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Heterogeneous networks have multiple types of nodes and edges. Single-layer stochastic block model, bipartite stochastic block model, and multiplex stochastic block model have been proposed as a tool for detecting community structure in networks and generating synthetic networks for use as benchmarks. Yet, any stochastic block model has not been introduced specifically for detecting community in heterogeneous networks. In this paper, we introduce multilayer heterogeneous stochastic block models for detecting communities in heterogeneous networks. According to these models, we look at heterogeneous networks as multilayer networks, which means each edge type shows one layer. We can categorize these models into two broad groups, those based on the independent degree principle and other is based on the shared degree principle. According to our results, in general the independent degree model has better performance in networks that have less common communities between nodes types. In contrast, the shared degree model has better performance in networks which have more common communities between nodes types. Also, we show that our models outperform in real-world networks. If we put aside the exception case, simulation results and real data applications show the effectiveness of these proposed models compared to single layer model that applied to heterogeneous networks.

Introduction

Having multiple types of nodes and edges is the defining feature of heterogeneous networks. For instance, nodes can be doctors, patients, hospitals, and diseases in a healthcare network. The edges can be in the type of doctor-hospital (doctor works at the hospital), patient-doctor (patient treated by a doctor), and patient-disease (patient treated for disease). Like homogeneous networks, efficient detecting groups or communities of nodes is one of important problems. Definition of communities in a network is groups of nodes which are more like to each other than the rest of the network. Because a subset of nodes might be like in many different ways, this definition is a bit vague. Structural communities definition is the best definition, where nodes within the community have more connections among themselves as compared to the rest of the network. One of the graceful probabilistic models for detecting communities in networks is stochastic block models (SBMs) (Peixoto,2013;Peixoto,2014;[START_REF] Holland | Stochastic blockmodels: First steps[END_REF]Wang & Wong,1987;Nowicki & Snijders,2001;Karrer & Newman,2011;Decelle et al,2011;Shen et al,2012) and helpful in producing recommendation systems (Guimera et al,2012). Community structure in bipartite networks can be detected by SBMs (Peixoto,2013;Peixoto,2014;Decelle et al,2011;Shen et al,2012;Larremore et al,2014) and some SBM-based models have been developed for multiplex networks (Valles-Catala et al,2016;Han et al,2015;Peixoto,2015;Paul & Chen,2015;Taylor et al,2016;Stanley et al,2015). However the community detection problem for heterogeneous networks has not been studied well. Common approach to community detection in a heterogeneous network include applying standard community detection algorithms to a one layer flattered heterogeneous network. In this approach We look at a heterogeneous network like homogeneous network, and ignore node and edge types. In this method, we discard some helpful information about the heterogeneous network, and our resulted communities are inaccurate. To avoid these issues, heterogeneous versions of Girvan-Newman modularity have been proposed in (Liu & Wakita,2014;Zhang & Chen,2018;Song et al,2015;Pramanik et al,2017). In our approach, we present multilayer formulations of the popular stochastic block model, which provides a statistical solution to the community detection problem for heterogeneous networks. We can interpret heterogeneous networks as multilayer networks. According to this view, heterogeneous network has some layers, each unipatite layers connect one type of nodes, and others each bipartite layers connect two different types of nodes. In (Paul & Chen,2022) developed several versions of multilayer stochastic block models. These models are specifically for multiplex networks. It categorizes them into independent degree models and shared degree models. Also, (Paul & Chen,2022) proposed a restricted version of MLSBMs to develop more models. We develop several versions of heterogeneous multilayer stochastic block models. We categorizes them into independent degree models and shared degree models. Also, we proposed restricted versions of them to develop more models. These new models could model community structures of heterogeneous networks more accurately. Because, these new models could models community structures in different types of nodes and edges in heterogeneous networks. In the following sections, we review degree corrected stochastic block model(DCSBM). Then we formulate the heterogeneous multilayer stochastic block models (HMLSBM) based on models proposed in (Paul & Chen,2022) and describe an algorithm that searches for a maximum likelihood partition of a network into communities. We first show that planted network communities in synthetic networks can be correctly detected by the models. We then apply the models to several real networks, showing that our new models outperforms its one-layer SBM counterpart.

Degree Corrected Stochastic Block Model

In this section we review briefly the use of the one layer network, degree corrected stochastic block model (Karrer & Newman,2011), focusing on undirected networks since they are the most commonly studied. Similarly, we express the matrix of group interrelationships 𝜋 of the network as a 𝐾 × 𝐾 matrix where 𝐾 is the number of communities in the network. Let 𝜋 𝑞𝑠 be the expected value of the adjacency matrices entry 𝐴 𝑖𝑗 for nodes 𝑖 and 𝑗 belonging to groups 𝑞 and 𝑠 ,respectively. Let the number of actual edges between 𝑖 and 𝑗 be drawn from a Poisson distribution with the corresponding mean 𝑃 𝑖𝑗 . Let 𝜃 𝑖 control the expected degree of vertex 𝑖 in the network. We write as 𝑃 𝑖𝑗 = 𝜃 𝑖 𝜃 𝑗 𝜋 𝑞𝑠 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑞, 𝑠 ∈ {1, … , 𝐾} (2.1) With the restrictions:

∑ 𝑖:𝑧 𝑖=𝑞 𝜃 𝑖 = 1, , 𝑞 ∈ {1, … , 𝐾} (2.
2) We call it degree corrected stochastic block model (DCSBM). We will use the notations 𝑒 𝑞𝑠 to denote the total number of edges between communities 𝑞 and community 𝑠 in the network. And the degree vectors of nodes are 𝑘 𝑖 for node 𝑖 in the network. Also, we will use the notations 𝑒 𝑞 𝑠 to denote the total number of edges between communities 𝑞 and 𝑠 in the network, and 𝑒 𝑞 to denote the total number of edges in community 𝑞 in the network, i.e., 𝑒 𝑞𝑠 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝐼(𝑧 𝑖 = 𝑞, 𝑧 𝑗 = 𝑠) and 𝑒 𝑞 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝐼(𝑧 𝑖 = 𝑞) , where 𝐼(. ) is the indicator function which is 1 if the condition inside is satisfied and 0 otherwise. Note that 𝑒 𝑞𝑠 = 𝑒 𝑠𝑞 , 𝑒 𝑞 = ∑ 𝑠 𝑒 𝑞𝑠 and 𝑒 𝑞𝑞 is twice the number of edges within the community 𝑞 in the network. We use the likelihood method, where we maximize the conditional log-likelihood 𝑙({𝐴}|𝑧, {𝑃}) that obtained from the given communities and adjacent matrix. By inserting estimations of the parameter set {𝑃} conditional on 𝑧 in the maximum likelihood. The conditional log-likelihood for DCSBM can be written as (eliminating the terms that are not related to the communities assignment) and |𝐸 𝑖𝑗 | is the number of edges between nodes type 𝑖 and nodes type 𝑗 and |𝐸| = ∑ 𝑀 𝑖,𝑗=1 |𝐸 𝑖𝑗 | is the number of all edges in network. Similarly, we define community set 𝐶 in a heterogeneous multilayer network 𝐺 as a crossed module (𝐶 𝑈 , 𝐶 𝐵 ) of 𝐺 contains a subset of single type or multi types nodes and all edges between them. Mathematically, 𝐶 𝑈 unipartite community(single type nodes) set and 𝐶 𝐵 bipartite community(multi types nodes) set can be expressed as 

