0.0159

PY5 PY5 4 0.84 2.44 0.6500 ± 0.0160

Tiwi Beach (Kenya) �4.238596� 39.603634� 0 S. cucullata TW1 TW1 5 1.53 �0.63 0.5863 ± 0.0142 TW - - 26.80 ± 0.85 - 0.6001 ± 0.0095

TW2 TW2 4 0.51 �0.98 0.5993 ± 0.0156

TW3 TW3 4 1.11 �0.87 0.6090 ± 0.0156

TW4 TW4 4 1.21 �0.77 0.6092 ± 0.0156

Baie des Veys (France) 49.385167� �1.100833� 0 M. gigas Juvenile BDV-3 BDV-3 J 2 �0.36 �0.87 0.6209 ± 0.0201 BDV-J �0.25 ± 0.21 32.04 ± 0.94 7.50 ± 0.90 17.25 0.6258 ± 0.0143

BDV-5 + BDV-7 BDV-5J7J 1 �0.04 �0.05 0.6284 ± 0.0272

BDV-6 BDV-6 J 1 �0.51 0.05 0.6096 ± 0.0271

BDV-6 + BDV-7 BDV-6J7J 1 �0.53 0.24 0.6492 ± 0.0274

Summer BDV-2 BDV-2S 4 �0.77 �0.83 0.6092 ± 0.0154 BDV-S 0.15 ± 0.08 33.4 ± 0.38 18.70 ± 0.75 19.73 0.6121 ± 0.0097

BDV-3 BDV-3S 4 �0.73 �0.82 0.6019 ± 0.0153

BDV-5 BDV-5S 4 �1.31 �0.73 0.6118 ± 0.0154

BDV-6 BDV-6S 4 �1.21 �0.64 0.6210 ± 0.0149

BDV-7 BDV-7S 4 �1.30 �0.84 0.6165 ± 0.0155

Winter BDV-2 BDV-2 W 4 �0.88 0.97 0.6409 ± 0.0157 BDV-W 0.2 ± 0.05 33.9 ± 0.25 *11.01 ± 1.00 11.01 0.6349 ± 0.0103

BDV-3 BDV-3 W 4 �1.22 1.40 0.6335 ± 0.0156

BDV-5 BDV-5 W 4 �1.24 1.11 0.6362 ± 0.0156

BDV-6 BDV-6 W 4 �1.34 1.13 0.6451 ± 0.0157

BDV-7 BDV-7 W 4 �1.50 0.69 0.6187 ± 0.0154

Arcachon Basin

(France)

44.666833� �1.136333� 0 M. gigas Summer TES-13 TES-13S 2 �0.46 �1.33 0.6030 ± 0.0200 TES-S 0.06 ± 0.21 33.47 ± 0.96 22.50 ± 2.10 21.66 0.5972 ± 0.0105

TES-2 TES-2S 5 �1.07 �1.13 0.5875 ± 0.0132

TES-3 TES-3S 4 �0.86 �1.28 0.6065 ± 0.0153

Winter TES-2 + TES-3 TES-2W3W 1 �0.87 0.11 0.6343 ± 0.0273 TES-W �0.67 ± 0.5 30.15 ± 2.28 *12.23 ± 1.00 13.6 0.6329 ± 0.0202

TES-4 TES-4 W 1 �0.39 0.38 0.6315 ± 0.0272
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PY

Ad
TW

TES-S

BDV-S
BDV-W
TES-W

BDV-J

Fig. 3. Average d18O and d13C values of all specimens analyzed in this study. Each marker corresponds to the unweighted average of all
measurements performed on a single bivalve sample as part of the clumped-isotope analyses. Corresponding values are listed in Table 1.
PY = Neopycnodonte cochlear; Ad = Adamussium colbecki; BDV-J = Magallana gigas from Baie des Veys, juvenile period; BDV-
W = Magallana gigas from Baie des Veys, winter period; BDV-S = Magallana gigas from Baie des Veys, France, summer period; TES-
W = Magallana gigas from Tes, winter period; TES-S = Magallana gigas from Tes, summer period; TW = Saccostrea cucullata.

