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Abstract

Chiral indices determine important properties of carbon nanotubes (CNTs).

Unfortunately, their determination from high-resolution transmission electron

microscopy (HRTEM) images, the most accurate method for assigning chirality,

is a tedious task. We develop a Convolutional Neural Network that automatizes

this process. A large and realistic training data set of CNT images is obtained by

means of atomistic computer simulations coupled with the multi-slice approach

for image generation. In most cases, results of the automated assignment are

in excellent agreement with manual classification, and the origin of failures is

identified. The current approach, which combines HRTEM imaging and deep

learning algorithms allows the analysis of a statistically significant number of

HRTEM images of carbon nanotubes, paving the way for robust estimates of

experimental chiral distributions.

1. Introduction

Since their discovery in 1991 [1], single-walled carbon nanotubes (CNTs)

are a model system in nanoscience and have attracted tremendous research ef-

fort. One of the fundamental reasons is the particular correlation between their

structure and their exceptional electrical, thermal, optical and mechanical prop-5

erties [2, 3, 4]. The so-called chiral indices (n,m) entirely determine their atomic

structure and characterize their semiconducting or metallic properties [5]. Al-

ternatively, the structure of the CNT can also be described unambiguously by

the diameter of the tube and its chiral angle, which is the angle at which the

graphene sheet is wrapped to form a nanotube. Therefore, a critical issue is the10
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robust (n,m) identification for individual CNTs to perform statistical analysis

of experimental samples. This is particularly important for potential applica-

tions such as transparent conductive films [6, 7] and transistors [8, 9]. Recently,

electronic circuits with hundreds of CNT-based transistors [10] and even general

purpose CPUs functioning solely with CNT transistors have been produced [11].15

Experimental techniques for structure determination are based on three

routes: spectroscopy, electron diffraction, and phase contrast high-resolution

imaging (the so-called HRTEM technique). Firstly, spectroscopic methods (Ra-

man, optical absorption, photo-luminescence excitation) allow for fast and high

throughput analysis, but often depend on the environment and cross-sections20

may vary significantly between chiralities [12, 13, 14, 15, 16, 17, 18, 19, 20].

Secondly, a full identification of (n,m) indices can be extracted from the elec-

tron diffraction (ED) patterns obtained with a transmission electron microscope

(TEM) [21, 22, 23, 24, 25, 26, 27, 28, 6, 29]. While, in principle, ED patterns

contain the most precise information on the layer lines (large q-vectors) and thus25

chiral angles of the CNTs, ED is not always feasible because it requires specific

apparatus as well as CNT samples showing long sections of clean, straight, and

well separated nanotubes. Thirdly, the structure of CNTs can also be deter-

mined by using HRTEM thanks to recent developments of aberration correctors

delivering a resolution in the sub-Ångström range with single atom sensitiv-30

ity [30, 31, 32, 33]. As a result, the direct identification of the (n,m) chiral

indices of CNTs from atomically resolved images is tractable [34, 35]. Indeed,

the moiré pattern emerging from the superposition of the back and front walls

of the CNT, with respect to the direction of the incident electron beam, can be

compared with reference images obtained from simulated HRTEM images. With35

recent advances in microscopy techniques, it has become increasingly common

to obtain large amounts of HRTEM data. However, the process of determining

the chiral indices using this approach is tedious and time consuming if per-

formed manually as it is the case today. Studies based on this method can thus

afford only statistics on a small set of CNTs present in the sample. With the40

present contribution focused on the HRTEM route to chirality determination,
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we aim at the automatization of this process enabling thereby the analysis of a

statistically significant number of HRTEM images of CNTs.

