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Abstract

Imputing missing values is common practice in label-free quantitative proteomics.

Imputation replaces a missing value by a user-defined one. However, the imputa-

tion itself is not optimally considered downstream of the imputation process. In

particular, imputed datasets are considered as if they had always been complete.

The uncertainty due to the imputation is not properly taken into account. Hence,

the mi4p package provides a more accurate statistical analysis of multiple-imputed

datasets. A rigorous multiple imputation methodology is implemented, leading to a

less biased estimation of parameters and their variability thanks to Rubin’s rules. The

imputation-based peptide’s intensities’ variance estimator is then moderated using
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Bayesian hierarchical models. This estimator is finally included in moderated t-test

statistics to provide differential analyses results.

Key words Label-free quantitative proteomics, Differential analysis, Missing

values, Multiple imputation, Moderated t-testing

1 Introduction

Current statistical methods used in label-free quantitative proteomics rely on pep-

tides’ intensities, measured by liquid chromatography coupled to tandem mass spec-

trometry (LC-MS/MS). While major instrumental improvements over past years

have allowed great progress in terms of sensitivity, dynamic range and acquisition

speed, the generated datasets remain incomplete and contain a variable proportion

of missing values. Usual statistical tools do not optimally consider peptides, which

intensities are missing in some conditions, although they might be particularly inter-

esting in differential analyses [1]. Imputation methods have been described and are

currently applied in state-of-the-art quantification software tools [2–6]. Imputation

consists of replacing a missing value with a value derived using a user-defined for-

mula (such as the mean, the median or a value provided by an expert, thus taking into

account the knowledge of the user). However, the uncertainty due to the imputation

is currently not properly taken into account, as the imputed dataset is considered as

if it has always been complete in further statistical analysis.

Multiple imputation [7] partially addresses this issue by generating several im-

puted datasets. A recommendation takes the number of imputed datasets as the

percentage of missing values in the original dataset [8]. These datasets are then used

to build a combined estimator of the vector of parameters of interest, by usually

using the mean of the estimators among all the imputed datasets (see Figure 1).

This combined estimator is known as the first Rubin’s rule. The second Rubin’s
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rule states a formula to estimate the variance-covariance matrix of the combined

estimator, decomposing it as the sum of the intra-imputation variance component

and the between-imputation component.

Common statistical methods generally conclude with a study of differences in

protein abundances between different conditions either using Student or Welch tests,

or using more sophisticated approaches such as the moderated-𝑡 testing techniques,

which are based on empirical Bayesian approaches [9].

The mi4p package suggests an enhanced version of this approach which accounts

for the variability arising from the missing data and the imputation process. The

protocol is composed of four main steps: (1) the missing values of the quantitative

dataset are imputed thanks to multiple imputation algorithms, (2) leading to an

estimation of the parameters of interest and their variance-covariance matrix for

each peptide, (3) the variance-covariance matrices are projected to get an univariate

parameter of dispersion for each peptide, (4) which are used for a more accurate

testing procedure through moderated-𝑡 testing procedure.

Fig. 1 Multiple imputation strategy. (1) Initial dataset with missing values. It is supposed to have
N observations that are split into I groups. (2) Multiple imputation provides D estimators for the
vector of parameters 𝜷 of interest. (3a) The D estimators are combined using the first Rubin’s rule to
get the combined estimator. (3b) The estimator of the variance-covariance matrix of the combined
estimator is provided by the second Rubin’s rule.
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2 Material

2.1 Requirements

The workflow presented in this protocol is implemented under the R package

mi4limma. To use it, the R environment is required [10]. For a better user expe-

rience, the R Studio integrated development environment is recommended [11].

2.2 Data format - Quantitative data

The quantitative data should be provided as a data frame or a matrix. Rows should

describe the peptides and columns the biological samples. Thus, each cell of the

matrix contains the measured (or missing) abundance of the peptide in the consid-

ered sample. Although statistical analysis at the peptide-level is recommended, the

methodology described in this chapter can be used at protein-level. A schematic

view of the quantitative dataset is pictured in Figure 2.

N samples

P
pe

pt
id

es

I conditions

Fig. 2 Schematic representation of a quantitative dataset to be provided. There should be P rows
corresponding to P peptides and N columns corresponding to N samples, which are spread between
I conditions.



Accounting for multiple imputation variability with mi4limma 5

2.3 Data format - Experimental data

The experimental data should be provided as a two-columns data frame or matrix.

The first column should contain the names of the biological samples and should

be named "Sample.Name", the second column should contain the names of the

corresponding considered condition and should be named "Condition".