48 D. Huyghe et al. /Geochimica et Cosmochimica Acta 316 (2022) 41–58
for A. colbecki water composition was estimated from the
Global Seawater Oxygen-18 Database of LeGrande and
Schmidt (2006). For TES, d18Ow was calculated using salin-
ity measurements using the equation of Lartaud et al.
(2010c). All environmental data are synthetized in Table 1.

To estimate the mineralization temperatures for M.

gigas and N. cochlear oysters and the pectinid species A.

colbecki we used the synthetic calcite regression of Kim
and O’Neil (1997) (Eq. (1), modified for consistency with
the use of an acid fractionation factor of 1.01025):

T �Cð Þ ¼ ðð18030 =1000ln aac�wÞ þ 32:17Þ � 273:15 ð1Þ
where ac-w corresponds to the fractionation coefficient
between calcite and water:

ac�w ¼ ð1000 þ d18Oc VPDBÞ � 1:03092 =ð1000
þ d18Ow VSMOW Þ ð2Þ

where d18Oc corresponds to the measured d18O of calcite
relative to VPDB and d18Ow to the d18O of the seawater rel-
ative to VSMOW.

For the pectinid species A. colbecki, we compared these
Kim & O’Neil estimates to those obtained from the equa-
tion of Chauvaud et al. (2005) established for calcite mate-
rial of pectinid species from the French Atlantic coast:

T �Cð Þ ¼ 14:84� 3:75 ðd18OCVPDB � d18Osw VSMOW Þ ð3Þ
4. RESULTS

4.1. d18O and d13C

We show in Fig. 3 the average d18O and d13C values for
all 31 clumped-isotope samples. Each value reported here
corresponds to the mean of one to five analyses performed
on one individual shell (cf Table 1), depending on the
amount of carbonate available. Each sample group exhibits
low d18O variability (from 0.1 to 0.7‰) compared to the
variability in d13C values (from 0.2 to 1‰) except for sam-
ple BDV-J. Antarctic A. colbecki samples yield the greatest
d18O values (mean = 4.45‰, SD = 0.06‰), followed by
deep-sea Mediterranean N. cochlear (2.45‰,
SD = 0.13‰). By contrast, temperate and tropical oysters
yield the lowest values. M. gigas shells from BDV have a
mean value of �0.78‰ (SD = 0.10‰) during the summer
period whereas shells from TES have a mean value of
�1.25‰ (SD = 0.15‰) during this season. The Kenyan
oysters (S. cucullata) have an annual average value of
�0.85‰ (SD = 0.16‰). The d18O of M. gigas shells in win-
ter are slightly greater, and more variable than for other
samples, with 1.02‰ (SD = 0.25‰) for BDV-W, �0.34‰
(SD = 0.5‰) for sample BDV-J and 0.02‰
(SD = 0.24‰) for TES-W.

Regarding carbon-13, A. colbecki yields the highest val-
ues and lowest variability (2.00 ± 0.06‰, 1SD). Saccostrea
cucullata and N. cochlear have intermediate values of
1.11 ± 0.38‰ and 0.83 ± 0.23‰ respectively. Oysters of
the species M. gigas have the lowest values. In the BDV,
these oysters have d13C values of �1.02 ± 0.26‰ during
summer, �0.33 ± 0.19‰ during the first winter (i.e. during
the juvenile phase, BDV-J) and �1.19 ± 0.21‰ during the
second winter (BDV-W). In Tes, oysters exhibit d13C of
�0.85 ± 0.23‰ during summer and �0.53 ± 0.21‰ during
winter.