Recently, deep learning, and in particular convolutional neural networks

(CNNs), has shown outstanding performance in visual classification tasks. Since45

the first pioneering work in this field [36], the technique has been refined and is

now readily applied on many challenging problems [37], such as the classification

of complex objects within photos in one of thousands of categories [38]. The task

of chirality assignment on the basis of HRTEM images of CNTs is rather simple

and comparable to the first successful applications of CNNs: Grayscale images50

of simple geometrical objects need to be classified into one of a relatively small

number of possible classes. Specifically, the convolutional layers of the network

seem perfectly fit to deal with simple patterns such as the moiré present in

HRTEM images of CNTs. However, lens aberrations impact the image to be

analysed and thus add other dimensions to the problem.55

These new image classification techniques have proven transformative in a

number of fields and it can be expected that they will have a similar impact on

electron microscopy. There is therefore, an emerging opportunity of bringing

together recent advances in the fields of electron microscopy, atomistic simula-

tion and deep learning, that we wish to seize for the determination of the chiral60

indices of CNTs. Up to now, very little research efforts went into the develop-

ment of machine-learning-based analysis of electron microscopy images. General

classification of scanning electron microscopy images of nanobjects in categories

such as nanoparticles, nanowires, and nanopatterned surfaces has been achieved

with artificial neural networks [39]. The latter have also been trained for the65

segmentation of such images to automatically detect the position and orienta-

tion of CNTs [40]. Finally, local structures, such as defects or dopants, have

been identified in TEM images by deep learning methods [41, 42, 43].

In this contribution, we develop an image classification method based on

CNNs for the determination of the structure of CNTs from experimental HRTEM70

images. Training of machine learning systems requires large data sets that we

generate by means of computer simulation. This process is described in sec-
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tion 2 and consists of two parts: The sampling of representative geometries of

CNTs by molecular dynamics, and the generation of simulated HRTEM images

based on these geometries by multi-slice simulations. Section 3 introduces our75

methodology for the chirality assignment of CNTs, consisting of an image pre-

processing part and the CNNs for the image classification. The classification

system is evaluated with the help of simulated images. In section 4, we show how

the system applies to experimental HRTEM images. We conclude this paper,

by discussing the implications and possibilities of further development of our80

approach in section 5. The computer code of the analysis program is available

from the corresponding author upon request.

2. Generation of the training data

A large, reliable, and accurate training data set is crucial for machine learn-

ing. In principle, such data could be obtained from experimental HRTEM im-85

ages, however, this approach is costly and the chirality of the CNTs, needs to be

known. Therefore, we resort to the generation of the data set by numerical sim-

ulation. We use molecular dynamics to sample representative CNT geometries,

which are in turn used for the generation of simulated HRTEM images.

2.1. Molecular dynamics90

Molecular Dynamics is employed to obtain representative configurations of

CNTs in the diameter range of 0.48–2.30 nm using the LAMMPS simulation

package [44] 1. This diameter range covers 261 chiralities, which are all con-

sidered in this study, and corresponds to CNTs produced by chemical vapor

deposition techniques which serve as long-standing reference samples used in95

several works [45]. We use periodic boundary conditions in the direction along

the tube axes. The length of the simulated CNTs is at least 6 nm containing

up to 3316 atoms. The simulations rely on the Tersoff potential [46, 47], mostly

because it has been successfully used to study the properties of carbonaceous

1LAMMPS website: https://lammps.sandia.gov
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structures [48, 49, 50] and allows for rapid simulations. The simulations are100

started at 6,500 K in order to statistically cause some defects in the walls of the

CNTs. This way, a diverse and realistic reference data set is obtained which

is important for the training of the deep learning system. Initially, the tem-

perature is rapidly decreased to 300 K over 2,000 timesteps of ∆T = 1.0 fs.

The simulation is then equilibrated at 300 K for another 8,000 ∆T before the105

final snapshot is extracted. Throughout the simulations, using a Nosé-Hoover

barostat, the pressure is kept at zero. This simulation protocol is chosen to in-

clude some topological defects and realistic fluctuations of the atomic positions

at ambient temperature. For each type of CNT, 1,000 independent simulation

runs are carried out. Figure 1 shows a few examples of the final snapshots that110

are used as the basis for the generation of the simulated HRTEM images. The

color code gives the potential energy according to the Tersoff potential, where

a carbon atom in perfect graphene has an energy of -7.4 eV.

