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Sym(n)- AND Alt(n)-MODULES WITH AN ADDITIVE

DIMENSION

(PARIS ALBUM NO. 2)

LUIS JAIME CORREDOR, ADRIEN DELORO, AND JOSHUA WISCONS

Abstract. We revisit, clarify, and generalise classical results of Dickson
and (much later) Wagner on minimal Sym(n)- and Alt(n)-modules. We
present a new, natural notion of ‘modules with an additive dimension’
covering at once the classical, finitary case as well as modules definable
in an o-minimal or finite Morley rank setting; in this context, we fully
identify the faithful Sym(n)- and Alt(n)-modules of least dimension.

§ 1. Introduction — § 2. The context — § 3. The proof

1. Introduction

This work belongs to the topic of first-order representation theory, i.e. rep-
resentation theory viewed through an elementary lens. Here the focus in on
the category of explicitly constructible objects, or what mathematical logic
calls the definable category; a consequence is that we avoid any reference to
characters. This is not motivated by the mere ‘purity of methods’ but by
questions in model theory. The topic is naturally emerging out of several
recent works, rooted in the 2008 article of Alexandre Borovik and Gregory
Cherlin [BC08] and pushed further by papers such as [Del09, BD16, BB18,
Bor, BB21]. (Another road to the effective understanding of geometric al-
gebra is black box algebra as in [BY18] and ongoing work.) We stress that,
though inspired by model theory, the present article is likely to be of broad
interest; no exposure to model theory is required to understand our work.

We give a significant expansion and clarification of a classical result by
Leonard Dickson from 1908 on the minimal linear representations of sym-
metric groups. Our Theorem identifies the minimal faithful representations
of Sym(n) and Alt(n) on finite or infinite abelian groups in the presence of a
rudimentary notion of dimension but no a priori—and often no a posteriori—
vector space structure. This may be viewed as a natural evolution of linear
representation theory, one which focuses more on ‘elementary’ properties
(e.g. generators and relations) and less on higher structure. In the case of
algebraic groups, which we keep in mind for the future, our point of view
would be quite in the spirit of the Chevalley-Steinberg approach. We stress
that our context does not allow for character theory nor even Maschke’s
Theorem, making matters non-trivial though basic.
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All that remains from the usual linear theory is a loose form of dimen-
sionality. The study of structures whose definable sets are equipped with
one of various notions of dimension is a central theme in model theory, and
our work here treats numerous classes at once—including groups of finite
Morley rank and o-minimal groups, but also finite groups—in a common,
natural, and new setting.

Our original motivation was a set of concrete model-theoretic problems.
One such is an application to permutation groups possessing a high degree
of generic transitivity. A study of these was initiated in the setting of groups
of finite Morley rank in work by Borovik and Cherlin where they posed the
problem of showing that generic (n+ 2)-transitivity on a set of Morley rank
n implies that the group is PGLn+1(K) in its natural action on P(K). More
information and explicit connections to the present work can be found in
[BC08] as well as in the 2018 paper of Tuna Altınel and the third author
[AW18], which solves the n = 2 case. The present work grew out of the
third author’s desire to generalise the n = 2 approach to n ≥ 3, but the
topic turned out extremely interesting in its own right.

1.1. The result. Our main result generalizes a century-old theorem by
Dickson [Dic08] and its more recent companions [Wag76, Wag77]; it also
corrects and expands on [BC08, Lemma 4.6]. In doing so, our treatment
handles simultaneously the finite and the ‘tame infinite’, in a sense that
model theory seeks to carve out.

We study Sym(n) and Alt(n)-modules V that carry a basic notion of di-
mension on certain groups (and quotients) definable—in the logical sense—
from V and the acting group. To the logician we must stress that our di-
mension need not apply to all definable sets; we only require it to be defined
on the intersection of the ‘definable universe’ in the sense of logic and the
‘variety generated by V ’ in the sense of universal algebra. This intuition is
axiomatised in Section 2 via the definitions of a modular universe and an ad-
ditive dimension; the relevant notions of connectedness (dim-connectedness)
and irreducibility (dc-irreducibility) are also key.

As one expects, the ‘characteristic’ of a module is an important parame-
ter: V is said to have prime characteristic p if it has exponent p and char-
acteristic 0 if it is divisible. This definition allows for modules without a
well-defined characteristic such as Z/12Z; it also allows for torsion modules
of characteristic 0 such as the Prüfer quasi-cyclic groups Cp∞ .

In the classical setting, the minimal faithful representations for Sym(n)
and Alt(n) are canonical and easy to construct, assuming n is large enough.
Among other places, they appear in [Dic08], but we briefly describe them
here. This also gives us the opportunity to introduce notation.

Notation (standard module). Let S := Sym(n).

(1) Let perm(n,Z) = Ze1 ⊕ · · · ⊕ Zen be the Z[S]-module with S per-
muting the ei naturally. There are two obvious submodules:
• std(n,Z) := [S, perm(n,Z)] = {

∑
i ciei : ci ∈ Z and

∑
ci = 0};

• Z(perm(n,Z)) := Cperm(n,Z)(S) = {
∑

i cei : c ∈ Z},
using usual notation for commutators and centralisers. Over Z these
are disjoint but not so in general.
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(2) For any abelian group L (considered as a trivial S-module), define:
• perm(n,L) := perm(n,Z)⊗Z L;
• std(n,L) := [S,perm(n,L)] = std(n,Z)⊗Z L;
• Z(std(n,L)) := Cstd(n,L)(S).

We arrive at the canonical subquotient:
• std(n,L) = std(n,L)/Z(std(n,L)),

which we refer to as the (reduced) standard module over L.
(3) When L = Ck is cyclic of order k, we simply write perm(n, k),

std(n, k), and std(n, k).

Remarks.

• Notice how Z(std(n,L)) = {
∑
ei ⊗ a : a ∈ Ωn(L)}, so std(n,L)

differs from std(n,L) only when Ωn(L) 6= 0. (Here Ωn(L) denotes
the subgroup of elements of order dividing n.)
• The module perm(n,L) may be realised as Ln under σ(a1, . . . , an) =

(aσ−1(1), . . . , aσ−1(n)); it is easily constructed from L together with
the action of each element of S. Model theorists will recognize this
as an interpretable object, which we simply call definable.

The classical setting is std(n, p) for p a prime. Here, std(n, p) is irreducible
of dimension n− 1 whenever p - n (with the same true for std(n,Q)). How-
ever, when p | n and n ≥ 5, the module std(n, p) is faithful and irreducible
of dimension n− 2, a point which fails of std(4, 2).

Less classical is the following example regarding actions on tori.

Example. Notice how a maximal torus of GLn(C) is a Sym(n)-module via
the action of the Weyl group. As Sym(n)-modules, one finds that

• perm(n,C∗) is isomorphic to a maximal torus of GLn(C);
• std(n,C∗) is isomorphic to a maximal torus of SLn(C);
• std(n,C∗) is isomorphic to a maximal torus of PSLn(C).

The various finite subgroups of nth-roots of unity yield finite submodules
C ≤ Z(std(n,C∗)), each naturally isomorphic to some Z ≤ Z(SLn(C∗)). In
each case, std(n,C∗)/C is isomorphic to the maximal torus of SLn(C)/Z.
The modules std(n,C∗)/C all satisfy the relevant notion of irreducibility
here (dc-irreducibility) and must be accounted for in our classification.

We now state our main result. In what follows, Mod(G, d, q) denotes
the class of all G-modules (§ 2.1) that carry an additive dimension (§ 2.2)
and are dim-connected (§ 2.3) of dimension d and characteristic q (§ 2.4).
Also, V ∈Mod(G, d, q) is dc-irreducible (§ 2.5) if V contains no non-trivial,
proper, dim-connected G-submodule. Details are in § 2; the proof is in § 3.

Theorem. Let G = Alt(n) or Sym(n). Suppose V ∈Mod(G, d, q) is faith-
ful and dc-irreducible with d < n. Assume n ≥ 7; if G = Alt(n) and q = 2,
further assume that n ≥ 10.

Then there is a dim-connected submodule L ≤ V such that the structure
of V falls into one of the following cases:
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q d Structure of V

q > 0 and q | n n− 2 isomorphic to std(n,L) or sgn⊗ std(n,L)

q > 0 and q - n n− 1 isomorphic to std(n,L) or sgn⊗ std(n,L)

q = 0 n− 1 covered by std(n,L) or sgn⊗ std(n,L)

Moreover, when q = 0, the kernel of the covering map is 〈
∑n−1

i=1 (ei − en)〉 ⊗
K, in usual notation, for some K ≤ Ωn(L).

Remarks.

• Note that q = charL, and if q > 0, std(n,L) is completely reducible
as
⊕

X std(n, q) for X an Fq-basis of L. The situation when q = 0
is complicated by tori like those given in the example above.
• The restrictions on n are optimal. For example, in characteristic 3,

one has Alt(6) ' PSL2(F9) with the adjoint representation in dimen-
sion 3. In characteristic 2, Alt(9) has three faithful representation
over F2 of (least) degree 8 [ABL+05]. The two exceptional represen-
tations were missed in [Wag76, (4.5) Lemma]; this was corrected by
G.D. James in [Jam83, Theorem 6].

In our more general setting, one can still establish the lower bound
of 8 on the dimension of a faithful Alt(9)-module in characteristic
2, but we do not achieve (nor even try for) identification. (See the
remark following the proof of the Geometrisation Lemma.)

1.2. Lingering questions. The Theorem places natural restrictions on n,
but in fact, the minimal dimension of a faithful Sym(n)-module is indeed
as expected for all n as a consequence of our First Geometrisation Lemma,
where we also identify those of dimension (n−2). However, identification of
the dc-irreducible modules in Mod(Sym(5), 4) and Mod(Sym(6), 4) remains
open. (Do note that Mod(Sym(5), 4, 2) contains irreducible modules coming
from the so-called Specht module for the partition (3, 2). See for example
[Jam78, 5.2 Example].)

