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Abstract: Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS)
and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion
envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain
receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase
CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host
cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type
N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-
binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that,
depending on their origin, they preferentially recognize either complex type N-glycans, or high-
mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S
proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV,
MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot
mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically
recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted
for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-
specific lectins are wide-ranging including detection, immobilization, prevention, and control of
coronavirus infection.

Keywords: plant lectins; mannose-specific lectins; plant lectins; algae lectins; fungi lectins; cyanobac-
teria lectins; pea lectin; artocarpin; snowdrop lectin; biomedical applications; coronaviruses; SARS-
CoV; MERS-CoV; SARS-CoV-2; COVID-19

1. Introduction

The human Betacoronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 responsible
for the pandemic COVID 19 that still rages worldwide, share common structural char-
acteristics that account for their transmissibility and infectivity among sensitive people.
The virions are covered by spikes, which protrude outside of the lipid bilayer forming the
envelope of coronaviruses [1–3]. Spikes are built up from the homotrimeric association
of the S protein), an acidic class I viral fusion glycoprotein of ~130 kDa which consists of
two S1 and S2 subunits [4–7]. The S protein is cleaved between the S1 and S2 subunits
(S1/S2 cleavage site) and at an additional site S2’ by host cell protease. The S1 subunit
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contains a receptor-binding domain (RBD), which allows the virus to specifically recognize
host cell receptors via a receptor-binding motif (RBM). The dipeptidyl peptidase 4 (DPP4),
also known as CD26, was identified as the host receptor for MERS-CoV [8], whereas the
angiotensin-converting enzyme 2 (ACE2) serves as the host receptor for SARS-CoV and
SARS-CoV-2 [9]. The S2 subunit is subsequently involved in the fusion of both coron-
avirus and host cell membranes through the fusion peptide (FP) and the first heptad repeat
HR1 [10], allowing the entry of the viral RNA genome into the host cell, which will further
trigger the replication of the coronavirus at the detriment of the host cell (Figure 1).

Figure 1. Molecular organization of the SARS-CoV-2 S-glycoprotein, made up of two linked S1 and S2 subunits that are
further separated at the furin cleavage site (FCS). The S1 subunit consists of a signal peptide (S), followed by the N-terminal
domain (NTD) containing the receptor-binding domain (RBD) interacting with the ACE2 receptor via the RBM motif (RBM).
The S2 subunit comprises the fusion peptide (FP), two heptad repeats HR1 and HR2, the transmembrane spanning domain
(TM) that anchors the S protein into the virion membrane, and the cytoplasmic domain CP.

The S proteins forming the coronavirus spikes, consist of heavily N-glycosylated pro-
teins containing a high number of potential N-glycosylation sites NXT/S, actually occupied
by complex-type glycans, high-mannose type glycans, and a few hybrid type glycans:
22 sites for SARS-CoV and SARS-CoV-2, and 23 sites for MERS-CoV, respectively [11,12].
A very limited number of potential O-glycosylation sites occupied by GalNAc and T/Tn-
antigens have been identified, especially in the SARS-CoV-2 S-glycoprotein [12]. According
to their heavily N-glycosylated character, S-glycoproteins of coronaviruses represent partic-
ularly relevant targets for mannose-specific (Man-specific) lectins, a heterogeneous group
of proteins involved in the recognition of Man, mannosides, and complex Man-containing
glycans, already known for their potential anti-viral and anti-cancer properties [13–18].

The Man-specific lectins are widely distributed in all the living organisms since
they have been isolated and characterized from viruses, bacteria, fungi, algae, plants,
animals, and humans [19]. Even though they constitute a disparate group of proteins
poorly related by their phylogenetic relationship and structural features, they share a
very common property to specifically recognize Man and their derivatives, including
mannosides, oligomannosides, and high-mannose glycans [20]. This specific recognition
also concerns other Man-containing glycans like the complex N-glycans which are built
around a trimannosyl Manα1,3Manα1,6Man core, readily recognized by Man-specific
legume lectins [21,22]. As shown for plant lectins, the differences observed in the specific
recognition of Man-containing glycans, essentially depend on both the axial position of the
hydroxyl group at C2 in Man which is more or less strictly recognized by the carbohydrate-
binding sites (CBSs) of lectins, and the type of glycosidic bonds α1,2, α1,3 or α1,6, and
their internal or external position in the glycan chain, recognized by lectins [23]. According
to these discrepancies and with respect to the diversity of N-glycans occurring at the
surface of the coronavirus spikes, many distinct Man-specific lectins from plants, algae,
fungi, and bacteria, could serve as relevant glycan probes for SARS-CoV, MERS-CoV, and
SARS-CoV-2 viruses.

In addition to their Man-binding capacity, Man-specific lectins from plants, algae,
fungi, and bacteria, have been largely studied with respect to their anti-viral properties
against different types of enveloped viruses, including HIV-1 [24], papilloma virus [25],
herpes virus, hepatitis C virus [26], and Ebola virus [27]. In this respect, the algal lectin grif-
fithsin [28], the cyanobacteria lectins cyanovirin [29], actinohivin [30], and microvirin [31],
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and various GNA-related lectins like NPA from daffodil (Narcissus pseudonarcissus) and
ASA from garlic (Allium sativum) [32–34], have been particularly well documented. Most
of these Man-specific lectins prevent the virus replication, at least under in vitro conditions,
by interfering with the Man-containing N-glycans present on the cell surface of the virion
envelope [35]. Depending on the virus, different Man-containing glycans serve as targets
for the Man-specific lectins, e.g., gp120 for HIV-1 [36] or hemagglutinin for influenza
virus [37]. Owing to their smaller size, compared to other plant Man-specific lectins, Man-
specific lectins from cyanobacteria such as CVN-N (cyanovirin), MVN (microvirin), and
AH (actinohivin) from actinobacteria, have been deeply investigated for their anti-viral
properties. In addition, only very few publications report the ability of Man-specific lectins
from higher plants to interact with glycans of the coronavirus envelope [13,38–40].

The present review aims at presenting a detailed analysis of the Man-specific lectins
from plants, algae, fungi, and bacteria that could serve as relevant probes for targeting the
N-glycans coating the spikes of SARS-CoV, MERS-CoV, and SARS-CoV-2 coronaviruses,
with a focus on their potential biomedical applications in controlling coronavirus infections,
notably the COVID-19 pandemic associated with SARS-CoV-2.

2. Man-Specific Lectins from Higher Plants, Fungi, Algae, and Cyanobacteria

Mannose-specific lectins consist of a group of lectins that are widely distributed
in all living organisms and, especially, in higher plants (monocot and dicot plants), in
fungi (Ascomycota and Basidiomycota), in the different groups of algae (essentially red
and green algae), and in bacteria, mainly the cyanobacteria (formerly known as blue
algae). Although they belong to quite different structural scaffolds [20], all of these lectins
contain CBSs that display a more or less strict specificity for mannose (Man) and Man-
containing glycoproteins.

2.1. Man-Specific Lectins from Higher Plants

Seeds and tubers of higher plants often contain Man-specific lectins which have been
associated with different structural scaffolds (Figure 2):

- The β-sandwich structure (jelly-roll structural scaffold), present in legume lectins.
They are classically divided into two groups of single- and two-chain lectins, ac-
cording to the cleavage (two-chain) or the absence of cleavage (single-chain) of their
protomers. Single-chain, tetravalent lectins consist of the non-covalent association of
four identical protomers (α4), each containing a CBS that specifically recognizes Man
and its derivatives. In two-chain lectins, a proteolytic cleavage of the protomeric chain
results in the separation of a light (α-chain) and a heavy (β-chain), which remain
associated with non-covalent bonds. Two-chain, bivalent lectins (α2β2)) result from
the non-covalent association of two identical two-chain protomers, each possessing a
CBS specific for Man and its derivatives.
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Figure 2. Overview of lectins from representative genera/species belonging to higher plant families,
with their associated structural scaffolds, able to recognize the spike proteins from coronaviruses
(Coronavirus Credit: Maria Voigt/RCSB PDB). A-K correspond to lectins used as structural scaf-
folds ((A): Con A, (B): LcA, (C): BanLec, (D): Morniga-M, (E): PPL, (F): Heltuba, (G): Gastrodianin,
(H): ASA, (I): GNA, (J): Nictaba, (K): IraB. References [41–98] correspond to the lectins presented in
the figure.