Potential
energy
(eV/atom)

-7.20

-7.22

-7.24

-7.26

-7.28

-7.30

-7.32

-7.34

-7.36

-7.38

-7.40

(a) (13,0)

(b) (13,2)

(c) (13,4)

Figure 1: (color online) Some examples of final snapshots from the molecular dynamics sim-

ulations. Defects (higher potential energy, appear in yellow) have been introduced by high-

temperature annealing. The visualizations are generated using the OVITO software [51].

In order to increase the diversity of the geometries, we apply some random

geometric operations, also known as “data augmentation” in the context of deep115

learning. These include shifts in the direction of the tube axis, the rotation

along the tube axis, the in-plane and out-of-plane tilt of the tube, and taking
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the mirror images of the atomic positions. Additionally, we apply a random

scaling to the coordinates. This scaling is used to make the data set robust

against small inherent systematic errors on interatomic distances in atomistic120

potentials.

2.2. Simulation of HRTEM images

Simulated HRTEM images have been calculated within dynamical theory

with the Dr. Probe software package [52, 53] using the multi-slice method [54].

We use this particular software, because of its integration with scripting lan-125

guages such as bash and python, which makes the generation of a large amount

of images straightforward. Object transmission functions for HRTEM simu-

lations are computed on the basis of the geometries generated by molecular

dynamics simulations. The geometries are partitioned into 6 equidistant slices

along the electron beam. Electron scattering is computed for 80 keV electrons130

in a region of 3.6×3.6 nm of the model potential at an in-plane resolution of

75 px/nm. Thermal diffuse scattering is accounted for by Debye-Waller factors

based on the absorptive potentials of Weickenmeier and Kohl [55]. In these sim-

ulations, only temporal coherence was taken into account, since for aberration

corrected TEM imaging, the influence of spatial coherence can be neglected.135

This type of faster calculation is recommended for the simulation of images

from Cs-corrected microscopes [53].

In order to further increase the diversity of the training data set, we apply

random aberration coefficients for the generation of the images. The full list

and the range of variation of these parameters are given in Tab. 1. For each of140

the structures from the molecular dynamics simulations, 5 HRTEM images are

generated. This leaves us with 5,000 images per chirality and ≈ 1.3 · 106 images

in total. The mean values of the aberration coefficients correspond to the objec-

tive lens of the JEOL JEM-ARM200F spherical-aberration-corrected electron

microscope equipped with a cold field emission gun operated at 80 kV [56] used145

for the acquisition of the experimental images (see section 4). The in-plane

orientation of the respective aberration coefficients is also randomly selected in
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Table 1: Parameters for the generation of the HRTEM images.

Parameter range

Geometrical parameters:

Shift along tube axis 0 ± 0.3 nm

Rotation along tubes axis 0 ± 180 ◦

In-plane tilt 0 ± 1.25 ◦

Out-of-plane tilt 0 ± 1.25 ◦

Global coordinate scaling 1 ± 0.025

Electron microscope parameters:

High voltage 80 kV

Defocus 7 ± 3.75 nm

Twofold astigmatism A1 5 ± 5 nm

Coma 3·B2 90 ± 75 nm

Threefold astigmatism A2 30 ± 25 nm

Spherical aberration C3 1 ± 0.625 µm

Star aberration 4·S3 8 ± 5 µm

Fourfold astigmatism A3 3 ± 3 µm

the interval of 0 to 2π. Final images are obtained by normalizing, equalizing,

adding a white noise to the result and reducing the resolution to 26.7 px/nm.

This resolution is close to the lowest possible one that still preserves most of150

the moiré features present in the CNT HRTEM images. Some examples can

be found in Fig. 2. Note, that while the aberration coefficients have strong

effects on the TEM contrast [panels (a, b)], the differences in the moiré pat-

terns of CNTs of different chiral indices can be virtually invisible to the naked

eye [panel (c)]. Both of these observations make the classification task of the155

images in terms of chiral indices complex. Finally, from each of the generated

images, one 64×64 px subimage is randomly selected along the tube’s axis for

the training of the CNNs.
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Figure 2: Effect of (a) defocus, (b) two-fold astigmatism (oriented at a 45◦ angle with respect

to the CNT axis), and (c) chiral indices on the HRTEM image. Panels (a, b) show a (13,7)

CNT. In all images, the defocus is set to -7 nm, the spherical aberration to 1 µm, and all

other aberration coefficients to zero, except where indicated otherwise.