4.2. Clumped isotopes

Clumped-isotope compositions of mollusk shells are
summarized in Table 1 and fully reported in research data
1. Sample-averaged D47 values range between 0.6 and
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Fig. 4. D47 values for all replicate analyses of bivalve samples, binned by sample group (cf Table 1). A Levene test of heteroscedasticity was
used to check whether the observed D47 variability among each group differs significantly from that for the standard ETH-3 (top row). N: total
number of analyses within each group; SD: sample standard deviation of D47 analyses within each group; W: Levene’s test statistic; p: p-value
for the null hypothesis that the underlying population variance within each group is equal to that within all ETH-3 analyses. All sample
groups analyzed here display no more internal D47 variability than expected from analytical repeatability alone.
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0.7‰ (I-CDES). One of the samples, TES-13 W, corre-
sponding to winter calcification of the M. gigas specimen
TES-13, could only be analyzed twice and yielded two very
different D47 values of 0.574 and 0.614‰much further apart
than expected from our usual analytical repeatability (see
supplemental data 1). Although we found no obvious tech-
nical problem with the two corresponding measurements, it
is possible (yet conjectural) that we mis-identified growth
sections exclusively associated with winter in this specimen,
which could explain the relatively low D47 values for this
sample (but not its apparent isotopic heterogeneity). For
lack of a better option, we opted to discard the results
obtained for sample TES-13 W, leaving only two other win-
ter specimens from this locality.

Although each sample was subjected to relatively few
analyses (four replicates when possible, but fewer for juve-
nile oysters and most samples from Arcachon), the total
number of replicate analyses corresponding to a given
calcification temperature is generally much larger (up to
20). As a result, it may be possible to constrain more pre-
cisely D47 values associated with each calcification tempera-
ture by binning together samples formed in the same
environmental conditions (‘‘Sample groups in Table 100).
Such binning of samples, however, rests on the implicit
assumption that the scatter in our D47 results mostly reflects
analytical uncertainties rather than true heterogeneities
between specimens and/or environmental variability, which
is consistent with the low variability of d18O within each
sample group. To test this assumption, we subjected the
sample distribution of D47 values for each temperature
group to a Levene test designed to assess whether the scat-
ter in any group is significantly larger than expected based
on the entire sample distribution of D47 values for the ETH-
3 standard (N = 35). As shown in Fig. 4, all groups yield p-
values consistent with the null hypothesis (equal variances),
implying that the observed scatter primarily reflects random
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Fig. 5. Comparison between the temperatures instrumentally measured in the sampling sites and the temperatures calculated from the d18O
values and the equation of Kim and O’Neil (1997). The equation of Chauvaud et al. (2005) was also tested for the pectens (Adamussium

colbecki, green diamonds). Each point represents a mean of all samples from a given sample group, as defined in Table 1. A 1 : 1 line is
reported on the graph.

50 D. Huyghe et al. /Geochimica et Cosmochimica Acta 316 (2022) 41–58
analytical uncertainties. Thus, in the forthcoming discus-
sion, we compare each of the eight calcification tempera-
tures listed in Table 1 to the corresponding average D47

values (weighted by number of analyses) for each sample
group, computed using the D47crunch library to account
for analytical error covariances (Daëron, 2021).

5. DISCUSSION

Here, we attempt to address three core issues. First, as a
prerequisite to the rest of the discussion, how (and how pre-
cisely) can we obtain optimal constraints, independently of
the clumped-isotope measurements, on the calcification
temperatures of our samples? Next, does D47 in our samples
vary systematically as a function of temperature alone, or
do we find evidence for clumped-isotope disequilibria?
Finally, how do our bivalve observations compare with ear-
lier results, whether or not they predate the I-CDES refer-
ence frame?

5.1. Independent constraints on calcification temperatures
from in situ observations and/or oxygen-18 thermometry

In the case of the tropical oyster S. cucullata, we are
unable to compare in situ temperature observations to
oxygen-18-derived estimates because neither salinity nor
d18Ow were monitored at this site. Relying on d18Ow values
from the GISS database for these samples is also not possi-
ble as they come from shallow water environments where
the evaporation/precipitation ratio fluctuates strongly over
the year, as well as freshwater input from land. However,
these specimens are from reduced seasonality environments
(�3 �C annual amplitude), so that the environmental tem-
perature constraints are sufficient for our purpose.