Both Con A (concanavalin A) from jack bean seeds (Canavalia ensiformis) (Figure 2A)
and LcA (lentil lectin) from Lens culinaris (Figure 2B) are classical examples of single-chain
and two-chain lectins, respectively.

- The β-prism I structure (β-barrel structural scaffold), present in the jacalin-related
lectin group. Their protomers are organized in three bundles of four antiparallel
β-strands arranged into a β-prism structure along a longitudinal axis. Depending on
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the number of identical protomers associated by non-covalent bonds, Man-specific
jacalin-related lectins consist of bivalent (two CBSs) lectins, e.g., Calsepa from hedge
bindweed Calystegia sepium [61] (Figure 2C); tetravalent (four CBSs) lectins, e.g.,
Artocarpin from black mulberry Artocarpus integer [65] (Figure 2D); hexavalent (six
CBSs) lectins, e.g., PPL from the African locust bean Parkia platycephala [70] (Figure 2E);
or octavalent (eight CBSs) lectins, e.g., Heltuba from the Jerusalem artichoke Helianthus
tuberosus [71] (Figure 2F).

- The β-prism II structure (β-trefoil structural scaffold), present in the GNA-related
lectin group. The protomer consists of three bundles of four antiparallel β-strands
arranged into a flattened β-trefoil structure around a central pseudoaxis. A CBS occurs
in each of the bundles of β-strands. Except for gastrodianin, which is composed of
a single protomer (Figure 2G), lectins belonging to the GNA-related group result
from the non-covalent association of two protomers, e.g., the hexavalent NPA from
daffodil (Narcissus pseudonarcissus) bulbs [80] (Figure 2H) or four protomers, e.g., the
dodecavalent GNA from snowdrop (Galanthus nivalis) bulbs [94] (Figure 2I).

- Two covalently linked β-trefoil-domains form the B-chain of the lectin from Iris
hollandica, a type II ribosome-inactivating protein (RIP-II) (Figure 2J). Each domain
contains a CBS which can accommodate Man and Gal/GalNAc. This Man-binding
property confers an unusual Man-specificity to the Iris RIP-II, which readily differs
from the Gal/GalNAc-specificity of other RIP-IIs [97].

- Nictaba, the jasmonic acid-induced tobacco (Nicotiana tabacum) lectin displays speci-
ficity for chitin and GlcNAc oligomers but it can also bind to high mannose glycans
with a lower affinity, as shown from glycan array experiments. The molecular struc-
ture of Nictaba is still unknown but modeling experiments suggest a β-sandwich
structure for this tobacco lectin [98] (Figure 2K).

All of these lectins readily interact with Man and oligomannosides but, more inter-
estingly, they display a higher affinity for more complex Man-containing glycan chains
that are usually associated with cell surfaces. In this respect, different Man-specific lectins
have been co-crystallized in the presence of Man (Figure 3A–C), di-mannoside (Figure 4A),
tri-mannoside core Manα1,3Manα1,6Man (Figure 4B,C), and tetra-mannoside (Figure 4D)
occurring in N-glycans of the complex and high-mannose type.

Figure 3. (A). Network of hydrogen bonds (black dashed lines) anchoring Man (M) to the amino acid
residues A30, E31, D81, G99, and N135, forming the CBS of LoLI from Lathyrus ochrus (PDB code
1LOB). Aromatic residue F123 participating in stacking interaction with the pyranose ring of Man
is colored orange. (B). Network of hydrogen bonds (black dashed lines) anchoring Man (M) to the
amino acid residues G27, G149, V151, and D153, forming the CBS of Morniga-M from Morus nigra
(PDB code 1XXR). Aromatic residue F150 involved in stacking interaction with the pyranose ring of
Man is colored orange. (C). Network of hydrogen bonds (black dashed lines) anchoring Man (M) to
the amino acid residues Q90, D92, and N94, forming the CBS of PCL from Polygonatum cyrtonema
(PDB code 3A0D). Aromatic residue Y98 participating in stacking interaction with the pyranose ring
of Man is colored orange.
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Figure 4. (A). Network of hydrogen bonds (black dashed lines) anchoring Manα1,2Man (M2) to
Heltuba from Helianthus tuberosus (PDB code 1C3N). Aromatic residues Y89 and Y90 participating in
stacking interactions with the pyranose rings of mannobiose are colored orange. (B). Network of
hydrogen bonds (black dashed lines) anchoring Manα1,6Manα1,3Man (M3) to GNA from Galanthus
nivalis (PDB code 1JPC). Aromatic residues Y89 and Y90 participating in stacking interactions with
the pyranose rings of mannobiose are colored orange. (C). Network of hydrogen bonds (black dashed
lines) anchoring Manα1,3Manα1,6Man (M3) to PAL from Pterocarpus angolensis (PDB code 1Q8V).
Aromatic residues Y89 and Y90 participating in stacking interactions with the pyranose rings of
mannobiose are colored orange. (D). Network of hydrogen bonds (black dashed lines) anchoring
mannotetraose (M4) to artocarpin from Artocarpus integer (PDB code 1VBP).

In addition, results from glycan arrays and binding assays, and X-ray crystallography
of lectins co-crystallized in the presence of complex glycan chains revealed that Man-
binding lectins from higher plants also accommodate more complex N-glycan chains,
through a complex network of hydrogen bonds and stacking interactions between the
pyranose ring of sugars and aromatic residues (F, W, Y) located in the vicinity of the CBS of
lectins (Figure 5A–C).

Figure 5. (A). Network of hydrogen bonds (black dashed lines) anchoring Man9 (M9) to PAL, the
Pterocarpus angolensis lectin (PDB code 2PHN). Aromatic residues F132 and Y133 participating in
stacking interactions with the pyranose rings of the oligomannoside are colored orange. (B). Network
of hydrogen bonds (black dashed lines) anchoring N2 oligosaccharide to LoLII, isolectin II from
Lathyrus ochrus (PDB code 1LGB). Aromatic residues Y77, Y100, F123, Y124, and W128 involved
in stacking interactions with the pyranose rings of the oligosaccharide, are colored orange. The
α1,6-linked fucose (Fuc) participates in the H-bond network. (C). Network of hydrogen bonds (black
dashed lines) anchoring a biantennary glycan (GLY) to Calsepa from Calystegia sepium (PDB code
5XFI). Aromatic residue Y141 and Y142 participating in stacking interaction with the pyranose rings
of the glycan are colored orange.

N-glycans are classified into three types, including oligomannose or high-mannose
glycans, complex glycans, and hybrid glycans, according to the extensions of their common
core sequence Manα1,3(Manα1,6)Manβ1,4GlcNAcβ1,4GlcNAcβ1-Asn (Figure 6A–C):
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Figure 6. (A). High-mannose N-glycan, in which only Man (green circles) residues extend the core.
(B). Complex N-glycans with two antennae initiated by a GlcNAc residue (blue square) extending the
core. (C). Hybrid N-glycan with Man extending the Man1,6 arm of the core and GlcNAc extending
the Man1,3 arm of the core. The core is delineated by a dashed red line.

Glycan array analyses were performed by the Consortium for Functional Glycomics
(http://www.functionalglycomics.org, accessed on 14 March 2021) for Con A, a typical
member of the Man-specific single-chain lectins from the Fabaceae. Con A yielded the best
interaction with the following glycans arranged in decreasing order of affinity (Figure 7):

Figure 7. Glycans recognized by Con A in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Glycan array analyses performed for PsA, a typical member of the Man-specific two-
chain lectins from the Vicieae (a tribe of Leguminosae/Fabaceae), yielded the best results
with the following glycans arranged in decreasing order of affinity (Figure 8):

http://www.functionalglycomics.org
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Figure 8. Glycans recognized by PsA in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Glycan array results obtained for GNA, the Man-specific lectin from snowdrop, the
prototype of monocot Man-binding lectins, are in decreasing order of affinity (Figure 9):

Figure 9. Glycans recognized by GNA in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Results obtained with Morniga-M, a typical representative of the jacalin-related Man-
binding lectins, reveal some reactivity towards bisected hybrid glycans (Figure 10):

Figure 10. Glycans recognized by Morniga-M in glycan array experiments, arranged from 1 to 10 in decreasing order
of affinity.