3. Architecture and training of the classification system

In the following, we describe our automatic classification system that de-160

termines the chiral index of a CNT based on a HRTEM image. We use an

analytical procedure for the alignment of the tube followed by the classification

by a CNN trained on the data set generated by means of numerical simulation.

3.1. Architecture and training of the CNNs

In order to simplify the classification task, a first CNN is used to group165

the CNTs by diameter into one of nine fully overlapping sets. This way, the

maximum number of chiralities an individual CNN needs to classify is reduced

to 65 (down from 261). However, this requires the training of one additional

CNN that determines the diameter class. According to the result of the first

classification, the image is then analyzed by a second CNN that determines170

the chiral index within the respective diameter class. This two-step process is

technically not needed, and it can be expected that a unified system of one single

larger CNN results in better performance in the case of unlimited computational
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resources. A test of a system using this architecture showed, however, that under

the constraints of our resources, overall performance is increased significantly175

with the present two-step approach.

The architecture of the CNNs used for this work is based on LeNet-5 [36].

Using the keras software 2, we define a network comprising four convolutional

layers followed by two fully connected layers, a schematic representation is shown

in Fig. 3. Each of the layers uses rectified linear units as activation functions,180

except for the final classification where a normalized exponential function (soft-

max) is used in order to interpret the results as probabilities for particular

chiralities. Additionally, after the second and fourth convolutional layer, 2×2

max-pooling layers are included for downsampling and increased tolerance for

translation in the input images. The first two convolutional layers use 32, and185

the second two use 64 3×3 filters (of stride 1). The first fully connected layers

contains 640 output neurons, while the number of output neurons of the sec-

ond fully connected layer is determined by the number of output classes of the

respective CNN. The total number of adjustable parameters per CNN is thus

≈ 106.190

ReLU

x32

Conv. 3x3

x32

Conv. 3x3
ReLU

Conv. 3x3 Conv. 3x3

x64

ReLU

x64

max.
pool

ReLU

max.
pool

ReLU Soft
max

Output
vector:

chirality
one
hot
encoded

fl
a
tt

e
n

Input
image
64x64 px

x640

dense

x65

dense

2x2

2x2

Figure 3: (Color online) Schematic detailing the architecture of the CNNs.

For the training of the CNNs, the simulated images are split in a 4:1 ratio

into a training and a validation set. In order to enhance training, a random

shift in image contrast of max. ±15% is applied to the images in the training

set. During training, a dropout layer (25%) was added before the final fully

connected layer [57]. This randomly sets one quarter of the input units to zero195

2Chollet, F. et al.: Keras: https://keras.io
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at each update during optimization which helps to prevent overfitting, i.e., the

phenomenon of the network performing well only on the training data set, but

not on the validation set. Training the network, i.e. adjusting the ≈ 106 param-

eters, is achieved with the root mean square propagation (RMSprop) algorithm.

The parameters are optimized with respect to categorical cross-entropy as the200

objective function. Categorical cross-entropy quantifies the difference between

the output vector of the CNN and the ground truth, i.e., the vector correspond-

ing to the correct chirality.

Figure 4 shows the classification accuracy during the training process. Due

to the dropout layer, the accuracy during training is artificially reduced and thus205

lower than the classification accuracy of the validation set. It appears that the

training yields best results for the low-diameter CNTs. This is presumably due

to the increasing similarity of the moirés from the larger tubes. For each of the

nine CNT diameter classes, 40 instances of the CNN are trained. Combination

of the classification results of these 40 instances, which are admittedly rather210

correlated, does allow for a moderate increase in overall classification accuracy.

3.2. Image preprocessing

Before analyzing HRTEM images by the CNNs, they are processed first using

the following procedure. In a first step, the images are oriented in such a way

that the axis of the tubes are horizontally aligned. This is achieved by projecting215

the grayscale values of the images roughly perpendicular to the CNT axis as a

function of image orientation. The Fresnel fringes from the sides of the CNTs

correspond to minima in the projection curves. The angle of the projection

where the minima are deepest and narrowest aligns the tube (see Fig. 5).