For all the other samples, Fig. 5 provides a comparison
between directly measured seawater temperatures and tem-
peratures calculated from Eqs. (1)–(3). We find good agree-
ment for both summerM. gigas sample groups (BDV-S and
TES-S). On the contrary, juvenile / winter M. gigas (BDJ-J,
BDV-W, and TES-W) yield discrepancies up to 10 �C
between the two temperature estimates. Although many
previous works have found that oysters mineralize their
shells following a systematic relationship between carbon-
ate/water oxygen-18 fractionation and calcification temper-
ature (Wefer and Berger, 1991; Kirby et al., 1998; Surge
et al. 2001; Ullmann et al. 2010; Tynan et al. 2014), several
works showed that minimum winter temperatures are not
always recorded and/or difficult to sample reliably due to
very slow calcification rates likely reflecting a combination
of cold temperatures and reduced food (Lartaud et al.,
2010b, c; Ullmann et al., 2010; Huyghe et al., 2019). In
BDV and TES winter settings, growth rate tends to increase
with environmental temperature, making calcification-
weighted average temperatures for winter periods signifi-
cantly warmer than time-weighted average environmental
temperatures (Fig. 2Huyghe et al., 2019). It is also possible,
due to the large amount of carbonate required for clumped
isotopes (2.0–2.3 mg per analysis), that we unknowingly
sampled small amounts of carbonate mineralized during
early spring or late fall, which might explain the higher
inter-specimen variability of d18O values for winter samples
relative to summer ones (Fig. 3). As a result of these two
issues, oxygen-18 thermometry likely provides more
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accurate estimates of calcification temperatures for non-
juvenile winter M. gigas samples, and in the rest of this
study we use these 18O-derived estimates as independent
temperature constraints for sample groups BDV-W and
TES-W. It should be noted that this approach yields larger
temperature uncertainties for the latter, due to the fact that
salinity (and thus d18Ow) values remained stable throughout
the year at Baie des Veys (Fig. 2), whereas seasonal varia-
tions are much larger for TES-W.

Juvenile M. gigas samples yield even greater discrepan-
cies, with Kim & O’Neil - derived temperatures warmer
by � 10 �C than in-situ seawater measurements for this per-
iod, and also than 18O-derived temperatures for the follow-
ing winter with similar environmental temperatures. Studies
based on specimens from the same site (Huyghe et al., 2019,
2020) recently observed very rapid growth rates during this
early stage of the oysters’ lives (Fig. 2), along with anoma-
lous oxygen-18 fractionation up to 3‰ relative to Kim &
O’Neil (1997). This discrepancy (BDV-J vs BDV-W) among
oysters of the same spat is too large to result only from sub-
sampling interval errors, and we conclude instead that they
reflect ontogenic effects associated with this juvenile devel-
opment stage (Huyghe et al., 2020), as already documented
in other mollusks (McConnaughey, 1989; Mitchell et al.,
1994). In the forthcoming discussion, we must thus tenta-
tively rely on the in situ observations to constrain calcifica-
tion temperature.

Temperatures derived from Kim and O’Neil (1997) for
the deep-sea oysters (N. cochlear) are 5 �C colder than
direct measurements despite quasi-constant environmental
conditions (Fig. 2). Such disequilibrium towards higher
d18O values is surprising compared to classical models dri-
ven by kinetic effects or thermodynamic response to biolog-
ically induced pH gradient in the calcifying region that lead
18O depleted carbonates (Adkins et al., 2003). But this
observation is qualitatively consistent with earlier findings
concerning another Pycnodonte species, where Wisshak
et al. (2009) observed an average oxygen-18 enrichment of
0.5‰, relative to Kim and O’Neil (1997) in giant deep-sea
oysters Neopycnodonte zibrowii from the northeastern
Atlantic. A positive deviation of � 1‰ compared to iso-
topic equilibria was also reported from coastal barnacle
and gastropod shells (Killingley and Newman, 1982;
Fenger et al., 2007) without clear explanation yet. These
biological fractionation processes could be more common
than presently though, and might be more easily identifiable
in deep sea settings where environmental variables are usu-
ally more stable than in coastal shallow ecosystems.

Oxygen-18-based estimates of calcification temperature
for our A. colbecki samples suffer from the fact that the
potential 18O equations of Kim and O’Neil (1997) and
Chauvaud et al. (2005) are both calibrated with minimum
temperatures of 10 �C (compared to �2 �C in this study),
leading to potentially large extrapolation biases. Our own
measurements yield calcite d18Ο values 1.04‰ and 0.21‰
higher than predicted, respectively, from Eqs. (1) and (3).
At any rate, because of quasi-constant environmental con-
ditions at this locality, oxygen-18 thermometry is unlikely
to provide better constraints on calcification temperatures
than the existing in situ observations (�1.8 ± 0.5 �C, 1SD).
Based on all the above arguments, Table 1 lists our best
estimates of calcification temperature for all sample groups.