Identification of the minimal faithful Alt(n)-modules for small n is also
open. Reconstructing the adjoint action of Alt(6) ' PSL2(F9) is a problem
of particular interest. One also has Alt(8) ' SL4(F2) with the natural
action as well as the particularly exceptional Alt(5): it appears as SL2(F4)
in characteristic 2, as PSL2(5) in characteristic 5, and as the symmetries of
a regular icosahedron in all other characteristics (over a field where 5 is a
square). The following table summarizes the conjectural lower bounds.

p 2 3 5 7 > 7 or 0

Alt(5) 2 3 3 3 3

Alt(6) 4 3 5 5 5

Alt(7) 4 6 6 5 6

Alt(8) 4 7 7 7 7

Conjectural minimal dimension for faithful Alt(n)-modules
in characteristic p with small n.
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Problem. Identify the minimal faithful Sym(n)- Alt(n)-modules for all n.

Of course, one could target higher-dimensional dc-irreducible Sym(n)-
Alt(n)-modules, but this appears to be out of reach at present. However,
simply identifying a reasonable lower bound for the dimension of the ‘second
smallest’ dc-irreducible module would be welcome. Following the classical
case, we expect something along the lines of n(n− 5)/2 (see [Jam83]).

Problem. Let G = Alt(n) or Sym(n) with n sufficiently large. Prove that
if V ∈Mod(G, d, q) is faithful and dc-irreducible with d < n(n− 5)/2, then
up to tensoring with the signature, V is standard (i.e. the structure of V is
as in the Theorem) with (n−2) dimL ≤ d ≤ (n−1) dimL and intermediate
values are possible only when q = 0.

As should be clear, we are operating under the conjectural principle that
although our context is quite general, the minimal objects still fall into
the familiar linear-algebraic setting, a principle well-aligned with the recent
work of Borovik [Bor]. We quite believe in this and would thus love to see
a counter-example to shatter our illusion.

The problem of determining the minimal dimension of a group carrying
a faithful action of Sym(n) or Alt(n) seems both interesting and relevant
in the nonabelian case as well. With additional definability/compatibility
hypotheses, the soluble case can easily be controlled. For nonsoluble groups,
we propose the following crude bound, which is likely far from optimal.

Problem. Let H be a nonsoluble group on which Alt(n) acts faithfully
and definably by automorphisms. Suppose there is a nonabelian notion of
dimension, say Morley rank, making H dim-connected. Show dimH ≥ n
for sufficiently large n.

Notice that low values of n will complicate the picture even for Sym(n):
for example, Sym(5) ' PGL2(5), which can be construed as 3-dimensional.

For the present article we however stick to the abelian case. The proof of
the Theorem will be in § 3; we first turn to the general setting.

2. The context

We now give the setting for our study of Sym(n)- and Alt(n)-modules.
In addition to defining modules equipped with an additive dimension, we
also present notions of connectedness, irreducibility, and the characteristic.
In short, the goal of this section is to fully explain the phrase ‘let V ∈
Mod(G, d, q) be dc-irreducible’.

The landscape will likely be both familiar and surprising to the reader
versed in model theory. We seek a notion of dimension that encompasses si-
multaneously the linear dimension over Fp for finite representations as well as
model-theoretic dimensions (e.g. Morley rank) for infinite representations.
The context we present is extremely natural, yet looks new to us. (Un-
fortunately, somewhat conflicting terminology with Frank Wagner’s recent
‘dimensional groups’ was unavoidable [Wag20].)

We first define modules (§ 2.1) with an additive dimension (§ 2.2), and
the notion of dim-connectedness (§ 2.3). We discuss the characteristic of
a module (§ 2.4) and then introduce classes Mod(G, d, q) as well as the
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relevant notion of irreducibility (§ 2.5). The overview concludes with our
key tool: an expected Coprimality Lemma (§ 2.6).

2.1. Modular universes and modules. A balance is difficult to strike
between categorical generality and model-theoretic care for elementary con-
structions. We opted for a categorical vision but avoided any specialised
language. We believe the categorist will instantly grasp the context, and
the logician will readily check that it generalises definable universes. Do
note that we use ker f and im f to refer to the kernel and image of f in the
algebraic sense.

Definition. A modular universe is a subcategory U of the category Ab of
abelian groups satisfying the following closure properties.

• [inverses] If f ∈ Ar(U) is an isomorphism, then f−1 ∈ Ar(U).
• [products] If V1, V2 ∈ Ob(U) and f1, f2 ∈ Ar(U), then V1 × V2 ∈

Ob(U), and Ar(U) contains f1×f2, the projections πi : V1×V2 → Vi,
and the diagonal embeddings ∆k : V1 → V k

1 .
• [sections] If W ≤ V are in Ob(U), then V/W ∈ Ob(U) and Ar(U)

contains the inclusion ι : W → V and quotient p : V → V/W maps.
• [kernels/images] If f : V1 → V2 is in Ar(U), then ker f, im f ∈

Ob(U), and for all W1,W2 ∈ Ob(U),
– if W1 ≤ ker f , the induced map f : V1/W1 → V2 is in Ar(U);
– if im f ≤W2 ≤ V2, the induced map f̌ : V1 →W2 is in Ar(U).

• [module structure] If V ∈ Ob(U), then Ar(U) contains the sum
map σ : V × V → V and the multiplication-by-n maps µn : V → V .

The objects of a modular universe U are called its modules and the arrows
its compatible morphisms.

Remarks.

• We could not find an official categorical name for our setting. ‘Topol-
ogising, abelian subcategory’ does not suffice; the axiom of inverses
is of importance to us, but we won’t go as far as assuming that the
subcategory is replete.
• The axioms immediately allow for restrictions of compatible maps

and the computing of inverse images. Indeed, if f : V1 → V2 is in
Ar(U) with W1 ≤ V1 in Ob(U), then the restriction of f to W1 is f ◦ι
for ι : W1 → V1 the inclusion. And for W2 ≤ V2 in Ob(U), f−1(W2)
is the kernel of p ◦ f for p : V2 → V2/W2 the quotient map.
• Model theorists might expect a ‘characterisation of arrows’ which

we do not require: f ∈ Ar(U) if and only if its domain, image and
graph are in Ob(U).

Examples.

• From algebra: the category of all abelian groups or of all abelian
p-groups (equipped with all group morphisms) forms a modular uni-
verse; both are full subcategories of Ab. An important variation is
the category of all abelian p-groups of finite Prüfer p-rank. (Such
groups can contain only finite powers of the quasi-cyclic group Cp∞ ;
the maximal such power is called the p-rank.)
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For a given ring R, the category of R-modules (equipped with all
R-morphisms) is a modular universe.
• From Lie theory: the collection of all abelian Lie groups (with Lie

morphisms) forms a modular universe after adjusting the notion of
≤ (which has to be closed).
• From universal algebra: the variety generated by a given abelian

group V (with group morphisms) forms a modular universe; this can
be computed as HSP(V ), which is the collection of all Homomorphic
images of Subgroups of Products of V .
• From model theory: the abelian part of the ‘interpretable universe’

(which we call definable) forms a modular universe; specifically, this
is looking at the category of all abelian groups definable in some
first-order theory equipped with the definable group morphisms.
• If V is a module of a universe U , then there is a smallest subuniverse

containing V . This is contained in both HSP(V ) and the abelian-
definable universe Udef from model theory. Notice that the intersec-
tion HSPdef(V ) = HSP(V )∩ Udef(V ) might be substantially smaller
than Udef if we add a highly extrinsic, secondary abelian structure
on some non-definable subsets of V . (Typically, if K is one of the
pathological fields model theorists adore, then HSPdef(K+) will miss
all the exotic structure.)

Modular universes allow for a variety of additional constructions. We
highlight several important ones after giving the relevant notion of a G-
module for our setting.

Definition. Suppose V is a module in the universe U . If a group G acts on
V by compatible morphisms of U , we say that V is a G-module in U .

In model-theoretic terms, we are assuming that G acts by definable au-
tomorphisms, but we are not assuming definability of the action, viz. defin-
ability of the triple (G,V, ·). For instance, G itself need not be definable.

Universe Properties. Let U be a modular universe.

(i) [meet/join] If V1, V2 ≤ V are modules in U , then so are V1 ∩ V2

and V1 + V2.
(ii) [extensions] Suppose V1, V2 ≤ V are modules in U with V1 + V2 =

V . If fi : Vi → W are compatible morphisms that agree on V1 ∩ V2,
then there is a compatible f : V →W extending both.

(iii) [permutation modules] If V is a module in U , then perm(n, V )
is a Sym(n)-module in U .

(iv) [enveloping algebras] If V is a G-module in U for some group G,
then each map in the subring of End(V ) generated by G is compatible.

Proof. Assume V1, V2 ≤ V are modules in U . Let σ : V × V → V be the
addition map and ∆k : V → V k the diagonal embedding.

(i) Note that V1 ∩ V2 = ∆−1
2 (V1 × V2) and V1 + V2 = σ(V1 × V2).

(ii) Let g be the restriction of σ to V1 × V2, and set I := {(a,−a) : a ∈
V1∩V2} = ker g. Then the induced isomorphism g : V1×V2/I → V is
in Ar(U), so g−1 is as well. Define h : V1× V2 → V via restriction of
σ◦(f1×(f2◦µ−1)) to V1×V2, where µ−1 : V → V is inversion; then h
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computes f1−f2. Since I ≤ kerh, the induced map h : V1×V2/I → V
is in Ar(U), and f := h ◦ g−1 ∈ Ar(U) extends both f1 and f2.

(iii) As a set, we may identify perm(n, V ) with V n ∈ Ob(U) and the
canonical summands V ei with

⋂
j 6=i kerπk (for πk : V n → V the kth-

projection). Now, for α ∈ Sym(n), viewed as the automorphism of
V n permuting the coordinates naturally, we must show α ∈ Ar(U).
Let ∆ be the diagonal embedding of V n into (V n)n. Then α =
(πα−1(1) × · · · × πα−1(n)) ◦∆.

(iv) The (extended) sum map σk : V k → V may be inductively defined
as σ ◦ (σk−1 × IdV ) so is in Ar(U). Further, Ar(U) contains the
multiplication-by-n maps µn : V → V for each n ∈ Z. Thus, for
g1, . . . gk ∈ G and n1, . . . , nk ∈ Z, the image of

∑
nigi in End(V ) is

σk ◦ [(µn1 ◦ g1)× · · · × (µnk
◦ gk)] ◦∆k ∈ Ar(U). �

2.2. Additive dimensions.

Definition. Let U be a modular universe. An additive dimension on U is
a function dim: Ob(U)→ N such that for all f : V →W in Ar(U),

dimV = dim ker f + dim im f.