In a second step, the images are downsampled to the image resolution used220

during the training of the CNN, i.e., 26.7 px/nm. From the rescaled images

40 subimages of size 64×64 px are cropped, normalized and equalized. These

subimages are then processed first by the CNN that assigns them a particular

class of diameter. After that, they are analyzed by the 40 instances of the

CNN corresponding to the CNT diameter class determined by the first CNN.225
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Figure 4: (Color online) Accuracy during training of CNNs concerned with CNTs in the

diameter range of (a) 0.48–1.19 nm and (b) 1.98–2.28 nm, each containing 65 chiralities.

Finally, from the resulting total of 40×40 chirality estimates, an overall chirality

prediction is aggregated.

3.3. Evaluation of the classification system

The performance of the classification system is first evaluated using simu-

lated HRTEM images. For this purpose, we take the entire system including230

the preprocessing stage and use 100 images of each of the considered chiralities

containing the same variability as the training data. Figure 6, shows the rate of

misclassification as a function of chiral angles and diameters. It turns out that

the first CNN that determines the diameter class correctly classifies the image

in over 99% of the cases, while the overall system reaches an accuracy of 90.5%,235

averaged over all chiralities. This means that most of the errors occur with the

second CNN that assigns the final chiral indices. The overall system performs

best for low diameter tubes. This tendency can be understood easily, because

for low diameter tubes, there are less possible tubes in a given diameter range,
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Figure 5: (Color online) (a) Simulated HRTEM image of a (10,5) CNT, (b) Projection of the

image contrast (entire visible CNT length) perpendicular to the CNT axis for the analytical

alignment and diameter determination via parabolic fits at the location of the contrast valleys

of the Fresnel fringes.

and the possible chiral angles differ more between neighboring chiral indices.240

For CNTs with larger diameters, misclassifications are more likely in the case

of the near armchair tubes. The unit cells of CNTs tend to grow with diameter,

and therefore in the individual small 64×64 px images that are the inputs for

the CNNs, only a relatively small fraction of the moiré pattern is present which

makes the classification task more difficult.245
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Figure 6: (Color online) Rate of misclassification by the combined assignment system as a

function of CNT chirality.

Furthermore, it seems reasonable to assume that the image quality has an

effect on the classification accuracy. In order to discuss this effect, the image

quality of the 26100 images from the test set has been quantified. For this

purpose, the ratio of the intensity of the bright and dark fringes at the sides of
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the tubes has been evaluated (see Fig. 5). Ordering the images by this measure250

of images quality, it turns out that the overall error rate can be reduced by taking

into account only the images with the highest contrast between the dark and

bright fringes. Figure 7 shows the classification accuracy of the overall system

as a function of the percentile of the highest quality images. This emphasizes

that the classification methodology relies on high quality images.255

Classification accuracy can also be improved by decreasing the defect density

of the CNTs. It turns out that the accuracy is about 4% higher for the top fifth

percentile of the lowest defect CNTs compared to the bottom fifth percentile. As

discussed in section S5, compared to the effect of diameter on the classification

accuracy, the impact of defects is minor at least up to the defect densities260

sampled with our training and test data sets.
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Figure 7: (Color online) Classification accuracy as a function of the fraction of analyzed images

(ordered by image quality). Image quality is quantified as the contrast between the bright

and dark fringes at the sides of the CNT. For example, if only the 70% of images of highest

quality are analyzed, the classification error rate decreases from about 9.5% to 7.5%.

Figure 8(a-c), gives examples of images that resulted in correct classifica-

tions with high probability. Unsurprisingly, this occurs most often with images

containing clear moiré patterns of CNTs with small diameters. In such cases,

the result is very clear and allows unambiguous identification of the chirality of265

the considered tube. It is also instructive to examine individual cases where the

classification system fails. In some cases, the system indicates high probabilities
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(>95%) for a certain wrong chirality [see Fig. 8(d-f)]. Most of these misclassifi-

cations occur for structures with clearly visible defects and the predicted chiral

index n differs by only one unit from the true index. This type of error tends to270

