
HAL Id: hal-03443053
https://hal.science/hal-03443053

Submitted on 23 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full Bitcoin Blockchain Data Made Easy
Jules Azad Emery, Matthieu Latapy

To cite this version:
Jules Azad Emery, Matthieu Latapy. Full Bitcoin Blockchain Data Made Easy. 2021 IEEE/ACM
International Conference on Advances in Social Network Analysis and Mining (ASONAM 2021), Nov
2021, The Hague (virtual), Netherlands. �hal-03443053�

https://hal.science/hal-03443053
https://hal.archives-ouvertes.fr

Full Bitcoin Blockchain Data Made Easy

Jules Azad Emery and Matthieu Latapy

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

bitcoin@complexnetworks.fr

Abstract

Despite the fact that it is publicly available, collecting and processing the full bitcoin
blockchain data is not trivial. Its mere size, history, and other features indeed raise
quite specific challenges, that we address in this paper. The strengths of our approach
are the following: it relies on very basic and standard tools, which makes the procedure
reliable and easily reproducible; it is a purely lossless procedure ensuring that we catch
and preserve all existing data; it provides additional indexing that makes it easy to further
process the whole data and select appropriate subsets of it. We present our procedure in
details and illustrate its added value on large-scale use cases, like address clustering. We
provide an implementation online, as well as the obtained dataset.

Introduction

Bitcoin [25] is the first and most widely used crypto-currency. Introduced in 2009, its mar-
ket capitalization was above 1 trillion U.S. dollars in february 2021. With around 300,000
transactions daily, it is used worldwide in a variety of situations.

All bitcoin transactions are recorded in a public registry, called the blockchain.
It is a sequence of blocks issued every ten minutes, each listing the transactions successfully
processed since the previous block. This gives a unique opportunity to study real-world,
large-scale financial activity. Therefore, bitcoin is at the core of an intense research activity.

However, accessing and processing bitcoin data raises serious challenges. First, the blockchain
is ruled by complex protocols that evolved over time, making it necessary to have more than
a basic understanding of how it works. In addition, precisely because the blockchain is public,
its users use a wealth of obfuscation techniques to preserve their privacy and make transac-
tions anonymous. Last but not least, the sheer size of the data makes it difficult to collect, and
even more difficult to analyze; even trivial questions like counting the number of transactions
involving a given user are difficult, at such a scale.

As a consequence, most bitcoin studies rely on partial views of the blockchain, on ag-
gregated data, or on privately owned datasets; there is currently no publicly available and
easy-to-use dataset containing all bitcoin information stored in the blockchain since its be-
ginning.

Our goal with this paper is to provide such a dataset. We want to provide all
existing data, without any assumption on what the final user will need. In addition, we want
to pre-process these data to add the information needed to use it efficiently and easily. In
order to ensure that our procedures are reliable, efficient, and reproducible, we want to rely
uniquely on basic, standard command-line tools.

1

ar
X

iv
:2

10
6.

08
07

2v
1

 [
cs

.S
I]

 1
5

Ju
n

20
21

bitcoin@complexnetworks.fr

Our approach consists in a sequence of key steps, that we detail in the following sections of
this paper:

I. Collection. We first perform the raw data extraction from the bitcoin blockchain itself,
by setting up a bitcoin node and querying it for each block.

II. Indexing. We add to the raw data an integer index for each basic item, like transactions
or addresses, without removing any of the original data.

III. Distillation. We extract specific subsets of the data that make it easy, fast, and
compact to obtain various higher-level information.

IV. Application. In order to illustrate our contribution, we detail an advanced use of our
dataset: the analysis of a classical address clustering heuristic.

We discuss related work in Section 5, and perspectives in Section 6.
All the code presented in this paper and all obtained data are documented

and available online [11]. We give approximate execution times of each step, but they
strongly depend on available bandwiudth, memory space, computation power, disk speed,
implementation language, and other parameters; they should therefore be considered as in-
dicative only.

1 Collection

In order to have a local copy of the blockchain, we first set up our own bitcoin node.
To this end, we install and run the open-source bitcoin-core software [16]. It contacts a set
of DNS nodes hard-coded in its source code, from which it obtains a list of running bitcoin
nodes. Our node then downloads the blockchain from these nodes, thus obtaining its local
copy.

We launched this procedure on March 13, 2021. It downloaded the blockchain available
at that date in less than 6 hours, leading to a use of 360 GB of disk space.

In principle, one may then read and decode the local binary files used by the node to store
its copy of blockchain data. This would be the fastest solution, but it is complex and prone to
errors. Indeed these file formats are poorly documented, they changed over years, and they
may change again in a close future. In addition, this approach only collects targeted parts of
the data, in general. See for instance [1], and Section 5 for more details.

We therefore adopted a slower but simpler and safer approach. It is based on rpc (Re-
mote Procedure Call), the protocol provided to monitor bitcoin nodes [15]. It implements in
particular a primitive that returns the block identifier of the i-th block in the chain, for any
given i; and a primitive that returns a json object containing all the data available in a block
of given identifier. Figure 1 presents a simplified version of such a json object, that we will
detail below.

Thanks to these primitives, we ran an rpc-based bitcoin blockchain data collection
under the form of a json object for each block. Instead of running both primitives for
each block, we took benefit of the fact that each block contains the identifier of the previous
block in the chain. We therefore collected the latest block (its number is provided by a query
to any bitcoin node) and then iteratively collected the previous block until the beginning of
the blockchain is reached.

2

We launched this data collection until block 674 000, dated March 10th, 2021, which took
58 hours. It produced a 2.1 TB (548 GB once compressed with gzip) text file in which each
line is the json object describing a block. Notice however that obtained blocks are in reverse
chronological order (the latest one first), which is not convenient for further analysis. We
therefore reversed the initial file using the classical tac tool. It needs a non-compressed file
as input, but it has the advantage of not storing the whole file into main memory, which is
crucial here. It performed the reversing of the 674,001 lines of the 2.1 TB file in 28 hours.