𝐶 𝑈 = {𝐿 𝑖 𝐶 = (𝑉 𝑖 𝐶 , 𝐸 𝑖 𝐶 )|𝑉 𝑖 𝐶 ⊆ 𝑉 𝑖 , 𝐸 𝑖 𝐶 = {𝐸 𝑖 ∩ (𝑉 𝑖 𝐶 , 𝑉 𝑖 𝐶 )}, 𝑖 ∈ {1,2, … , 𝑀}} 𝐶 𝐵 = {𝐿 𝑖𝑗 𝐶 = (𝑉 𝑖 𝐶 , 𝑉 𝑗 𝐶 , 𝐸 𝑖𝑗 𝐶 )|𝑉 𝑖 𝐶 ⊆ 𝑉 𝑖 , 𝑉 𝑗 𝐶 ⊆ 𝑉 𝑗 , 𝐸 𝑖𝑗 𝐶 = {𝐸 𝑖𝑗 ∩ (𝑉 𝑖 𝐶 × 𝑉 𝑗 𝐶 )}, 𝑖, 𝑗 ∈ {1,2, … , 𝑀}, 𝑖 ≠ 𝑗}
𝑄 HSDRMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)log ( ∑ 𝑚,𝑙 (𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) (∑ 𝑚,𝑙 (𝑒 𝑞 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)) (∑ 𝑚,𝑙 (𝑒 𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)) )} (3.1.27)

Algorithm

We adapted the algorithm introduced by Karrer and Newman's algorithm (Karrer & Newman,2011), for maximizing Eqs. (3.1.15), (3.1.18), (3.1.21), (3.1.24) and (3.1.27) over all communities 𝑧, which is a modified version of the classic Kernighan-Lin algorithm (Kernighan & Lin,1970). The algorithm gives as inputs the adjacency matrix . Then it assigns nodes at random to 𝐾 communities, indexed {1, … , 𝐾} uniformly. By choosing to move a node from one community 𝑞 to another community, the algorithm searches on the functions surface to find maximum point. The algorithm chooses all the moves across all nodes and eligible communities that will most increase the functions. If there is no possible increase because moving the nodes helps get away from the local optimum, the algorithm selects the move that least decreases the functions. We move each nodes only once, and when all nodes have moved, the states through which the system has passed are evaluated and the state with the highest objective score is used as a starting point for the next search iteration. The algorithm finishes when a full iteration passes, and there is no increase in objective score.

The algorithm should be run many times because this is a kind of stochastic optimization technique, and the average score from these independent repetitions is the result of the algorithm.

In these simulations, we iterate 100 times each network and an average score is reported as a result.

𝜋 𝑚,𝑙 = [ 𝛾 ⋯ 𝛿 ⋮ ⋱ ⋮ 𝛿 ⋯ 𝛾 ] , 𝛾 = 5𝛿
Where the variables 𝛾, 𝛿 are positive constants. At these simulations, we produces networks with five communities. We let 𝑀 = 3 and |𝑉 𝑖 | = 100 for each node type and divide these vertices evenly across the five communities for each node type. To investigate the effect of density of layers on the performance of our models, we consider three different cases. Each case is based on differences between intra-layers densities and inter-layers densities at networks. In the first case, both intra-layers and inter-layers have equal densities(both are 0.2). In the second case, intra-layers densities have several times bigger than inter-layers densities(intra-layers densities are 0.2 and inter-layers densities are 0.05). In the third category, inter-layers densities have several times bigger than intra-layers densities(inter-layers densities are 0.2 and intra-layers densities are 0.05). In each simulations, the cross parameter 𝛼 changes between 0 and 1. The results are shown in Figure 2. Where the variables 𝛾, 𝛿 are positive constants. At these simulations, we produces networks with five communities. We let 𝑀 = 3 and |𝑉 𝑖 | = 100 for each node type and divide these vertices evenly across the five communities for each node type. To investigate the effect of density of layers on the performance of our models, we consider three different cases. Each case is based on differences between intra-layers densities and inter-layers densities at networks. In the first case, both intra-layers and inter-layers have equal densities(both are 0.2). In the second case, intra-layers densities have several times bigger than inter-layers densities(intra-layers densities are 0.2 and inter-layers densities are 0.05). In the third category, inter-layers densities have several times bigger than intra-layers densities(inter-layers densities are 0.2 and intra-layers densities are 0.05). In each simulations, the cross parameter 𝛼 changes between 0 and 1. The results are shown in Figure 3. Where the variables 𝛾, 𝛿 are positive constants. At these simulations, we produces networks with five communities. We let 𝑀 = 3 and |𝑉 𝑖 | = 100 for each node type and divide these vertices evenly across the five communities for each node type. To investigate the effect of density of layers on the performance of our models, we consider three different cases. Each case is based on differences between intra-layers densities and inter-layers densities at networks. In the first case, both intra-layers and inter-layers have equal densities(both are 0.2). In the second case, intra-layers densities have several times bigger than inter-layers densities(intra-layers densities are 0.2 and inter-layers densities are 0.05). In the third category, inter-layers densities have several times bigger than intra-layers densities(inter-layers densities are 0.2 and intra-layers densities are 0.05). In each simulations, the cross parameter 𝛼 changes between 0 and 1. The results are shown in Figure 4. According to different simulations, the HDCMLSBM performance is better in the smaller amount of the parameter 𝛼 (when nodes types have less common communities), and the SDRMLSBM performance is better in the larger amount of the parameter 𝛼 (when nodes types have more 

Real Networks

DBLP Dataset

Our first real network is the DBLP (Digital Bibliography and Library Project) dataset1 , a common benchmark for heterogeneous networks community detection algorithms (Zhang & Chen,2018).