occur more often with CNTs of larger diameter. Figure 8(g-i) shows examples

of misclassifications where the differences between the predicted and true chiral

indices are highest. These error cases occur when the first CNN that determines

the diameter range of the CNT fails, which occurs with less than 1 % of the

simulated images. In this case, the final analysis is carried out by a CNN that275

does not include the correct chirality in its classification range. Interestingly,

most often, the wrong CNN will still select a chirality with a similar chiral

angle as the one of the correct CNT. In these cases, the defocus mostly has

rather extreme values, which makes the fringes at the sides of the CNTs as well

as the moiré pattern less clear. These are conditions that makes the chirality280

assignment difficult also for human experts. It turns out, however, that this

error mode never occurred when analyzing experimental HRTEM images [see

Fig. 9(b)]. Several alternative approaches to programmatic chirality assignment

are discussed in section S1.

The range of variations of geometrical aberrations used for the training of the285

CNNs may seem very narrow. Indeed, aberrations may change over time [58] and

oscillation of the sample under beam irradiation affects the focal distance [33].

We assume thus that some experimental images analyzed in this work have been

acquired with optical parameters slightly out of the ranges defined in Tab 1. It

turns out that our classification system still works well rather far outside these290

ranges, as discussed in section S6. We presume that this is due to the fact

that visually the effect of different aberration coefficients can be rather similar.

Therefore, due to the randomization of aberration coefficients in our training

set, extreme images, similar to the ones of section S6, are also included in our

training data base.295
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Figure 8: Examples of assignments of chiral indices of CNTs in the case of simulated HRTEM

images. The images are taken from the validation data set with random aberration coefficients.

(a-c) Correctly classified images with high assignment confidence. (d-f) Wrongly classified

images with a high confidence. These images mostly correspond to CNTs with an above-

average defect density. (g-i) Wrongly classified images where the predicted chiral indices are

far from the correct one. These cases are rare (less than 1%).

4. Application to experimental HRTEM images

The performance of the classification system was then evaluated on exper-

imental HRTEM images. CNTs were observed using an aberration corrected

JEOL JEM-ARM200F microscope operating at 80 kV. This voltage is low

enough to avoid inflicting too much damage on the fragile single-walled tubes,300

while still providing sufficient resolution for image analysis. Images from three

different samples were used: CVD-grown CNTs prepared based on the method

described in Ref. [59] using an iron catalyst, and two chirality-enriched samples

obtained from a HiPCo sample (NoPo Nanotechnologies, Inc.) by the aqueous

two-phase extraction method [60, 61]. In the following, we will first present305

the established manual approach to determine the structure of a CNT from the

experimental images (adapted from Ref. [35]). Then we compare with the chiral

index assignment by our automatic procedure.

First, the diameter of the nanotube was measured by extracting a contrast
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intensity profile perpendicular to the tube axis [see Fig. 9(a)]. According to310

image simulations, the diameter at Scherzer defocus is equal to the distance

between the two inflection points between the dark and bright fringes on the

sides of the CNT, meaning the midpoint between the minimum of the dark

fringe, and the maximum of the subsequent bright fringe [62, 35]. A Fourier

Transform (FT) of the HRTEM image is then used to determine the chiral angle315

(θ) of the nanotube as discussed in section S1 [see also Fig. 9(a)]. Considering

the measured diameter and chiral angle values (including error bars), we can

assign possible (n,m) pairs for the CNT. Comparing the FT with a calculated

diffraction pattern for these chiralities can help to exclude some possibilities. To

discriminate between the possible (n,m) pairs, the HRTEM image is compared320

to image simulations of all the possible chiralities. The comparison of the moiré

patterns leads to an unambiguous (n,m) assignment.

For the automatic determination, a rectangular region of interest is selected

(minimum length 2.4 nm) from the experimental image which is then analyzed

by the classification system. The results for the two methods were compared325

for a total of 91 CNT images. Only images of sufficient quality were used for

this statistical analysis: images where nanotubes were not fully suspended, too

contaminated or damaged, or where the focus and alignment conditions of the

microscope did not allow the extraction of a readable FT, were not included.