2.4 Data format - Imputed data

The multiple imputed data should be provided as an array of as many matrices as

the D draws used for multiple imputation. Each imputed matrix should be of the

same size as the quantitative data. A schematic view of imputed data is pictured in

Figure 3.
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Fig. 3 Schematic representation of the imputed datasets to be provided. An array of D matrices
corresponding to the D draws in the multiple imputation algorithm should be yielded. Each matrix
should have P rows corresponding to P peptides and N columns corresponding to N samples, which
are spread between I conditions.
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2.5 Package install and loading

The mi4p package requires the following packages to be successfully installed:

BiocManager, DAPAR, emmeans, imp4p, limma and mice [5, 12–16].

install.packages(c("BiocManager","emmeans","imp4p","mice"))

BiocManager::install(c("DAPAR","limma"))

The mi4p package itself can be downloaded from the GitHub repository (see

Note 1). The following command lines should be executed in the R console:

1. Install the devtools R package:

install.packages("devtools")

2. Install the mi4p package from GitHub:

library(devtools)

install_github("mariechion/mi4p")

3. Load the mi4p package:

library(mi4p)
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3 Methods

3.1 Multiple imputation

Multiple imputation consists of imputing 𝐷 times the missing values in the original

quantitative dataset. This results in 𝐷 imputed datasets. Multiple imputation is

provided in mi4p, using the multi.impute function:

multi.impute(data, metadata, imp.meth, nb.imp)

The data argument refers to the original quantitative dataset that contains missing

values. The metadata argument refers to the experimental dataset. The imp.meth

argument denotes the chosen multiple imputation algorithm. The mi4p package is

for now compatible with algorithms from the imp4p and mice packages [16, 17]

(see Note 2). The default algorithm is set to imp4p. The nb.imp argument describes

the number of draws to be done. By default, it is equal to the percentage of missing

values in the original quantitative dataset. The multi.impute function returns an

array of as many imputed matrices as nb.imp.

3.2 Estimation

The objective of multiple imputation is to estimate from 𝐷 drawn datasets the vector

of parameters of interest and its variance-covariance matrix. Notably, accounting

for multiple-imputation-based variability is possible thanks to Rubin’s rules, which

provide an accurate estimation of these parameters. In mi4p, the vectors of param-

eters of interest are the vectors of the peptides’ intensity mean in each condition

considered. There are as many vectors to be estimated (and as many corresponding

variance-covariance matrices) as the number of peptides in the quantitative dataset.
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1. The first Rubin’s rule leads to a combined estimator of the vector of intensity

means (see Note 3). To compute the estimators for all peptides in the quantification

dataset, the rubin1.all function should be used:

rubin1.all(imp.data, metadata, funcmean)

The imp.data argument refers to the array of imputed matrices and the

metadata argument to the experimental dataset. The funcmean argument spec-

ifies the method for mean estimation. Here the default funcmean function is

meanImp_emmeans and relies on the estimated marginal means algorithm (see

Note 4). The rubin1.all function returns a list of estimated vector of intensity

means in each condition for all peptides in the quantitative dataset (i.e. the length

of the returned list equals the number of rows of imp.data). To return only the

combined estimator for a specific peptide, the rubin1.one function should be

used:

rubin1.one(peptide, imp.data, metadata, funcmean)

The peptide argument denotes the row index of the considered peptide in the

quantitative dataset.

2. The second Rubin’s rule leads to a combined estimator of the variance-covariance

matrix for each estimated vector of parameters of interest (see Note 5). The idea

behind this rule is to decompose the variability into two components: the within-

imputation variability and the between-imputation variability. To compute the

estimators for all peptides in the quantification dataset, the rubin2.all function

should be used:

rubin2.all(imp.data, metadata, funcmean, funcvar)

The imp.data argument refers to the array of imputed matrices and the metadata

argument to the experimental dataset. The funcmean and funcvar arguments

specifies the method for mean and variance-covariance estimation respectively.
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Here the default funcmean and funcvar functions are meanImp_emmeans and

within_variance_comp_emmeans, both relying on the estimated marginal

means algorithm (see Note 6).

To return the within-imputation component only (respectively the between-

imputation component) for all peptides, the rubin2wt.all function (respectively

the rubin2bt.all function) should be used:

rubin2wt.all(imp.data, metadata, funcvar)

rubin2bt.all(imp.data, metadata, funcmean)

The rubin2.all, rubin2wt.all and rubin2bt.all functions return lists of

square matrices. The length of the list equals to the number of peptides considered,

i.e. to the number of rows in imp.data. The size of the matrices is equal to the

number of conditions considered, i.e to the number of levels of the "Condition"

factor in the metadata dataset. To return only the combined estimator for a

specific peptide, the rubin2.one function should be used:

rubin2.one(peptide, imp.data, metadata, funcmean, funcvar)

The peptide argument denotes the row index of the considered peptide in the

quantitative dataset. Likewise, to return the within-imputation component and/or

the between-imputation component for a specific peptide, the rubin2wt.all and

rubin2bt.all functions should be used:

rubin2wt.one(peptide, imp.data, metadata, funcvar)

rubin2bt.one(peptide, imp.data, metadata, funcmean)

The rubin2.one, rubin2wt.one and rubin2bt.one functions return a square

matrix. The size of the matrix is equal to the number of conditions considered,

i.e to the number of levels of the "Condition" factor in the metadata dataset.
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3.3 Projection