{” he ight ” : 2 , ” prev iousb lockhash ” : ”h1 ” ,
2 ”hash” : ” h2 ” , ” time ” : ” t ” , ” nextblockhash ” : ”h3 ” ,

” tx” : [
4 {” tx id ” : ”B” ,

” vin ” : [{” tx id ” : ”C” , ”vout ” : 0 } ,
6 {” tx id ” : ”D” , ”vout ” : 0 }] ,

”vout ” : [{” value ” : 2 , ”n ” : 0 , ” scriptPubKey ” :
8 {” type ” : ”pubkeyhash ” , ”asm” : ”? ” ,

” addre s s e s ” : [” a ” ,” c ”]}} ,
10 {” value ” : 5 , ”n ” : 1 , ” scriptPubKey ” :

{” type ” : ”pubkey ” , ”asm” : ”c ”}}]
12 } ,

{” tx id ” : ”E” ,
14 ” vin ” : [{” tx id ” : ”B” , ”vout ” : 1 }] ,

”vout ” : [{” value ” : 3 , ”n ” : 0 , ” scriptPubKey ” :
16 {” type ” : ”pubkey ” ,”asm” : ” f ”}} ,

{” value ” : 2 , ”n ” : 1 , ” scriptPubKey ” :
18 {” type ” : ”pubkey ” ,”asm” : ”e ”}}]

}]}

Figure 1: Simplified example of a block description in json format. This is block
number 2, recorded at time t, and it contains transactions, B and E. Transaction B has two
inputs: the output 0 of transaction C, and the output 0 of transaction D. It has two outputs:
its output 0 goes to addresses a and c; its output 1 goes to address c. Transaction E has one
input: the output 1 of transaction B; and it has two outputs: its output 0 to address f and
its output 1 to address e. The value fields indicate that transaction B sends 2 satoshis to
addresses a and c and 5 satoshis to address c, taken from outputs 0 of transactions C and D;
and that transaction E sends 3 satoshis to address f and 2 to address e, taken from output 1
of transaction B. See Figure 2 for a graphical representation.

As illustrated in Figure 1, each json description of a block has several fields. It begins by
fields characterizing the block itself, including its rank in the blockchain (height field), its
identifier (a hash code) and the one of its previous and next block, as well as a timestamp. It
has another crucial field, named tx, that gives the list of transactions recorded in this block.

Each transaction in this list is itself described by a json object, with main fields txid,
vin and vout. The txid field is the transaction identifier, that we will represent by a capital
letter. Fields vin and vout are the lists of this transaction inputs and outputs (TIOs for
short), respectively.

Each transaction output is described by a rank field n and has a value field giving the
amount, in satoshis (a satoshi is 10−8 bitcoin) 1 sent to this output. Addresses may be

1Amounts are actually stored as an integer number of satoshis in the blockchain, but returned as a decimal
number of bitcoins by json rpc calls. We convert them into satoshi units to avoid rounding errors.

3

associated to outputs, described by a json object in field scriptPubKey. We will represent
addresses with lower case letters here.

Each transaction input is the output of a previous transaction; it is described by the txid

of this transaction and the rank of its output under concern, given in a field named vout too.
Addresses require specific attention, as their format is not uniform. As already said, they

are given in the scriptPubKey json object associated to transaction outputs. This json
object has a type field, and if its value is nulldata or nonstandard, then this output has
no directly available address. This is rare, though; in most case, either this json object has
field named addresses that gives the addresses under concern, or the type field has value
pubkey. In this last case, the address is the first word (with space separator) in another field,
named asm. In order to make the data easier to parse, we then add an addresses field to
each scriptPubKey json object, with the addresses we found in it.

f

e
B,1

C,0

D,0

a,c

c

block 2

2

5

3

2

t

B

E

0

1

0

1

Figure 2: Graphical representation of a
bitcoin block and its transactions. Their
json description is in Figure 1. Transactions
are represented by square boxes, with their
capital letter identifier and output ranks. Ad-
dresses are in blue, lower case letters. Amounts
appear on output edges of transactions, and
the inputs give the corresponding transaction
identifier and its output rank.

We graphically represent the key information contained in a block like in Figure 2. In
this figure, we represent the block of Figure 1.

Let us insist on the fact that we do not detail all available fields above, and we do not
represent them all on the picture. There is a wide variety of transaction types and other
specific features, that vary over time. All these data are present in our dataset, but they are
not our focus here.

With these data, we already obtain some basic but interesting statistics. In par-
ticular, the dataset contains 674,001 blocks and 623,483,734 transactions with 1,673,052,718
inputs and outputs.

As an illustration, we present in Figure 3 (left) the number of transactions over time,
that displays the classical slow start until 2013, followed by a rapid growth that nowadays
becomes linear. Figure 3 (right) presents the correlations between transaction number of
inputs and outputs. These numbers span orders of magnitude, but large number of inputs
are for transactions with only few outputs, and conversely. This indicates specific kinds of
transactions, forged for obfuscation, as we will detail in Section 4. Instead, most transactions
have only few inputs and outputs, and then the values are not significantly correlated (see
the inset).

