Marie Chion
email: chion@math.unistra.fr

Christine Carapito
email: ccarapito@unistra.fr

Frédéric Bertrand
email: frederic.bertrand@utt.fr

Towards a more accurate differential analysis of multiple imputed proteomics data with mi4limma

Keywords: Label-free quantitative proteomics, Differential analysis, Missing values, Multiple imputation, Moderated t-testing

published or not. The documents may come Towards a more accurate differential analysis of multiple imputed proteomics data with mi4limma

Introduction

Current statistical methods used in label-free quantitative proteomics rely on peptides' intensities, measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). While major instrumental improvements over past years have allowed great progress in terms of sensitivity, dynamic range and acquisition speed, the generated datasets remain incomplete and contain a variable proportion of missing values. Usual statistical tools do not optimally consider peptides, which intensities are missing in some conditions, although they might be particularly interesting in differential analyses [START_REF] O'brien | The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments[END_REF]. Imputation methods have been described and are currently applied in state-of-the-art quantification software tools [START_REF] Chang | PANDAview: an easy-to-use tool for statistical analysis and visualization of quantitative proteomics data[END_REF][START_REF] Choi | MSstats: An R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments[END_REF][START_REF] Tyanova | Perseus: A bioinformatics platform for integrative analysis of proteomics data in cancer research[END_REF][START_REF] Wieczorek | Dapar & prostar: software to perform statistical analyses in quantitative discovery proteomics[END_REF][START_REF] Webb-Robertson | Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics[END_REF]. Imputation consists of replacing a missing value with a value derived using a user-defined formula (such as the mean, the median or a value provided by an expert, thus taking into account the knowledge of the user). However, the uncertainty due to the imputation is currently not properly taken into account, as the imputed dataset is considered as if it has always been complete in further statistical analysis.

Multiple imputation [START_REF] Little | Statistical Analysis with Missing Data[END_REF] partially addresses this issue by generating several imputed datasets. A recommendation takes the number of imputed datasets as the percentage of missing values in the original dataset [START_REF] White | Multiple imputation using chained equations: Issues and guidance for practice[END_REF]. These datasets are then used to build a combined estimator of the vector of parameters of interest, by usually using the mean of the estimators among all the imputed datasets (see Figure 1). This combined estimator is known as the first Rubin's rule. The second Rubin's rule states a formula to estimate the variance-covariance matrix of the combined estimator, decomposing it as the sum of the intra-imputation variance component and the between-imputation component.

Common statistical methods generally conclude with a study of differences in protein abundances between different conditions either using Student or Welch tests, or using more sophisticated approaches such as the moderated-𝑡 testing techniques, which are based on empirical Bayesian approaches [START_REF] Phipson | Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression[END_REF].

The mi4p package suggests an enhanced version of this approach which accounts for the variability arising from the missing data and the imputation process. The protocol is composed of four main steps: (1) the missing values of the quantitative dataset are imputed thanks to multiple imputation algorithms, (2) leading to an estimation of the parameters of interest and their variance-covariance matrix for each peptide, (3) the variance-covariance matrices are projected to get an univariate parameter of dispersion for each peptide, (4) which are used for a more accurate testing procedure through moderated-𝑡 testing procedure.

Material

Requirements

The workflow presented in this protocol is implemented under the R package mi4limma. To use it, the R environment is required [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. For a better user experience, the R Studio integrated development environment is recommended [START_REF]RStudio: Integrated Development Environment for R. RStudio[END_REF].

Data format -Quantitative data

The quantitative data should be provided as a data frame or a matrix. Rows should describe the peptides and columns the biological samples. Thus, each cell of the matrix contains the measured (or missing) abundance of the peptide in the considered sample. Although statistical analysis at the peptide-level is recommended, the methodology described in this chapter can be used at protein-level. A schematic view of the quantitative dataset is pictured in Figure 2.

N samples P peptides

I conditions

Fig. 2 Schematic representation of a quantitative dataset to be provided. There should be P rows corresponding to P peptides and N columns corresponding to N samples, which are spread between I conditions.

Data format -Experimental data

The experimental data should be provided as a two-columns data frame or matrix.

The first column should contain the names of the biological samples and should be named "Sample.Name", the second column should contain the names of the corresponding considered condition and should be named "Condition".

Data format -Imputed data

The multiple imputed data should be provided as an array of as many matrices as the D draws used for multiple imputation. Each imputed matrix should be of the same size as the quantitative data. A schematic view of imputed data is pictured in Figure 3.

N samples P peptides I groups

D draws

Fig. 3 Schematic representation of the imputed datasets to be provided. An array of D matrices corresponding to the D draws in the multiple imputation algorithm should be yielded. Each matrix should have P rows corresponding to P peptides and N columns corresponding to N samples, which are spread between I conditions.