This property will be called additivity.

Examples. Each of the following has an additive dimension:

• the universe of finite-dimensional vector spaces over a fixed field,
equipped with the linear dimension;
• the universe of abelian p-groups of finite Prüfer p-rank, with dimen-

sion the p-rank;
• the universe of all abelian groups definable in a theory of finite Mor-

ley rank, with dimension the Morley rank;
• the universe of all abelian groups definable in an o-minimal structure,

equipped with o-minimal dimension;
• the universe of abelian Lie groups, equipped with Lie (manifold)

dimension.

Remarks. The following remarks are better understood in relation to say,
behaviour of Morley rank, but can be read independently.

• No assumption is made on when the dimension increases nor how; as
a matter of fact, any multiple of a dimension function is again one.
• There need not be a descending chain condition (‘dcc’) on objects.

This calls for a modified notion of connectedness in § 2.3.
• No relationship between finiteness and 0-dimensionality is implied.

Thus, we handle in the same operational setting Fnp (n-dimensional,
in finite group theory) and Z (0-dimensional, in Lie theory).
• It is unclear whether the non-abelian case is restrictive enough for a

general theory to emerge. Typically, handling commutators requires
the dimension to be defined on subsets, not only subgroups.

For example, we do not know about free groups or Tarski mon-
sters; the question seems to be of interest but beyond our expertise.
• We briefly mused on the possibility of determining natural criteria for

a pre-dimension—defined only on submodules of some V—to extend
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to a genuine dimension on subquotients as well, but this remains
mostly unexplored. Such topics are nontrivial in model theory.

Remarks (for model theorists). Our work stems from model theory but we
wish to stress a couple of differences.

• The focus is on group subquotients instead of general definable sets.
(One could define dim on cosets but we will not need that.)
• We work with a dimension on a universe containing a fixed group

structure and make no demands on its behaviour in elementary ex-
tensions. Thus dimension is not required to be a ‘strong’ invariant
(viz. a property of the theory); as a matter of fact, an elementary
extension need not bear a dimension function.

Morley rank and o-minimal dimension are strong invariants. We
do not have an example of (the definable universe of) an abelian
group V carrying an additive dimension and an elementary extension
V ∗ not admitting one.

Arguably we touch here the difference between first-order (defin-
ability in one structure) and model-theoretic (definability in family,
viz. in elementary extensions) properties; or between model-theoretic
algebra and model-theory properly speaking.

Dimension Properties. Let (U , dim) be a modular universe with an addi-
tive dimension, from which we take modules.

(i) dim{0V } = 0.
(ii) If W ≤ V , then dimW ≤ dimV .

(iii) dim(V1 × V2) = dimV1 + dimV2.
(iv) If V1, V2 ≤ V , then dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2).

Proof. For the first, apply additivity to the identity map ι : V → V . The
second follows from additivity of the quotient map p : V → V/W (and
that dim is non-negative). For the third, additivity of the projection π1 :
V1×V2 → V1 shows dim(V1×V2) = dimV1 + dim(kerπ1), so the result then
follows from the fact that {0V1}×V2 and V2 are compatibly isomorphic. For
the final point, apply additivity to the restriction of σ to V1×V2 (using that
the kernel is compatibly isomorphic to V1 ∩ V2). �

Definition. If (U ,dim) is a modular universe with an additive dimension
and V ∈ Ob(U), we call V a module with an additive dimension, leaving U
implicit from context.

In practice, we often have in mind HSPdef(V ) (viz. those homomorphic
images of submodules of powers of V which are model-theoretically defin-
able) when we say V is a module with an additive dimension.

2.3. dim-connectedness. We now present a weak form of connectedness,
which is not the classical one in mathematical logic.

Definition. A module V with an additive dimension is called dim-connected
(for dimension-connected), or simply a dc-module, if every proper submodule
W < V in U satisfies dimW < dimV .

Examples.



10 LUIS JAIME CORREDOR, ADRIEN DELORO, AND JOSHUA WISCONS

• The only dc-module of dimension 0 is {0}.
• Every finite-dimensional vector space over Fp is dim-connected with

respect to the linear dimension.
• If the dimension function satisfies ‘dimA = 0 ⇐⇒ A is finite’,

then V is dim-connected if and only if V is connected in the usual
model-theoretic sense of having no proper subobjects of finite index.
But this is not so in general as we assume neither implication.

Remarks.

• If V contains a dc-submodule V 1 ≤ V with dimV 1 = dimV , then
V 1 is unique (hence invariant under U-automorphisms of V ) and
called the dc-component of V .
• If W ≤ V and both have dc-components, then W 1 ≤ V 1. Indeed,

additivity implies dim((W 1+V 1)/V 1) = 0, so dim(W 1/W 1∩V 1) = 0
also. Then dim-connectedness of W 1 forces W 1 = W 1 ∩ V 1.
• If U satisfies the descending chain condition on objects, then dc-

components exist. The converse is false (0-dimensional Z).
• In the universe of divisible abelian p-groups of finite Prüfer rank, the

dc-component of V is the largest subtorus entirely contained in V .
• The dc-component of a group of finite Morley rank or an o-minimal

group is its connected component.
• In general, even if dc-components exist, the index [V : V 1] need not

be finite (0-dimensional V ).

We now highlight various operations preserving dim-connectedness.

Connectedness Properties. Let (U ,dim) be a modular universe with an
additive dimension, from which we take modules.

(i) If V is dim-connected and f : V1 → V2 is compatible, then im f is
dim-connected.

(ii) If V1 and V2 are dim-connected, then so is V1 × V2.
(iii) If V1, V2 ≤ V and V1 and V2 are dim-connected, then so is V1 + V2.

Proof.

(i) Let W2 ≤ im f be a submodule of maximal dimension. Set W1 =
f−1(W2) ≥ ker f , and let g : W1 →W2 be the restriction of f . Then
dimW1 = dim ker g + dim im g = dim ker f + dim im f = dimV1. By
dim-connectedness, W1 = V1, so W2 = im f .

(ii) Suppose Z ≤ V1×V2 is a submodule of maximal dimension. Let πi :
V → Vi be the projections and πZi the restrictions to Z. Notice that
kerπi is compatibly isomorphic with Vj , hence dim-connected of the
same dimension; of course kerπZi ≤ kerπi. Then dimV1 + dimV2 =
dim(V1 × V2) = dimZ = dim imπZi + dim kerπZi ≤ dim imπi +
dim kerπi = dimV1 + dimV2. By dim-connectedness, one finds
kerπZ1 = {0} × V2 ≤ Z and V1 × {0} ≤ Z, so Z ≥ (V1 × {0}) ·
({0} × V2) = V1 × V2.

(iii) Apply the first two points to the sum map V1 × V2 → V1 + V2. �

2.4. The characteristic of a module.

Definition. Let V be a module with an additive dimension. We say that:
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• V has characteristic p, for p a prime, if it is of exponent p;
• V has characteristic 0 if it is divisible.

Remarks.

• A module need not have a well-defined characteristic: consider Z/6Z.
• Modules of characteristic 0 may well contain torsion: consider Cp∞ .

Characteristic Lemma. Let V be a module with an additive dimension.
If V is dim-connected, then V has a finite-length, AutU (V )-invariant, dim-
connected composition series 0 = V0 < · · · < Vn = V in U with n ≤ dimV
and each factor either of prime exponent or divisible.

Proof. We proceed by induction on dimV ; the only dc-module of dimension
0 is {0}. Let p be a prime; consider the multiplication by p morphism. The
image pV ≤ V is dim-connected, so either pV < V and we apply induction,
or pV = V . In the latter case, V is p-divisible, and we resume with another
prime. �

Examples.

• Not all interesting modules have a characteristic. Any embedding
Alt(4) ↪→ GL2(Z/4Z) makes V = (Z/4Z)2 a faithful, 2-dimensional
Alt(4)-module of exponent 4. It is not minimal, but Alt(4) is faithful
on neither 2V nor V/2V . (This of course relates to solubility; one
should always be careful with std(4, 4).)
• Let I be infinite and T =

⊕
I Cp∞ as a pure group. We suspect there

is a non-trivial additive dimension on HSPdef(T ); however Morley
rank is infinite. Hence our setting seems to allow for tori of infinite
Prüfer rank.

Divisibility Properties. If V is a dc-module with an additive dimension
and p is a prime, then V is p-divisible iff Ωp(V ) := {v ∈ V : pv = 0}
has dimension 0. In particular, if W ≤ V is a dc-submodule and V has a
characteristic, then V and W have the same characteristic.

Proof. The multiplication by p morphism has kernel Ωp(V ); since V is dim-
connected, the map is onto if and only if the kernel has dimension 0. When
restricted to W , the kernel is Ωp(W ) = W ∩ Ωp(V ). �

Remark. In the case where V = (Cp∞)n (which has characteristic 0) with
p > 2 a prime, it is well-known (for instance [Del12]) that the restriction
morphism:

ρ : Aut(V )→ Aut(Ωp(V ))

kills no element of finite order. (There is a kernel {±1}n if p = 2.) We could
however not make profit of this remark in our present work.

2.5. Dc-irreducibility and classes Mod(G, d, q).

Definition. A dim-connectedG-module V is dc-irreducible (as aG-module),
if it has no non-trivial, proper, dim-connected G-submodule.

Notation. Mod(G, d) is the class of all dim-connected G-modules of di-
mension exactly d. (They are not required to all live in a common universe;
here one browses through universes and dimension functions.) Subclasses
Mod(G, d, q) specify the characteristic.
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By the Characteristic Lemma (§ 2.4), dc-irreducible modules always have
a characteristic.

2.6. Coprimality results. We now let finite cyclic groups act on our mod-
ules; as one imagines, the characteristic plays a crucial role. Bear in mind
that we do not assume the existence of dc-components for submodules (see
remarks in § 2.3); this explains why we avoid centralisers and prefer to work
in terms of ad and tr.

