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SUMMARY & CONCLUSIONS 

An industrial system is subject to failures during its 
lifetime. These failures are corrected by maintenances, and then 
the system works again until the next failure. However, the 
system is not necessarily in the same state as just before the 
failure. A typical assumption is the As Bad As Old hypothesis, 
where the system stays in the same state after the failure. 
Another hypothesis is the As Good As New case, in which the 
system is totally renewed after a failure. But between minimal 
and perfect repairs, there exists a wide range of imperfect 
maintenances. Virtual age models are a way to deal with an 
imperfect maintenance effect. They also take into account the 
intrinsic wear of the system. Numeric estimation is used to infer 
the values of the parameters for some data set. 

In some cases, we are able to observe several identical and 
independent systems. Then, we can record some differences 
between these systems. This information can be added in the 
virtual age model as covariates. However, we may lack the 
continuous observation of the covariates. For example, periodic 
inspections of the systems will only provide discrete covariates, 
that we can use in the estimation as step-wise constant 
covariates. The first purpose of this paper is to understand how 
the frequency of inspection of the covariates impacts the quality 
of the parametric estimation. 

Too frequent inspections of the systems could lead to 
unexpected and unwanted costs. The frequency of inspection 
should be balanced so that their cost is reasonable compared to 
the risk of a bad quality estimation. The finding of an optimal 
cost is the second aim of this paper. 

1 INTRODUCTION 

An industrial system can face failures and maintenances 
throughout its lifetime. After a failure, a repair is immediately 
carried out and the system is switched on after a negligible 
down time. This is called corrective maintenance. One can also 
think of a patient facing relapses of their disease, for example a 
carcinoma or migraines, with medical treatments viewed as 
maintenances. This type of data is called recurrent events data 
and specific methods apply. In our work, we do not take into 
account the structure of the system nor the role of single 
components: the whole system is viewed as a unique entity. In 

such situations, the conditional failure intensity is a very useful 
mathematical tool which characterizes the distribution of the 
failure process. One basic assumption is the Non Homogeneous 
Poisson Process, where the conditional intensity is a 
deterministic function of time. In this case, the system after a 
repair is As Bad As Old (ABAO), which means the 
maintenance did not put the system in a better state than just 
before the failure. This maintenance is said to be minimal. 
Another basic assumption is the Renewal Process, where the 
interfailure times are independent and identically distributed. In 
that case, the system after a repair is As Good As New (AGAN), 
which means the maintenance was able to totally renovate the 
system. But these two assumptions may be too strong. In 
between, there is what is called imperfect maintenance. For 
example, when a single component is replaced, the system may 
be better than old but worse than new. The effect of the 
maintenance on the whole system is therefore imperfect. 
Generalized virtual age models [1] can be used to take into 
account both the intrinsic wear of the systems and the effect of 
the maintenances. The former is specified with a parametric 
initial intensity, which corresponds to the hazard rate of the first 
failure time. The latter is specified with a virtual age that 
depends on a maintenance efficiency parameter. The virtual 
age, or effective age, is to be viewed as different from the 
calendar age of the system, which is merely the time elapsed 
since it was turned on. Different forms of virtual age can be 
considered. With a minimal repair, the virtual age is equal to 
the calendar age. With a perfect repair, the virtual age is equal 
to the time elapsed since the last repair. The general idea for 
imperfect maintenance is that after a repair, the system is in a 
state equivalent to a new one that survived until the virtual age 
of the studied system [2].  

When several identically distributed and independent 
systems are considered at the same time, it is of interest to 
record information that may differ between the systems and 
influence their failure process. For an industrial system, we can 
think of the manufacturer, the work load, the speed of the 
engine, the weather conditions etc. For a patient, the gender, the 
body temperature or the size of the tumor could also carry 
useful information about the failure process. This is known as 
observed heterogeneity between the systems. All this 



information can be integrated into generalized virtual age 
models as covariates [3]. We may have constant covariates 
(such as the system manufacturer or the patient gender) or time-
dependent ones (like the weather conditions or the body 
temperature). A simulation method and an estimation procedure 
in this framework have been developed in [3], in the case of 
step-wise constant covariates. To the best of our knowledge, 
very few references include unobserved heterogeneity in virtual 
age models (see [4] and [5]). In this work, we will focus on the 
use of covariates. 