5.2. Relationship between clumped isotopes and calcification

temperature

Fig. 6 plots the average D47 values, weighted by number
of analyses, for each sample group against the correspond-
ing estimates of growth temperatures. Low-seasonality
samples Ad, PY, TW and both summer-precipitated M.

gigas samples BDV-S and TES-S yield D47 values which
are strongly correlated with temperature. This holds true
as well for adult winter M. gigas samples (BDV-W, TES-
W) in spite of large analytical uncertainties on the latter.
A York regression (York et al., 2004) taking into account
all samples except BDV-J yields the following relationship
between calcification temperature (T, in K) and D47 (in‰,
I-CDES):

D47 ¼ 38:01 � 103= T2 þ 0:171 ð4Þ
The reduced v2 statistic for this regression is equal to 1.3

for 5 degrees of freedom, implying that the combined
uncertainties affecting analytical errors and calcification
temperature estimates are sufficient (p = 0.26) to explain
the observed regression residuals. Regression uncertainties
are best expressed by reformulating Eq. (4) as below, where
T0 is chosen so that model errors in slope and intercept val-
ues are statistically independent:

D47 = Α � 103 (1/Τ2 � 1/Τ0
2) + Β

A = 38.01 ± 3.56 (1SE)
B = 0.629 ± 0.003 (1SE)
T0 = 15.0 K

By contrast with all the other samples, the juvenile M.

gigas samples plot well outside of the confidence region
for the above regression. This is perhaps not surprising in
view of the strong ontogenic biases affecting oxygen-18
observed above (see also Huyghe et al., 2020), but could
also conceivably reflect the fact that the constraints on
BDV-J calcification temperature are from in situ tempera-
ture records, instead of oxygen-18-derived estimates as for
the other two winter samples (BDV-W, TES-W). We thus
test the hypothesis that the apparent offset of BDV-J could
results from a thermal ‘‘warm bias” in calcification rates
causing most shell to precipitate in the warmest periods
by comparing, in Fig. 7, the daily distribution of true sea-
water temperatures to the apparent temperatures derived
either from oxygen-18 or from D47, for all three BDV sam-
ple groups. We find that both isotopic temperature esti-
mates for the juvenile group are much warmer than the
warmest local conditions on record, even considering their
full 95% confidence regions. By contrast, both isotopic esti-
mates for the BDV-W and BDV-S are consistent with the
upper range of temperatures recorded in situ. We conclude
that the observed offset between BDV-J and the regression
line in Fig. 6 cannot result from thermal bias alone.

As shown in Fig. 8, the isotopic disequilibria manifested
by BDV-J seem consistent at first glance with those pre-
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Fig. 6. Mean D47 values as a function of calcification temperature estimates for each sample group (cf. Section 5.1; Table 1). These two
parameters are strongly correlated for all sample groups except for juvenile M. gigas samples (BDV-J), which yield anomalously low D47

values.
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dicted for DIC speciation effects by Hill et al. (2014), with
the observed –2.2‰ offset in d18O requiring a calcification
pH change of +0.6 or more. It appears unlikely, however,
that the differences observed between our juvenile BDV
samples and their mature counterparts (both from summer
and winter) directly reflect differences in calcification pH,
because most of the other factors influencing isotopic frac-
tionations between the calcifying DIC and the mineral
phase (crystallization rate, degree of DIC-water equilibra-
tion, preferential incorporation of carbonate vs bicarbonate
ions. . .) are also likely to vary greatly between these sam-
ples. For instance, Huyghe et al. (2019) showed that typical
shell growth rates for BDV-J are � 120 lm/day (very
roughly equivalent to > 35 lmol/m2/s), but only on the
order of 20 lm/day (�6 lmol/m2/s) and 10 lm/day
(�3 lmol/m2/s) for BDV-S and BDV-W, respectively. As
a result, the juvenile shells are likely to approach kinetic
limit fractionations, introducing additional yet poorly con-
strained fractionations between DIC and the mineral phase
(e.g., Watkins and Hunt, 2015, Devriendt et al., 2017).