Notation. Let V be a 〈g〉-module, where g has order p.

• Let adg = 1− g and trg = 1 + g + · · ·+ gp−1.
• Let Bg = im adg and Cg = im trg.

When g acts compatibly on V (in some universe), the Universe Properties
ensure that adg and trg are compatible endomorphisms, so Bg and Cg are
submodules. Be careful that Cg does not stand for the centraliser (though
always Cg ≤ CV (g)); for instance, if g is an involution acting in characteristic
2, then trg = adg and Cg = Bg. However, in characteristic not p, pathologies
are confined as shown below.

Coprimality Lemma. Let p be a prime and V be a p-divisible, dim-
connected 〈g〉-module with an additive dimension, where g has order p. Then
V = Bg + Cg and dim(Bg ∩ Cg) = 0.

Proof. AsBg and Cg are images under compatible endomorphisms of V , they
are dc-submodules. Notice how adg ◦ trg = trg ◦ adg = 1−gp = 0 in End(V ),
so Bg ≤ ker trg and Cg ≤ ker adg. However one sees ker adg ∩ ker trg ≤
Ωp(V ), which is 0-dimensional by the Divisibility Properties. Thus,

dimCg = dim im trg = dimV − dim ker trg ≥ dim ker adg ≥ dimCg,

so equality holds. Then:

dim(Bg + Cg) = dimBg + dimCg = dim im adg + dim ker adg = dimV,

and V = Bg + Cg by dim-connectedness. �

Remarks.

• The lemma proves that Bg ∩ Cg ≤ Ωp(V ), so if V has characteristic
a prime different from p, then Bg ∩ Cg = 0. But in characteristic 0,
Bg ∩ Cg need not be trivial, nor even finite.

For instance let T1, T2 ' C2∞ with central involutions i1, i2, and
α an involution inverting T1 while centralising T2. Let S = (T1 ⊕
T2)/ 〈i1i2〉. Notice how Bα = (1−α)S = T1 and Cα = (1+α)S = T2

intersect. Finally take an infinite direct sum of copies of S and say
it has dimension 1.
• The proof also shows Cg ≤ ker adg = CV (g) have the same dimen-

sion: hence CV (g) has a dc-component, which equals Cg. (Acting
on a p-torus of infinite Prüfer rank, one can produce examples with
[Cg : CV (g)] =∞.) However, without assuming p-divisibility, CV (g)
need no longer have a dc-component.

The conclusion of the Coprimality Lemma is a ‘quasi-direct’ decomposi-
tion for V . (This terminology has other meanings in the literature.)
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Definition. If A1, . . . , An are submodules of a module V , the sum
∑
Ai

is said to be quasi-direct if dim
∑
Ai =

∑
dimAi, in which case we write∑

Ai = A1 (+) · · · (+)An.

Remark. Note that
∑n

1 Ai is quasi-direct if and only if both:
∑n−1

1 Ai is

quasi-direct, and dim
(
An ∩

∑n−1
1 Ai

)
= 0.

The following lemma highlights an important application of the Copri-
mality Lemma—it will be used often in the sequel.

Weight Lemma. Let E be a finite elementary abelian 2-group and V a
2-divisible, dim-connected E-module with an additive dimension. Then V
decomposes into a quasi-direct sum of dim-connected weight submodules Vλ
where λ : V → {±1} is a group morphism and each e ∈ E acts on Vλ as λ(e).
Each λ is called a weight of E and Vλ the corresponding (dim-connected)
weight space.

Proof. Write E = E0⊕〈e〉. By the Coprimality Lemma, V = Be (+)Ce with
e inverting the first factor and centralizing the latter. Applying induction
to the action of E0 on each of Be and Ce then yields the desired result. �

Remark. If V is a 2-divisible, dim-connected G-module and K ≤ G is
a Klein four-subgroup whose nontrivial elements are conjugate in G, then
the spaces attached to non-trivial weights have constant dimension `, and
dimV = dimCV (K) + 3`. This will be used repeatedly.

3. The proof

The proof of the Theorem will be assembled from three components: the
Recognition Lemma (§ 3.1) provides an elementary geometric condition suf-
ficient to identify the standard Sym(n)-module (and its quotients in relevant
characteristics); the Extension Lemma (§ 3.2) uses an analogous geometric
condition to identify when an Alt(n)-module extends to Sym(n) in such a
way that Recognition applies; and the Geometrisation Lemma (§ 3.3) details
how Alt(n)-modules of low dimension naturally possess the geometric con-
dition needed to invoke Extension (and thus Recognition). Notably, the first
two of these results are quite general with hypotheses only on the existence
of a dimension function, and no restriction on its values.

Notation.

1. Elements. We reserve i, j, k, . . . for elements of {1, . . . , n}. Permu-
tations are typically denoted by lower-case greek letters, reserving:
• τ, τ ′ for transpositions;
• α, β for bi-transpositions;
• γ, δ for 3-cycles.

We indicate that permutations σ1 and σ2 have disjoint supports |σ1|
and |σ2| by writing σ1 ⊥ σ2.

2. Subgroups.
• We avoid stabiliser notation Gi,j and G{i,j}. Instead, if S =

Sym(n) and I ⊆ {1, . . . , n}, we let SI ≤ S be the subgroup of
permutations with support contained in I. For σ ∈ S, we let
Sσ = S|σ| and Sσ⊥ = S|σ|c . Likewise in Alt(n).



14 LUIS JAIME CORREDOR, ADRIEN DELORO, AND JOSHUA WISCONS

• We often consider subgroups ofA = Alt(n) isomorphic to Sym(k).
Typically, for |I| ≤ n− 2 and symbols k, ` /∈ I, we let:

Σ
(k`)
I = AI t ((SI \AI) · (k`))

=

{
σ if ε(σ) = 1

σ(k`) if ε(σ) = −1
: σ ∈ Sym(I)

}
,

a subgroup of Alt(n) isomorphic to Sym(I). When there is no
ambiguity we simply write ΣI .
• We use K for Klein four-groups of bitranspositions, with Kijk`

the Klein four-group having support {i, j, k, `}.

Also, recall:

• from § 2.5, that Mod(G, d, q) stands for the class of dim-connected
G-modules of dimension d and characteristic q;
• from § 2.5 as well, the notion of dc-irreducibility meaning irreducibil-

ity in the class of dim-connected G-modules;
• from § 2.6, that for V a G-module and g ∈ G, we define Bg :=

[g, V ] = im adg where adg = 1− g ∈ End(V ).

3.1. Recognising the standard module. The Recognition Lemma con-
structs a natural covering module under assumptions of an elementary geo-
metric nature. In prime characteristic (or in the torsion-free case), the kernel
is known, and the isomorphism type fully determined.

Recall from § 1.1 that std(n,Z) = 〈f1, . . . , fn−1〉 is the Sym(n)-submodule
of the permutation module perm(n,Z) = 〈e1, . . . , en〉 generated by fi =
ei−en. For any abelian group L, std(n,L) := std(n,Z)⊗ZL, and std(n,L) =
std(n,L)/Cstd(n,L)(Sym(n)).

Recognition Lemma. Let n ≥ 1, S := Sym(n), and V ∈ Mod(S, d, q)
be faithful and dc-irreducible. Suppose that for any transposition τ , one has
[S′
τ⊥
, Bτ ] = 0.

Then for some abelian group L and arrow ϕ in U , there is a surjective
morphism ϕ : std(n,L) � V of S-modules. Moreover:

• if 0 6= q | n, then kerϕ = Cstd(n,L)(S) and V ' std(n,L);

• if 0 6= q - n, then kerϕ = 0 and V ' std(n,L) ' std(n,L);

• if q = 0, then kerϕ = 〈c〉⊗K where c =
∑n−1

i=1 fi and K ≤ Ωn(L) is
0-dimensional.

Remark. In the first two cases, V is completely reducible into a direct sum
of isotypical summands std(n,Fq); when V is torsion-free, the same is true
with summands of the form std(n,Q). However, actions on tori could give
rise to non-trivial quotients (in characteristic 0).

Proof. The case of n ≤ 2 is clear, so we suppose n ≥ 3. By dc-irreducibility,
V = [S, V ] =

∑n−1
i=1 B(in); this will be used several times below.

Claim 1 (local equations). Let i 6= j. Then ad(ij) = 1 − (ij) acts as:
2 on B(ij)

(jk) on B(ik) for k /∈ {i, j}
0 on B(k`) for {k, `} ⊥ {i, j}.
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Proof of Claim. This is obvious on B(ij); of course 2 = 0 is a possibility.
We turn to the middle case. Let A := S′. First, note that B(ij) ∩B(jk) is

S-invariant. Indeed, it is S{i,j,k}-invariant as it is inverted by both (ij) and
(jk), and by our main assumption, it is also centralised by 〈A(ij)⊥ , A(jk)⊥〉 =
Aj⊥ , implying S-invariance. Now let a ∈ B(ik), and write:

[1− (ij)]a︸ ︷︷ ︸
∈B(ij)

− (jk)a︸ ︷︷ ︸
∈B(ij)

= [1− (ij)− (jk)]a = −[1− (ij)− (jk)](ik)a

= − [(ik)− (jk)(ik)]a︸ ︷︷ ︸
∈B(jk)

+ (ikj)a︸ ︷︷ ︸
∈B(jk)

.

Thus, X := [1 − (ij) − (jk)]B(ik) is a dim-connected subgroup of B(ij) ∩
B(jk). As noted above, B(ij) ∩ B(jk) is S-invariant, so

∑
σ∈S σX is a dim-

connected and S-invariant subgroup of B(ij) ∩ B(jk) < V , hence trivial by
dc-irreducibility. Hence X = 0, as desired.

It remains to verify the third equation, for which we may assume n ≥ 4.
As [Aτ⊥ , Bτ ] = 0, each τ ′ ⊥ τ gives rise to the same B+

τ := trτ ′(Bτ ), which
is centralised by Sτ⊥ . We aim to show B+

τ = Bτ .
For s ∈ S, s(B+

(ij)) = B+
(s(i)s(j)), so V + :=

∑
i 6=j B

+
(ij) is S-invariant.