Package install and loading

The mi4p package requires the following packages to be successfully installed:

BiocManager, DAPAR, emmeans, imp4p, limma and mice [START_REF] Wieczorek | Dapar & prostar: software to perform statistical analyses in quantitative discovery proteomics[END_REF][START_REF] Morgan | BiocManager: Access the Bioconductor Project Package Repository[END_REF][START_REF] Lenth | emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1[END_REF][START_REF] Gianetto | imp4p: Imputation for Proteomics. R package version 1[END_REF][START_REF] Ritchie | limma powers differential expression analyses for RNA-sequencing and microarray studies[END_REF][START_REF] Van Buuren | mice: Multivariate imputation by chained equations in r[END_REF].

install.packages(c("BiocManager","emmeans","imp4p","mice"))

BiocManager::install(c("DAPAR","limma"))

The mi4p package itself can be downloaded from the GitHub repository (see Note 1). The following command lines should be executed in the R console:

1. Install the devtools R package: install.packages("devtools") 2. Install the mi4p package from GitHub: library(devtools) install_github("mariechion/mi4p") 3. Load the mi4p package: library(mi4p) 3 Methods

Multiple imputation

Multiple imputation consists of imputing 𝐷 times the missing values in the original quantitative dataset. This results in 𝐷 imputed datasets. Multiple imputation is provided in mi4p, using the multi.impute function: multi.impute(data, metadata, imp.meth, nb.imp)

The data argument refers to the original quantitative dataset that contains missing values. The metadata argument refers to the experimental dataset. The imp.meth argument denotes the chosen multiple imputation algorithm. The mi4p package is for now compatible with algorithms from the imp4p and mice packages [START_REF] Van Buuren | mice: Multivariate imputation by chained equations in r[END_REF][START_REF] Gianetto | A peptide-level multiple imputation strategy accounting for the different natures of missing values in proteomics data[END_REF] (see Note 2). The default algorithm is set to imp4p. The nb.imp argument describes the number of draws to be done. By default, it is equal to the percentage of missing values in the original quantitative dataset. The multi.impute function returns an array of as many imputed matrices as nb.imp.

Estimation

The objective of multiple imputation is to estimate from 𝐷 drawn datasets the vector of parameters of interest and its variance-covariance matrix. Notably, accounting for multiple-imputation-based variability is possible thanks to Rubin's rules, which provide an accurate estimation of these parameters. In mi4p, the vectors of parameters of interest are the vectors of the peptides' intensity mean in each condition considered. There are as many vectors to be estimated (and as many corresponding variance-covariance matrices) as the number of peptides in the quantitative dataset.

1. The first Rubin's rule leads to a combined estimator of the vector of intensity means (see Note 3). To compute the estimators for all peptides in the quantification dataset, the rubin1.all function should be used: rubin1.all(imp.data, metadata, funcmean)

The imp.data argument refers to the array of imputed matrices and the metadata argument to the experimental dataset. The funcmean argument specifies the method for mean estimation. Here the default funcmean function is meanImp_emmeans and relies on the estimated marginal means algorithm (see Note 4). The rubin1.all function returns a list of estimated vector of intensity means in each condition for all peptides in the quantitative dataset (i.e. the length of the returned list equals the number of rows of imp.data). To return only the combined estimator for a specific peptide, the rubin1.one function should be used: rubin1.one(peptide, imp.data, metadata, funcmean)

The peptide argument denotes the row index of the considered peptide in the quantitative dataset.

2. The second Rubin's rule leads to a combined estimator of the variance-covariance matrix for each estimated vector of parameters of interest (see Note 5). The idea behind this rule is to decompose the variability into two components: the withinimputation variability and the between-imputation variability. To compute the estimators for all peptides in the quantification dataset, the rubin2.all function should be used: rubin2.all(imp.data, metadata, funcmean, funcvar)

The imp.data argument refers to the array of imputed matrices and the metadata argument to the experimental dataset. The funcmean and funcvar arguments specifies the method for mean and variance-covariance estimation respectively.

Here the default funcmean and funcvar functions are meanImp_emmeans and within_variance_comp_emmeans, both relying on the estimated marginal means algorithm (see Note 6).

To return the within-imputation component only (respectively the betweenimputation component) for all peptides, the rubin2wt.all function (respectively the rubin2bt.all function) should be used: rubin2wt.all(imp.data, metadata, funcvar) rubin2bt.all(imp.data, metadata, funcmean)

The rubin2.all, rubin2wt.all and rubin2bt.all functions return lists of square matrices. The length of the list equals to the number of peptides considered, i.e. to the number of rows in imp.data. The size of the matrices is equal to the number of conditions considered, i.e to the number of levels of the "Condition" factor in the metadata dataset. To return only the combined estimator for a specific peptide, the rubin2.one function should be used: rubin2.one(peptide, imp.data, metadata, funcmean, funcvar)

The peptide argument denotes the row index of the considered peptide in the quantitative dataset. Likewise, to return the within-imputation component and/or the between-imputation component for a specific peptide, the rubin2wt.all and rubin2bt.all functions should be used: rubin2wt.one(peptide, imp.data, metadata, funcvar) rubin2bt.one(peptide, imp.data, metadata, funcmean)

The rubin2.one, rubin2wt.one and rubin2bt.one functions return a square matrix. The size of the matrix is equal to the number of conditions considered, i.e to the number of levels of the "Condition" factor in the metadata dataset.