Conversely, the offsets shown in Fig. 8 first appear to be
qualitatively different, with lower than expected values of
d18O and D47, from the well-documented offsets observed,
for instance, in corals (lower than expected d18O but greater
than expected D47) and in speleothems (greater than
expected d18O but lower than expected D47). In particular,
in deep-sea and surface corals, anti-correlated offsets in
d18O and D47 are likely to reflect precipitation from a
DIC pool out of isotopic equilibrium with water, due to
rapid absorption of CO2 (Guo, 2020). But the model of
Guo is also consistent with negative offsets in both d18O
and D47, as progressive re-equilibration of the DIC pro-
duces non-intuitive trajectories in (d18O, D47) space
(Fig. 8). The isotopic disequilibria reported here in juvenile
M. gigas could thus conceivably be controlled by CO2

absorption kinetics, as is likely the case in corals, despite
the apparent discrepancy in (d18O, D47) covariation. Several
processes are involved in the mineralization process of mol-
luscan shells. It has been shown that the calcifying matrix is
a mixture of different proteins that control the polymorph
and the texture of the shell (Marin and Luquet, 2004). Min-
eralization for mollusks occurs in the extrapallial cavity,
that contains a fluid precursor to mineralization that
reaches the saturation state. Although it is established that
CO2 absorption is one of several processes involved in
bivalve biomineralization, quantitative estimates of this
contribution remain elusive. McConnaughey et al. (1997)
concluded that metabolic C from respired CO2 typically
accounts for around 10% of mollusk-shell carbonate, yet
larger contributions, up to 37%, have been reported in some
bivalve species (e.g., Gillikin et al., 2007). The fraction of
metabolic C incorporated in the shell is likely to vary
greatly between larval, juvenile and mature stages in
response to strong differences in mineralization conditions
and/or nutrient availability (e.g., Thomsen et al., 2015;
Lartaud et al., 2010d).

Testing whether the isotopic offsets of Fig. 8 are driven
by differences in calcification pH, in CO2 absorption kinet-
ics, or by other causes calls for additional, systematic com-
parisons of juvenile versus mature shell sections in M. gigas

and other species. For now, juvenile sections of oyster shells
(identifiable by sclerochronological or sclerogeochemical
approaches in fossils) do not appear to be suitable for iso-
topic paleotemperature reconstructions.

As illustrated by the good agreement between our N.

cochlear samples (PY) and the other species studied here,
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clumped-isotope thermometry potentially provides accurate
estimates of temperature even in samples characterized by
‘‘anomalous” oxygen-18 fractionation behaviors. It is per-
haps significant that our low-seasonality samples (Ad,
PY, TW) plot slightly above the regression line of Eq. (4)
while the summer and winter M. gigas samples plot slightly
below. Each of these small positive and negative residuals is
well within uncertainties, yet the systematic distribution of
samples above and below the line as a function of reduced
vs strong seasonality is consistent with warm-biased calcifi-
cation rates in M. gigas, perhaps even in summer samples
(cf bottom panel of Fig. 7).

Based on the observations described above, two issues to
keep in mind when attempting clumped-isotope reconstruc-
tions of paleotemperatures using bivalves are, for one thing,
risk that juvenile calcification in M. gigas (and potentially
in other species from strongly seasonal environments)
may exhibit large 18O and D47 departures from expected
values, for reasons yet to be investigated. What is more,
shell produced during the winter in strongly seasonal envi-
ronments must be sampled with caution if there is any indi-
cation of reduced growth rates, and it might even then
remain impossible to reliably estimate minimum tempera-
tures due to thermal bias in calcification rates.