We also present in Figure 4 (left) the transaction amount distribution, in bitcoins. These
amounts span 11 orders of magnitude, which is huge. Notice however that only 1 transaction
over 6 has an amount of more than 1 bitcoin. One may guess that large amounts are for old
transactions, when bitcoin value was very low, and that more recent transactions have much
lower amounts. Figure 4 (right) shows that this is not true: although the average amount sig-
nificantly decreases, there are still many recent transactions with large amounts, and instead
very small amounts tend to disappear. This certainly is a consequence of the generalization of

4

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

2009 2011 2013 2015 2017 2019 2021

n
u
m

b
e
r

o
f
tr

a
n
s
a
c
ti
o
n
s

years

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 5000 10000 15000 20000

tr
a
n
s
a
c
ti
o
n
 n

u
m

b
e
r

o
f
o
u
tp

u
ts

transaction number of inputs

 0

 500

 1000

 1500

 2000

0 500 1000 1500 2000

tr
a
n
s
a
c
ti
o
n
 n

u
m

b
e
r

o
f
o
u
tp

u
ts

transaction number of inputs

Figure 3: Left: number of transactions over time, since the beginning of the bitcoin
blockchain. Right: correlations between transaction number of inputs and outputs.
For each transaction with x inputs and y outputs, we display a dot at coordinates (x, y). The
inset provides a zoom on smallest values.

platforms that group user-level transactions into large blockchain transactions for obfuscation
and optimization reasons.

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

1e-08 1e-06 0.0001 0.01 1 100 10000

n
u
m

b
e
r

o
f
tr

a
n
s
a
c
ti
o
n
s

amount (in bitcoins)

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

2009 2011 2013 2015 2017 2019 2021

a
m

o
u
n
ts

 (
in

 b
it
c
o
in

s
)

years

Figure 4: Left: inverse cumulative distribution of transaction amounts. For each
amount x on the horizontal axis, we display the number of transactions with amount at
least x bitcoins (obtained as the sum of their output value fields), in log-lin scales. Right:
transaction amounts over time. For each of the 10, 000 transactions with largest amounts
(in red, top dots), and for each of the 10, 000 ones with smallest amounts (in green, bottom
dots), we display a dot at its time occurrence (horizontal axis) and amount in bitcoins (vertical
axis, in log scale). In between, we plot (in blue, middle dots) the daily average transaction
amount.

These plots provide good illustrations of what is readily feasible with the
collected dataset. However, other key computations like counting the number of distinct
addresses, or the number of occurrences of each address, are more subtle. They require a
parsing of the whole data and storing the set of already seen addresses. Likewise, information
on transaction inputs, like their associated addresses and satoshi amounts, is not readily
available; finding them requires to store and query past transaction outputs. The next
section is devoted to making such operations easy.

2 Indexing

Handling data at bitcoin blockchain scale requires appropriate indexing and pre-processing.
Indexes from 0 to n − 1, where n is the number of items of a given kind, are
particularly appealing: one may then store information related to item of index i in an
array of size n and access it very efficiently (in both space and time).

5

For instance, with addresses indexed this way, it is easy to count their occurrences: from
an array initially filled with 0s, simply parse the data and increment the i-th cell each time
address of index i occurs. The time cost of this counting is dominated by the data parsing,
since it has a small O(1) cost per address occurrence. Its space cost is limited to an array of
n integers.

Another desirable feature is to have indexes consistent with occurrence order: the
first occurring item has index 0, the next has index 1, and so on. With such indexings,
counting address occurrences for the n′ first addresses, for n′ ≤ n, requires an array of n′

integers only. Otherwise, an array of size n is needed, like in the base case. More generally,
any prefix of the data has indexes from 0 to n′ − 1, where n′ ≤ n is the number of items
occurring in the prefix. This ensures that prefixes are themselves datasets encoded in the
same way. We therefore say that such indexes are prefix-consistent. There is a unique
such indexing for a given dataset.

Here, items of interest are blocks, transactions, their inputs and outputs (TIOs), and
addresses. As explained above, the height field of blocks already is its prefix-consistent
index. Transactions have a txid field, that gives their native identifier (a 32 byte hash code).
Similarly, addresses are alphanumeric character strings of variable length, representing public
keys. The case of TIOs is more subtle: a TIO is uniquely identified by the txid of the
transaction that created it (as an output), together with its rank in the output list of this
transaction. Therefore, we consider the pair composed of this txid and this rank as the
native identifier for this TIO. For instance, the first and second outputs of a transaction X
have native identifier X, 0 and X, 1, respectively. They may later appear as inputs of other
transactions.

In order to prepare the collected data for more advanced analysis (Section 4), our goal
here is to associate its prefix-consistent index to each occurrence of transaction,
TIO, and address native identifier in our dataset. Aiming at preserving its integrity, we
however keep all the initial data and just add indexes within its json objects, in dedicated
fields. For instance, we add to each json object having a txid field a new field, named index

if this object is a transaction and named txid index if it is a transaction input, with value
the prefix-consistent index of this transaction.

The classical approach for prefix-consistent indexing is to store index tables in main
memory, and then to perform indexing on-the-fly, while parsing the original data. However,
this has prohibitive space and time costs.

Indeed, under reasonable assumptions, this approach requires to store at least the native
identifiers in main memory. With the numbers of items above this leads to at least 60 GB of
memory needs.

In addition, there are more than 27.6 billion item occurrences in total, and so we have
to perform this number of searches in the indexes. The only data structure that fits the
above space requirements are (sorted) arrays of native identifiers; but then searching has a
prohibitive Θ(log(n)) time cost. Hash tables make index operations very fast, but have space
requirements significantly larger than necessary: in addition to native identifiers, they must
store indexes, and some spare space. Moreover, these approaches make un-ordered accesses
to huge memory spaces, which has a strong impact on speed in practice.

Therefore, we propose an approach that avoids storing indexes in central mem-
ory and still parses the data a very limited number of times. This approach relies
on standard command-line tools, in particular sort. It reads the raw data and adds index
fields on-the-fly. To achieve this, we will build a file containing on its i-th line the pair ‘i-1

6

index’, meaning that ‘index’ is the index of the (i−1)-th native identifier occurrence. Then,
on-the-fly indexing is easy: it suffices to jointly parse the original data and this file. We
detail the successive steps in the following, and illustrate intermediate results in the case of
Figure 5.

b

d
A,0

b

f

A,1

D,1

f

f

e
B,1

C,0

D,0

a,c

c

block 0 block 1 block 2

D

A C B

E
0

1

0

1
0

0

1

0

1

Figure 5: Example data for indexing. We consider three blocks, numbered 0, 1 and 2. Each
contains transactions, named A, B, C, D, and E. Their input and output information are
displayed as they are available in the dataset. We do not display amounts, timestamps, and
other information that plays no role here.