State-of-the-art tests, including Student’s t-test, Welch’s t-test and moderated t-test,

rely on the variance estimation. Here, the variability induced by multiple imputation

is described by a variance-covariance matrix. Therefore, a projection step is required

to get a univariate variance parameter (see Note 7). This step is performed using the

proj_matrix function:

proj_matrix(VarRubin.mat, metadata)

The VarRubin.mat denotes a variance-covariance matrix, as computed with

rubin2.one, or a list of variance-covariance matrices, as computed withrubin2.all

see Subheading 3.2. The metadata argument refers to the experimental dataset. The

proj_matrix function returns either a variance estimator for a given peptide, or a

list of variance estimators for all the peptides considered.

3.4 Moderated t-test

Several testing methods can be used. For gene expression data, the recommended

method is moderated t-testing [18]. In mi4p, the projected variance from multiple

imputation serves as an input to the usual moderated t-test. This step is performed

using the mi4limma function:

mi4limma(imp.data, metadata, VarRubin.S2)

The imp.data argument refers to the array of imputed datasets. The metadata refers

to the experimental dataset. The VarRubin.S2 corresponds to the list of projected

variance estimator for each peptide, as computed with the proj_matrix function

see Subheading 3.3. The mi4limma function returns a list of p-values and a list of

log-transformed fold change for all peptides.



Accounting for multiple imputation variability with mi4limma 11

3.5 Complete workflow

As an alternative to the step-by-step workflow described above, the complete mi4p

workflow can be run with a single command:

mi4p.uni(data, metadata, imp.meth)

The data argument refers to the quantitative dataset, the metadata argument refers

to the experimental dataset and the imp.meth specifies the imputation method to be

used see Subheading 3.1. The mi4p.uni function returns a list of p-values and a list

of log-transformed fold change for all peptides.

The mi4p.uni function includes the four steps described above: multiple imputa-

tion (see Subheading 3.1), estimation (see Subheading 3.2), projection (see Sub-

heading 3.3) and moderated t-testing (see Subheading 3.4). A synoptic view of the

functions which can be used in each step is provided in Table 1.

Table 1 Overview of the functions included in mi4p package

Imputation Estimation Projection Test

For one
specific
peptide

rubin1.one proj_matrix
rubin2.one
rubin2wt.one
rubin2bt.one

For all
peptides

multi.impute rubin1.all proj_matrix mi4p
rubin2.all
rubin2wt.all
rubin2bt.all

mi4p.uni
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3.6 Example use case

A detailed example use case of the workflow presented above can be found in the

vignette of the mi4p package. It can be accessed using the following command:

vignette("mi4p")

The vignette will be updated along with the package.

4 Notes

1. The mi4p package is being regularly updated. It is therefore recommended to

reinstall the package to use the most recent version.

2. While the only suggested algorithms for multiple imputation are taken from

imp4p and mice packages [16, 17], the user can choose any other algorithm and recall

the imputed matrices in the next steps, under the aforementioned constraints, see

Subheading 2.4.

3. Let 𝛽𝑝,𝑑 be the estimated vector of parameters for peptide 𝑝 in the 𝑑-th imputed

dataset. The first Rubin’s rule gives the combined estimator for peptide 𝑝 through

the 𝐷 imputed datasets such as:

𝛽𝑝 =
1
𝐷

𝐷∑︁
𝑑=1

𝛽𝑝,𝑑 (1)

4. The meanImp_emmeans function computes the estimated marginal means for

specified factors or factor combinations in a linear model for a given imputed dataset.

Estimated marginal means are also known as least-squares means or predicted

marginal means and are predictions from a linear model over a reference grid.

5. The second Rubin’s rule gives the combined estimator of the variance-covariance

matrix for each estimated vector of parameters of interest for peptide 𝑝 through the
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𝐷 imputed datasets such as:

Σ̂𝑝 =
1
𝐷

𝐷∑︁
𝑑=1

𝑊𝑑 + 𝐷 + 1
𝐷 (𝐷 − 1)

𝐷∑︁
𝑑=1

(𝛽𝑝,𝑑 − 𝛽𝑝)𝑇 (𝛽𝑝,𝑑 − 𝛽𝑝) (2)

where 𝑊𝑑 denotes the variance-covariance matrix of 𝛽𝑝,𝑑 , i.e. the variability of the

vector of parameters of interest as estimated in the 𝑑-th imputed dataset.

6. The within_variance_comp_emmeans function computes the symmetric

variance-covariance matrix of the marginal means estimator for a given imputed

dataset.

7. To keep all the pieces of information contained in the variance-covariance ma-

trix, an extended version of the workflow presented in this chapter to the multivariate

case is currently being implemented in mi4p. This multivariate extension will make

it possible to fully take into account the effect of the imputation process, and thus

the presence of missing values, on the precision of the estimate.
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