This issue may likely be mitigated by combining different
proxies: as stated above, d18O in mollusk shells offers high
resolution records at sub-seasonal scales but suffer from
uncertainties on coeval d18Ow values. By contrast, clumped
isotopes are independent of d18Ow but require compara-
tively large amounts of carbonate, thus yielding lower-
resolution records. Combining D47 and d 18O analyses on
the same specimens, as recently done in several studies
(Van Plantinga and Grossman, 2018; Briard et al., 2020),
is a promising approach which should be widely applicable
to different periods and environments.
Fig. 7. Comparison, for the three BDV sample groups, of daily
in situ records of seawater (histograms), apparent calcification
temperatures derived from oxygen-18 based on the Kim & O’Neil
(1997) equation (square markers with 95% confidence limits) or
from clumped isotopes based on the Peral et al. (2018) calibration
(round markers with 95% confidence limits), whose applicability to
bivalves is illustrated by Fig. 9.
5.3. Comparison with earlier studies and I-CDES calibrations

Our findings are qualitatively consistent with previous
studies of clumped isotopes in marine mollusk shells
(Eagle et al., 2013; Henkes et al., 2013; Petrizzo et al.,
2014), but direct numerical comparisons are not straight-
forward because of significant methodological differences:
(a) the data of Eagle et al. (2013) mostly predate the intro-
duction of an ‘‘absolute” D47 scale referenced to equili-
brated CO2 values (Dennis et al., 2011), and to the best
of our knowledge has not been reprocessed using updated
17O correction parameters; (b) there is no strong consensus
on which ‘‘acid correction” value should be used to com-
pare our measurements to those of Petrizzo et al. (2014),
who reacted samples at 25 �C; (c) most importantly, the
data reported here were normalized in the I-CDES refer-
ence frame, using carbonate standards instead of equili-
brated CO2 gases, and the InterCarb results demonstrate
that exclusively relying on gas standards potentially intro-
duces detectable inter-laboratory biases (Bernasconi et al.,
2021).

With these caveats in mind, it should nevertheless be
safe to compare regression slopes of calibrations even if
they were not processed in the same reference frame
(Fig. 9). The slope obtained here (38.01 ± 3.56 � 103K2,
1SE) is statistically indistinguishable from those obtained
from the results of Henkes et al. (p = 0.16) and Petrizzo
et al. (p = 0.55), both reprocessed using the IUPAC 17O
correction parameters by Petersen et al. (2019). Our bivalve
Fig. 8. Isotopic offsets (with 95 % error bars) from expected values
observed in the three BDV sample groups. Non-juvenile samples
BDV-E and BDV-H yield d18O and D47 values consistent with the
calibrations of Kim & O’Neil (1997) and Peral et al. (2018),
respectively. By contrast, juvenile samples (BDV-J) display lower
than expected d18O and D47 values, potentially consistent with DIC
speciation effects and/or kinetic fractionation effects associated
with CO2 absorption, but not with purely diffusive effects which are
expected to decrease d18O and increase D47 (Thiagarajan et al.,
2011). Note that the choice of D47 calibration has no bearing on
this observation, because Peral et al (2018) is statistically indistin-
guishable from other I-CDES calibrations (Fig. 9).



Fig. 9. (a) Comparison between our results and those from other calibration studies processed (or reprocessed) in the I-CDES reference
frame. There is close agreement between the non-juvenile bivalves analyzed here and Late Holocene foraminifera (Peral et al., 2018), extremely
slow-growing calcite from Devils Hole and Laghetto Basso, and various other carbonate materials (Anderson et al., 2021). (b) 95% confidence
ellipses for the regression slopes and D47 intercept values at 15 �C for various I-CDES calibrations and the earlier bivalve/mollusk studies of
Henkes et al. (2013) and Petrizzo et al. (2014), both reprocessed by Petersen et al. (2019). Because I-CDES and pre-I-CDES D47 values are not
directly comparable, the calibration slopes for Henkes et al. and Petrizzo et al. are only shown as probability distribution functions. For the
same reason, only the slope of the composite Petersen et al. (2019) calibration is shown here (dashed vertical line).

Fig. 10. Comparison between our bivalve regression and that of
Peral et al. (2018), which is based on modern/recent benthic and
planktonic foraminifera analyzed in the same laboratory, using the
same equipment and methods. Results are also compared to the
ones of Anderson et al. (2021) and the slow growing calcites of
Devils Hole and Laghetto Basso re-analyzed by Anderson et al.
(2021).
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slope is also virtually identical to that of the combined
regression of Petersen et al. (2019).