Our first step consists in listing all occurrences of items under concern, together with
their occurrence rank. In some cases, their index is readily available: when we parse the i-th
transaction, we encounter its txid for the first time, and so its index is i − 1; each TIO is
created as a transaction output, therefore counting the number of transaction outputs encoun-
tered so far gives current TIO index. In these cases, we output the triplet ‘occurrence-rank

native-identifier index’. In other cases, when the index of current item is not directly
available, we only output the pair ‘occurrence-rank native-identifier’.

In the case of Figure 5, this leads to the following: ‘0 A 0’ ‘1 A,0 0’ ‘2 b’ ‘3 A,1 1’ ‘4

f’ for transaction A, ‘5 D 1’ ‘6 A’ ‘7 A,0’ ‘8 D,0 2’ ‘9 b’ ‘10 D,1 3’ ‘11 d’ for transaction
D, ‘12 C 2’ ‘13 A’ ‘14 A,1’ ‘15 D’ ‘16 D,1’ ‘17 C,0 4’ ‘18 f’ for transaction C, ‘19 B 3’

‘20 C’ ‘21 C,0’ ‘22 D’ ‘23 D,0’ ‘24 B,0 5’ ‘25 a’ ‘26 c’ ‘27 B,1 6’ ‘28 c’ for transaction
B, and ‘29 E 4’ ‘30 B’ ‘31 B,1’ ‘32 E,0 7’ ‘33 f’ ‘34 E,1 8’ ‘35 e’ for transaction E.

In the obtained list, the native identifier of each item appears exactly once in a triplet with
their index, except the ones of addresses. Our second step aims at building similar triplets
for addresses. To do so, we parse the original data again and list all address occurrences
together with their rank. We then sort this list with respect to addresses and we keep only
the first tuple for each address. This gives the list of all distinct addresses, each with its first
occurrence rank. We sort again with respect to this field, in order to obtain the list of all
distinct addresses, ordered by rank. The index of any address is nothing but its rank in this
list, and we finally output a triplet ‘-1 address index’ for each address.

In the case of Figure 5, we first obtain ‘b 0’ ‘f 1’ ‘b 2’ ‘d 3’ ‘f 4’ ‘a 5’ ‘c 6’ ‘c 7’

‘f 8’ and ‘e 9’. We then obtain ‘a 5’ ‘b 0’ ‘c 6’ ‘d 3’ ‘e 9’ and ‘f 1’, then ‘b 0’ ‘f 1’

‘d 3’ ‘a 5’ ‘c 6’ and ‘e 9’. Finally we obtain ‘-1 b 0’ ‘-1 f 1’ ‘-1 d 2’ ‘-1 a 3’ ‘-1 c

4’ and ‘-1 e 5’.
These triplets are in a format similar to the ones from our first step. In our third step

we put these two sets of tuples together, and sort them according to their second field, which
is a native identifier, as well as their first field, numerically. This ensures that all tuples
mentioning a given native identifier are grouped together. The first of them necessarily is a

7

triplet, and its third field is the index of the native identifier under concern (second field).
In our example, we obtain ‘-1 a 3’ ‘25 a’ ‘0 A 0’ ‘6 A’ ‘13 A’ ‘1 A,0 0’ ‘7 A,0’ ‘3

A,1 1’ ‘14 A,1’ ‘-1 b 0’ ‘2 b’ ‘9 b’ ‘19 B 3’ ‘30 B’ ‘24 B,0 5’ ‘27 B,1 6’ ‘31 B,1’ ‘-1

c 4’ ‘26 c’ ‘28 c’ ‘12 C 2’ ‘20 C’ ‘17 C,0 4’ ‘21 C,0’ ‘-1 d 2’ ‘11 d’ ‘5 D 1’ ‘15 D’ ‘22

D’ ‘8 D,0 2’ ‘23 D,0’ ‘10 D,1 3’ ‘16 D,1’ ‘-1 e 5’ ‘35 e’ ‘29 E 4’ ‘32 E,0 7’ ‘34 E,1 8’

‘-1 f 1’ ‘4 f’ ‘18 f’ ‘33 f’.
This leads to the fourth and last step of our indexing procedure. For each native

identifier, we take its index on the first tuple mentioning it, and for each tuple mentioning it
(except the ones starting with ‘-1’), we output a pair ‘i index’, where i is the first field of
the tuple. Such a pair says that the i-th item occurrence in the dataset corresponds to index
‘index’. We therefore sort these pairs according to their first field, and obtain the wanted
file.

In our example, this leads to ‘0 0’ ‘1 0’ ‘2 0’ ‘3 1’ ‘4 1’ ‘5 1’ ‘6 0’ ‘7 0’ ‘8 2’ ‘9

0’ ‘10 3’ ‘11 2’ ‘12 2’ ‘13 0’ ‘14 1’ ‘15 1’ ‘16 3’ ‘17 4’ ‘18 1’ ‘19 3’ ‘20 2’ ‘21 4’

‘22 1’ ‘23 2’ ‘24 5’ ‘25 3’ ‘26 4’ ‘27 6’ ‘28 4’ ‘29 4’ ‘30 3’ ‘31 6’ ‘32 7’ ‘33 1’ ‘34

8’ ‘35 5’.
As explained above, we finally perform the on-the-fly index addition by parsing

the original data and the obtained list of pairs jointly. In the whole procedure, no index is
stored in central memory, and we never had to sort the original json file. Instead, we sort the
list of all item occurrences and the index by taking benefit from the highly optimized sort

tool, that uses external memory to handle huge tasks and only uses a user-specified amount of
main memory. In our settings, the full indexing took approximately 98 hours (close
to 4 days), which is very reasonable given the fact that the initialization of the bitcoin node
took 6 hours, and the rpc json data collection itself took 58 hours, approximately.