It is a bibliography website for computer science publications that has more than 3.4 million journal articles, conference papers, and other scientific materials. In [START_REF] Gao | Graph-based consensus maximization among multiple supervised and unsupervised models[END_REF] extracted a connected subset 23 of the DBLP dataset, including four research areas database, data mining, information retrieval, and artificial intelligence bibliographical records. This network includes three types of nodes paper, conference, and author. Between the three types of nodes, there are two types of edges paper-conference (paper published at a conference), paper-author (paper written by an author). This dataset includes 14,475 authors who wrote 14,376 papers, and published at 20 conferences. Each one of the 20 conferences is labeled with the four research areas. Each research area has five conferences. 4,057 authors have true research areas that are related to a subset of 14,328 papers. The problem in this real data application is to detect the research areas of these true labeled authors correctly. Because only on labeled authors can be computed for normalized mutual information, we focus our data analysis on labeled data. Applying our five different proposed heterogeneous multilayer SBMs and one layer DCSBM by 100 reputations. The results are shown in Table 1.

AMiner Dataset

Our second real network is the AMiner dataset2 [START_REF] Tang | Arnetminer: Extraction and mining of academic social networks[END_REF], which is also an academic network that includes three types of nodes, including paper, conference, and author, and two types of edges: paper-conference (paper published at a conference), paper-author (paper written by an author). This dataset has 164,472 authors who wrote 127,623 papers and published them at 101 conferences labeled with ten research areas. Just only 127,202 papers have labels for true research area. Finding the true research areas of the papers is our problem. Because just only on labeled papers can be computed for normalized mutual information, we focus our data analysis on labeled data. Applying our five different proposed heterogeneous multilayer SBMs and one layer DCSBM by 100 reputations. The results are shown in Table 1. 

Conclusions

In this paper, we have described multilayer stochastic block models for heterogeneous networks.

According to traditional version of stochastic block model, we can look at a heterogeneous networks like homogeneous networks that means we ignore nodes and edges types. In this method, we discard some helpful information about the heterogeneous networks, and our result communities are inaccurate. But if we look at heterogeneous networks as multilayer networks, which means each edge type shows one layer. We can model important structural information of heterogeneous networks and use these models for detecting communities in these kind of networks. We can categorize these models into two broad groups, those based on the independent degree principle and other is based on the shared degree principle. While independent degree models for each node have different degree parameters in each layer, the shared degree base model shares degree information in layers. The independent degree model has better performance in networks that have less common communities between nodes types (lower parameter 𝛼). In contrast, the shared degree model has better performance in networks which have more common communities between nodes types (higher parameter 𝛼). But there is an exception in the case that intra-layer-densities are high and inter-layers densities are low, and the parameter 𝛼 is less, one layer degree corrected stochastic block model has better performance in comparison to HDCMLSBM. If we put aside the exception case, simulation results and real data applications show the effectiveness of these proposed methods compared to single-layer methods that apply to heterogeneous networks, when we do not look at them as a multilayer network and don't separate node and edge types in different layers. According to our results, we cannot recommend a single model for all heterogeneous networks. We suppose different networks cases which have different network elements like community structures and layers densities. The shared degree model performs better in networks that have more common communities between nodes types. In contrast, the independent degree model performs better in networks that have less common communities between nodes types.
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 1 Figure 1: Single-type and multi-type nodes communities in heterogeneous multilayer network.
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 2 Figure 2: Simulation of strong signal intra-layers and strong signal inter-layers heterogeneous networks and 𝛼 is variable
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 3 Figure 3: Simulation of strong signal intra layers and weak signal inter layers heterogeneous networks and 𝛼 is variable

Figure 4 :

 4 Figure 4: Simulation of weak signal intra layers and strong signal inter layers heterogeneous networks and 𝛼 is variable

3 Proposed Heterogeneous Multilayer Stochastic Block Models 3.1 Modularities

  𝜋 𝑧 𝑖 𝑧 𝑗 ) + log(𝜃 𝑖 ) + log(𝜃 𝑗 )} -𝜃 𝑖 𝜃 𝑗 𝜋 𝑧 𝑖 𝑧 𝑗 } Values for 𝜃 𝑖 and 𝜋 can be estimate by solving maximize likelihood estimation as follow We begin by defining a heterogeneous network with 𝑀 different types of nodes as 𝐺 = (𝐺 𝑈 , 𝐺 𝐵 ) where 𝐺 𝑈 = {𝐿 𝑖 : 𝑖 ∈ {1,2, … , 𝑀}} is a set of 𝑀 unipartite networks that each one interconnects one type of nodes. and 𝐺 𝐵 = {𝐿 𝑖𝑗 : 𝑖, 𝑗 ∈ {1,2, … , 𝑀}, 𝑖 ≠ 𝑗} is a set of bipartite networks that each one interconnects two different types of nodes. Each layer 𝐿 𝑖 = (𝑉 𝑖 , 𝐸 𝑖 ) with 𝑉 𝑖 and 𝐸 𝑖 represent the nodes of type 𝑖 and inner edges between them, respectively. Similarly, we can have layers 𝐿 𝑖𝑗 = (𝑉 𝑖 , 𝑉 𝑖 , 𝐸 𝑖𝑗 ) where {𝐸 𝑖𝑗 ⊆ 𝑉 𝑖 × 𝑉 𝑗 : 𝑖, 𝑗 ∈ {1,2, … , 𝑀}, 𝑖 ≠ 𝑗} a bipartite network that connects nodes of type 𝑖 and type 𝑗. We use the 𝑁 × 𝑁 adjacency matrix 𝐴 as adjacency matrix of 𝐺 that 𝑁 = ∑ 𝑀 𝑖=1 |𝑉 𝑖 | and the 𝑉 𝑚 × 𝑉 𝑙 adjacency matrix 𝐴 𝑚𝑙 that indicates edges of set 𝐸 𝑚𝑙 , which are related as