The analytical process of manually determining the structure of a tube is330

of the order of 15 to 30 minutes. In comparison, depending on computing

hardware, the analysis using the deep learning method is much faster and can

be carried out without supervision. The resulting chiralities using both, the

conventional and deep learning based chirality determination methods, is shown

in Fig. 9(c,d), respectively, and the correlation of the classification methods335

is represented in Fig. 9(b). Cases where the two methods lead to identical

results correspond to elements on the diagonal. Elements below and above the

diagonal indicate images that have been classified as a chirality of a smaller and

larger diameter with the deep learning method than with the manual method,

respectively. Overall, the two methods lead to the same result in 71 % of cases.340
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An example of a manual classification in a case where the two methods agree,

is shown in Fig. 9(a). The individual results are given in section S2, some more

successfully classified images in section S3, and an example where the automatic

procedure fails in section S4. When there is a disagreement between the two

methods, the chirality that was found conventionally is the second or third most345

probable chirality according to the deep learning tool in 18 out of 26 cases. In

most of the error cases, the mismatch in chiralities is always minimal: if the

manual technique gives an (n,m) chirality, then the automatic technique will

likely give (n ± 1,m), or (n,m ± 1). When removing the nanotubes for which

the automatic method is indecisive (probability for the first chirality below 80350

%) from the data set, the agreement percentage goes up to 100 %.

5. Conclusion

We have developed a robust and efficient tool to obtain in a very simple way

the CNT chirality from raw HRTEM images. Based on a classification method

using CNNs, the determination of the chirality of CNTs is fast enough to provide355

meaningful statistics on experimentally produced samples. An important and

original point of our approach is the establishment of a large database obtained

from atomic-scale simulations to train the CNNs. The consideration of defects

makes the images of our training data base comparable to experimental data.

Such an easy-to-use tool will be of great interest to the CNT community in360

different research fields. A typical case is the lack of control of CNT chirality

during synthesis, which is a major obstacle to the widespread use of CNTs

in technological applications [63, 64, 65, 45, 66]. This critically depends on the

reliable analysis of the chirality distribution of CNT samples. Another approach

to achieve chiral selectivity within CNT samples is to work on the subsequent365

processing and sorting of the raw material [67, 68, 69]. Here again, the validation

of the sorting methods requires a precise analysis in terms of chirality, which

can be performed using our tool.

There is no doubt that our approach will be useful for other fields of research
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Figure 9: (Color online) Comparison of the results of the conventional (manual) and automatic

(deep learning) based chirality determination methods. (a) Example (CNT 85 in Tab. S1) of

a manual classification, agreeing with automatic classification: experimental HRTEM image

(top), extracted FT of the image for chiral angle measurement (13.5 ± 0.8 ◦) and perpen-

dicular intensity profile for diameter measurement (1.82 ± 0.05 nm) (bottom left). These

measurements lead to one possible chirality which is (19,6). The experimental image, treated

by applying a mask on the FT showing only CNT layerlines, is compared to a simulated

(19,6) image (bottom right), confirming the classification. (b) Correlation matrix between the

classification results of the two methods. (c,d) Results of the classifications of 91 experimental

images, using the manual and automatic methods, respectively. The number of images for

each chirality is color-coded and indicated below the chiral indices.

related to nanotubes but also in nanoscience more generally. The approach370

implemented can clearly be adapted to other nano-objects such as the struc-

ture of nanoparticles (pure, bimetallic, twins) [70], characterization of defects

in 2D materials [71] or identification of stacking in Van der Waals heterostuc-

tures [72, 73, 74]. In addition, the implementation of the new generation of

so-called sub-angstrom low-voltage electron microscopes makes it possible to375

study radiation-sensitive materials at ultra-high resolution [75]. Our tool will

be very beneficial for the analysis of the resulting large amount of very accu-
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rate data [76]. Our approach demonstrates the great potential of deep learning

methods for the analysis of HRTEM images, and we hope that it will stimulate

further developments in this direction, such as single image super resolution [77],380

in the very near future. In contrast to super resolution in other domains, the rel-

evant physics of nanoscale systems is essentially known and may be transferred

to the deep learning model during training.
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