More quantitatively, Anderson et al. (2021) recently
reported I-CDES values for various, mostly inorganic types
of carbonates of known formation temperatures, which
may be robustly compared to our results. We also repro-
cessed the original raw data of the foraminifer calibration
study of Peral et al. (2018) to convert them to the
I-CDES. As shown in Figs. 9 and 10, the bivalve measure-
ments reported here are strictly indistinguishable from the
results of these two studies.

It should be noted that Anderson et al. (2021) also
report a re-analysis, performed at LSCE, of mammillary
calcite from Devils Hole and Laghetto Basso—two carbon-
ate materials with extremely slow growth rates, believed to
achieve quasi-equilibrium oxygen-18 fractionation between
calcite and water as well as internal clumped-isotope equi-
librium—previously described by Daëron et al. (2019, and
references therein). Contrary to Daëron et al.’s initial find-
ings, the clumped-isotope composition of Devils Hole cal-
cite reported by Anderson et al. is indistinguishable from
the general relationship between D47 and temperature, as
calibrated using carbonates with more rapid growth rates.
We believe it likely that the small (0.008‰) but statistically
significant D47 difference initially reported by Daëron et al.
(2019) results from the lack of ETH-4 analyses in the 2019
study, causing Devils Hole measurements to plot well out-
side of the ‘‘anchor triangle” of ETH-1/2/3, thus increasing
standardization errors (Daëron, 2021).

Whatever the case, the new bivalve data presented here
are in complete agreement with the other existing I-CDES
calibration studies (Figs. 9 and 10), and thus also with other
inorganic and biogenic calibrations (Kele et al., 2015;
Piasecki et al., 2019; Meinicke et al., 2020) which have
not yet been converted to the I-CDES but are known to
be in good agreement with Peral et al. (2018). This observa-
tion further supports the claim that various types of ‘‘well-
behaved” carbonates, either biogenic inorganic, follow
quasi-identical relationships between D47 and formation
temperatures (as already proposed by earlier studies, e.g.,
Came et al., 2014), even in cases of ‘‘anomalous” relation-
ships between carbonate/water oxygen-18 fractionation
and temperature. Figs. 9 and 10 also illustrate the excellent
consistency which may be achieved between I-CDES cali-
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bration studies based on sufficiently large numbers of stan-
dard and unknown analyses. Based on this, future paleocli-
mate studies of clumped isotopes in bivalves, rather than
relying on the limited number of observations reported
here, should not hesitate to use robust, more precise cali-
brations such as those of Peral et al. (2018) or Anderson
et al. (2021).

6. CONCLUSIONS

The observations reported here provide strong support
for the use of clumped-isotope thermometry to reconstruct
past calcification temperatures from bivalve shells, includ-
ing at seasonal scale. The confirmation that even species
with ‘‘anomalous” oxygen-18 fractionation laws (e.g., N.

cochlear) yield D47 values indistinguishable from those of
other biocarbonates formed at similar temperatures implies
that clumped-isotope thermometry may be applicable to
well preserved samples from ancient environments with
an ocean chemistry quite different from today’s (and thus
with potentially different degrees of oxygen-18
disequilibrium).

The excellent agreement between our results and recent
calibrations studies (re)processed in the I-CDES reference
frame strengthens the case that the systematic use of car-
bonate standards yields reproducible results between labo-
ratories, even when using different analytical methods
(acid temperature, sample size. . .), as argued by
Bernasconi et al. (2021). This agreement also adds to the
growing body of evidence that there exists a whole class
of carbonate materials, both inorganic and biogenic, char-
acterized by quasi-identical relationships between forma-
tion temperature and clumped-isotope composition.

Our findings, however, also highlight the challenges
posed by the use of shells whose isotopic composition might
behave anomalously during juvenile stages and/or under
conditions of thermal and/or metabolic stress. As always,
fossil sampling strategies, e.g., when trying to constrain past
seasonal variations of temperature, should build on a
robust understanding of the biology, ecology, and geo-
chemistry of the target species.
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APPENDIX A. SUPPLEMENTARY MATERIAL

d18Ow measurements performed at the sampling site of
the bivalves Neopycnodonte cochlear in the canyon Lacaze
Duthiers at -270 m. Supplementary data to this article
can be found online at https://doi.org/10.1016/j.gca.2021.
09.019.
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