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A switching observer for a class of non-uniformly
observable systems via singular time-rescaling

Missie Aguado-Rojas, Tro. ng Biên Hoàng, William Pasillas-Lépine, Antonio Lorı́a, and Witold Respondek

Abstract—We present a switching observer for a class of non-
uniformly observable systems that are affine in the unmeasured
states and nonlinear in the measured output. Using a singular
time-rescaling, the dynamics of the estimation error is trans-
formed into that of a bimodal switched linear system. Sufficient
conditions that guarantee the observer’s uniform asymptotic
stability are provided; these are stated in terms of persistency of
excitation and dwell-time of the (output-dependent) time-scaling
function evaluated along the trajectories of the system. Unlike
most results on switching observers, our approach does not rely
on the solution of a set of linear matrix inequalities to compute
the observer gain. In addition, we compare our scheme against
the Kalman observer in a particular, but meaningful, case-study
of observer-based control in automotive systems.

Index Terms—Observers, non-uniformly observable systems,
switched systems, non-strict Lyapunov functions, dwell-time,
persistency of excitation, time scaling, Kalman observer.

I. INTRODUCTION

Since the seminal work of Luenberger, for continuous time-
invariant linear systems, the observer design problem has been
extensively studied in the literature and various approaches for
different classes of nonlinear systems have been proposed —
see, e.g., [1]–[9] and references therein. In this note we address
the observer design problem for non-uniformly observable
systems, affine in the unmeasured states and nonlinear in the
measured output. These are systems of the form

ż = γ(y)
[
Az + d(y)

]
+ b(y)u (1a)

y = Cz, (1b)

where z ∈ Rn is the state, y ∈ R is the output, the pair (A,C)
is observable, and γ : R→ R is a smooth function; we do not
exclude output values y ∈ R such that γ(y) = 0. Although
systems (1) may appear restrictive at first sight, it is important
to emphasize that many systems of the more general form

ẋ = f(x) + g(x)u, y = h(x),

are equivalent to (1) up to a coordinate transformation, z =
Φ(x) where x ∈ Rn. Conditions for the existence of such
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a transformation are given in [10], [11], and [12]. Beyond
academic interest, however, our motivation to study systems of
the form (1) comes from the fact that they appear in automotive
control [13], mobile robotics [14], and chemical engineering
[15], to mention a few applications —see also Section III.

Most observer-based schemes in the literature rely on the
assumption that the system is uniformly observable. Yet, this
is frequently untrue in many concrete control engineering
problems [15], [16]. Indeed, in many cases γ(y(t)) may be
equal (or tend) to zero, which leads to loss of observability.
For instance, for initial states z0 ∈ Rn such that γ(Cz0) = 0,
the trajectories z(t) generated via (1a) with u ≡ 0 satisfy
γ(y(t)) ≡ 0 and are thus indistinguishable. For a more detailed
description of the observability properties of this system, see
[12, Prop. 1]. In the observer design for systems of the form
(1), we allow for points such that γ(y) = 0; this makes our
main results more interesting for applications, but the respec-
tive proofs technically more involved. In our approach, the lack
of uniform observability is overcome by constructing an n-
dimensional switching observer, and imposing both persistency
of excitation and zero-crossing dwell-time on the output.

Many other switching observers have been proposed in the
literature, but mostly for switched linear systems [17]–[20].
They have also been used in several concrete applications, such
as cellular processes [21], catalyst converters [22], mechanical
systems [23], [24], and cyber-physical systems [25]. These
approaches, however, do not provide a constructive procedure
to design the observer gain. Instead, they rely on the existence
of a solution for a set of linear matrix inequalities, from which
the observer gain can be computed. Fundamentally different
to designing observers for switched systems, in this note,
switching is merely a technical mean to achieve the goal of
designing an observer for non-uniformly observable systems.

Another technical building block is an output-dependent
change of time-scale. In that regard, we borrow inspiration
from the time-rescaling approach proposed in [10] and [11]
—cf. [26], for the construction of observers for systems that
cannot be linearized using a coordinate change only. As in the
earliest work on time-rescaling [27], the time-scaling function
considered in [10], [11], and [26] is regular and this restricts
the construction of the proposed observers to uniformly ob-
servable systems. In this note, we use a singular time-scaling
function (possibly not possessing a smooth inverse), thereby
generalizing the observer design methodology of [11] to the
realm of non-uniformly observable systems.