From the glycan array results and X-ray crystallographic analysis of lectins in complex
with Man-containing glycans, it clearly appears that beyond a similar affinity for the
trimannosyl Manα1,6Manα1,3Man core occurring in both N-glycans of the complex, high-
mannose and hybrid types, Man-specific lectins from higher plants are not equivalent and
readily differ in their capacity to specifically recognize subtle chemical arrangements in the
complex glycan chains. In this respect, Man-specific legume lectins essentially recognize
complex glycans α1,6 fucosylated at the GlcNAc residue linked to asparagine, whereas
Man-specific lectins belonging to the GNA-related lectin group, essentially recognize more
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or less branched high-mannose N-glycans. The Man-specific lectins of the jacalin-related
group differ from the other lectins by their strong specificity for high-mannose glycans.
Depending on the differences observed in the fine specificity towards complex glycans,
high-mannose glycans, and hybrid glycans, Man-specific lectins from diverse origins can
be used as glycan probes for targeting diverse types of N-glycans covering both host cell
and viral surfaces.

2.2. Man-Specific Lectins from Lower Plants and Fungi

Although they are less documented compared to the lectins from higher plants, a
few Man-specific lectins have also been identified in lower plants including Bryophyta,
Pteridophyta, and Gymnospermae. Man-specific lectins also occur in both groups of
fungi, Ascomycota and Basidiomycota. They usually consist of structural scaffolds very
similar to those found in higher plant lectins but few of them also exhibit quite unusual
structural scaffolds like the β-propeller fold found in fungi or the α + β fold found in the
Gymnospermae (Figure 11A–L):

Figure 11. Overview of lectins from the major representative genera/species of lower plants and fungi,
with their associated structural scaffolds, able to recognize the spike proteins from coronaviruses (Coron-
avirus Credit: Maria Voigt/RCSB PDB). A-L correspond to lectins used as structural scaffolds (A): Marpola,
(B): PAL, (C): CrCVNH, (D): RCLL-N, (E): Gnk2, (F): PeCL, (G): Flo1p, (H): TbCVNH, (I): Abmb, (J): HRL,
(K): Tectonin 2, (L): MOA. References [99–111] correspond to the lectins presented in the figure.
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- The β-sandwich structure (jelly-roll structural scaffold) typical for legume lectins, also
occurs in the Man-specific lectin PeCL from Penicillium chrysogenum, and in floculins
Flo1p from the yeast Saccharomyces pasteurianum and Flo5p from Saccharomyces cerevisiae.

- The β-prism II structure (β-trefoil structural scaffold), that builds the GNA-related
lectin protomer, also occurs in Marpola, the Man-specific lectin isolated from the
liverwort Marchantia polymorpha, and in mushrooms (Abmb from Agaricus bisporus,
MOA from Marasmius oreades). Special mention should be made to the apparent β-
trefoil structure that was found in the mini-lectin PhosL from the mushroom Pholiota
squarrosa. In fact, PhosL results from the trimeric association of three antiparallel
β-sheets, each possessing a CBS, that mimics a β-trefoil structure with three identical
CBSs. This newly identified lectin fold is involved in the specific recognition of the
core α1,6-fucosylation of fucosylated N-glycans [100] (Figure 12A,B).

Figure 12. (A). Arrangement of the three antiparallel β-sheets (I, II, III) forming the PhosL ho-
motrimer (PDB code 5XZK) to mimic a pseudo-β-trefoil structure. (B). Network of hydrogen bonds
(black dashed lines) anchoring the fucose (Fuc, colored cyan) α1,6-linked for the first GlcNAc from
a fucosylated N-glycan to the CBS of PhosL (PDB code 6FX1). Aromatic residues Y89 and Y90
participating in stacking interactions with the pyranose rings of mannobiose are colored orange.

- A rather unusual 6-bladded β-propeller organization was identified in tectonin 2, the
Man-specific lectin from the basidiomycete Laccaria bicolor [109]. As commonly ob-
served in other lectins exhibiting a β-propeller structure, tectonin 2 contains 6 identical
Man-specific CBSs located at the top of each of the six blades forming the β-propeller.

- Another quite unusual structural scaffold, which consists of an antiparallel five-
stranded β-sheet associated to two α-helices (α + β fold), occurs in the monomeric
ginkbilobin 2, a Man-specific lectin from Ginkgo biloba [103]. Hydrophilic residues
occurring on the loops connecting the β-strands associated with charged residues of
two β-strands, to form a Man-binding pocket located at the top of the monomer [103].

The mannose-binding specificity of lectins from lower plants (Bryophyta, Pterido-
phyta, Gymnospermae), yeasts, and mushrooms (Ascomycota and Basidiomycota), is
directed against both Man, mannosides, and more complex high-mannose glycans, as
shown from the X-ray crystallographic studies for various Man-specific lectins complexed
to Man and oligomannosides (Figure 13 and Figure 14).
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Figure 13. (A). Network of hydrogen bonds (black dashed lines) anchoring Man (M) to the amino
acid residues N11, R93, and E104, forming the CBS of ginkbilobin from Ginkgo biloba (PDB code
4XRE). Aromatic residue Y103 and F108 participating in weak stacking interactions with the pyranose
ring of Man are colored orange. (B). Network of hydrogen bonds (black dashed lines) anchoring Man
(M) to the amino acid residues Q98, D160, D161, V226, and S227, forming the CBS of flocculin Flo5
from Saccharomyces cerevisiae (PDB code 2XJP). Aromatic residues Y54 and W228 involved in stacking
interactions with the pyranose ring of Man are colored orange.

Figure 14. (A). Network of hydrogen bonds (black dashed lines) anchoring Mannobiose (M2) to
the amino acid residues forming the CBS of flocculin Flo5 from Saccharomyces cerevisiae (PDB code
2XJU). Aromatic residue Y54 and FW228 participating in stacking interactions with the pyranose
ring of the first Man residue are colored orange. (B). Network of hydrogen bonds (black dashed
lines) anchoring Mannopentaose (M5) to the amino acid residues forming the CBS of flocculin Flo5
from Saccharomyces cerevisiae (PDB code 2XJT). Aromatic residue Y54 and W228 involved in stacking
interactions with the pyranose ring of the first Man of the oligomannoside are colored orange.

In the glycan array analyses performed at Consortium for Functional Glycomics for
TbCVN, the Tuber borchii Man-specific lectin yielded the best results with the following
glycans arranged in decreasing order of affinity (Figure 15):

Figure 15. Glycans recognized by TbCVN in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.
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Glycan array studies performed for ABA, the Agaricus bisporus lectin, yielded the best
results with the following glycans arranged in decreasing order of affinity (Figure 16):

Figure 16. Glycans recognized by ABA in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Glycan array analyses performed for the lectin MOA from the Marasmius oreades
mushroom, yielded the best results with the following glycans arranged in decreasing
order of affinity (Figure 17):

Figure 17. Glycans recognized by MOA in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Mannose-specific lectins from Ascomycota, such as the TbCVN and NcCVN cyanovirin-
related lectins from Tuber borchii (TbCVN) and Neurospora crassa (NcCVN), usually differ
from lectins of the Basidiomycota by a more pronounced affinity to high-mannose glycans
and a lesser affinity for complex type glycans, such as ABA from Agaricus bisporus and
MOA from Marasmius oreades.

2.3. Man-Specific Lectins from Algae and Bacteria

Seaweeds belonging to the different classes of algae, including red algae (Rhodophyta),
brown algae (Phaeophyta), green algae (Chlorophyta), and yellow-green algae (Chrys-
ophyta), are well-known sources of Man-specific lectins, together with the lectins from
Actinobacteria and Cyanobacteria, formerly classified as blue algae.