Notice how ad(ij)B
+
(k`) = ad(ij) tr(ij)(B(k`)) = 0, and (by the second local

equation)

ad(ij)(B
+
(ik)) = (jk)B+

(ik) = (jk) tr(j`)(B(ik)) = (jk) tr(j`)(jk)B(ij)

= tr(k`)B(ij) = B+
(ij).

Thus, ad(ij) V
+ = B+

(ij). By dc-irreducibility, V + equals 0 or V , so either

B+
(ij) = ad(ij) V

+ = 0 or B+
(ij) = ad(ij) V

+ = ad(ij) V = B(ij). The latter is

our goal, so it remains to consider B+
(ij) = 0.

Assume B+
(ij) = 0. If q = 2, we have the desired result since 0 = B+

(ij) =

tr(k`)(B(ij)) = ad(k`)(B(ij)). If q 6= 2, then Coprimality implies that B(ij) =
B(k`); conjugating, this quickly contradicts dc-irreducibility when n ≥ 5. If
n = 4, then V = B(12) + B(23) + B(34); sinceB(12) = B(34), one has V =
B(12) + B(23). Moreover, V = B(12) + B(23) is a K-invariant decomposition
(for K the Klein four-group) with the first factor centralised by (12)(34) and
the second by (23)(14). A weight space decomposition of V for K must then
result in the trivial weight space having positive dimension (by the Weight
Lemma), against dc-irreducibility and faithfulness. ♦

We construct a covering S-module as follows:

• let L := B(1n) as a trivial S-module;

• let V̂ := std(n,L) as an S-module, and define fi = ei − en as usual;

• let ϕ : V̂ → V be the additive map such that ϕ(fi ⊗ `) = (1i) · `,
where (11) is interpreted as the identity.

Every element of V̂ has a unique decomposition as
∑n−1

i=1 fi ⊗ `i for `i ∈ L,
so ϕ is indeed well-defined and additive. Note that in the image of ϕ, we
use the non-trivial action of S on B(1n) ≤ V .
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By the Universe Properties of § 2.1, perm(n,L) is an S-module in U , so
each fi⊗L, being the image of perm(n,L) under ad(in), is also in U . Taking

the sum, we find that V̂ is an S-module in U . Now let ϕi : fi ⊗ L → V be
(1i) ◦ ι ◦ πi where ι : L→ V is the inclusion map and πi is the restriction to
fi⊗L of the ith-projection of perm(n,L) = Ln. Thus, each ϕi is compatible

so their common extension to V̂ (which is ϕ) is as well.

Claim 2 (covering). ϕ is a surjective morphism of S-modules.

Proof of Claim. Notice that ϕ(fi ⊗ `) ∈ (1i) · B(1n) = B(in). Therefore

imϕ ≥
∑n−1

i=1 B(in) = V , so ϕ is surjective. It remains to prove covariance.
We use Claim 1 freely.

Since {(jn) : 1 ≤ j ≤ n−1} generates S and {fi⊗` : 1 ≤ i ≤ n−1, ` ∈ L}
generates V̂ , it is enough to treat the basic cases. If i = j, then

ϕ((in) · (fi ⊗ `)) = −ϕ(fi ⊗ `) = (in) · ϕ(fi ⊗ `).

If i 6= j, then

ϕ((jn) · (fi ⊗ `)) = ϕ((fi − fj)⊗ `) = (1i)`− (1j)`.

To compute (jn) · ϕ(fi ⊗ `), we consider separately j = 1 or not. If j = 1,

(1n)(1i)` = (1i)(in)` = (1i)[(in)− 1 + 1]` = −(1i)2`+ (1i)`,

completing this case. And if j 6= 1,

(jn)(1i)` = (1i)(jn)` = (1i)[(jn)− 1 + 1]` = −(1i)(1j)`+ (1i)`,

which establishes this case since (1j)` ∈ B(jn) is centralised by (1i). ♦

Claim 3 (kernel control).

• If 0 6= q | n, then kerϕ = CV̂ (S) and V ' std(n,L);

• if 0 6= q - n, then kerϕ = 0 and V ' std(n,L) ' std(n,L);

• if q = 0, then kerϕ = 〈c〉 ⊗K where c =
∑n−1

i=1 fi and K ≤ Ωn(L) is
0-dimensional.

Proof of Claim. Let c =
∑n−1

i=1 fi ∈ std(n,Z). We first contend that:

ϕ−1(CV (S)) = CV̂ (S) = {c⊗ ` : ` ∈ L : n` = 0} = 〈c〉 ⊗
Z

Ωn(L) ' Ωn(L).

Notice at once that c generates the centraliser of Sym(1, . . . , n− 1), in sym-
bols Cstd(n,Z)(Sn⊥) = 〈c〉; the same holds in std(n,L), viz. CV̂ (Sn⊥) =
〈c〉 ⊗ L. Also, in std(n,Z) one sees (1n)c = c − nf1, so CV̂ (S) = {c ⊗ ` :
n` = 0} = 〈c〉 ⊗ Ωn(L) ' Z ⊗Z Ωn(L) ' Ωn(L). It remains to prove
ϕ−1(CV (S)) = CV̂ (S). The latter is clearly contained in the former; we now
show that v ∈ CV (S) is in the image of CV̂ (S). As noted after Claim 1,

v =
∑n−1

i=1 vi with vi ∈ B(in). Applying ad(1i) and using the local compu-
tations, we see that (in)v1 + (1n)vi = 0, implying that vi = (1i)v1. Thus,

v =
∑n−1

i=1 (1i)v1 = ϕ(c⊗ v1).
We may now finish the proof. Clearly kerϕ ≤ ϕ−1(CV (S)) = CV̂ (S).

• First suppose q 6= 0 and q - n. Then Ωn(L) and CV̂ (S) ≥ kerϕ are

trivial, so V ' V̂ = std(n,L). (The same holds if V is torsion-free.)
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• Next suppose q 6= 0 and q|n. Then L = Ωn(L) so CV̂ (S) = 〈c〉⊗L '
L; the image ϕ(CV̂ (S)) = CV (S) is now a quotient module of L,
hence dim-connected. By dc-irreducibility of V , CV (S) is trivial, so

CV̂ (S) = kerϕ. Hence V ' V̂ / kerϕ = std(n,L). (The last is seen

by recalling that q is prime and std(n,Fq) is irreducible.)
• Finally suppose q = 0. Recall that Ωn(V ) is 0-dimensional by the

Divisibility Properties. Subgroups of 〈c〉⊗Ωn(L) ' Ωn(L) are of the
form 〈c〉 ⊗K for K ≤ Ωn(L), and kerϕ is one such. ♦

This completes the proof of the Recognition Lemma. �

On can also rephrase Claim 2 of the Recognition Lemma as follows, with
no reference to dimensionality.

Corollary. Let V be an abelian group equipped with an irreducible, faithful
action of Sym(n). Suppose that for any two distinct transpositions τ, τ ′ one
has

∑
g∈〈τ,τ ′〉 ε(g)g = 0. Then V is a homomorphic image of some std(n,L).

Proof. The ‘integration formula’ implies [1−(ij)][1−(k`)] = 0 (when τ ⊥ τ ′)
and [1− (ij)][1− (ik)] = (jk)[1− (ik)] (when τ 6⊥ τ ′) in End(V ). Hence V
satisfies the conclusion of Claim 1, which is enough to produce a covering
map ϕ : std(n,Z)⊗Z B(1n) → V . �

3.2. Extending an Alt(n)-module to Sym(n). We now turn to Alt(n)-
modules, giving a geometric condition (analogous to that for the Recognition
Lemma) under which an Alt(n)-module extends to a Sym(n)-module sub-
ject to Recognition. But do note that the two lemmas, Recognition and
Extension, are independent.

Extension Lemma (cf. [Wag76, Wag77]). Let n ≥ 7, A := Alt(n), and
V ∈ Mod(A, d, q) be faithful and dc-irreducible. Suppose that for any bi-
transposition α, one has [Aα⊥ , Bα] = 0. Then:

• if q = 2 there is a unique compatible action of Sym(n) extending the
Alt(n)-structure;
• if q 6= 2 there are exactly two such, obtained from each other by

tensoring with the signature.

Moreover, up to tensoring with the signature, the extension satisfies that for
any transposition τ ∈ S := Sym(n), one has [Sτ⊥ , Bτ ] = 0.

Remark. If n ≥ 8 the main assumption is equivalent to: for any 3-cycle γ,
one has [Aγ⊥ , Bγ ] = 0. The ‘γ’-version is however stronger if n = 7.

Proof. The bulk of the proof is devoted to existence; uniqueness will result
afterwards. We aim to extend the action of Alt(n) to Sym(n); to that end,
we first identify what should be B(ij) = [(ij), V ], which (up to tensoring
with the sign representation) should be thought of as a line that we will call
L(ij). In the standard module, L(ij) can be computed as Bα ∩Bγ using any
bi-transposition α that swaps i and j and any 3-cycle γ satisfying |α|∩ |γ| =
{i, j}. (There are certainly other ways to isolate B(ij) such as by intersecting
Bα and Bβ for α and β distinct bi-transpositions that both swap i and j;
this was in fact our original point of view.)
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Claim 1. Let i 6= j be given. For distinct a, b, k /∈ {i, j},

L(ij) := im ad(ij)(ab) ◦ ad(ijk) = (B(ij)(ab) ∩B(ijk))
1

is nontrivial and independent of the choice of a, b, k. Also, [A{i,j}⊥ , L(ij)] = 0.

Proof of Claim. Consider L(ij) := ad(ij)(ab)B(ijk) for distinct a, b, k /∈ {i, j};
set α := (ij)(ab) and γ := (ijk).

We first prove centralisation by A{i,j}⊥ and independence from a, b, k.

Note that the group (Aγ⊥)′ is generated by its bi-transpositions β (when
n = 7, this fails of Aγ⊥ itself), which all commute with γ and satisfy:

adβ(Bγ) = adβ ◦ adγ(V ) = adγ ◦ adβ(V ) = adγ(Bβ) ≤ [Aβ⊥ , Bβ] = 0,

implying that [(Aγ⊥)′, Bγ ] = 0. Also notice that α inverts γ. In particular
adα leaves im adγ invariant; hence L(ij) ≤ Bα ∩ Bγ , so by assumption and
what we just noted, L(ij) is centralised by 〈Aα⊥ , (Aγ⊥)′〉 = A{i,j}⊥ (even if

n = 7). And as A{i,j}⊥ ≥ Alt(5) is 3-transitive off of {i, j}, we also find that
L(ij) is independent of the choice of a, b, k.