	𝑙({𝐴}; 𝑧, {𝜋}, {𝜃}) = ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 {log (= ∑ 𝑖 𝑘 𝑖 log(𝜃 𝑖 ) + ∑ 𝐴 11 ⋯ 𝐴 1𝑀 {𝑒 𝑞𝑠 log(𝜋 𝑞𝑠 ) -𝜋 𝑞𝑠 } 𝐴 = [ ⋮ ⋱ ⋮ 𝑞≤𝑠 Straightforward differentiation of the log-likelihood function can estimate 𝜋. However we use the 𝐴 𝑀1 ⋯ 𝐴 𝑀𝑀
	Lagrange multipliers to estimate 𝜃 𝑖 under the constraints as follows. The objective function to be
	optimized is				
	𝑙({𝜃}, {𝜇}) = ∑	𝑘 𝑖 log(𝜃 𝑖 ) + ∑	𝜇 𝑞 ( ∑	𝜃 𝑖 -1)
			𝑖			𝑞	𝑖:𝑧 𝑖 =𝑞
			𝜃 ̂𝑖 =	𝑘 𝑖 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖	=	𝑘 𝑖 𝑒 𝑞
		𝜋 ̂𝑞𝑠 =		∑	𝐴 𝑖𝑗 = 𝑒 𝑞𝑠	(2.3)
		𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠
	The maximized log-likelihood function can be obtained by replacing these estimates into the log-
	likelihood function as				
	𝑙({𝐴}; 𝑧) = ∑ 𝑖	𝑘 𝑖 log (	𝑘 𝑖 𝑒 𝑞	𝑞≤𝑠 ) + ∑	{𝑒 𝑞𝑠 log(𝑒 𝑞𝑠 ) -𝑒 𝑞𝑠 }
	= ∑	𝑒 𝑞𝑠 log(𝑒 𝑞𝑠 ) -∑	𝑒 𝑞𝑠 + ∑	𝑘 𝑖 log(𝑘 𝑖 ) -∑	𝑒 𝑞 𝑙𝑜𝑔(𝑒 𝑞 )
	𝑞≤𝑠			𝑞≤𝑠	𝑖	𝑞
	Now we drop the terms that are not related to the assignment of communities
		𝑙({𝐴}; 𝑧) = ∑	𝑒 𝑞𝑠 log(𝑒 𝑞𝑠 ) -∑	𝑒 𝑞 𝑙𝑜𝑔(𝑒 𝑞 )
			𝑞≤𝑠		𝑞
	It is easy to write that this maximum likelihood function as follows
		𝑄 DCSBM = ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 log (	𝑒 𝑞𝑠 𝑒 𝑞 𝑒 𝑠	) }	(2.4)
	Its normalized version based on number of edges
	𝑄 DCSBM = ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 /2|𝐸|)log (	(𝑒 𝑞𝑠 /2|𝐸|) (𝑒 𝑞 /2|𝐸|)(𝑒 𝑠 /2|𝐸|)	) }	(2.5)
	Our approach to the heterogeneous multilayer stochastic block models builds on recent work of
	(Paul & Chen,2022), which described several versions of multilayer stochastic block models.
	These new heterogeneous multilayer SBMs have some different versions according to degree
	parameters of nodes at each layers.			

  Figure1shows different kinds of communities in heterogeneous multilayer network. Similarly, we express the matrix of group interrelationships 𝜋 𝑚,𝑙 of the bipartite network that connects nodes of type 𝑚 and type 𝑙 as a 𝐾 × 𝐾 matrix where 𝐾 is the number of communities in the heterogeneous network. Also, the matrix of group interrelationships 𝜋 𝑚,𝑚 of the unipartite network that connects nodes of type 𝑚 as a 𝐾 × 𝐾 matrix where 𝐾 is the number of communities in the heterogeneous network. Let 𝜋 𝑞𝑠 𝑚,𝑙 be the expected value of the adjacency matrices entry 𝐴 𝑖𝑗 𝑚𝑙 or 𝐴 𝑖𝑗 𝑙𝑚 for nodes 𝑖 and 𝑗 belonging to groups 𝑞 and 𝑠 ,respectively. Also, 𝜋 𝑞𝑠 𝑚,𝑚 be the expected value of the adjacency matrices entry 𝐴 𝑖𝑗 ways with different number of variables. Let 𝜃 𝑖 𝑚,𝑙 control the expected degree of vertex 𝑖 in the bipartite network that connects nodes of type 𝑚 and type 𝑙. The first model is an independent degree model. We write as We call it heterogeneous degree corrected multilayer stochastic block model (HDCMLSBM). The next model is the modified version of the DCRMLSBM, which we call it HDCRMLSBM-intra-layer. The next model is the another modified version of the DCRMLSBM, which we call HDCRMLSBMinter-layer. In this model we have for inter layers 𝑃 In the next model, the underlying model is shared degree, and hence the specific degree parameter of each node is shared across the layers. We call this model the heterogeneous shared degree restricted multilayer stochastic block model (SDRMLSBM). The model can be written as Also, we will use the notations 𝑒 𝑞 𝑚,𝑙 to denote the total number of edges in community 𝑞 in the bipartite network that connects nodes of type 𝑚 and type 𝑙, i.e., 𝑒 𝑞𝑠 𝑚,𝑙 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑚𝑙 𝐼(𝑧 𝑖 = 𝑞, 𝑧 𝑗 = 𝑠) + ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑙𝑚 𝐼(𝑧 𝑖 = 𝑞, 𝑧 𝑗 = 𝑠) and 𝑒 𝑞 𝑚,𝑙 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑚𝑙 𝐼(𝑧 𝑖 = 𝑞) + ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑙𝑚 𝐼(𝑧 𝑖 = 𝑞) = ∑ 𝑖 𝑘 𝑖 𝑚,𝑙 𝐼(𝑧 𝑖 = 𝑞) , where 𝐼(. ) Is the indicator function which is 1 if the condition inside is satisfied and 0 otherwise. Note that 𝑒 𝑞𝑠 𝑚,𝑙 = 𝑒 𝑠𝑞 𝑚,𝑙 , 𝑒 𝑞 𝑚,𝑙 = ∑ 𝑠 𝑒 𝑞𝑠 𝑚,𝑙 and 𝑒 𝑞𝑞 𝑚,𝑙 is twice the number of edges within the community 𝑞 in the bipartite network that connects nodes of type 𝑚 and type 𝑙. Similarly, We will use the notations 𝑒 𝑞𝑠 𝑚,𝑚 to denote the total number of edges between communities 𝑞 and community 𝑠 in the unipartite network that connects nodes of type 𝑚 together. And the degree vectors of nodes are 𝑘 𝑖 𝑚,𝑚 for node 𝑖 in the unipartite network that connects nodes of type 𝑚 together. Also, we will use the notations 𝑒 𝑞 𝑚,𝑚 to denote the total number of edges in community 𝑞 in the unipartite network that connects nodes of type 𝑚 together, i.e., 𝑒 𝑞𝑠 𝑚,𝑚 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑚𝑚 𝐼(𝑧 𝑖 = 𝑞, 𝑧 𝑗 = 𝑠) and 𝑒 𝑞 𝑚,𝑚 = ∑ 𝑖,𝑗 𝐴 𝑖𝑗 𝑚𝑚 𝐼(𝑧 𝑖 = 𝑞) = ∑ 𝑖 𝑘 𝑖 𝑚,𝑚 𝐼(𝑧 𝑖 = 𝑞). Note that 𝑒 𝑞𝑠 𝑚,𝑚 = 𝑒 𝑠𝑞 𝑚,𝑚 , 𝑒 𝑞 𝑚,𝑚 = ∑ 𝑠 𝑒 𝑞𝑠 𝑚,𝑚 and 𝑒 𝑞𝑞 𝑚,𝑚 is twice the number of edges within the community 𝑞 in the unipartite network that connects nodes of type 𝑚 together. Similar (Paul & Chen,2022) we use the likelihood method, where we maximize the conditional log-likelihood 𝑙({𝐴}|𝑧, {𝑃 𝑚,𝑙 }) that obtained from the given communities and adjacent matrix. By inserting estimations of the parameter set {𝑃 𝑚,𝑙 } conditional on 𝑧 in the maximum likelihood. The conditional log-likelihood for HDCMLSBM can be written as (eliminating the terms that are not related to the communities assignment) 𝑙({𝐴}; 𝑧, {𝜋 𝑚,𝑙 }, {𝜃 𝑚,𝑙 }) = ∑ Straightforward differentiation of the log-likelihood function can estimate 𝜋 𝑚,𝑙 . However we use the Lagrange multipliers to estimate 𝜃 𝑖 𝑚,𝑙 under the constraints as follows. The objective function Values for 𝜃 𝑖 𝑚,𝑙 and 𝜋 𝑚,𝑙 can be estimate by solving maximize likelihood estimation as followNow we drop the terms that are not related to the assignment of communitiesThe maximize likelihood estimation of 𝜃 𝑖 𝑚 and 𝜋 and 𝛽 𝑚,𝑙 under constraints by the method of Lagrange multipliers can be written as

	𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 𝑚,𝑙 With the restrictions: ∑ 𝑖:𝑧 𝑖=𝑞 𝜃 𝑖 𝑚,𝑙 = 1, , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀} 𝑞, 𝑠 ∈ {1, … , 𝐾} 𝑚, 𝑙 ∈ {1, … , 𝑀}, 𝑞 ∈ {1, … , 𝐾} (3.1.2) In this model we have for intra layers 𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀}, 𝑚 = 𝑙 𝑞, 𝑠 ∈ {1, … , 𝐾} (3.1.1) (3.1.3) And we have for inter layers 𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 𝑚,𝑙 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀} 𝑚 ≠ 𝑙 𝑞, 𝑠 ∈ {1, … , 𝐾} (3.1.4) With the restrictions: ∑ 𝑖:𝑧 𝑖=𝑞 𝜃 𝑖 𝑚,𝑙 = 1, 𝑚, 𝑙 ∈ {1, … , 𝑀}, 𝑞 ∈ {1, … , 𝐾} (3.1.5) And we have for intra layers 𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 𝑚,𝑙 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀} 𝑚 = 𝑙 𝑞, 𝑠 ∈ {1, … , 𝐾} (3.1.7) With the restrictions: ∑ 𝑖:𝑧 𝑖=𝑞 𝜃 𝑖 𝑚,𝑙 = 1, 𝑚, 𝑙 ∈ {1, … , 𝑀}, 𝑞 ∈ {1, … , 𝐾} (3.1.8) The next model is the another modified version of the DCRMLSBM, which we call HDCRMLSBM. In this model we have for all layers 𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀}, 𝑞, 𝑠 ∈ {1, … , 𝐾} (3.1.9) With the restrictions ∑ 𝑖:𝑧 𝑖=𝑞 𝜃 𝑖 𝑚,𝑙 = 1, 𝑚, 𝑙 ∈ {1, … , 𝑀}, 𝑞 ∈ {1, … , 𝐾} (3.1.10) 𝑃 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚 𝜃 𝑗 𝑙 𝛽 𝑚,𝑙 𝜋 𝑞𝑠 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀}, (3.1.11) With the restrictions ∑ 𝑚 ∑ 𝑖:𝑧 𝑖 =𝑞 𝜃 𝑖 𝑚 = 1 𝑚 ∈ {1, … , 𝑀}, 𝑞 ∈ {1, … , 𝐾} ∑ 𝑚,𝑙 𝛽 𝑚,𝑙 = 1 (3.1.12) We will use the notations 𝑒 𝑞𝑠 𝜋 ̂𝑞𝑠 𝑚,𝑙 = ∑ 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 (𝐴 𝑖𝑗 𝑚𝑙 + 𝐴 𝑖𝑗 𝑙𝑚 ) = 𝑒 𝑞𝑠 𝑚,𝑙 , 𝑚 ≠ 𝑙 𝜋 ̂𝑞𝑠 𝑚,𝑚 = ∑ 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 𝐴 𝑖𝑗 𝑚𝑚 = 𝑒 𝑞𝑠 (3.1.13) The maximized log-likelihood function can be obtained by replacing these estimates into the log-likelihood function as 𝑙({𝐴}; 𝑧) = ∑ 𝑖 ∑ 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 log ( 𝑘 𝑖 𝑒 𝑞 𝑚,𝑙 ) + ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log(𝑒 𝑞𝑠 𝑚,𝑙 ) -𝑒 𝑞𝑠 𝑚,𝑙 } + ∑ 𝑚 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑚 log (∑ 𝑚 𝑒 𝑞𝑠 𝑚,𝑚 ) -∑ 𝑞 ∑ 𝑚 𝑞≤𝑠 𝑞 𝑚 𝑚 𝑒 𝑞 𝑚,𝑚 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) + ∑ ∑ 𝑒 𝑞𝑠 𝑚,𝑚 log(𝑒 𝑞𝑠 𝑚,𝑚 ) -∑ ∑ 𝑒 𝑞 𝑚,𝑚 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) 𝑚,𝑙=1 𝑖<𝑗 𝑚,𝑙 𝑙({𝐴}; 𝑧) = ∑ 𝑚,𝑙 𝑚≠𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 log(𝑒 𝑞𝑠 𝑚,𝑙 ) -∑ 𝑞 ∑ 𝑚,𝑙 𝑚≠𝑙 𝑒 𝑞 𝑚,𝑙 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) 𝑙({𝐴}; 𝑧) = ∑ 𝑚,𝑙 𝑚≠𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 log (∑ 𝑚,𝑙 𝑚≠𝑙 𝑒 𝑞𝑠 𝑚,𝑙 ) -∑ 𝑚≠𝑙 𝑙({𝐴}; 𝑧, 𝜋, {𝜃 𝑚 }) = ∑ ∑ {𝐴 𝑖𝑗 𝑚𝑙 {log (𝜋 𝑧 𝑖 𝑧 𝑗 ) + 𝑙𝑜𝑔(𝛽 𝑚,𝑙 ) + log(𝜃 𝑖 𝑚 ) + log(𝜃 𝑗 𝑙 )} -𝜃 𝑖 𝑚 𝜃 𝑗 𝑙 𝛽 𝑚,𝑙 𝜋 𝑧 𝑖 𝑧 𝑗 } 𝑞 ∑ 𝑚,𝑙 𝑒 𝑞 𝑀 𝑚,𝑙 𝑙𝑜𝑔(𝑒 𝑞 Similarly, for HSDRMLSBM, the condition log-likelihood with constraints can be simplified as 𝑚,𝑙 ) (3.1.24) 𝑚,𝑚 𝜋 𝑞𝑠 = ∑ 𝑚 ∑ 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 𝐴 𝑖𝑗 𝑚𝑚 = ∑ 𝑚 𝑒 𝑞𝑠 𝑚,𝑚 (3.1.16) Replacing maximize likelihood estimations into the log-likelihood equation and then eliminating terms that are not related to community assignment 𝜋 𝑞𝑠 𝑚,𝑚 = ∑ 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 𝐴 𝑖𝑗 Replacing maximize likelihood estimations into the log-likelihood equation and then eliminating terms that are not related to community assignment 𝑄 HDCRMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 (𝑒 𝑞 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)(𝑒 𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) )} 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)log ( 𝑚𝑚 = 𝑒 𝑞𝑠 𝑚,𝑚 (3.1.19) ∑ 𝑚,𝑙 (𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) 𝑞, 𝑠 ∈ {1, … , 𝐾} 𝑀 𝑚,𝑙=1 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑙 {log (𝜋 𝑧 𝑖 𝑧 𝑗 𝑚,𝑙 ) + log(𝜃 𝑖 𝑚,𝑙 ) + log(𝜃 𝑗 𝑚,𝑙 )} -𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑧 𝑖 𝑧 𝑗 𝑚,𝑙 } = ∑ 𝑚,𝑙 ∑ 𝑖 𝑘 𝑖 𝑚,𝑙 log(𝜃 𝑖 𝑚,𝑙 ) + ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log(𝜋 𝑞𝑠 𝑚,𝑙 ) -𝜋 𝑞𝑠 to be optimized is 𝑙({𝜃 𝑚,𝑙 }, {𝜇 𝑚,𝑙 }) = ∑ 𝑖 ∑ 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 log(𝜃 𝑖 𝑚,𝑙 ) + ∑ 𝑚,𝑙 ∑ 𝑞 𝜇 𝑞 𝑚,𝑙 ( ∑ 𝑖:𝑧 𝑖 =𝑞 𝜃 𝑖 𝑚,𝑙 -1) 𝜃 ̂𝑖𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖 𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑚≠𝑙 𝑚≠𝑙 + ∑ 𝑚 ∑ 𝑖 𝑘 𝑖 𝑚,𝑚 log(𝜃 𝑖 𝑚,𝑚 ) + ∑ 𝑚 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑚 log(𝜋 𝑞𝑠 ) -𝜋 𝑞𝑠 } The maximize likelihood estimation of 𝜃 𝑖 multipliers can be written as 𝜃 ̂𝑖𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖 𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 𝜋 ̂𝑞𝑠 𝑚,𝑙 = ∑ 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 (𝐴 𝑖𝑗 𝑚𝑙 + 𝐴 𝑖𝑗 𝑙𝑚 ) = 𝑒 𝑞𝑠 𝑚,𝑙 , 𝑚 ≠ 𝑙 𝜋 ̂𝑞𝑠 = ∑ 𝑚,𝑙 ∑ Its normalized version based on each layers 𝑚≠𝑙 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 𝐴 𝑖𝑗 𝑚𝑙 = ∑ 𝑚,𝑙 𝑒 𝑞𝑠 𝑚,𝑙 , 𝑚 ≠ 𝑙 𝑄 HDCRMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑒 𝑞 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 ) } (3.1.23) 𝑚,𝑙 log ( ∑ 𝑚,𝑙 𝑒 𝑞𝑠 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 multipliers can be written as 𝜃 ̂𝑖𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖 𝑚,𝑙 = It is easy to write that this maximum likelihood function as follows 𝑒 𝑞 𝑚,𝑙 𝑚,𝑙 𝑞≤𝑠 ( 𝑚,𝑙 ) 𝑞 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 𝑙({𝐴}; 𝑧) = ∑ ∑ 𝑒 𝑞𝑠 𝑚,𝑙 log ∑ 𝑒 𝑞𝑠 𝑚,𝑙 -∑ ∑ 𝑒 𝑞 𝑚,𝑙 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) 𝑚,𝑙 and 𝜋 under constraints by the method of Lagrange + ∑ 𝑚,𝑙 𝑚≠𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log(𝜋 𝑞𝑠 ) -𝜋 𝑞𝑠 } + ∑ 𝑚 ∑ 𝑖 𝑘 