Seaweed Man-specific lectins exhibit well-identified structural scaffolds but some of
them also exhibit unrelated structural scaffolds that still remain to be characterized.

- The β-prism I or β-barrel scaffold occurs predominantly in red algae (Rhodophyta)
but is less common in other classes of algae (Figure 18A–M). Algae of the genera Agard-
hiella, Eucheuma, Kappaphycus, Meristiella, Meristotheca, and Solieria exhibit this type of
molecular organization, in which the CBS is located at the top of the barrel structure.
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Figure 18. Overview of lectins from representative genera/species of algae and cyanobacteria,
with their associated structural scaffolds, able to recognize the spike proteins from coronaviruses
(Coronavirus Credit: Maria Voigt/RCSB PDB). A-M correspond to lectins used as structural scaffolds
((A): Griffithsin, (B): ASL-1, (C): BU14, (D): HfL, (E): BCA, (F): OtL, (G): BPL-2, (H): NgL, (I):
Actinohivin, (J): CVN, (K): MVN, (L): OAA, (M): Scytovirin. References [28–30,112–129] correspond
to the lectins presented in the figure.

- A less common β−prism II organization occurs in red algae (Grateloupia chiangii) and
green algae (Boodlea coacta), in which CBSs are located in the grooves delineated by
the bundles of β-strands. The MFP2-like structural scaffold, related to the β-prism II
organization, occurs in the green alga Bryopsis plumosa.

- A rather uncommon β-sandwich organization was found in the red alga Hydropuntia
(Gracilaria) fisheri, and in the green alga Ostreococcus tauri.

- It is interesting to note that the structural scaffolds of many other Man-specific lectins,
identified in red algae (Carpopeltis flabellata, Gracilaria bursa-pastoris) and green algae
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(Enteromopha prolifera, Halimeda renschii), still remain unknown and are not apparently
related to any of the known structural scaffolds reported in algae.

Man-specific lectins from the actinobacteria (actinohivin) and cyanobacteria/ex-blue
algae group (cyanovirin CVN, microvirin MVN, scytovirin SVN, and the Oscillatoria agard-
hii agglutinin OAA), exhibit a β-prism II (β-trefoil) structure and a β-prism I (β-barrel)
structure, respectively (Figure 18).

The three-dimensional structures for different bacterial lectins in complex with Man,
mannosides, and more complex oligomannoside chains are available at the PDB (Figure 19
and Figure 20).

Figure 19. (A). Network of hydrogen bonds (black dashed lines) anchoring Man (M) to the amino
acid residues forming the CBS of griffithsin (PDB code 2RDK). Aromatic residue Y28 and Y110
participating in stacking interactions with the pyranose ring of Man are colored orange. (B). Network
of hydrogen bonds (black dashed lines) anchoring 6α-mannobiose (M2) to the amino acid residues
of the CBS of griffithsin (PDB code 2HYQ). Aromatic residue Y28 and Y110 involved in stacking
interactions with the pyranose ring of the first Man residue are colored orange. (C). Network of
hydrogen bonds (black dashed lines) anchoring a high-mannose branched glycan (M8) to the amino
acid residues of the CBS of griffithsin (PDB code 3LL2). Aromatic residue Y28, Y68, and Y110,
participating in stacking interactions with the pyranose rings of Man residues, are colored orange.

Figure 20. (A). Network of hydrogen bonds (black dashed lines) anchoring mannobiose (M2) to the
amino acid residues forming the CBS of cyanovirin CVN (PDB code 2PYS). Aromatic residue F54
participating in a very weak stacking interaction with the pyranose ring of Man is colored orange.
(B). Network of hydrogen bonds (black dashed lines) anchoring mannotetraose (M4) to cyanovirin
(PDB code 3GXZ). Amino acid residues of A and B protomers forming the swapped CVN dimer,
participate in the interaction with the oligomannoside.

High-mannose glycan-binding activity measured by Hori et al. [130] for ESA-2, the
Eucheuma serra lectin, yielded the best results with the following glycans arranged in
decreasing order of affinity (Figure 21):
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Figure 21. Glycans recognized by ESA-2 in glycan-binding activity measurements, arranged from 1 to 10 in decreasing
order of affinity.

Glycan array analyses performed at Consortium for Functional Glycomics for cyanovirin-
N CVN-N, a typical member of the cyanobacterial Man-specific lectins, yielded the best
results with the following glycans arranged in decreasing order of affinity (Figure 22):

Figure 22. Glycans recognized by CVN-N in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

Glycan array studies performed for actinohivin, a typical member of the actinobac-
teria Man-specific lectins, yielded the best results with the following glycans arranged in
decreasing order of affinity (Figure 23):

Figure 23. Glycans recognized by actinohivin in glycan array experiments, arranged from 1 to 10 in decreasing order
of affinity.

Man-specific lectins from algae, actinobacteria, and cyanobacteria, almost exclusively
interact with high-mannose glycans and, to a very little extent, with complex N-glycans.
Most of the high-mannose glycans recognized by algal and bacterial lectins readily partici-
pate in the glycan equipment of the S proteins forming the spikes that decorate the surface
of SARS-CoV, MERS-CoV, and SARS-CoV-2 virions.
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3. Diversity of Glycans Decorating the Spike-Forming S Glycoproteins of Coronaviruses

The S proteins are organized in homotrimers that form the spikes protruding from
the virion lipid bilayer. The S-glycoproteins of SARS-CoV, MERS-CoV, and SARS-CoV-
2, consist of heavily N-glycosylated proteins consisting of more than 1000 amino-acids,
exhibiting a high MW close to 130–140 kDa (133,568 Da for SARS-CoV, 146,594 Da for
MERS-CoV, and 141,178 Da for SARS-CoV-2), and an acidic pI (5.55 for SARS-CoV, 5.41 for
MERS-CoV, and 6.24 for SARS-CoV-2). These proteins contain a high number of potential
N-glycosylation sites NXT/NXS, that are actually glycosylated (22 for SARS-CoV and
SARS-CoV-2, 23 for MERS-CoV) [11,12]. These N-glycosylation sites are arrayed along the
amino acid sequence of the S-glycoproteins, predominantly at both the N- (S1 chain) and
C-termini (S2 chain) of the polypeptide chain (Figure 24).

Figure 24. Amino acid sequences of S proteins from SARS-CoV, MERS-CoV, and SARS-CoV-2,
showing the N-glycosylation sites occupied (almost) exclusively by complex type N-glycans (red),
high-mannose type N-glycans (green), hybrid type N-glycans (purple), and predominantly occupied
by high-mannose glycans (pale green) or complex glycans (magenta).
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A detailed study of N-glycans present on the S-glycoprotein of coronaviruses revealed
the extreme diversity of N-glycans covering the coronavirus envelope [11,12]:

- High-mannose type glycans consist essentially of tri-antennary glycans GlcNAc2-
Man5–9 (Figure 25).

- Complex type glycans are represented by essentially fucosylated and often sialylated,
bi-, tri-, and tetra-antennary glycans (Figure 25).

Figure 25. (1–5). High-mannose-type glycans: GlcNAc2Man5 (1); GlcNAc2Man6 (2), GlcNAc2Man7 (3), GlcNAc2Man8

(4) and GlcNAc2Man9 (5). (6–15). Complex-type glycans: bi-antennary glycans (6,7), fucosylated bi-antennary glycan (8),
sialylated bi-antennary glycan (9), sialylated and fucosylated bi-antennary glycan (10), sialylated tri-antennary glycan (11),
sialylated and fucosylated tr-antennary glycan (12), sialylated tetra-antennary glycans (13,14) and sialylated and fucosylated
tetra-antennary glycan (15).

- Hybrid type glycans, often bisected, have been detected at different N-glycosylation
sites but with the exception of the last C-terminal N-glycosylation site occurring in
S-glycoprotein of MERS-CoV which is exclusively occupied by hybrid-type glycans.
All other N-glycosylation sites are occupied by a mixture of high-mannose, complex,
and hybrid glycans (Table 1).