We now show L(ij) = (Bα ∩ Bγ)1, which will follow readily from Copri-
mality and dim-connectedness of L(ij) = adα ◦ adγ(V ). If charV 6= 2, then
letting α act on Bγ we find Bγ = L(ij) (+) trα(Bγ). Now Bα ∩ trα(Bγ) ≤
Bα ∩Cα has dimension 0, so dim(Bα ∩Bγ) = dim(Bα ∩ (L(ij) (+) trα(Bγ)) =
dimL(ij) + dim(Bα ∩ trα(Bγ)) = dimL(ij). And if charV 6= 3, write
V = Bγ (+) Cγ , an α-invariant decomposition. Applying adα, we find that
Bα = L(ij) + adα(Cγ) with Bγ ∩ adα(Cγ) being 0-dimensional. As before,
we find that dim(Bα ∩Bγ) = dimL(ij).

It remains to show that L(ij) is nontrivial, which is equivalent to showing
that α does not centralise Bγ . Suppose it does. Conjugating, α centralises
B(ij`) for all ` /∈ {i, j, a, b} and also B(ab`) for all ` /∈ {i, j, a, b}. Thus,
CV (α) contains both [A{a,b}⊥ , V ] and [A{ij}⊥ , V ], hence all of [A, V ]. This
contradicts our assumptions of dc-irreducibility and faithfulness. ♦

Remark. There is a counterexample to Claim 1 when n = 6. In the case
of the adjoint representation of Alt(6) ' PSL2(F9), [Aα⊥ , Bα] = 0 and L(ij)

has positive dimension, but L(ij) is not independent of the choice of a, b, k.

The next claim establishes various expected properties of the L(ij); recall
that L(ij) is a proxy for B(ij).

Claim 2 (Geometry of lines).

(1) V =
∑

i 6=j L(ij).

(2) If {i, j} 6= {k, `} are distinct pairs, then L(ij) ∩ L(k`) = 0.
(3) If i, j, k, `, x are distinct symbols, then:

• ad(ijk)(L(ix)) = L(ij);
• ad(ij)(k`)(L(ix)) = L(ij).

(4) L(ij) ≤ L(ik) + L(jk).

Proof of Claim. Clearly
∑

i 6=j L(ij) is A-invariant so must be equal to V ,

establishing (1).
We now handle (2) and will prove that distinct lines are disjoint. We

first consider disjoint index sets; by conjugacy, we may take i, j, k, ` to be
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1, 2, 3, 4. Using Claim 1,

L(12) ∩ L(34) ≤ B(125) ∩ CV ((125)) ≤ Ω3(V ),

but on the other hand:

L(12) ∩ L(34) ≤ B(12)(56) ∩ CV ((12)(56)) ≤ Ω2(V ).

Thus, L(12) ∩ L(34) = 0, so lines with disjoint index sets are disjoint; we
turn to intersecting sets. Notice that L(12) ∩ L(23) ≤ B(12)(45) ∩ B(23)(45) ≤
CV ((123)). Hence:

L(12) ∩ L(23) ≤ B(123) ∩ CV ((123)) ≤ Ω3(V ).

On the other hand L(12) ∩ L(23) ≤ B(12)(34) ∩B(23)(14) ≤ CV ((13)(24)), so:

L(12) ∩ L(23) ≤ B(12)(34) ∩ [CV ((13)(24)) ∩ CV ((123))]

≤ B(12)(34) ∩ CV ((12)(34)) ≤ Ω2(V ).

Therefore L(12) ∩ L(23) = 0; distinct lines are disjoint.
We now prove (3). Here we take i, j, k, x to be 1, 2, 3, 4. Let α = (12)(56),

β = (23)(56), and γ = αβ = (123). We show adγ(L(14)) = L(12). Observe:

adγ = 1− αβ = 1− β + (1− α)β = adβ + adα ◦β. (∗)
If v ∈ L(14), then v ∈ CV (β), so applying (∗) we find adγ(v) = adα(v) ∈ Bα.

Thus adγ(L(14)) ≤ (Bγ ∩Bα)1 = L(12), by Claim 1. And as γ ·L(14) = L(24),
we have L(14)∩CV (γ) ≤ L(14)∩L(24) = 0 by (2), so L(14)∩ker adγ is trivial.
Thus, dim adγ(L(14)) = dimL(14) = dimL(12), forcing adγ(L(14)) = L(12).

For the second part of (3), we keep α, β, γ as before and show adβ L(24) =
L(23). Now, β = αγ, so here adβ = adγ + adα ◦γ. But adα ◦γ(L(24)) =
adα(L(34)) = 0, so by our previous work adβ(L(24)) = adγ(L(24)) = L(23).

For (4), consider H := Σ
(45)
{1,2,3} ' Sym(3), and observe that [H,B(123)] =

ad(13)(45)(B(123)) + ad(23)(45)(B(123)) = L(13) + L(23). Of course, [H,B(123)]
also contains ad(12)(45)(B(123)) = L(12). ♦

For I ⊆ {1, . . . , n} with |I| ≥ 2, define

VI :=
∑

(i,j)⊆I

L(ij).

Claim 3. Let I, J ⊆ {1, . . . , n} with |I|, |J | ≥ 2. The following hold:

(1) V{1,...,n} = V ;
(2) if |I ∩ J | ≥ 1, then VI∪J = VI + VJ ;
(3) if |I| ≤ n− 3, then VI ∩ L(ab) = 0 for a, b /∈ I;
(4) the sum L(12) + L(23) + · · ·+ L(n−2,n−1) is direct;
(5) [AI⊥ , VI ] = 0;
(6) [AI , V ] = VI provided |I| ≥ 3.

Proof of Claim. Part (1) is merely Claim 2(1), and (2) follows readily from
Claim 2(4). Parts (5) and (6) are also fairly immediate. Indeed, [AI⊥ , VI ] =∑

(i,j)⊆I [AI⊥ , L(ij)] = 0 by Claim 1, and if |I| ≥ 3, then

[AI , V ] =
∑
|γ|⊆I

Bγ =
∑

(i,j,k)⊆I

L(ij) + L(jk) =
∑

(i,j)⊆I

L(ij).
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For (3), choose distinct a, b, k /∈ I; set X := L(ab)∩VI . Let i ∈ I \{a, b, k}
and γ := (iak). Then using all of Claim 2 we find adγ(X) ≤ L(ak)∩L(ia) = 0,
so X ≤ L(ab) ∩ γ(L(ab)) = L(ab) ∩ L(kb) = 0. This establishes (3), and (4)
now follows readily by induction. ♦

For fixed i 6= j, let

Ei,j := {α | α is a bi-transposition exchanging i and j}.

The final ingredient we need to define the action of a transposition τ is
the hyperplane representing CV (τ), which we now define as Hτ . (Regarding
our definition below, recall that Cα = trα V , and though always contained
in CV (α), it may be significantly smaller.)

Claim 4. Let H(ij) :=
∑

α∈Ei,j
Cα. For distinct k, a, b /∈ {i, j}, we have V =

V{i,j,k} +H(ij) with V{i,j,k} ∩H(ij) ≤ CV ((ij)(ab)). Further, V{i,j}⊥ ≤ H(ij).

Proof of Claim. We first show V{i,j}⊥ ≤ H(ij). Let (k`) ⊥ (ij). If q = 2,
then since adα = trα for every bi-transposition α, one has L(k`) ≤ B(ij)(k`) =
C(ij)(k`) ≤ H(ij). If q 6= 2, then taking (x, y) ⊥ {i, j, k, `}, one has by
2-divisibility L(k`) ≤ C(ij)(xy) ≤ H(ij). In either case, V{i,j}⊥ ≤ H(ij). More-

over, any two α, β ∈ Ei,j agree modulo [A{i,j}⊥ , V ], so using Claim 3(6),

Cβ ≤ Cα + [A{i,j}⊥ , V ] = Cα + V{i,j}⊥ .

Thus, we have in fact shown H(ij) = Cα + V{i,j}⊥ for any α ∈ Ei,j .
Fix distinct k, a, b /∈ {i, j}. Since V{i,j}⊥ ≤ H(ij), Claim 3(1,2) imply V =

V{i,j,k}+H(ij). Also, for α = (ij)(ab), by Claim 2(3) one has adα(V{i,j,k}) ≤
L(ij), and

adαH(ij) = adα(Cα + V{i,j}⊥) = adα(Cα + V{i,j,a,b}⊥︸ ︷︷ ︸
≤CV (α)

+V{k,a,b}) ≤ V{k,a,b}.

By Claim 3(3), L(ij) ∩ V{k,a,b} = 0, so adα(V{i,j,k} ∩ H(ij) = 0, meaning
V{i,j,k} ∩H(ij) ≤ CV (α). ♦

Remark. If q 6= 2, then one even has V = H(ij) + L(ij), while if q = 2
then L(ij) ≤ H(ij). We however give a characteristic-independent endgame,
treating reflections and transvections at once.

Claim 5. There are compatible involutive operators {τ(ij) : i 6= j} ⊂ AutU (V )

such that for Σ :=
〈
τ(ij) : i 6= j

〉
and S := Sym(n) we have:

• the map (ij) 7→ τ(ij) extends to an isomorphism S ' Σ with A = Σ′;
• the image of S(ij)⊥ centralises Bτ(ij) .

Proof of Claim. Fix any k /∈ {i, j}. By Claim 3(5) V{i,j,k} is centralised
by A(ijk)⊥ , so every choice of α = (ij)(ab) with a, b /∈ {i, j, k} yields the

same action on V{i,j,k}. Using Claim 4, define τ(ij) (currently depending
on k) to agree with any such α on V{i,j,k} while centralising H(ij), which
makes sense as the intersection lies in CV (α). Also, notice how [τ(ij), V ] =
[τ(ij), V{i,j,k}] = [α,L(ik) + L(jk)] = L(ij) by Claim 2(3,4).
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We claim that our definition of τ(ij) does not depend on the choice of k.
Fix distinct k, k′ /∈ {i, j}, with corresponding τ(ij) and τ ′(ij). Consider the

decomposition given by Claim 3(1,2):

V = V{i,j,k,k′} + V{i,j}⊥ .