Notice that using an advanced sorting tool as above is not mandatory. If only a routine
sorting function is available, then one may proceed as follows. First divide the total number
of item occurrences M into parts of size N such that sorting N items fits in central memory.
These N occurrences involve N ′ ≤ N distinct native identifiers. The procedure above is able
to index them in the whole data. Running this M

N makes the whole indexing, at the cost of
repeated parsing of the original data. In this way, the whole procedure may be turned into a
standalone program.

3 Distillation

All operations above preserve the original data; they only add address and index fields in
order to make it easier to use. However, in most practical situations, one needs specific parts
of the data only. Then, systematically resorting to the global dataset is an overkill: the file is
huge and it requires json parsing which, in addition to a waste in computation time, requires
a json parsing library.

Instead, users need to easily and quickly run their computations, with controlled space
needs, for instance using low-level languages like C. This requires a filtering and pre-processing
of the dataset, called distillation. It extracts the needed information and puts it in
a convenient format for easy, fast, and compact processing. We illustrate such
distillations in this section, as well as their practical uses.

First notice that, although relevant data depends on the targeted use, many need similar
data. In the case of bitcoin, one is typically interested in the list of transactions with their

8

timestamp, input addresses, and output addresses. For this reason, we show how to
distillate our dataset into a sequence of one line per transaction, each with the following space-
separated fields: ‘block timestamp tx nb-in nb-out first-in ... last-in first-out ...

last-out’. Here, tx stands for the index of the transaction under concern; block is the index
of the block that contains this transaction, and timestamp is its timestamp; nb-in and nb-out

give for the number of addresses involved in this transaction inputs and outputs, respectively;
and the two sequences first-in ... last-in and first-out ... last-out give the
indexes of these nb-in and nb-out addresses, respectively.

In the case of our guiding example (Figure 5), the lines of distilled data are: ‘0 t0 0 0

2 0 1’ ‘0 t0 1 1 2 0 0 2’ ‘1 t1 2 2 1 1 2 1’ ‘2 t2 3 2 2 0 1 3 4’ and ‘2 t2 4 1 2 4 1

5’ where t0, t1 and t2 stand for the timestamps of blocks 0, 1, and 2, respectively.
We perform this distillation as follows. We parse the indexed dataset block by block,

and store the current block index and timestamp. We parse transactions in current block in
their order within the block, and consider current transaction index. This gives the three
first fields of the output line for current transaction. We then parse its inputs and outputs
and build the corresponding sets of addresses. Output addresses are directly available within
the current transaction json object. Instead, input addresses are not readily available. But
transaction inputs are always outputs of former transactions. We therefore store the addresses
of each encountered transaction output, in an array indexed by TIO indexes. When a TIO is
encountered as another transaction input, we query this array and obtain the corresponding
addresses, which gives us all needed information.

Notice that transaction outputs are used only once as other transaction inputs. Therefore,
keeping the addresses of already encountered transaction inputs is unnecessary. We provide
an implementation of this procedure with this space optimization (we drop transaction output
addresses once used as input) [11].

Our implementation of this procedure performed the whole distillation in 25 hours, leading
to a 12 GB file containing the key information listed above (the mere parsing of the json
file already takes 15 hours). During this process, like in most distillation tasks, the indexes
produced in previous section play a crucial role. They make it possible to handle data
in a very fast and compact way, with arrays queried by item indexes.

The distilled dataset is easy to parse, even in a low-level language like C or with shell
scripts. Indexes make it easy, fast and compact to perform many operations. For instance,
we obtain that 3.5 % of all addresses are used only once, 87.6 % only twice, and almost 1.2 %
are used as input and output of a same transaction (often more than once). This reflects two
well-known but rarely quantified bitcoin facts: many users collect transaction change on an
address they already use; and many users avoid re-using addresses, for privacy concerns.

We also obtain that the most frequent address in transaction inputs and outputs ap-
pear there 3, 324, 680 and 3, 525, 298 times, respectively. More generally, we display in Fig-
ure 6 (left) the distribution of the total number of occurrences of each address, as well as their
numbers of occurrences as transaction inputs and outputs. All these distributions are very
similar, and span more than 6 orders of magnitude, showing a huge heterogeneity between
addresses.

We display in Figure 6 (right) the timeline of transactions involving the two most frequent
addresses in our dataset. The first one appears as soon as 2011, and it is intensively used for
one year. Its uses then severely slows down, and becomes sporadic after 2015, but, surprisingly
enough, it is still used by the end of 2018. Its number of occurrences as input and output
are so close to each other that we cannot distinguish them in the plot. The behaviour of the

9

other address is quite different. It appears much later, just before 2017, but it is used only a
few times until 2018. Then, its use is intensive for a few months. It slows down in 2019, and
suddenly stops being used in mid-2020.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1 10 100 1000 10000 100000 1x10
6

n
u
m

b
e
r

o
f
a
d
d
re

s
s
e
s

total number of occurrences

total
input

output

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

a
d
d
re

s
s
 n

u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

years

Figure 6: Left: address reuse, displayed as the inverse cumulative distribution of the
number of occurrences of each address in the dataset, in total, as an input address, or as an
output address. Right: occurrences of the two most used addresses over time. For
the most used address in the dataset (rightmost plots, green colors) and the second most used
one (leftmost plots, blue colors), we display its number of occurrences as input, output, and
its total number of occurrences since the beginning of the blockchain.