Continuous covariates can be incorporated in the model as 
step-wise constant ones with a short time step. However, the 
whole covariates may not be recorded. For example, with 
continuous covariates, we may be able to inspect the systems 
only at given discrete times to record the current values of the 
covariates. We may then face a certain lack of information, that 
has an impact on the quality of estimation. The aim here is to 
understand the behavior of the estimation with respect to the 
frequency of inspection of the covariates. It is expected that the 
more information we have, that is, the more often we inspect 
the system, the better the estimation is. This reasonable guess 
has to be statistically studied. This is one of the purposes of this 
paper.  

Even though the more information we have, the higher the 
quality of estimation is, we may not want to inspect the systems 
too often. Indeed, the inspections may have a cost that has to be 
taken into account when planning them. Therefore, the 
maintainer should balance the cost of a high frequency 
inspection planning and the cost of an erroneous estimation. An 
optimum can be found here: a point where more inspections 
would cost more than the gained quality of estimation and 
where less inspections would lead to a too much degraded 
estimation. We present in this paper an optimization of the 
inspection frequency so that maintainers are able to survey 
covariates in an optimal way and to get worthwhile estimations.  

In this paper, we recall the mathematical framework 
allowing the simulation of new data sets and the estimation of 
the model parameters in a first part. Then we study the quality 
of estimation with respect to the frequency of inspection of a 
time-dependent covariate. Finally, we set up a method to find 
the optimal frequency of inspection of the systems. Conclusions 
will end the article. 

2 MATHEMATICAL FRAMEWORK 

2.1 Conditional failure intensity and virtual age 

The core concept of the mathematics involved in our work 
is the conditional failure intensity. It is a characterization of the 
distribution of the next failure time, given the past of the 
process. Let us assume that we observe the 𝑛 first failure times 
of a single repairable system 𝑇!, 𝑇", … , 𝑇#, with 𝑇$ = 0. We 
denote (𝑁%)%&$ the counting process of failures. Then the 
conditional failure intensity is given by: 

𝜆% = lim
'%→$

!
'%
𝑃(𝑁%)Δ𝑡 −𝑁%! = 1|ℋ%!) , (1) 

where ℋ%! is the past of the process up to time 𝑡. 
We will work here with a particular case of counting 

process called virtual age models. The idea of these models has 

been introduced in [1]: after a failure, the system is in the same 
state as if it had never failed and as if it had survived until a 
time called the virtual age. We denote this quantity 𝑉*(𝑡), where 
𝑡 is the calendar time and 𝑖 is the number of failures faced by 
the system. Here we will focus on models expressed in the 
following way: 

𝜆% = 𝑉+"!
, (𝑡)ℎ 7𝑉+"!(𝑡)8,   (2) 

where ℎ(⋅) is the failure rate of a new unmaintained system. 
This generic model was exposed in [2]. The virtual age 𝑉*(𝑡) 
depends on a maintenance efficiency parameter ρ. The initial 
failure rate, ℎ(⋅), can also depend on some parameters. Here, 
we will use a Power Law Process (PLP) with intensity 

ℎ(𝑡) = -
.
7%
.
8
-/!

,   (3) 
where η > 0 is a scale parameter and β > 1 is a shape 
parameter. 

2.2 Some virtual age models 

We work here with three particular cases of virtual age 
models. The first one is the 𝐴𝑅𝐴0 model (Arithmetic Reduction 
of Age with infinite memory), obtained from (2) with the virtual 
age expression given by: 

𝑉*(𝑡) = 𝑡 − 𝜌∑ (1 − 𝜌)1*/!
12$ 𝑇*/1 ,  (4) 

for all 0 ≤ 𝑖 ≤ 𝑛 and 𝑡 > 𝑇*, with the convention that the sum 
is null if 𝑖 = 0. The second model is the 𝐴𝑅𝐴! model (with 
memory one), obtained from (2) with the virtual age expression 
given by: 

𝑉*(𝑡) = 𝑡 − 𝜌𝑇*,   (5) 
for all 0 ≤ 𝑖 ≤ 𝑛 and 𝑡 > 𝑇*. In the two 𝐴𝑅𝐴 models, the 
parameter ρ corresponds to the efficiency of the maintenance. 
If ρ = 1, the repair is perfect and the system is AGAN. If ρ =
0, the repair is minimal and the system is ABAO. If ρ < 0, the 
repair is harmful, but we will not consider this case in our paper, 
so that ρ ∈ [0,1]. Therefore, the maintenance is somewhere 
between minimal and perfect. The last model we will use is the 
𝑄𝑅 model, proposed in [6]. In this model, the interfailure times 
decrease or increase geometrically. It is obtained from (2) with 
the virtual age expression given by: 
 