Now, it may be argued that constructing an observer for (1)
is a simple task that has been thoroughly addressed in the
literature. For instance, for the discretized version of this
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system, an observer can be designed using a Kalman filter
[28, § 6.4]. In a continuous-time setting, system (1) fits into
the more general class of state-affine systems

ż = A(t, u, y)z +B(t, u, y), y = Cz,

studied, e.g., in [5], [29], [30]. Nevertheless, such approaches
present several drawbacks. Using a Kalman-like construction
as in [5], [29] involves solving a Riccatti ODE of dimension
n(n+1)/2 to determine the observer gain, which increases the
complexity and the computation time necessary to implement
the observer. Moreover, finding explicit conditions that guar-
antee the convergence of the observer is in general non trivial.
In [30], for instance, weak sufficient conditions in terms of
persistency of excitation of the output trajectories, y(t), are
given, but which are fairly difficult to verify.

To the best of our knowledge, we present the first switching
observer that does not rely on solving a set of linear matrix
inequalities to compute the observer gain. As a matter of
fact, in contrast with other papers not relying on uniform
observability, such as [30], we give an explicit expression for
the observer gain that guarantees the asymptotic stability for
the observer. Moreover, it is one of the few articles, along
with [25], where a switching observer for a non-switched
system is proposed. This note completes and builds upon the
preliminary results presented in [12].

II. OBSERVER DESIGN

Since system (1) is affine in the unmeasured variables, a
relatively simple manner to define a state observer is to mimic
the Luenberger type, so let the state estimate ẑ be defined by

˙̂z = γ(y)
[
Aẑ + d(y) +K(y)(y − Cẑ)

]
+ b(y)u, (2)

where the column vector K( · ) depends on the system’s
output. The difficulty of such design resides in defining the
observer gain K(y) such that the estimation error, e := ẑ− z,
tends to zero in spite of the loss of observability at the
instants t such that γ(y(t)) = 0.

Furthermore, beyond mere convergence of the estimation
error, the problem that we address is that of designing K(·)
such that the origin, for the estimation error dynamics,

ė = γ(y)
[
A−K(y)C

]
e, (3)

is globally asymptotically stable, uniformly in y —cf. [30].
To that end, we proceed according to the following rea-

soning. Let us assume temporarily that the function γ is
sign-definite, that is, either γ(y) > 0 or γ(y) < 0 for all
y ∈ R. Akin to [11], in such case, we may define a new time
variable τ , such that

dτ

dt
=

{
γ(y(t)) if γ(y(t)) > 0
−γ(y(t)) if γ(y(t)) < 0.

(4)

Then, in the new time scale defined by τ , the estimation error
dynamics becomes

de

dτ
=

{ [
A−K(y)C

]
e if γ(y) > 0

−
[
A−K(y)C

]
e if γ(y) < 0

(5)

so, to ensure the stability of the origin for (5), depending on
whether γ(y) > 0 or γ(y) < 0, the gain K(y) can be defined

as a constant matrix K such that A−KC or −[A−KC] is
Hurwitz.

Assuming that γ(y) is sign-definite rules out the existence
of the singular set {γ(y) = 0}, where the system looses its
observability [12, Prop. 1]. Nevertheless, this assumption is
clearly over-conservative and precludes the use of the proposed
observer (2) for some concrete examples of control systems
of the form (1) —cf. [13]. Therefore, as in [12], in this note
we consider the scenario in which γ(y(t)) may vanish or
change sign at some time-instances t. Note that such scenario
imposes the technical difficulty of overcoming the lack of
observability for values of y(t) ∈ R such that γ(y(t)) = 0.
Roughly speaking, our main result establishes that the sign-
indefiniteness of γ(y) may be overcome by using a switching-
based observer design that we describe next.

Choose two constant vectors:

K+ =
[
k+1 . . . k+n

]>
, K− =

[
k−1 . . . k−n

]>
such that the matrices

A+ := A−K+C, (6)
A− := −A+K−C (7)

are Hurwitz and let us define

K(y(t)) =

{
K+, if γ(y(t)) > 0

K−, if γ(y(t)) < 0.
(8)

Then, the dynamics of the estimation error, e, in the τ time-
scale, becomes

de

dτ
=

{ [
A−K+C

]
e, if γ(y(t)) > 0

−
[
A−K−C

]
e, if γ(y(t)) < 0,

which is a switched system. Indeed, in compact form, we have

de

dτ
= Aσ(τ)e, (9)

where σ : R≥0 → {+1,−1} is a switching function defined
farther below (see Lemma 2), A+1 := A+, and A−1 := A−.