Many other statistics are easy to obtain from various distilled versions of our dataset.
For instance, replacing addresses by amounts, gives transaction fees (the difference be-

tween input and output amounts), displayed in Figure 7 (left). Since the beginning of the
blockchain, fees range from 0 to more than 100 bitcoins, but they are nowadays much more
uniform: they range from 10−6 to 0.02 bitcoins for the last million of transactions, with the
vast majority very close to 0.0002 bitcoins.

Replacing addresses by TIOs gives information on bitcoin flows, like the delay between
the receiving and spending of bitcoins, displayed in Figure 7 (right). Many bitcoins are spent
at a fast pace (just a few blocks), and the delay distribution is very close to a power-law for
4 decades. However, it has a cut-off due to the limited number of blocks currently in the
blockchain. Also, specific spending delays are over-represented, like the ones around 1000
blocks.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1e-08 1e-06 0.0001 0.01 1 100

fr
a
c
ti
o
n
 o

f
tr

a
n
s
a
c
ti
o
n
s

transaction fees (in bitcoins)

all transactions
latest million

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1 10 100 1000 10000 100000

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

spending delay (in number of blocks)

Figure 7: Left: transaction fees, i.e. difference between transaction output and input
amounts (in bitcoins) for the whole dataset and for the latest million transactions. We display
the cumulative distributions: for each amount x on the horizontal axis, we display a point
indicating the fraction of transactions with fees (vertical axis) lower than this value. Right:
spending delay distribution (log-log scales). The delay is the number of blocks issued
between the time at which bitcoins are received as a transaction output, and the time at
which they are spend as a transaction input.

10

Such statistics are easy to obtain with our dataset and methodology. All com-
putations above take a few dozens of minutes from the distilled dataset and need a few GB
of central memory only. We present a more advanced application in next section.

4 Application: address clustering

Transactions discussed above link input addresses to output addresses, but it often makes
more sense to study bitcoin flows between individuals, companies, institutions, and other
social entities. To do so, one has to build clusters of addresses that arguably belong to
the same entity, and then observe transactions between these address clusters.

Many heuristics exist to build such clusters [14]. The most classical one is the input-based
heuristic; it assumes that all input addresses of a transaction belong to the same cluster. In-
deed, this transaction accesses the bitcoins associated to these addresses, and so it is reason-
able to assume that a same entity owns them. We focus on this heuristic here for illustration
purpose, but all the following applies the other heuristics.

Address clustering heuristics are mitigated by the use of various obfuscation and opti-
mization methods [18]. Several of them, like for instance mixing, induce transactions with
many and unrelated input addresses. Such transactions not only mistaken the input-based
heuristic by erroneously indicating that their input addresses are related; they merge the clus-
ters legitimately containing these addresses and so may have a dramatic impact on obtained
clusters.

In order to illustrate the use of our dataset and the power brought by its
pre-processing, we show here how to explore the relevance of this heuristic, and
the impact of such transactions on its results.

To do so, we consider two key metrics: the number of obtained clusters and the size of
the largest one. We compute these metrics when one considers only transactions with at
most Kin inputs and Kout outputs. Observing how they vary with Kin and Kout shows the
impact of suspicious transactions (the ones with large numbers of inputs and/or outputs) on
obtained clusters. Indeed, unwanted transactions merge clusters of addresses, and so they
increase their size and decrease their number.

Cluster computations usually rely on a graph in which nodes are addresses and two ad-
dresses are linked if they appear as input of a same transaction. Then, the wanted clusters
are the connected components of this graph. However, not all links are needed: it is sufficient
to ensure that all input addresses of each transaction are reachable from each other in the
graph. For instance, linking the first input address of a transaction to all its other input
addresses is sufficient; linking the first to the second, the second to the third, and so on, also
works. Choosing between all appropriate solutions may have a marginal impact on the speed
of cluster computations, but in all cases kin − 1 links are sufficient, for any transaction with
kin input addresses.

Building this graph may be done by parsing the distilled data and writing as output the
wanted links between address identifiers, kin − 1 per transaction with kin outputs. Then,
these links are sorted to remove duplicates, and the graph is loaded into central memory to
compute its connected component, in time and space linear with its number of links.

However, a union-find approach [17] is faster, more compact, and simpler. It uses the
same list of links, but it does not need to sort it, and it only stores in central memory an array
of all input address identifiers. It then needs a constant amortized time per link in the list

11

to find the components of its nodes and perform their union if needed. The overall time cost
therefore is linear in the number of links in the list, which itself is linear in the total number
of transaction inputs. Our address indexes are numbers from 0 to n− 1 where n is the total
number of addresses. Therefore, this method only needs to store n integers (of value at most
n) in central memory.

Notice however that we investigate here the impact on obtained clusters of the considered
maximal numbers Kin and Kout of input and output addresses. We therefore need to compute
clusters for various values of these parameters. In order to reduce the redundancy of these
computations, we perform them for all values of Kin in a row: we sort the link list according
to the number of input addresses of the corresponding transaction, and output obtained
information when the number of input addresses grows. We repeat this for all meaningful
value Kout of the maximal number of output addresses.

In summary, we proceed as follows: we parse the distilled data and consider each
transaction; for its kin inputs, we list the kin − 1 links between the index of the first input
address and all the others,together with kin and its number of outputs kout ; we sort this list
according to the kin field in order to have all links in increasing transaction input number;
then, for any given maximal number of output addresses Kout we perform union-find based
on this sorted list by skipping lines with kout > Kout and, whenever the kin field grows, we
output kin , the current number of clusters, and the current maximal cluster size. This gives
the wanted metrics as a function of the maximal number of input addresses Kin , for the
considered maximal number of output addresses Kout . Our implementation [11] obtains the
results in a few dozens of minutes only.