𝑉*(𝑡) =
%/3#
4#

,   (6) 
for all 0 ≤ 𝑖 ≤ 𝑛 and 𝑡 > 𝑇*. The parameter ρ corresponds 
again to the efficiency of the maintenance. If 𝜌 = 1, the repair 
is perfect and the system is AGAN. If ρ ∈]0,1[, the system 
deteriorates; if ρ > 1, it improves. 

2.3 Covariates 

When we observe heterogeneity between several identical 
and independent systems, we can make use of covariates to deal 
with this information in the virtual age model. These covariates 
are associated to a coefficient which measures the influence of 
each covariate on the failure process. The covariates and the 
coefficient are included in the virtual age model with an 
exponential function, as described in [7]. The resulting intensity 
is the following: 

𝜆% = 𝑉+"!
, (𝑡)ℎ 7𝑉+"!(𝑡)8 exp(𝛾

,𝑋%), (7) 



where 𝑋% are the time-dependent covariates and γ is the 
coefficient of the covariates. 

2.4 Simulation 

In order to simulate data sets of failures times following the 
given model, we perform an inversion of the cumulative 
distribution function of the failure times. Since these failures 
times are not independent, we need to work with the conditional 
version of this function. In [3], a whole procedure for the 
simulation of new failure times was given. The main issue was 
that, with a random covariate, the inversion of the cumulative 
distribution function is not analytically possible. The given 
solution was to discretize the covariate so that it was step-wise 
constant. With the following mapping expression: 

𝑋% = ∑ 𝜒56
52! 1[8$!%,8$[(𝑡),  (8) 

we obtain an explicit expression of the conditional cumulative 
distribution function and of its generalized inverse, which we 
can use to simulate new failure times. Another simulation 
method was given in [3], which relies on an approximation of 
the probability of failure on small time intervals. Here we will 
use the first method. 

2.5 Estimation 

When we are given a data set, we need to know the values 
of the model parameters. To do so, we perform a parametric 
estimation, that is done here by maximizing numerically the 
log-likelihood, with the same assumption as in 2.4: the 
covariate is step-wise constant. The exact computation of the 
log-likelihood is given in [3]. 

2.6 Example of a simulated dataset 

We simulate a dataset containing 3 independent systems. 
First, we simulate three covariate paths with different 
parameters. On Figure 1, we can clearly see the difference  

Figure 1 – Three simulated covariate paths 

between the simulated paths: the covariates have higher or 

lower increase rates. Then we simulate three realizations until  
time 𝑡 = 10 of the failure process, each being associated to one 
of the covariate paths. On Figure 2, we have represented the 
counting process of the three systems. We immediately feel the 
influence of the covariate when looking at the counting 
processes: for the greater covariate, there are 175 failures at 
time 𝑡 = 10, whereas for the lower one, there are only 4 
failures, and 17 failures for the system in between. 

Figure 2 – Counting processes of three systems 

Now we can try to estimate the model parameters, which 
are the failure intensity parameters, that is the shape and scale 
of the PLP, the efficiency of maintenances and the coefficient 
of covariates. We first use the whole covariate paths (Est 1), 
then we truncate the covariate so that we observe it each unit of 
time (Est 2), and finally each 2 units of time (Est 3). Intuitively, 
covariate 1 will be completely known, whatever the case is, 
since it jumps every 2 units of time. On the contrary, we will 
miss information on covariate 3 in case Est 2 and Est 3, since it 
jumps every 0.5 units of time. This lack of information will 
disturb the estimation. 

With the estimation procedure explained in Section 2.5 and 
detailed in [3], we get three sets of estimations, that have to be 
compared to the true parameters used for the simulation. We 
give all these values in Table 1. 