𝑖 𝑚,𝑚 log(𝜃 𝑖 𝑚,𝑚 ) + ∑ 𝑚 ∑ The maximize likelihood estimation of 𝜃 𝑖 𝑚,𝑙 and 𝜋 under constraints by the method of Lagrange terms that are not related to community assignment 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑚 log(𝜋 𝑞𝑠 𝑚,𝑚 ) -𝜋 𝑞𝑠 Replacing maximize likelihood estimations into the log-likelihood equation and then eliminating 𝑚,𝑚 } 𝑚,𝑙 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 𝑚,𝑙 𝑚,𝑙 } = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 log(𝑒 𝑞𝑠 𝑚,𝑙 ) -∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 + ∑ 𝑖 ∑ 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 log(𝑘 𝑖 𝑚,𝑙 ) -∑ 𝑞 ∑ 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) 𝑙({𝐴}; 𝑧) = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 log(𝑒 𝑞𝑠 𝑚,𝑙 ) -∑ 𝑞 ∑ 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑙𝑜𝑔(𝑒 𝑞 𝑚,𝑙 ) It is easy to write that this maximum likelihood function as follows 𝑄 HDCMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log ( 𝑒 𝑞𝑠 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 ) } (3.1.14) Its normalized version based on each layers 𝑄 HDCMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)log ( (𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) (𝑒 𝑞 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)(𝑒 𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) ) } (3.1.15) Similarly, for HDCRMLSBM-Intra-layer the condition log-likelihood with constraints can be simplified as 𝑙({𝐴}; 𝑧, {𝜋 𝑚,𝑙 }, {𝜃 𝑚,𝑙 }) = ∑ 𝑀 𝑚,𝑙=1 𝑚≠𝑙 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑙 {log (𝜋 𝑧 𝑖 𝑧 𝑗 𝑚,𝑙 ) + log(𝜃 𝑖 𝑚,𝑙 ) + log(𝜃 𝑗 𝑚,𝑙 ) } -𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑧 𝑖 𝑧 𝑗 𝑚,𝑙 } + ∑ 𝑀 𝑚=1 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑚 {log (𝜋 𝑧 𝑖 𝑧 𝑗 ) + log(𝜃 𝑖 𝑚,𝑚 ) + log(𝜃 𝑗 𝑚,𝑚 ) } -𝜃 𝑖 𝑚,𝑚 𝜃 𝑗 𝑚,𝑚 𝜋 𝑧 𝑖 𝑧 𝑗 } = ∑ 𝑚,𝑙 ∑ 𝑖 𝑘 𝑖 𝑚,𝑙 log(𝜃 𝑖 𝑚,𝑙 ) + ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log(𝜋 𝑞𝑠 𝑚,𝑙 ) -𝜋 𝑞𝑠 𝑚,𝑙 𝑚≠𝑙 𝑖 𝜋 ̂𝑞𝑠 = ∑ ∑ 𝐴 𝑖𝑗 𝑚𝑙 = ∑ 𝑒 𝑞𝑠 𝑚,𝑙 (3.1.22) 𝑚,𝑙 } It is easy to write that this maximum likelihood function as 𝑄 HDCRMLSBM-Intra-layer = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log ( 𝑒 𝑞𝑠 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 )} + ∑ 𝑚 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑚 log ( ∑ 𝑚 𝑒 𝑞𝑠 𝑚,𝑚 𝑒 𝑞 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 )} It is easy to write that this maximum likelihood function as 𝑄 HDCRMLSBM-Inter-layer = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 log ( ∑ 𝑚,𝑙 𝑚≠𝑙 𝑒 𝑞𝑠 = ∑ ∑ 𝑘 𝑖 𝑚,𝑙 log(𝜃 𝑖 𝑚 ) + ∑ ∑ 𝑒 𝑞𝑠 𝑚,𝑙 {log(𝜋 𝑞𝑠 ) + 𝑙𝑜𝑔(𝛽 𝑚,𝑙 ) } -∑ 𝜋 𝑞𝑠 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 ) } + ∑ 𝑚 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑚 log ( 𝑚,𝑚 𝑚,𝑙 𝑖 𝑚,𝑙 𝑞≤𝑠 𝑞≤𝑠 𝑒 𝑞𝑠 𝑒 𝑞 𝑚,𝑚 ) } 𝑚,𝑚 𝑒 𝑠 𝑚≠𝑙 𝑚≠𝑙 (3.1.17) Its normalized version based on each layers 𝑄 HDCRMLSBM-Intra-layer = ∑ 𝑚,𝑙 𝑚≠𝑙 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)log ( (𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) (𝑒 𝑞 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)(𝑒 𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) )} + ∑ 𝑚 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |)log ( ∑ 𝑚 (𝑒 𝑞𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |) (𝑒 𝑞 𝑚,𝑚 /2|𝐸 𝑚𝑚 |)(𝑒 𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |) (3.1.20) Its normalized version based on each layers 𝑄 HDCRMLSBM-Inter-layer = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 ∑ 𝑚,𝑙 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) 𝜃 ̂𝑖 𝑚 = ∑ 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 ∑ 𝑚,𝑙 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖 𝑚,𝑙 ∑ 𝑚,𝑙 𝑘 𝑖 𝑚,𝑙 = ∑ 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 (𝑒 𝑞𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)log ( 𝑚≠𝑙 (𝑒 𝑞 𝑚,𝑙 /2|𝐸 𝑚𝑙 |)(𝑒 𝑠 𝑚,𝑙 /2|𝐸 𝑚𝑙 |) ) } 𝜋 ̂𝑞𝑠 = ∑ ∑ 𝐴 𝑖𝑗 𝑚𝑙 = ∑ 𝑚,𝑙 , 𝑒 𝑞𝑠 𝑚≠𝑙 𝑚,𝑙 𝑚,𝑙 𝑖,𝑗:𝑧 𝑖 =𝑞,𝑧 𝑗 =𝑠 )} (3.1.18) Similarly, for HDCRMLSBM-Inter-layer the condition log-likelihood with constraints can be simplified as 𝑙({𝐴}; 𝑧, {𝜋 𝑚,𝑙 }, {𝜃 𝑚,𝑙 }) = ∑ + ∑ 𝑚 ∑ 𝑞≤𝑠 {(𝑒 𝑞𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |)log ( (𝑒 𝑞𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |) (𝑒 𝑞 𝑚,𝑚 /2|𝐸 𝑚𝑚 |)(𝑒 𝑠 𝑚,𝑚 /2|𝐸 𝑚𝑚 |) ) } (3.1.21) Similarly for HDCRMLSBM the condition log-likelihood with constraints can be simplified as 𝛽 ̂𝑚,𝑙 = ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑚,𝑙 𝑚,𝑙 = |𝐸 𝑚𝑙 | |𝐸| (3.1.25) ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 𝑒 𝑞𝑠 𝑀 𝑚,𝑙=1 𝑚≠𝑙 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑙 {log (𝜋 𝑧 𝑖 𝑧 𝑗 ) + log(𝜃 𝑖 𝑚,𝑙 ) + log(𝜃 𝑗 𝑚,𝑙 )} -𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑧 𝑖 𝑧 𝑗 } + ∑ 𝑀 𝑚=1 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑚 {log (𝜋 𝑧 𝑖 𝑧 𝑗 𝑚,𝑚 ) + log(𝜃 𝑖 𝑚,𝑚 ) + log(𝜃 𝑗 𝑚,𝑚 )} -𝜃 𝑖 𝑚,𝑚 𝜃 𝑗 𝑚,𝑚 𝜋 𝑧 𝑖 𝑧 𝑗 = ∑ ∑ 𝑘 𝑖 𝑚,𝑙 log(𝜃 𝑖 𝑚,𝑙 ) 𝜃 ̂𝑖𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 ∑ 𝑖:𝑧 𝑖 =𝑞 𝑘 𝑖 𝑒 𝑞 𝑚,𝑙 𝑚,𝑙 = 𝑘 𝑖 𝑚,𝑙 𝑚,𝑚 } 𝑙({𝐴}; 𝑧, 𝜋, {𝜃 𝑚,𝑙 }) = ∑ 𝑀 𝑚,𝑙=1 ∑ 𝑖<𝑗 {𝐴 𝑖𝑗 𝑚𝑙 {log (𝜋 𝑧 𝑖 𝑧 𝑗 ) + log(𝜃 𝑖 𝑚,𝑙 ) + log(𝜃 𝑗 𝑚,𝑙 )} -𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 It is easy to write that this maximum likelihood function as follows 𝑚,𝑙 𝜋 𝑧 𝑖 𝑧 𝑗 } The maximize likelihood estimation of 𝜃 𝑖 𝑄 HSDRMLSBM = ∑ 𝑚,𝑙 ∑ 𝑞≤𝑠 {𝑒 𝑞𝑠 𝑚,𝑙 ∑ 𝑚,𝑙 𝑒 𝑞𝑠 𝑚,𝑙 log ( (∑ 𝑚,𝑙 𝑒 𝑞 𝑚,𝑙 ) ) } (3.1.26) 𝑚,𝑙 )(∑ 𝑚,𝑙 𝑒 𝑠 𝑚,𝑙 and 𝜋 under constraints by the method of Lagrange multipliers can be written as Its normalized version based on each layers