 4x10
8

 5x10
8

 6x10
8

 7x10
8

 8x10
8

 10 100 1000

n
u
m

b
e
r

o
f
c
lu

s
te

rs

bound on number of input addresses

 400000

 1x10
6

 1x10
7

 3x10
7

 10 100 1000

la
rg

e
s
t
c
lu

s
te

r
s
iz

e

bound on number of input addresses

Figure 8: Cluster metrics: left: number of clusters; right: maximal cluster size. Each
metric is displayed in log scale on the vertical axis, as a function of the maximal number Kin

of input addresses of considered transactions, on the horizontal axis (log scale). We display
the plots obtained for each value of Kout from 1 to 15, as well as the one obtained with no
limitation on the number of outputs. The number of clusters (left) decreases with the number
of considered transactions, therefore the bottommost plot (in red) is the one for any output
number. Conversely, the maximal cluster size (right) increases with the number of considered
transactions, therefore the topmost plot (in red) is the one for any output number.

Figure 8 displays the obtained plots. As expected, they show that using transactions with
larger numbers of inputs and/or outputs has a strong impact on detected clusters (both their
size and number). There is a clear difference between the partitions into clusters obtained
when the maximal number of inputs Kin if below 10 or 20, and the ones obtained for larger
values of Kin . Likewise, although we display plots for values of Kout up to 15, they are still
very different from the ones obtained with no limit on the number of outputs.

Deepening these observations is out of the scope of this paper, but we can already conclude

12

that transactions with more than a dozen inputs or outputs have a strong impact on the input-
based heuristic; they certainly play a specific role and should be handled with care. To go
further, one may observe cluster size distributions in the same way, investigate other heuristics,
and refine them. For instance one may consider weighted graphs between addresses, where
the weight may represent the number of times addresses co-occur as input addresses, or other
measures of heuristics reliability. This would not significantly change the procedure above.

Up to our knowledge, this is the first time that such plots are observed. Certainly, the
lack of available and indexed data was the limiting factor for such investigations.
As illustrated above, our dataset makes them much easier and faster to obtain than before.

5 Related work

Bitcoin is at the core of an intense research activity. A comprehensive review being out of
reach, we focus here on data collection and management, with an empĥasis on a few key
contributions.

Many companies store their own copy of the bitcoin blockchain and provide
partial access to it through dedicated web forms, APIs and/or CSV files. Their data
is stored in local databases, and they provide additional information like charts, top users,
address clusters, mixer lists, etc. Queries based on txids and addresses are in general possible,
as well as browsing between transactions.

For instance, some focus on user-friendly browsing [2, 4], with BlockStream providing
open-source tools. The Sphere 10 Software company proposes a SQL-based approach [10].
WalletExplorer and Chainalysis emphasize identification of services, mostly based on manual
investigation [5, 12]. Blockchair handles a wide variety of crypto-currencies [3], OXT has a
particularly ideological policy [9], while Kaiko targets business applications [8].

Such data providers have two important strengths: a user-friendly access to bitcoin data,
and additional information to help analysis. However, they provide very partial views: they
focus on some aspects of the data, and large-scale computations are not efficient through
such interfaces. Therefore, researchers often conduct their own data collection, and
provide the obtained datasets.

The most advanced such dataset [22] probably is the one provided by Kondor et al [20,21].
The authors patch the bitcoin software in order to record transaction information. Then,
they compute identifiers similar to ours, and perform address clustering. They provide data
collection and analysis tool source code, as well as the data up to February 2020.

Other authors design and provide data collection and management frameworks
for bitcoin blockchain.

An important contribution is the Abe free blockchain browser [1], that decodes binary
blockchain files, stores data into a database, and provides query services. Others use Neo4j
graph databases, like [6] that collects data by parsing the binary files, or [7] that uses parallel
rpc calls, like us. Likewise, [13] proposes an open source Scala library using a local database
[13] for efficient high-level analytics. Some frameworks target specific challenges, like graph
analytics in [23,24], that use a cluster for data collection (custom C++ bitcoin data decoding)
and analysis (Neo4j database). More recently, [26] target user and transaction profiling, using
a Spark-based tool.

These frameworks based on general-purpose databases are outperformed by dedicated,
highly optimized in-memory approaches. In particular, BlockSci [19] provides a very efficient

13

infrastructure to handle bitcoin (and other) blockchain data. It stores them in central memory
and collects it using binary file decoding and rpc. It is used for instance in [27]. DataChain
[28] is another example; it provides a lightweight, flexible and interoperable framework for
high-level queries to blockchains.

Most of these works provide source code of their collection and analysis tools, and/or the
datasets they obtain. It must be clear however that, because of the continuous evolution
of bitcoin technologies, maintaining up-to-date tools and datasets is challenging; many of
them are outdated. This is particularly true for methods that decode the bitcoin binary
files.

In addition, these tools have non-trivial requirements: some need to compile com-
plex tools, many rely on local database systems that require terabytes of disk space, others
have huge central memory needs, etc.

Last but not least, to the best of our knowledge, no available dataset provides the
full information available in bitcoin blockchain: they focus on parts of the data and
only decode these parts; and/or they assume that some information is irrelevant and discard
it. Even the Kondor et al dataset [22], which seems to be the most complete one, does not
contain all blockchain data. In addition, such datasets often result from quite complex and
poorly documented pre-processing steps, like data cleaning or clustering, and only the results
of these pre-processings are provided. This may help for some dataset uses, but this may be
a limitation for others; in all cases, this raises reproducibility and interpretation concerns.

6 Conclusion and perspectives

Our work provides a comprehensive view of bitcoin blockchain by capturing ab-
solutely all data it contains. In contrast with previous works, it relies only on the simplest
and most standard tools. It only requires a few hundred GB of disk space, including indexing.
It is then easy to obtain very compact extractions of interest, and the indexes make them very
convenient for a wide variety of studies. We give a thorough description of our procedure,
with fully detailed application cases and documented code [11].