Table 1 – Estimations of the parameters 

 𝜂 𝛽 𝜌 𝛾 
True 21.54 3 0.35 0.2 
Est 1 24.04 3.33 0.31 0.22 
Est 2 10.58 1.64 0.57 0.10 
Est 3 9.18 1.24 0.78 0.08 
The estimations are close to the true values when using the 

whole covariate, whereas they get poorer when we use 
truncated paths. This difference in quality with respect to the 
inspection frequency is the subject of the next section. 
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3 QUALITY OF ESTIMATION 

3.1 Goal of the study 

A thorough study of the quality of the parametric 
estimation was provided in [3]. However, it was done with a 
completely known covariate. In the case where we miss some 
information about the covariate, this study is no longer relevant. 
For example, the monitoring of the working conditions of the 
systems may give only values at discrete times. We can assume 
that the covariates are constant in between, but then we lack 
some information and it is expected that the estimation will not 
be as good as in the case of a completely known covariate. We 
choose here to work with periodic inspections of the systems 
conditions. Then, we want to study the impact of the frequency 
of estimation on the quality of estimation. The estimation 
procedure is not limited to a single covariate. However, for the 
sake of simplicity, we chose to work here with only one 
covariate. 

To do so, we focus on some estimation error statistics. The 
first one is the Mean Squared Error (MSE), the others are based 
on the simulation of the next failure time. We simulate the next 
failure time with estimated parameters either with the whole 
covariate or a truncated covariate. The two samples of next 
failure times are compared with the two-sample Kolmogorov-
Smirnov statistic [8] or with the respective sample means. This 
is a way to measure the distance between the law given by the 
estimations with a whole covariate or a truncated one. The 
lower these estimation error statistics are, the better the quality 
of estimation is. 

3.2 Computation of the estimation error statistics 

Here is how we compute the five estimation error statistics. 
• We simulate a covariate and a data set with fixed 

parameters. 
• We estimate the parameters of the model with the complete 

covariate. 
• For each system 𝑗, we simulate a sample of the next failure 

time with these parameters and we take the mean 𝑚: of this 
sample. 

• We truncate the covariate with respect to the inspection 
interval. 

• We estimate the parameters of the model with the truncated 
covariate. 

• For each system 𝑗, we simulate a sample of the next failure 
time with these parameters and we take the mean of this 
sample 𝑚:

%; We also compute the Kolmogorov-Smirnov 
statistics 𝐾𝑆: of discrepancy between this sample and the 
one we got with the complete covariate. 

• We compute 𝐾𝑆<=>#, 𝐾𝑆<=? , 𝐾𝑆<>@, respectively the 
mean, the median, and the maximum of the 𝐾𝑆: statistics 
over all the systems, and the mean 𝑀?*AA over all the 
systems of 𝑑𝑖𝑓𝑓: = X𝑚: −𝑚:

%;X. 
• We simulate and repeat this whole procedure 𝑀 = 1000 

times. 
• We take the mean over all the simulated data sets of 

𝐾𝑆<=>#, 𝐾𝑆<=? , 𝐾𝑆<>@ , 𝑀?*AA, and we also compute the 
sum of the MSE of the four parameters (η, β, ρ, γ). 

These four means and the sum of MSE are our five estimation 
error statistics, which measure in a sense the inverse of quality 
of the parametric estimation. 

3.3 Setup of the study 

In our study, we choose inspection intervals among 
{0.2,0.25,0.3,0.4,0.5,0.6,0.75,0.8,1,1.2,1.5,1.6,2,2.4,3}. We 
use the three models exposed in 2.2: 𝐴𝑅𝐴0, 𝐴𝑅𝐴! and 𝑄𝑅 with 
a PLP initial intensity. Each simulated data set contains 50 
systems facing 20 failures each, between times 0 and 24. The 
data sets are therefore rather large, which may not be realistic. 
However, the goal here is to study the effect of inspections 
while being free of quality limitations due to data size. The 
unique covariate is simulated as a jump process with finite 
states space. The random jumps occur at intervals of mean 1. 
The state space is defined by {−2,−1,0,1,2}. The model 
parameters are given in Table 2. The sample of the next failure 
time for each system contains 1000 replications. All 
calculations were performed with R software, in combination 
with the Rcpp package. 