- Scarce potential O-glycosylation sites T/S, actually occupied by O-glycans, have been
identified essentially in the S-glycoprotein of SARS-CoV-2 (T323, S325, and T678) [12].

The diversity of N-glycosylation occurring at the different N-glycosylation sites of
both SARS-CoV, MERS-CoV, and SARS-CoV-2, has been summarized in Figure 26. This
table suggests that SARS-CoV and SARS-CoV-2 share a rather similar N-glycosylation
pattern, which readily differs from that observed in MERS-CoV S-glycoprotein.

In addition to the different N-glycosylation patterns found at the glycosylation sites
arrayed along the S-glycoprotein trimers forming the coronavirus spikes, spikes from
the different coronavirus readily differ by a distinct distribution of the complex and high-
mannose glycans at their surface and, especially at the top and the lateral faces of the spikes.
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Table 1. Overview of Man-specific lectins from higher plants investigated in [13], for their anti-SARS-
CoV activity, classified in decreasing order of activity (EC50 (µg/mL)). Adapted from [13].

Lectin Family Plant Species Lectin Structural
Scaffold

EC50
(µg/mL)

GNA-related

Allium porum APA β-trefoil 0.45 ± 0.08

Epipactis helleborine EHA β-trefoil 1.8 ± 0.3

Listera ovata LOA β-trefoil 2.2 ± 1.3

Hyppeastrum hybrid HHA β-trefoil 3.2 ± 2.8

Cymbidium hybrid CA β-trefoil 4.9 ± 0.8

Narcissus pseudonarcissus NPA β-trefoil 5.7 ± 4.4

Galanthus nivalis GNA β-trefoil 6.2 ± 0.6

Allium ursinum AUA β-trefoil 18 ± 4

Tulipa hybrid TL MI β-trefoil 22 ± 6

Lycoris radiata LRA β-trefoil 48

Colocasia esculenta CEA β-trefoil >60

Allium sativum ASA β-trefoil >100

JRL-related Morus nigra Morniga-M β-barrel 1.6 ± 0.5

Nictaba-related Nicotiana tabacum Nictaba β-sandwich 1.7 ± 0.3

Legume lectins Cladrastis lutea Cladrastis β-sandwich 7.4 ±0.2

Figure 26. Site-specific N-linked glycosylation of SARS-CoV, MERS-CoV, and SARS-CoV-2. Sites
containing (almost) exclusively complex glycans (colored red), high-mannose glycans (colored green),
and hybrid glycans (colored magenta), are indicated. Sites harboring a mixture of complex glycans,
high-mannose glycans, and a few hybrid glycans are colored pale green or pink, depending on the
predominant high-mannose glycans (pale green) or complex glycans (orange).
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4. Structural Organization and Glycosylation Pattern of S Glycoproteins Forming the
Spikes of Coronaviruses

The distribution of the high-mannose N-glycans and complex N-glycans at the surface
of the S-glycoprotein strikingly differs depending on the coronaviruses SARS-CoV, MERS-
CoV, and SARS-CoV-2 (Figure 27):

- high-mannose glycans are predominantly distributed in the upper part of the S-
glycoprotein from MERS-CoV, whereas complex glycans mainly occur along the lower
part of the S-glycoprotein.

- complex glycans predominate in the upper part and lower part of S-glycoprotein from
SARS-CoV, while the less abundant high-mannose glycans are equally distributed
along with the glycoprotein.

- in all three coronaviruses, the RBDs only contain complex N-glycans.

Figure 27. (A–C). Lateral face of the ribbon diagram representing the heavily glycosylated S glyco-
protein of SARS-CoV (PDB code 6ACD) (A), MERS-CoV (PDB code 5W9H) (B), and SARS-CoV-2
(PDB code 6VXX) (C). High-mannose glycans and complex glycans are colored yellow and cyan,
respectively. The RBD is indicated by a red dashed circle. (D–F). Lateral face of the molecular
surface (colored grey) of the S-glycoprotein of SARS-CoV (D), MERS-CoV (E), and SARS-CoV-2 (F).
High-mannose glycans and complex glycans are colored yellow and cyan, respectively.

According to the different distribution of high-mannose and complex N-glycans along
the S-glycoprotein of SARS-CoV, MERS-CoV, and SARS-CoV-2, both types of glycans
are differentially distributed at the surface of the spikes of SARS-CoV, MERS-CoV, and
SARS-CoV-2, as shown from pictures of the lateral faces (Figure 28A–F) and front faces
(Figure 29A–F) of the spikes:



Cells 2021, 10, 1619 20 of 36

Figure 28. (A–C). Lateral face of the ribbon diagram representing the homotrimeric spike of SARS-CoV
(PDB code 6ACD) (A), MERS-CoV (PDB code 5W9H) (B), and SARS-CoV-2 (PDB code 6VXX) (C). High-
mannose glycans and complex glycans are colored yellow and cyan, respectively. (D–F). Lateral face
of the molecular surface (colored grey) of the S-glycoprotein of SARS-CoV (D), MERS-CoV (E), and
SARS-CoV-2 (F). High-mannose glycans and complex glycans are colored yellow and cyan, respectively.

Figure 29. (A–C). Top face of the ribbon diagram representing the homotrimeric spike of SARS-CoV
(PDB code 6ACD) (A), MERS-CoV (PDB code 5W9H) (B), and SARS-CoV-2 (PDB code 6VXX) (C).
High-mannose glycans and complex glycans are colored yellow and cyan, respectively. (D–F). Top
face of the molecular surface (colored grey) of the S-glycoprotein of SARS-CoV (D), MERS-CoV
(E), and SARS-CoV-2 (F). High-mannose glycans and complex glycans are colored yellow and
cyan, respectively.

Discrepancies observed in the distribution and exposure of both types of N-glycans,
especially at the top of the spikes, between SARS-CoV, MERS-CoV, and SARS-CoV-2
(Figure 29), allow for predicting the quite different accessibility of the high-mannose and
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complex glycan shield of the different coronaviruses to the Man-specific lectins from plants,
fungi, algae, and bacteria.

Interestingly, none of the N-glycosylation sites was impacted by the point mutations
identified on the SARS-CoV-2 variants B.1.351 and B.1.1.7 that display increased resistance
to antibody neutralization [131]. The only asparagine residue impacted by the N501Y
mutation in the U.K., South African, and Brazilian variants of SARS-CoV-2, is not part of
an N-glycosylation site (Figure 30).

Figure 30. Localization of point mutation N501Y in the amino acid sequence of the S-glycoprotein from SARS-CoV-2.
The actually glycosylated N-glycosylation sites distributed along the amino acid sequence are indicated by red rods
and numbered.

5. Man-Specific Lectins from Higher Plants, Fungi, Algae and Cyanobacteria,
Specifically Interact with the Highly Glycosylated S Glycoprotein from Coronaviruses

Depending on the results obtained in glycan-binding assays and glycan array experi-
ments, one can predict the potential interaction with high-mannose glycans and complex
glycans identified in the glycan shield covering the spikes from SARS-CoV, MERS-CoV,
and SARS-CoV-2 viruses (Figures 31–33):

- Man-specific single- and two-chain lectins from the Fabaceae, which primarily rec-
ognize the (α3,α6)mannoside core of the branched GlcNAc2Man3 oligosaccharides,
readily interact with the complex glycans and, to a lesser extent, with high-mannose
glycans of the spikes from SARS-CoV (Figure 31), MERS-CoV (Figure 32) and SARS-
CoV-2 (Figure 33). In this respect, two-chain lectins from the Viciae, e.g., pea lectin PsA
and lentil lectin LcA, differ from single-chain lectins from other families of Fabaceae,
e.g., Con A from Canavalia ensiformis or DGL from Dioclea grandiflora, by a much more
pronounced affinity for α6-fucosylated complex glycans [21]. In addition, due to the
particularly well-exposed distribution of complex glycans at the top of the SARS-CoV
and SARS-CoV-2 spikes, both types of coronaviruses are predicted to better interact
with lectins from the Fabaceae, compared to MERS-CoV spikes (Figure 29).