Note that V{i,j,k,k′} = V{i,j,k}+L(kk′) = V{i,j,k′}+L(kk′). For a, b /∈ {i, j, k, k′},
τ(ij) and (ij)(ab) agree on V{i,j,k} (by definition) and on L(kk′), which they
both centralise since L(kk′) ≤ V{i,j}⊥ ≤ H(ij) by Claim 4. Hence τ(ij) and

(ij)(ab) agree on V{i,j,k,k′}. The same holds for τ ′(ij), so τ(ij) = (ij)(ab) = τ ′(ij)
on V{i,j,k,k′}. And as τ(ij) and τ ′(ij) centralise V{i,j}⊥ ≤ H(ij), they agree

globally. This completes the definition of the transpositions; they are in U
by the existence of compatible extensions from the Universe Properties.

We now verify that τ(ij)τ(jk) = (ijk). Fix distinct `, a, b /∈ {i, j, k}. Similar
to as above (with ` replacing k′), consider

V = V{i,j,k,`} + V{i,j,k}⊥ .

Since we may define τ(ij) and τ(jk) using the common parameter `, we find
as before that τ(ij) acts on V{i,j,k,`} = V{i,j,`} + L(k`) = V{j,k,`} + L(i`) as
(ij)(ab) and τ(jk) as (jk)(ab). Since each of τ(ij), τ(jk), and (ijk) centralise
V{i,j,k}⊥ , we are done.

These relations (which also imply that disjoint transpositions commute)
guarantee Σ ' Sym(n) with Σ′ = A. As noted, Bτ(ij) = L(ij), so distinct
transpositions give rise to disjoint brackets, which clearly implies that the
image of S(ij)⊥ centralises Bτ(ij) . ♦

This proves existence and it remains to deal with uniqueness.

Claim 6. If S ≤ AutU (V ) represents any compatible action of Sym(n) ex-
tending Alt(n), then up to tensoring with the signature, S = Σ.

Proof of Claim. Say that S is generated by transpositions t(ij). We prove
that, up to tensoring, each transposition t(ij) coincides with τ(ij) as defined
in Claim 5. Clearly for any s ∈ S one has s(L(ij)) = L(s(i)s(j)).

Consider the action of t = t(ij) on Lt = L(ij); write L+
t = trt(Lt). Of

course ` = dimLt and `+ = dimL+
t do not depend on t; as a matter of

fact for s ∈ S we still have s(L+
(ij)) = L+

(s(i)s(j)). We shall prove that up to

tensoring with the signature, L+
t = 0 for any transposition t ∈ S.

First, we show that, up to tensoring, we may assume 2`+ ≤ `. Here is an
argument we shall repeat in the proof of the First Geometrisation Lemma,
Claim 2. In characteristic 2, one has (t+ 1)2 = 0, so im(1 + t) ≤ ker(1 + t).
Also, restricting t to Lt, we have that dim ker(1 + t) + dim im(1 + t) =
dimLt = `; hence 2`+ ≤ `. In characteristic not 2, up to tensoring, we may
exchange trt with adt, hence trt(Lt) with adt(Lt), and therefore assume the
same. So up to tensoring (to no effect if q = 2), 2`+ ≤ `. Under this
assumption, we prove t(ij) = τ(ij), viz. uniqueness.

We first contend L+
(12) ≤ L

+
(13) +L+

(23). Let a ∈ L+
(12); by Claim 2(4) there

is a decomposition a = a13+a23 with a13 ∈ L(13) and a23 ∈ L(23). Notice how
a = t(12)a = t(12)a23+t(12)a13, so as L(13)∩L(23) = 0, we find that t(12) swaps
a13 and a23. Our approach is to show that we similarly have t(13)a = a23
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and t(23)a = a13; then, as t(13)(L
+
(12)) = L+

(23) and t(23)(L
+
(12)) = L+

(13), we

will be done. Now, using a23 ∈ L(23) ≤ B(123) ≤ ker tr(123) from Claim 2(3):

0 = a23 + (123)a23 + (123)2a23

= a23 + t(13)t(12)a23 + (132)a23

= a23 + t(13)a13 + (132)a23

= a23︸︷︷︸
∈L(23)

+ t(13)a︸ ︷︷ ︸
∈L(23)

− t(13)a23︸ ︷︷ ︸
∈L(12)

+ (132)a23︸ ︷︷ ︸
∈L(12)

.

Disjointness of lines proves t(13)a = a23, and similarly we find t(23)a = a13.

Thus, a23 ∈ L+
(23) and a13 ∈ L+

(13), as desired.

We claim that t(ij) inverts L(ij) and centralises V{i,j}⊥ . Let V + :=∑
i 6=j L

+
(ij). It is Alt(n)-invariant so equals 0 or V by dc-irreducibility. And

from our work above, V + = L+
(12) + L+

(23) + · · · + L+
(n−1,n). Since we are

assuming 2`+ ≤ `, Claim 3(1,4) now yields:

dimV + ≤ (n− 1)`+ ≤ (n− 1)

2
` < (n− 2)` ≤ dimV,

so V + < V , implying V + = 0. In particular, t(ij) inverts L(ij), and then by
Claim 1, we see that for (k`) ⊥ (ij), t(k`) = t(ij)(ij)(k`) centralises L(ij).

We now prove that t(ij) and τ(ij) agree everywhere. By Claim 3(1,2),
V = V{i,j,k} + V{i,j}⊥ , with both maps centralising the latter term. By

definition, τ(ij) acts on V{i,j,k} as (ij)(ab) for any (ab) ⊥ (ij), and as t(ab)
centralises V{i,j,k}, t(ij) also acts on V{i,j,k} as (ij)(ab). We are done. ♦

This completes the proof of the Extension Lemma. �

Remark. Uniqueness does not hold without assuming compatibility of the
action of S: one could break L = L+ ⊕ L− into abstract pieces (e.g. view-
ing the complex field as a real vector space), producing a non-compatible
decomposition V = V + ⊕ V −, one being the sign-tensored version of the
other.

3.3. The Geometrisation Lemma. Here we establish that Sym(n)- and
Alt(n)-modules of sufficiently low dimension necessarily carry the geomet-
ric structure of the standard module, leading to their identification by our
previous work.

We begin by treating the minimal case for Sym(n). The authors disagree
on the significance and relevance in the present paper of isolating this situ-
ation; it is to the reader to decide. Nevertheless, the First Geometrisation
Lemma will be used in the proof of the significantly more powerful Geometri-
sation Lemma. Do note that the special case addressed here holds for all n
(trivially for n < 3). As a result, we need to account for Sym(6)-modules
that are ‘quasi-equivalent’ to std(6, 2) via a twisting of the module by an
outer automorphism of Sym(6).

First Geometrisation Lemma. Let n ≥ 3, S := Sym(n), and V ∈
Mod(S, d, q) be faithful. Then d ≥ n − 2; if equality holds, then n ≥ 5,
and for any transposition τ ∈ S, we are in one of the following cases:
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• up to tensoring with the signature, V satisfies [S′
τ⊥
, Bτ ] = 0;

• n = 6, q = 2, and up to composing the action with some σ ∈
Out(Sym(6)), V satisfies [S′

τ⊥
, Bτ ] = 0.

Remarks.

• The (reduced) standard module is not faithful when n = 3, 4.
• The proof requires going to quotients, so dealing with objects which

are not subobjects. See Remarks on p. 6.

Proof. Let S = Sym(n) and A = S′. We begin with the soluble cases.

Claim 1. If n ∈ {3, 4}, then d ≥ n− 1.

Proof of Claim. Suppose d ≤ n − 2. If n = 3, then the action cannot be
faithful since involutions must either centralise or invert a 1-dimensional
dc-module, forcing A to act trivially.

If n = 4, then for the same reason d = 2, and if q 6= 2, then the Weight
Lemma yields a contradiction. So if n = 4, then q = 2, and involutions
act quadratically (with (i − 1)2 = 0). By faithfulness, for bi-transpositions
α 6= β, one has dimBα = dimBβ = 1. Thus, Bα = (CV (α))1, and letting α
act on Bβ, one finds Bβ ≤ (CV (α))1, forcing Bα = Bβ. Hence, Bα = [A′, V ]
is S-invariant, but then A centralises the 1-dimensional dc-modules [A′, V ]
and V/[A′, V ], contradicting faithfulness (and non-nilpotence of A). ♦

From now on n ≥ 5. We may thus also suppose that d is minimal such
that V is faithful; consequently, V is now dc-irreducible.

Assume d ≤ n − 2; we shall identify the module. Let b = dimBτ , which
does not depend on the transposition τ .

Claim 2 (‘up to tensoring’). We may assume 2b ≤ d.

Proof of Claim. If q = 2 then τ acts quadratically, viz. (τ − 1)2 = 0. Hence
Bτ = im(1−τ) ≤ ker(1−τ). On the other hand, dim ker(1−τ)+dim im(1−
τ) = d; hence 2b ≤ d. (This argument already appeared in the Exten-
sion Lemma, Claim 6; it will be used again in the Geometrisation Lemma,
Claim 2.) If q 6= 2 then by the Coprimality Lemma, V = Bτ (+)Cτ . Tensor-
ing with ε exchanges τ with −τ , hence Bτ with Cτ , so up to tensoring, we
may assume dimBτ ≤ dimCτ and 2b ≤ d. ♦

Claim 3. If n ∈ {5, 6}, we are done.

Proof of Claim. Let n ≤ 6 and τ be a transposition. If b = 1, then Sτ⊥ must
centralise or invert Bτ , forcing Aτ⊥ to centralises Bτ , so we may assume
b ≥ 2. Since d ≥ 2b, we have reduced to the case of n = 6, d = 4, and b = 2.
Moreover, by Claim 1, Sτ⊥ ' Sym(4) is faithful on neither Bτ nor V/Bτ , so
bi-transpositions in Sτ⊥ are quadratic. Thus q = 2, and it remains to deal
with this exotic configuration.