Our collection procedure may be improved in several ways. The following are particularly
appealing: a dataset updating function, ideally in real-time; a parallel rpc procedure to
reduce data collection time; querying pre-existing bitcoin nodes to avoid setting up our own
node; as well as more advanced decoding of addresses and further analysis of ill-formed/non-
standard transactions.

The data pre-processing may also be improved. One may split the dataset into
several (compressed) files, and store the position of blocks or transactions (or other entities of
interest) in these files. Browsing the dataset in non-sequential ways would then be easy, while
keeping the representation compact. Further improvements may use database structures like
B-trees, or even database libraries. This would bring our contribution closer to database-
oriented solutions, though, with their advantages and drawbacks.

Acknowledgements. This work is funded in part by the ANR (French National Agency of Research) under

the FiT LabCom grant.

References

[1] Abe free blockchain browser. https://github.com/bitcoin-abe/bitcoin-abe.

14

https://github.com/bitcoin-abe/bitcoin-abe

[2] Blockchain company. https://www.blockchain.com/explorer.

[3] Blockchair. https://blockchair.com.

[4] BlockStream. https://blockstream.info/.

[5] Chainalysis. https://www.chainalysis.com/.

[6] How to import the bitcoin blockchain into Neo4j. https://neo4j.com/blog/

import-bitcoin-blockchain-neo4j.

[7] How to load bitcoin into neo4j in one day. https://medium.com/tokenanalyst.

[8] Kaiko. https://www.kaiko.com.

[9] OXT (Other/Open eXploration Tool). https://oxt.me.

[10] Sphere 10 Software. http://blockchainsql.io.

[11] Supplementary material. http://bitcoin.complexnetworks.fr.

[12] WalletExplorer. https://www.walletexplorer.com.

[13] Massimo Bartoletti, Stefano Lande, Livio Pompianu, and Andrea Bracciali. A general
framework for blockchain analytics. In First Workshop on Scalable and Resilient Infras-
tructures for Distributed Ledgers, 2017.

[14] Rémy Cazabet, Rym Baccour, and Matthieu Latapy. Tracking bitcoin users activity
using community detection on a network of weak signals. In 6th Conference on Complex
Networks and Their Applications, 2017.

[15] Bitcoin Community. bitcoin-core getblock rpc. https://bitcoincore.org/en/doc/0.

21.0/rpc/blockchain/getblock.

[16] Bitcoin Community. bitcoin-core-0.21.0. 2020. https://bitcoincore.org/bin/

bitcoin-core-0.21.0.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. The MIT Press.

[18] Younggee Hong, Hyunsoo Kwon, Jihwan Lee, and Junbeom Hur. A practical de-mixing
algorithm for bitcoin mixing services. In 2nd ACM Workshop on Blockchains, Cryp-
tocurrencies, and Contracts (BCC), 2018.

[19] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner, Alishah
Chator, and Arvind Narayanan. Blocksci: Design and applications of a blockchain anal-
ysis platform. In 29th USENIX Security Symposium, 2020.

[20] Dániel Kondor, István Csabai, János Szüle, Márton Pósfai, and Gábor Vattay. Inferring
the interplay between network structure and market effects in bitcoin. New Journal of
Physics, 2014.

[21] Dániel Kondor, Márton Pósfai, István Csabai, and Gábor Vattay. Do the rich get richer?
an empirical analysis of the bitcoin transaction network. PLoS ONE 9(2), 2014.

15

https://www.blockchain.com/explorer
https://blockchair.com
https://blockstream.info/
https://www.chainalysis.com/
https://neo4j.com/blog/import-bitcoin-blockchain-neo4j
https://neo4j.com/blog/import-bitcoin-blockchain-neo4j
https://medium.com/tokenanalyst
https://www.kaiko.com
https://oxt.me
http://blockchainsql.io
http://bitcoin.complexnetworks.fr
https://www.walletexplorer.com
https://bitcoincore.org/en/doc/0.21.0/rpc/blockchain/getblock
https://bitcoincore.org/en/doc/0.21.0/rpc/blockchain/getblock
https://bitcoincore.org/bin/bitcoin-core-0.21.0
https://bitcoincore.org/bin/bitcoin-core-0.21.0

[22] Dániel Kondor, Márton Pósfai, István Csabai, and Gábor Vattay. Bitcoin Transaction
Network, dryad, dataset. https://doi.org/10.5061/dryad.qz612jmcf, 2021.

[23] Dan McGinn, Douglas McIlwraith, and Yike Guo. Data from: Towards open data
blockchain analytics: a bitcoin perspective, dryad, dataset. https://doi.org/10.5061/
dryad.h9r0p65, 2018.

[24] Dan McGinn, Douglas McIlwraith, and Yike Guo. Towards open data blockchain ana-
lytics: a bitcoin perspective. Royal Society Open Science, 2018.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https://

bitcoin.org/bitcoin.pdf.

[26] Raj Sanjay Shah, Ashutosh Bhatia, Atith Gandhi, and Shray Mathur. Bitcoin data
analytics: Scalable techniques for transaction clustering and embedding generation. In
13th IEEE COMSNETS, 2021.

[27] Aman Sharma and Ashutosh Bhatia. Bitcoin’s blockchain data analytics: A graph the-
oretic perspective, 2020.

[28] Demetris Trihinas. Datachain: A query framework for blockchains. In 11th ACM Inter-
national Conference on Management of Digital EcoSystems, 2019.

16

https://doi.org/10.5061/dryad.qz612jmcf
https://doi.org/10.5061/dryad.h9r0p65
https://doi.org/10.5061/dryad.h9r0p65
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	1 Collection
	2 Indexing
	3 Distillation
	4 Application: address clustering
	5 Related work
	6 Conclusion and perspectives