- The Man-specific jacalin-related lectins (JRL), such as Morniga-M from Morus nigra,
which also recognizes N-glycans of the hybrid type in addition to complex glycans and
high-mannose glycans, could serve as glycan probes for coronaviruses, particularly
for binding to MERS-CoV, which exhibits hybrid glycans at the N1288 glycosylation
site (Figure 26).

- The GNA-related lectins, which specifically interact with branched Man5-Man9 oligo-
mannosides, would predominantly recognize high-mannose glycans (Figures 31–33)
and, especially, the well-exposed high-mannose glycans protruding at the top of the
MERS-CoV spikes (Figure 29). The less exposed high-mannose glycans located at
the bottom of the SARS-CoV and SARS-CoV-2 spikes (Figure 28), should also be
recognized, but to a lesser extent.
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Figure 31. SARS-CoV glycans that can be recognized (X) by Man-specific lectins from plants, mush-
rooms, algae, and cyanobacteria, as predicted from the results of glycan arrays performed with
purified lectins: Leg4 (Con A): single-chain legume lectins; Leg2 (PsA, LcA): two-chain legume
lectins; JRL (Morniga-M): jacalin-related lectins; GNA (GNA, ASA): GNA-like lectins; Nic: Nictaba
from Nicotiana tabacum; Ric: ricin-B from Ricinus communis; Asc (NcCVN): lectins from Ascomycota;
Bas (ABA): lectins from Basidiomycota; Rh (griffithsin, KAA-2): lectins from Rhodophyta; Chl (BCA):
lectins from Chlorophyta; Act (actinohivin): lectins from actinomycetes; Cya (cyanovirin): lectins
from cyanobacteria.

Figure 32. MERS-CoV glycans that can be recognized (X) by Man-specific lectins from plants,
mushrooms, algae, and cyanobacteria, as predicted from the results of glycan arrays performed
with purified lectins: Leg4 (Con A): single-chain legume lectins; Leg2 (PsA, LcA): two-chain legume
lectins; JRL (Morniga-M): jacalin-related lectins; GNA (GNA, ASA): GNA-like lectins; Nic: Nictaba
from Nicotiana tabacum; Ric: ricin-B from Ricinus communis; Asc (NcCVN): lectins from Ascomycota;
Bas (ABA): lectins from Basidiomycota; Rh (griffithsin, KAA-2): lectins from Rhodophyta; Chl (BCA):
lectins from Chlorophyta; Act (actinohivin): lectins from actinomycetes; Cya (cyanovirin): lectins
from cyanobacteria.
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Figure 33. ARS-CoV-2 glycans that can be recognized (X) by Man-specific lectins from plants,
mushrooms, algae, and cyanobacteria, as predicted from the results of glycan arrays performed
with purified lectins: Leg4 (Con A): single-chain legume lectins; Leg2 (PsA, LcA): two-chain legume
lectins; JRL (Morniga-M): jacalin-related lectins; GNA (GNA, ASA): GNA-like lectins; Nic: Nictaba
from Nicotiana tabacum; Ric: ricin-B from Ricinus communis; Asc (NcCVN): lectins from Ascomycota;
Bas (ABA): lectins from Basidiomycota; Rh (griffithsin, KAA-2): lectins from Rhodophyta; Chl (BCA):
lectins from Chlorophyta; Act (actinohivin): lectins from actinomycetes; Cya (cyanovirin): lectins
from cyanobacteria.

- Nictaba lectin from Nicotiana tabacum interacts with the following glycans arranged in
decreasing order of affinity according to glycan array experiments performed at the
Consortium for Functional Glycomics, and should therefore recognize the complex
glycans and high-mannose glycans forming the glycan shield of the spikes from
coronaviruses (Figure 34):
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Figure 34. Glycans recognized by Nictaba in glycan array experiments, arranged from 1 to 10 in decreasing order of affinity.

- The ricin-B lectin from the Iris hollandica RIP-II was also shown to interact with complex
(α6-fucosylated) glycans, high-mannose glycans, and hybrid glycans in glycan arrays
experiments. Accordingly, it should readily interact with the spikes covering all types
of coronaviruses (Figures 31–33).

- Man-specific lectins from mushrooms belonging to the Ascomycota, essentially recog-
nize high-mannose glycans (Nc-CVN from Neurospora crassa, and Tb-CVN from Tuber
borchii, Flo1p from Saccharomyces pasteurianus, and Flo5A from S. cerevisiae), whereas
other Man-specific lectins from Basidiomycota, e.g Abmb from Agaricus bisporus, and
MOA from Marasmius oreades, preferentially recognize complex glycans. Mushroom
lectins should recognize the high-mannose glycans and the complex glycans from
coronaviruses.

- Man-specific lectins from red algae and green algae, both recognize exclusively high-
mannose glycans containing Man5-Man9 mannose residues. They should be nicely
adapted for the recognition of the high-mannose glycan shield exposed at the top
of the MERS-CoV spikes (Figures 28 and 29). Obviously, they should also recognize
the high-mannose glycans associated with the SARS-CoV and SARS-CoV-2 spikes
(Figures 31–33).

- Man-specific lectins from algae, actinobacteria (actinohivin) and cyanobacteria (cyanovirin,
microvirin, scytovirin), which predominantly possess a β−barrel structure and display
an exclusive specificity for branched Man5-Man9 oligomannosides, should recognize
the high-mannose glycan shield covering the coronavirus spikes and, especially, the
MERS-CoV virus (Figures 28 and 29).

The above predictions have already been corroborated by coronavirus-binding experi-
ments using several lectins from plants, algae, and bacteria, confirming the potential of
Man-specific lectins as relevant probes for the proper targeting of coronavirus spikes.

The pioneering work of van der Meer et al. (2007) demonstrated the anti-viral prop-
erties of Man-specific GNA-related lectins such as CA from Cymbidium sp., HHA from
Hippeastrum hybrid, and GNA from Galanthus nivalis against SARS-CoV, and also high-
lighted the efficacy of the bacterial cyanovirin CVN [132]. These results were further
extended to a broader list of 33 lectins, including Morniga-M from Morus nigra and other
Man-specific lectins exhibiting a different structural scaffold [13]. The most efficient lectins
against SARS-CoV predominantly consist of GNA-related Man-specific lectins (Table 1). In
addition, lectins with different specificities, e.g., Gal-specific lectins (Morniga-G from Morus
nigra), GalNAc-specific lectins (ML II from Viscum album), and GlcNAc-specific lectins
(UDA from Urtica dioica), also displayed a significant anti-SARS-CoV activity. In addition,
two targets for HHA, the Man-specific lectin from Amaryllis (Hippeastrum hybrid), were
identified at the beginning and at the end of the infectious virus cycle. These target proteins
most probably are involved in the viral attachment to the host cell surface and the virus
release from the infected cells, respectively. The GNA-related Man-specific lectins interact
with the glycan shield from the SARS-CoV spikes and thus interfere with the attachment of
the virions to and the release from the host cells, with the exception of the garlic (Allium
sativum) lectin ASA, which is devoid of any anti-viral activity against SARS-CoV. Obviously,
the specific interaction of GNA-related lectins with the SARS-CoV virions depends on the
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preferential recognition by lectins of high-mannose glycans well exposed at the top of the
SARS-CoV spikes (Figure 29).