We claim that for any 3-cycle γ one has Bγ = V . We have seen that
Kτ⊥ = A′

τ⊥
is trivial on each of Bτ and V/Bτ , so on each factor, all 3-cycles

from Sτ⊥ have the same action. Let γ be one such 3-cycle. Notice how
Bτ = adγ(Bτ ) (+) trγ(Bτ ) is an Sτ⊥-invariant decomposition, so if either
factor is 1-dimensional, then γ ∈ A′

τ⊥
centralises both, a contradiction. So,

adγ(Bτ ) has dimension 0 or 2, and the analogous statement holds (with
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analogous proof) for V/Bτ . Thus, dimBγ is 2 or 4. If γ centralises V/Bτ
then Bγ ≤ Bτ and equality holds. Then Bγ = Bτ = Bγ′ for any other
3-cycle in Sτ⊥ ; conjugating, we contradict dc-irreducibility. If γ centralises
Bτ we find Cγ = Bτ = Cγ′ , again a contradiction. This shows Bγ = V .

Now let γ, δ be disjoint 3-cycles and ε = γδ. If Bε = V as well, then
trγ = trδ = trε = 0, forcing:

0 = 1 + ε+ ε2

= 1 + γδ + (−1− γ)(−1− δ)
= γ + δ,

a clear contradiction. So Bε < V . Since the outer (class of) automorphism
swaps (the class of) γ with (that of) ε, we deduce that twisting by σ, we no
longer have b = 2. Hence, in this exotic case as well, we reduced to b = 1,
implying that Aτ⊥ centralises Bτ . ♦

Claim 4. If n ≥ 7, we are done.

Proof of Claim. Let τ be a transposition. By induction, Aτ⊥ centralises Bτ ,
as the alternative implies n− 4 ≤ b ≤ 1

2(n− 2). ♦

This completes the first geometrisation argument. �

We now present our main geometrisation result.

Geometrisation Lemma. Let A = Alt(n) and V ∈ Mod(A, d, q). Sup-
pose d < n and that either

• q = 2 and n ≥ 10; or
• q 6= 2 and n ≥ 7.

Then for any bi-transposition α ∈ A one has [Aα⊥ , Bα] = 0.

Proof. We want to show that Aα⊥ acts trivially on Bα; by conjugacy the
desired property does not depend on α. The proof will by induction on n,
but methods depend on the value of q. Let b = dimBα.

Claim 1 (odd case). If q 6= 2, then we are done.

Proof of Claim. Let K = {1, αi, αj , αk} be a four-group of bitranspositions
on the same support. Let Λ = {λ0, λi, λj , λk} be the weights with λ0 = 1
and λi = α∨i , viz. λi(αi) = 1 while λi(αj) = λi(αk) = −1. By the Weight
Lemma there is a decomposition, in obvious notation,

V =
(
+

)
λ∈Λ

Vλ.

Notice at once Bαi = Vλj + Vλk . Of course, Aα⊥ ' Alt(n− 4) normalises all
weight spaces. Actually, we have more. There is Aα⊥ < Σi < CA(αi) with
Σi ' Sym(n− 4); the group Σi normalises Vλ0 and Vλi while swapping Vλj

and Vλk . (Typically, if αi = (12)(34), we take Σi = Σ
(12)

α⊥
, which exchanges

αj = (13)(24) and αk = (14)(23), hence also the relevant weights.)
Now, suppose that Aα⊥ does not centralise Bα. Then there is i such that

Aα⊥ does not centralise Vλi . The action extends to one of Σi.
Let a = dimVλi , which does not depend on i 6= 0. As we are assuming

[Aα⊥ , Vλi ] 6= 0, we find 1 < a ≤ d
3 .
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• The case n = 7 requires scrutiny. The only nontrivial subcase is
when d = 6, a = 2, and V = Vλi + Vλj + Vλk . Also Σi ' Sym(3)
acts on Vλi , and the action of Σ′i = Aα⊥ is nontrivial. Therefore an
involution τ ∈ Σi will satisfy dim[τ, Vλi ] = 1. As Σi swaps Vλj and
Vλk , which have dimension 2, dim[τ, Vλj +Vλk ] = 2. As a conclusion,
dimBτ (V ) = 3, but τ is a bitransposition of A, hence dimBτ = 3 =
2a, a contradiction.
• The same argument removes n = 8. (A possible 1-dimensional Vλ0

causes no problem.)
• If n ≥ 9, the action of Σi on Vλi is faithful, and the First Geometri-

sation Lemma yields n− 6 ≤ a ≤ d
3 ≤

1
3(n− 1), a contradiction.

Hence Aα⊥ centralises Bα, as claimed. ♦

Remark. Assuming V is faithful, one can even show a = 1 fairly directly;
however it also is a consequence of applying Extension and Recognition.

Claim 2 (even case). If q = 2 then we are done.

Proof of Claim. Suppose the action of Aα⊥ on Bα is not trivial. As in
Claim 1, this action extends to a faithful action of some Σ ' Sym(n − 4)
with Aα⊥ < Σ < CA(α⊥).

Let b := dimBα, for α a bitransposition; by quadraticity, b ≤ d
2 . (See the

proof of the First Geometrisation Lemma, Claim 2).

• The case n = 10 requires a close look. Here, b ≤ 4.
Observe that Σ is also faithful on V/Bα. If not, then any dis-

joint bi-transposition β ⊥ α will satisfy Bβ ≤ Bα, whence equality;
conjugating, we find that Bα is A-invariant and centralised by all
bi-transpositions, a contradiction. Hence Bα, V/Bα ∈ Mod(Σ) are
both faithful.

By the First Geometrisation Lemma, the Σ-module Bα is known
(be careful that dim(V/Bα) could be 5). Now choose γ = (ijk) ∈
Aα⊥ . Inspection of the possible structures for Bα ∈ Mod(Σ, 4, 2)
gives that [γ,Bα] has dimension 2 if Bα is the standard module; for
the exotic twist, the dimension is 3. Looking at V/Bα, we certainly
have dim[γ, V/Bα] ≥ 2; otherwise, for any (ij)(ab) ∈ Aα⊥ inverting
γ, the group 〈γ, (ij)(ab)〉 ' Sym(3) does not act faithfully on the 1-
dimensional [γ, V/Bα], a contradiction since q 6= 3. Using dimBγ =
dim[γ, V ] = dim[γ,Bα] + dim[γ, V/Bα] by the Coprimality Lemma,
we find that 4 ≤ dimBγ < d.

Turn to the action of Σ
(ij)

γ⊥
' Sym(7) on both Bγ and Cγ . It must

be faithful on at least one, so by the First Geometrisation Lemma,
one has dimension at least 6 (and the other at most 3). All this
shows dimBγ ≥ 6 and dimCγ ≤ 3. In particular Aγ⊥ centralises
Cγ , so Cγ = Cγ′ for any 3-cycle γ′ ⊥ γ. Conjugating, we find a
contradiction.
• Assume n ≥ 11. The action of Σ on Bα is faithful, so the First

Geometrisation Lemma yields n− 6 ≤ b ≤ d
2 ≤

1
2(n− 1). This is an

immediate contradiction when n ≥ 12, and when n = 11, the First
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Geometrisation Lemma further implies that q divides n − 4 = 7,
again a contradiction. ♦

This completes the proof of the Geometrisation Lemma. �

Remark. Although we are not able to identify the minimal faithful V ∈
Mod(Alt(9), d, 2) (bearing in mind that there are three such in the classical
setting), we can still easily show that the minimal dimension is n−1. Indeed,
with notation as above, notice first that if the action of Aα⊥ on Bα is trivial,
then Extension followed by Recognition shows that d ≥ n − 1 (since 2 - 9).
And if the action of Aα⊥ on Bα is not trivial, the First Geometrisation
Lemma (applied to Σ ∼= Sym(5)) shows that b ≥ 4 (since 2 - 5), so by
quadraicity, 4 ≤ b ≤ d

2 , as desired.

3.4. Assembling the Theorem.

Proof of the Theorem. Let S := Sym(n) and A := Alt(n). Suppose G = A
or S and V ∈ Mod(G, d, q) is faithful and dc-irreducible with d < n. We
always assume n ≥ 7; if G = Alt(n) and q = 2, we further assume n ≥ 10.

We first assume that V is dc-irreducible as an A-module. In this case, we
are done except when V ∈Mod(S, d, 2) with 7 ≤ n ≤ 9. This follows imme-
diately from applying (in order) the Geometrisation Lemma, the Extension
Lemma, and the Recognition Lemma. We are also using that d < n forces
dimL = 1 (with notation as in the Recognition Lemma) and d = n − 2 or
n− 1, according to the value of q.

We next address when V ∈Mod(S, d, 2), aiming to show A⊥τ centralises
Bτ for τ ∈ S a transposition. Set b := dimBτ ; as usual, by quadraticity, 2b ≤
d. If A⊥τ

∼= Alt(n−2) does not centralises Bτ , then the First Geometrisation
Lemma (applied to S⊥τ ) implies that b ≥ n− 4, with equality only possible
if 2 | n− 2. Thus, 2(n− 4) ≤ 2b ≤ d ≤ n− 1, so n = 7 and b = n− 4. But
then 2 | 5. Thus A⊥τ centralises Bτ , and the Recognition Lemma applies.

So it remains to dispose of the case when V is dc-irreducible as an S-
module but not as an A-module. Assume this is the case, and consider a dc-
irreducible A-series for V . By our work above, each factor is either a trivial
module or is standard, and by simplicity of A, some factor is nontrivial,
hence of dimension at least n − 2. Thus d = n − 1, and there must be an
A-submodule W ≤ V such that either dimW = n − 2 and dimV/W = 1
or vice versa. The former implies W = [A, V ], against dc-irreduciblity of
V as an S-module. The latter implies W ≤ CV (A), hence equality by the
structure of V/W , again violating dc-irreduciblity as an S-module. �
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[BB18] Ayşe Berkman and Alexandre Borovik. Groups of finite Morley rank with a
generically sharply multiply transitive action. J. Algebra, 513:113–132, 2018.
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