Table 2 – Model Parameters for the Simulation Study 

𝐴𝑅𝐴 models 𝑄𝑅 model 
γ$ = 1 𝛾$ = 1 

𝜂$ = 1/d0.025!/".De 𝜂$ = 1/d0.087!/".De 
𝛽$ = 2.5 𝛽$ = 2.5 
𝜌$ = 0.7 𝜌$ = 0.9 

3.4 Results 

In Figure 3, the plots of the different estimation error 
statistics versus the time between two inspections are displayed. 
For example, at the vertical line of abscissa 2, we can read the 
values of the statistics for the three studied models when there 
are 2 units of time between two inspections. We can observe 
what we expected: the five estimation error statistics are 
increasing with the inspection interval, with all studied models, 
at higher or lower rates, which means that the more frequent the 
inspections are, the better the quality of estimation is.  

4 OPTIMAL FREQUENCY OF INSPECTION 

4.1 Goal and setup of the study 

Now we add a new dimension in our study: the cost. Indeed, 
frequent inspections can have a high cost, and the gain in terms 
of quality of estimation may not be worthwhile. Therefore, we 
compute a cost that balances the estimation error (measured 
with the five previous statistics) and the cost of inspections. We 
stay in the same design as in Section 3 and we build a cost 
function as the number of inspections (each inspection having 
value 1) plus the chosen statistic multiplied by a positive cost 
coefficient. This coefficient aims to make the two quantities 
commensurable. Here is the formula: 

C	 = 	𝐶E𝑁E 	+	𝐶F𝑆F ,    (9) 
where 𝐶 is the total cost, 𝐶E is the cost of an inspection, 𝑁E is 
the number of inspections, 𝐶F is the cost of the estimation error 
and 𝑆F is the estimation error statistic. 𝐶F does not represent a 
physical cost. Its purpose is to make the two terms 



Figure 3 – Quality indicators with respect to the time between two inspections

commensurable and to include in the total cost the 
consequences of an estimation error, for example a bad 
decision. Then, the higher this statistic is, the higher the cost is. 
The number of inspections is trivially decreasing with respect 
to the inspection interval. We saw that our statistics are 
increasing with respect to the inspection interval. By balancing 
these two quantities, we should find the optimal inspection 
frequency in order to inspect not too often without degrading 
the quality of estimation. Therefore, we look for a minimum of 
our cost function. 

4.2 Results 

In Figure 4, an example is given with estimation error cost 
𝐶F = 500 (which with our values of parameters, is able to make 
the quantities comparable, as stated in Section 4.1), for the five 
estimation error statistics and the three considered models. We 
observe in all cases (that is, with the five statistics and the three 
models) a minimum in the curves, which represents a trade-off 
between the cost of inspections and the cost of estimation error. 
The abscissa of this minimum is the inspection interval for 
which the minimum is obtained. This inspection interval is 
given in the legend of the plots. 

Obviously, the weighting done by the estimation error cost 
is very important. In one extreme, if this cost is null, the total 
cost is equal to the number of inspections. Therefore, the 
minimum exists for the longest interval. It is easily 
understandable: if we do not account for the estimation error, 
we can proceed to as few inspections as possible. In the other 
extreme, for a sufficiently high cost, the number of inspections 

does not weigh anymore against the contribution of the 
estimation error in the cost. The optimization will then choose 
the lower error possible, that is for the smallest interval. Again, 
we can understand that since if the inspection does not cost 
much against the error of estimation, it is better to inspect very 
often so that we get a good quality estimation. 

5 CONCLUSIONS 

In this article, we studied the influence of the frequency of 
inspection on the quality of the parametric estimation, given a 
virtual age model with time-dependent covariates. First, we saw 
that the more frequent the inspections are, the better the quality 
of estimation is, in terms of five different statistics measuring 
the estimation error. Then, we saw that it is possible to find 
numerically an optimum in a cost function that balances the cost 
of inspections and the cost of the estimation error. With a well-
chosen cost coefficient, we were able to find the inspection 
interval that minimizes the total cost. 

This study is a first step toward maintenance planning. 
Indeed, we can think of a situation where we want to use the 
covariates in order to plan preventive maintenances. The first 
step in the procedure would be to estimate the parameters of the 
model, given a dataset. But then we need to know whether this 
estimation is of good quality, in particular if we can only inspect 
the systems at given discrete times. In [9], the virtual age 
models were used to optimize preventive maintenances. 
However, this article did not include covariates. An extension 
both of that work and of ours could be to incorporate dynamic 
covariates into the optimization procedure of [9]. 

Figure 4 – Total cost with respect to the time between two inspections
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