Recently, another Man-specific lectin FRIL from the legume Lablab (Dolichos) purpureus
seeds, was shown to interfere with the SARS-CoV-2 entry in host cells, and its antiviral
activity is mediated by specific recognition of complex glycans occurring on the surface
of the S-glycoprotein [133]. In glycan array experiments, FRIL exhibited the best binding
to complex-type N-glycans with α1,3 or α1,4 fucosylated sub-terminal GlcNAc whereas
a slightly weaker binding was obtained with non-terminally fucosylated complex- and
hybrid-type N-glycans. This situation is reminiscent of the preferential affinity of Man-
specific Viciae lectins (LcA, LoL-I, PsA) for α1,6-fucosylated N-glycans of the complex
type [21,134,135], with the difference that Viciae lectins bind α1,6-Fuc on reducing ends of
complex-type N-glycans, which are therefore suspected to be less accessible to the lectins.
However, Vicieae lectins also interact with the non-fucosylated tri-mannosyl core of high
mannose and complex-type glycans, which appear well exposed on the surface of the
coronavirus spikes (Figure 35A–F). This is consistent with the predicted preferential affinity
of Man-specific legume lectins for α1,6-fucosylated N-glycans of the complex type which
predominantly occur at the top of the SARS-CoV-2 spikes (Figure 29). These results obtained
with a legume lectin, compared to those obtained with GNA-related lectins towards SARS-
CoV, highlight the importance of a differential distribution of the high-mannose glycans
and complex glycans on the surface of the spikes, which, in fact, define the type of glycans
that will be accessible to the Man-specific lectins from the different groups.

Figure 35. (A–C). Lateral views of the molecular surfaces (colored grey) of spikes from SARS-CoV
(PDB code 6ACD) (A), MERS-CoV (PDB code 5W9H) (B), and SARS-CoV-2 (PDB code 6VXX) (C),
showing the exposure of the fucosylated and non-fucosylated tri-mannosyl cores (colored magenta)
of high mannose glycans and complex glycans (colored cyan). (D–F). Front views of the molecular
surfaces (colored grey) from SARS-CoV (D), MERS-CoV (E), and SARS-CoV-2 (F), showing the
exposure of the fucosylated or non-fucosylated tri-mannosyl cores (colored magenta) of high mannose
glycans and complex glycans (colored cyan).

Man-specific lectins from red algae, and especially griffithsin GRFT, were recognized
very early as specific carbohydrate-binding agents for SARS-CoV, due to its strict specificity
for high-mannose glycans containing Man5-Man9 units [136,137]. In addition, GRFT was
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identified as a potent inhibitor of the MERS-CoV infection, inhibiting the entry of virions
into the cells [138]. Other griffithsin-related Man-specific lectins from Ascomycota, e.g.,
Nc-GRFT from Neurospora crassa and Tb-GRFT from Tuber borchii, should also interact with
the glycan shield covering the SARS-CoV spikes. Actinohivin, microvirin, and scytovirin
should also specifically interact with SARS-CoV but, to date, no information is available
yet on their anti-SARS-CoV properties.

Similar to the Man-specific lectins from plants and algae, the so-called mannose-
binding lectins MBL from animals and especially, the calcium-dependent serum C-lectins,
which play a key role as opsonins in innate immunity towards a number of pathogens,
including viruses, bacteria, and protozoa, were identified as selective inhibitors for the
infection of host cells by SARS-CoV [139]. In addition, a single N-glycosylation site N330 of
the SARS-CoV S-glycoprotein, predominantly occupied by N-glycans of the complex type
(Figure 26), was identified as a critical target for the interaction from directed mutagenesis
experiments. In contrast, other membrane-associated Man-specific lectins such as DC-
SIGN and DC-SIGNR were assigned as receptors promoting infection and dissemination
of SARS-CoV through the specific recognition of the glycan shield covering the virion
spikes [140]. Recently, a detailed study of the interactions of the N-linked glycans in the
RBD from the SARS-CoV-2 spike protein has been performed with human galectins, using
NMR spectroscopy [141]. Moreover, the inhibition of Galectin-3, another animal lectin, was
proposed as a possible treatment capable of impeding the SARS-CoV-2 attachment to the
host cells and suppressing the host inflammatory response [142].

The mechanism by which lectins block viral replication once they have recognized the
glycoproteins covering the enveloped viruses, still remains unclear.

Previous experiments performed to elucidate the inhibitory mode of action of Man-
specific lectins (GNA from snowdrop Galanthus nivalis, and HHA from Hippeastrum hybrid)
and UDA, the GlcNAc-binding lectin from stinging nettle Urtica dioica, on feline infectious
peritonitis virus (FIPV) and mouse hepatitis virus (MHV), showed that lectins do not inhibit
the attachment of coronavirus to the host cells but affect coronavirus entry at a post-binding
stage. The lectins could interfere with some spike protein rearrangements required for
driving the fusion between the viral envelope and the host cell membrane [143].

Griffithsin, the red algal Man-specific lectin, was identified as a potent inhibitor of
MERS-CoV infectivity and replication in vitro. The lectin was shown to interact with the
MERS-CoV spike protein during the early attachment step to the virions, suggesting that
griffithsin could prevent the attachment of the virions to the DPP4 receptors of the host
cells. Accordingly, the lectin cannot block MERS-CoV infection when added to the virions
at a post-binding step [138].

Investigating the mechanism by which FRIL neutralizes influenza viruses H1N1,
H3N2, H5N1, and H7N9, under in vitro and in vivo conditions, Liu et al. (2020) showed
that (1) FRIL neutralizes only influenza viruses possessing complex-type N-glycans, (2) due
to its tetravalent character, FRIL binds to the virions and creates virion aggregates before
the endocytosis into the host cell, (3) FRIL halts the host cell infection process in the late
endosome/lysosome and thus prevents the nuclear import of the virions [133]. Accord-
ing to these results, the authors proposed a model in which the lectin causes the virion
aggregation outside the host cell and, once endocytosed, prevents their nuclear import
by entrapping the virion-lectin aggregates in the late endosome/lysosome stage. In this
process, the multivalency of FRIL appears as a key factor for bridging the influenza virions
and create virion aggregates outside the host cell, prior to their endocytosis. Similarly, FRIL
also binds to the complex-type glycans of SARS-CoV-2 virions and displays a lower affinity
towards high-mannose glycans. These results confirm that FRIL exhibits a better affinity to
the complex-type glycans with α1,3 or α1,4 fucosylated sub-terminal GlcNAc, compared
to α1,3 and α1,6 linked Man of the α1,6-fucosylated or non-fucosylated tri-mannosyl core
GlcNAc2Man3. The affinity of FRIL for complex-type glycans could explain why the lectin
neutralizes both influenza and SARS-CoV-2 viruses but has almost no effect on HIV.
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6. Biomedical Perspectives

The extensive glycosylation at the surface of the S protein offers a shielding effect to
SARS-CoV, MERS-CoV, and SARS-CoV-2. In addition to this protective role, a possible
stabilization function has been postulated for some of the N-glycans covering the SARS-
CoV-2 S protein, that could be exploited in the future for targeting the glycan coat by
therapeutic drugs [144]. However, the distribution of the glycan shield at the surface of the
spikes and especially, at the top of the spikes, does not consistently support a protective
function susceptible to reduce the vulnerability of the coronaviruses towards antibody
epitopes and/or exogenous proteases. In this respect, the exposed area of the RBDs at the
top of the spikes is substantially free of glycans and thus, remains available for specific
recognition by the opened spike conformation of the corresponding ACE2 (SARS-CoV and
SARS-CoV-2) and DPP4 (MERS-CoV) host cell receptors (Figure 36A–C).

Figure 36. (A–C). Top face of the ribbon diagram of the homotrimeric spike of SARS-CoV (PDB code
6ACD) (A), MERS-CoV (PDB code 5W9H) (B), and SARS-CoV-2 (PDB code 6VXX) (C). High-mannose
glycans and complex glycans are colored cyan. Molecular surfaces corresponding to the RBDs are
colored gold and the remaining molecular surfaces are colored grey.

Nevertheless, the steric hindrance created by the interaction of Man-specific lectins
such as the dimeric PsA (50 kDa), the tetrameric GNA (50 kDa), and Morniga-M (60 kDa)
or the octameric Heltuba (120 kDa), with the high-mannose and complex N-glycans located
in the vicinity of the RBD area, should interfere with the receptor recognition process and
could disturb or prevent the entry of coronaviruses in host cells. In this respect, the di-,
tetra-, hexa- (Parkia platicephala lectin), and octameric Man-specific lectins from higher
plants, which exhibit high molecular weights in the range between 50–100 kDa, could serve
as blocking agents that can prevent the coronavirus infection. Other Man-specific lectins
from algae, fungi, and cyanobacteria seem to be less adapted to act as a blocking agent
owing to their smaller size, e.g., 25 kDa for the griffithsin swapped homodimer and 20 kDa
for the cyanovirin swapped homodimer, respectively (Figure 37).