Projection

State-of-the-art tests, including Student's t-test, Welch's t-test and moderated t-test, rely on the variance estimation. Here, the variability induced by multiple imputation is described by a variance-covariance matrix. Therefore, a projection step is required to get a univariate variance parameter (see Note 7). This step is performed using the proj_matrix function:

proj_matrix(VarRubin.mat, metadata)
The VarRubin.mat denotes a variance-covariance matrix, as computed with rubin2.one, or a list of variance-covariance matrices, as computed with rubin2.all see Subheading 3.2. The metadata argument refers to the experimental dataset. The proj_matrix function returns either a variance estimator for a given peptide, or a list of variance estimators for all the peptides considered.

Moderated t-test

Several testing methods can be used. For gene expression data, the recommended method is moderated t-testing [START_REF] Smyth | Linear models and empirical bayes methods for assessing differential expression in microarray experiments[END_REF]. In mi4p, the projected variance from multiple imputation serves as an input to the usual moderated t-test. This step is performed using the mi4limma function:

Complete workflow

As an alternative to the step-by-step workflow described above, the complete mi4p workflow can be run with a single command: mi4p.uni(data, metadata, imp.meth)

The data argument refers to the quantitative dataset, the metadata argument refers to the experimental dataset and the imp.meth specifies the imputation method to be used see Subheading 3.1. The mi4p.uni function returns a list of p-values and a list of log-transformed fold change for all peptides. The mi4p.uni function includes the four steps described above: multiple imputation (see Subheading 3.1), estimation (see Subheading 3.2), projection (see Subheading 3.3) and moderated t-testing (see Subheading 3.4). A synoptic view of the functions which can be used in each step is provided in Table 1.

Example use case

A detailed example use case of the workflow presented above can be found in the vignette of the mi4p package. It can be accessed using the following command: vignette("mi4p")

The vignette will be updated along with the package.

Notes

1. The mi4p package is being regularly updated. It is therefore recommended to reinstall the package to use the most recent version.

2. While the only suggested algorithms for multiple imputation are taken from imp4p and mice packages [START_REF] Van Buuren | mice: Multivariate imputation by chained equations in r[END_REF][START_REF] Gianetto | A peptide-level multiple imputation strategy accounting for the different natures of missing values in proteomics data[END_REF], the user can choose any other algorithm and recall the imputed matrices in the next steps, under the aforementioned constraints, see

where 𝑊 𝑑 denotes the variance-covariance matrix of β𝑝,𝑑 , i.e. the variability of the vector of parameters of interest as estimated in the imputed dataset.

6. The within_variance_comp_emmeans function computes the symmetric variance-covariance matrix of the marginal means estimator for a given imputed dataset.

7. To keep all the pieces of information contained in the variance-covariance matrix, an extended version of the workflow presented in this chapter to the multivariate case is currently being implemented in mi4p. This multivariate extension will make it possible to fully take into account the effect of the imputation process, and thus the presence of missing values, on the precision of the estimate.

Fig. 1

 1 Fig. 1 Multiple imputation strategy. (1) Initial dataset with missing values. It is supposed to have N observations that are split into I groups. (2) Multiple imputation provides D estimators for the vector of parameters 𝜷 of interest. (3a) The D estimators are combined using the first Rubin's rule to get the combined estimator. (3b) The estimator of the variance-covariance matrix of the combined estimator is provided by the second Rubin's rule.

 mi4limma(imp.data, metadata, VarRubin.S2) The imp.data argument refers to the array of imputed datasets. The metadata refers to the experimental dataset. The VarRubin.S2 corresponds to the list of projected variance estimator for each peptide, as computed with the proj_matrix function see Subheading 3.3. The mi4limma function returns a list of p-values and a list of log-transformed fold change for all peptides.

Subheading 2. 4 . 3 . 4 . 5 .(

 4345 Let β𝑝,𝑑 be the estimated vector of parameters for peptide 𝑝 in the 𝑑-th imputed dataset. The first Rubin's rule gives the combined estimator for peptide 𝑝 through the 𝐷 imputed datasets such as: The meanImp_emmeans function computes the estimated marginal means for specified factors or factor combinations in a linear model for a given imputed dataset.Estimated marginal means are also known as least-squares means or predicted marginal means and are predictions from a linear model over a reference grid. The second Rubin's rule gives the combined estimator of the variance-covariance matrix for each estimated vector of parameters of interest for peptide 𝑝 through the 𝐷 imputed datasets such as: β𝑝,𝑑 -β𝑝) 𝑇 (β𝑝,𝑑 -β𝑝)

Table 1

 1 Overview of the functions included in mi4p package

	Imputation	Estimation	Projection	Test
	For one specific peptide	rubin1.one rubin2.one rubin2wt.one rubin2bt.one	proj_matrix	
	multi.impute rubin1.all	proj_matrix mi4p
	For all peptides	rubin2.all rubin2wt.all rubin2bt.all		
		mi4p.uni	

Acknowledgements

This work was funded through a PhD grant (2018-2021) from the Agence Nationale de la Recherche (ANR) [ANR-11-LABX-0055_IRMIA].