𝑚𝑚 for nodes 𝑖 and 𝑗 from type 𝑚 belonging to groups 𝑞 and 𝑠 ,respectively. Let the number of actual edges between 𝑖 and 𝑗 be drawn from a Poisson distribution with the corresponding mean 𝑃 𝑖𝑗 𝑚,𝑙 . The Poisson mean parameter for heterogeneous multilayer random block model can be modeled in five different 𝑖𝑗 𝑚,𝑙 = 𝜃 𝑖 𝑚,𝑙 𝜃 𝑗 𝑚,𝑙 𝜋 𝑞𝑠 , 𝑖, 𝑗 ∈ {1, … 𝑁}, 𝑚, 𝑙 ∈ {1, … 𝑀}, 𝑚 ≠ 𝑙 𝑞, 𝑠 ∈ {1, … , 𝐾} (3.1.6) 𝑚,𝑙 to denote the total number of edges between communities 𝑞 and community 𝑠 in the bipartite network that connects nodes of type 𝑚 and type 𝑙. And the degree vectors of nodes are 𝑘 𝑖 𝑚,𝑙 for node 𝑖 in the bipartite network that connects nodes of type 𝑚 and type 𝑙.

  common communities). It seems the reason is that when communities are less common between nodes types means nodes types communities are more independent each others therefore, HDCMLSBM that has different structures 𝜋 𝑚,𝑙 in each layers has accurate results. In contrast when communities are more common between nodes types means layers communities are more shared with each other; therefore, HSDRMLSBM that has same structures 𝜋 𝑚,𝑙 in each layer has accurate results. It is exceptional in the cases where intra-layer-densities are higher, and inter-layer-densities are lower, and the parameter 𝛼 is less; one layer DCSBM has better performance in comparison to HDCMLSBM. It seems the reason is that when inter-layers have fewer edges(less densities), connections between nodes with different types on heterogeneous are weak, therefore, detecting communities by heterogeneous multilayer SBMs are difficult than DCSBM, which does not have a multilayer view to networks.