Figure 37. Cartoon showing the relative size of different Man-binding lectins (dimeric GNA-like lectin
(A), bivalent legume lectin β2α2 (B), and Jacalin-related lectin (C)), complexed to the homotrimeric
spike (front face) from SARS-CoV-2.
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As blocking agents for coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2, Man-
specific lectins from higher plants, algae, fungi, and cyanobacteria could be used to entrap
and immobilize the virions using air-conditioned filters impregnated with lectins to prevent
the coronavirus dissemination by contaminated people. However, the covalent fixation
of lectins to air-conditioned filters necessitates large amounts of purified lectins, which
may be problematic in view of low yields usually obtained during purification of Man-
specific lectins from higher plants. Recent improvements performed in the large-scale
purification of the algal lectins from Eucheuma [114], and griffithsin from tobacco leaves,
could provide the bulk production of Man-specific lectins required for the manufacturing of
lectin-impregnated filters [145]. However, the blocking activity of dried lectins immobilized
on air-conditioned filters seems unlikely because these proteins need water to retain both
their conformation and carbohydrate-binding activity. At most, one can imagine a filtration
device equipped with a wet filter containing immobilized lectins, which would remove the
air from the virions before entering the air-conditioned filter.

Another potential biomedical application for Man-specific lectins could consist of their
use as glycan probes for the detection of coronaviruses in the environment, e.g., on various
domestic surfaces such as doorknobs, home furnishings, handrails, mirrors, computers, etc.
Virions deposited on these surfaces could be detected under UV illumination, e.g., using
specific antibodies labeled with a fluorochrome.

It is possible to imagine further therapeutic issues for Man-specific lectins with respect
to the coronavirus infection. Recently, a risk of contamination by SARS-CoV-2 has been
identified via spoiled blood or blood products transfused to healthy people [146]. Although
the risk of a transfusion transmission is essentially theoretical [147], a plasmapheresis
through a column of immobilized Man-specific lectin would be sufficient to eliminate the
eventual blood contaminants. A similar filtration of the suspected blood samples through
a column containing an immobilized Man-specific lectin could be performed in blood
centers or blood banks and would be a control measure sufficient to purge the blood from
coronavirus particles and thus prevent possible contamination for the transfused people. In
this respect, up to 80% of MERS-CoV and 70% of MARV (Marburg virus), were successfully
eliminated by lectin affinity plasmapheresis using GNA as a blocking agent immobilized
in the extra-capillary space of a standard plasma filter [148].

From the scarce in vitro experiments conducted to study the effects of Man-specific
lectins from higher plants [13,132,133], and griffithsin [137,138], towards MERS-CoV and
SARS-CoV-2, the anti-viral activity of lectins appeared to prevent both attachment and
entry of the virus in the host cell but does not interfere with the coronavirus replication
process within the cell. Consequently, Man-specific lectins cannot be considered as repli-
cation blockers for coronaviruses. A very different situation occurs for other enveloped
viruses such as HIV-1 [24], influenza virus [37], and Herpes virus [25], whose replication is
apparently blocked in vitro, in the presence of Man-specific lectins.

In addition, some of the biomedical applications presented here could be adapted to
veterinary medicine by addressing animal coronavirus concerns [149] as part of the “one
health” approach.

7. Bioinformatics

The X-ray coordinates available for lectins, lectins in complex with simple sugars,
oligosaccharides, and more complex glycans, and S-glycoproteins from SARS-CoV, MERS-
CoV, and SARS-CoV-2, were taken from the PDB.

Homology modeling of other lectins was performed with the YASARA Structure
program [150] using various structurally related proteins as templates from the PDB [151],
depending on the overall structural scaffold to which they belong. PROCHECK [152],
ANOLEA [153], and the calculated QMEAN scores [154,155] were used to assess the
geometric and thermodynamic qualities of the resulting three-dimensional models.

Docking of simple sugars and oligosaccharides was performed with YASARA and
SwissDock [156,157]. The molecular surface of the lectins and S-glycoproteins from SARS-
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CoV, MERS-CoV, and SARS-CoV-2, were calculated and displayed with Chimera [158].
Molecular cartoons were drawn with Chimera and YASARA.

Assuming that putative N-glycosylation sites Asn-X-Thr/Ser of SARS-CoV, MERS-
CoV, and SARS-CoV2, are actually glycosylated, a classic bi-antennary high-mannose
glycan chain with a tri-mannoside core (Man)2-(Man)3-(GlcNAc)2 was modeled using
the GlyProt server (http://www.glycosciences.de/modeling/glyprot/php/main.php, ac-
cessed on 1 March 2021) [159], and represented in CPK on the molecular surface of the
spike S-glycoproteins. According to the known differential distribution of high-mannose
N-glycans and complex N-glycans on the surface of the S-glycoproteins, another run of
modeling was performed using standard high-mannose glycans and complex glycans
as models.

Cartoons for high-mannose glycans, complex N-glycans, and hybrid glycans, were
built and represented with the DrawGlycan SNFG package for Mac [160]. Classical colored
symbols were used for representing Fuc (red triangle), Gal (yellow circle), GalNAc (yel-
low square), GlcNAc (blue square), Man (green circle), and sialic acid/Neu5Ac (purple
losange), respectively.

8. Discussion

Glycans of the S-glycoproteins forming the spikes of SARS-CoV, MERS-CoV and SARS-
CoV-2, consist of high-mannose glycans and often sialylated N-glycans that predominantly
occupy their N-glycosylation sites [11,12]. However, depending on the coronaviruses, some
discrepancies occur between the distribution of the two types of glycans on the surface of
the virion, which introduces some diversity in the glycan shield covering the coronavirus
spikes [11]. Accordingly, Man-specific lectins from plants, algae, fungi, and bacteria, which
differ slightly due to their fine sugar-binding specificities, offer a vast panel of glycan probes
more or less adapted to the specific recognition of the different coronaviruses. In this respect,
GNA-related lectins together with Man-specific lectins from algae and cyanobacteria,
appear as glycan probes nicely adapted to the recognition of the high-mannose shield
which predominates at the top of the MERS-CoV spike. Otherwise, legume lectins with
a higher affinity for N-glycans possessing the trimannoside Manα1,3Manα1,6Man core,
seem better adapted to the recognition of the N-glycans distributed predominantly at the
top of the glycan shield from SARS-CoV and SARS-CoV-2.

Besides Man-specific lectins, other lectins displaying different carbohydrate-binding
specificities have previously been identified as glycan probes for MERS-CoV [13,161]. In this
respect, lectins exhibiting Man/Glc-specificity (CLA from Cladrastris lutea), Gal/GalNAc-
specificity (Morniga-G from Morus nigra), GlcNAc-specificity (Nictaba from Nicotiana
tabacum), chitin-specificity (UDA from Urtica dioica), display an antiviral activity often
higher or similar to those displayed by genuine Man-specific lectins, essentially the GNA-
related lectins from monocot plants [39]. The occurrence of (sialylated)complex glycans and
hybrid glycans arrayed on the surface of coronavirus spikes, readily accounts for the differ-
ences observed among the carbohydrate-binding specificities towards the coronaviruses. In-
hibition of the SARS-CoV replication was observed in a lethal SARS-CoV-infected BALB/c
mouse model after treatment with the (GlcNAc)n-binding stinging nettle (Urtica dioica)
lectin [161]. Nictaba from Nicotiana tabacum and UDA, two GlcNAc-binding lectins, also
displayed antiviral properties against several families of enveloped viruses including
influenza A/B, Dengue virus type 2, herpes simplex virus, and HIV, respectively [162].
Accordingly, a mixture of lectins with different carbohydrate-binding specificities should
provide a glycan probe tool well adapted to all of the coronavirus types and strains.
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