Table 1 :

 1 The NMI of clustering from different community detection methods for DBLP and AMiner datasets

		HDCMLSBM	HDCRMLSBM-Intra-	HDCRMLSBM-	HDCRMLSBM	HSDRMLSBM	DCSBM
			Layer	Inter-Layer		
	DBLP	0.920014	0.920014	0.882668	0.882668	0.885119 0.85599
	AMiner	0.901216	0.901216	0.872698	0.872698	0.875139 0.84691
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ResultsIn this section, we show that heterogeneous multilayer stochastic block models can detect the correct communities in synthetic networks with known planted structures and then apply them to
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study two real networks. For the synthetic networks, we consider nine different forms with different community structures and different layers density, which illustrate heterogeneous multilayer stochastic block models' performance under different general conditions and against alternative techniques.

On the real data sets, the first is the DBLP network; this network includes three types of nodes: paper, conference, and author. Between the three types of nodes, there are two types of edges: paper-conference (paper published at a conference) and paper-author (paper written by an author). This dataset includes 14,475 authors who wrote 14,376 papers and published them at 20 conferences. This network is commonly used as a benchmark for heterogeneous network community detection algorithms. The second is the AMiner network, which contains three types of nodes: paper, conference, and author, and two types of edges: paper-conference (paper published at a conference) and paper-author (paper written by an author). This dataset has 164,472 authors who write 127,623 papers, and published at 101 conferences.

Synthetic Networks

We examine the ability of the algorithms to extract planted structures in different heterogeneous networks communities structures. We describe three categories of synthetic networks, each of which illustrates a different aspect of communities in heterogeneous networks. Furthermore, each primary category has three different layers densities cases. Each category is based on differences between the intra-layers and inter-layers of networks. In the first category, at both intra-layers and inter-layers, diagonal elements of 𝜋 𝑚,𝑙 are several times bigger than non-diagonal elements. In second category, at intra-layers diagonal elements of 𝜋 𝑚,𝑙 are several times bigger than non-diagonal elements, but at inter-layers diagonal elements of 𝜋 𝑚,𝑙 are slightly bigger than non-diagonal elements. In te third category, at intralayers diagonal elements of 𝜋 𝑚,𝑙 are slightly bigger than non-diagonal elements, but at interlayers diagonal elements of 𝜋 𝑚,𝑙 are several times bigger than non-diagonal elements. Each major category has three different layers densities cases. Each case is based on differences between intra-layers densities and inter-layers densities at networks. In the first case, both intralayers and inter-layers have equal densities. In the second case, intra-layers densities have several times bigger than inter-layers densities. In the third category, inter-layers densities have several times bigger than intra-layers densities.

To vary the number of shared communities between nodes types, we let the cross parameter 𝛼 take values between 0 (two different nodes types do not have common communities) and 1 (all communities are common in both nodes types). We construct community 𝑐𝑜𝑚 𝑥𝑦 by merging the community 𝑐𝑜𝑚 𝑥 ∈ 𝐶 𝑖 from nodes type 𝐿 𝑖 with the community 𝑐𝑜𝑚 𝑦 ∈ 𝐶 𝑗 from nodes type 𝐿 𝑗 . Let |𝐶 𝑖 | be the number of communities of nodes type 𝐿 𝑖 and |𝐶 𝑗 | is the number of communities of nodes type 𝐿 𝑗 . Therefore the maximum possible number of communities that could be combined is |𝐶 𝑐 | = 𝑚𝑖𝑛{|𝐶 𝑖 |, |𝐶 𝑗 |}. We combine |𝐶 𝑐 | × 𝛼 communities of both nodes type 𝐿 𝑖 and 𝐿 𝑗 randomly. The normalized mutual information between correct communities and inferred communities [START_REF] Danonand | Comparing community structure identification[END_REF]Danonand, D آ ؤ ±az-Guilera, Duch, and Arenas] can be a measure for accuracy. We let each community as a random variable 𝑋 . Then, the normalized mutual information of the communities is 𝐼 𝑛𝑜𝑟𝑚 (𝑋, 𝑌) = 2𝐼(𝑋, 𝑌)/[𝐻(𝑋) + 𝐻(𝑌)] , where 𝐻(𝑋) is the Shannon entropy of 𝑋, and 𝐼(𝑋, 𝑌) is the mutual information between correct communities and inferred communities. 𝐼 𝑛𝑜𝑟𝑚 has values between 0 and 1, with 𝐼 𝑛𝑜𝑟𝑚 (𝑋, 𝑌) = 1 if and only if 𝑋 = 𝑌, and 𝐼 𝑛𝑜𝑟𝑚 (𝑋, 𝑌) = 0 when 𝑋 and 𝑌 are uncorrelated.

First category

In this category, we define the mixing matrix as