Equation (9) represents a switched system that may be
analyzed using, for example, the methods proposed in [31]. To
that end, a potential approach is to choose two constant vectors
K+ and K− such that A+ and A− in (6) and (7), respectively,
are Hurwitz and, in addition, to choose those vectors in such a
way that the switched system (9) admits a common (non-strict)
Lyapunov function (valid for both A+ and A−), in order to
ensure exponential stability of the estimation error dynamics,
albeit, in the τ time-scale. This brings us to our first statement.

Theorem 1: Let (A,C) be an observable pair, define Q =
C>C and consider the matrices defined in (6), (7). If K+ is
such that A+ is Hurwitz, then there exists a unique gain K−
such that A− is also Hurwitz and the Lyapunov equations

A>+P + PA+ = −Q (10)

A>−P + PA− = −Q (11)

admit a common solution P = P> > 0. /

The following remarks are in order. Theorem 1 is essentially
contained in the preliminary work [12] —in the latter it is
not stated that the matrix A− is also Hurwitz, but an explicit
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solution for P is given and it is also shown that if the pair
(A,C) is in the observable canonical form, then the elements
of K− are given by

k−i := (−1)i k+i +
[
1− (−1)i

]
ai, ∀ 1 ≤ i ≤ n. (12)

We also remark that even though both A+ and A− are Hur-
witz, the matrix Q in (10)-(11) is only positive semidefinite.
As a matter of fact, it is known from [32] that these Lyapunov
equations do not admit a common solution P if n = 2 and Q
is positive definite. Therefore, Theorem 1 is a statement of
interest in its own right. The methods proposed in [31] provide
a straightforward stability analysis for (9), assuming that one
disposes of a (non-strict) Lyapunov function. Nevertheless,
for an arbitrary switched system, we are not aware of any
statement that asserts the existence of a common Lyapunov
function, let alone a general analytical method to construct it.
In the particular case of (9), Theorem 1 not only guarantees
the existence of this common function for particular values of
the gains K+ and K−, but its proof —see [12]— provides an
analytic expression of P .

Now, although intuitive, the rationale that leads to equa-
tion (9) hides several technical difficulties. Firstly, it relies
on the ability of defining the new time variable τ which,
in order to make sense as such, must be well-defined. That
is, as a function of t, the new time τ must be continuous,
strictly increasing, and radially unbounded. Secondly, strictly
speaking, system (3) is non-autonomous as it depends on the
output trajectories y(t, t0, z0). Thus, rather than defining τ as
in (4) we define it, more precisely for each (t0, z0), as

τ = ν(t, t0, z0) =

∫ t

t0

∣∣γ(y(s, t0, z0))
∣∣ds, (13)

which satisfies

dτ

dt
=
∣∣γ(y(s, t0, z0))

∣∣.
This means that τ is not only a function of t, but it is inher-
ently parameterized by the system’s initial conditions (t0, z0).
Therefore, appropriate technical conditions, stated below as
Assumption 1, must be imposed in order to establish the
uniform global asymptotic stability of the origin for (3).

In writing (13), it is implicitly assumed that the trajectories
are forward complete. As a matter of fact, following standard
practice in the literature on observer design, it is assumed that
each pair of initial conditions (t0, z0) ∈ R×Rn and each input
u( · ) generates a unique (smooth) trajectory z(t, t0, z0, u( · ))
that is uniformly bounded in t0 ∈ R. To avoid a cumbersome
notation, however, in the sequel we drop the argument u by
considering trajectories generated by a fixed, but arbitrary,
input.

Assumption 1: The function γ in (1a) and the output
trajectories, y(t, t0, z0), satisfy the following conditions:

( persistency of excitation ) there exist µ0 > 0 and T0 > 0
such that, for all (t0, z0) ∈ R× Rn,∫ t+T0

t

γ(y(s, t0, z0))2ds ≥ µ0, ∀ t ≥ t0; (14)

( dwell-time ) there exists TD > 0 such that, for any
(t0, z0) ∈ R×Rn and any two instants tk 6= tl satisfying
γ(y(tk, t0, z0)) = γ(y(tl, t0, z0)) = 0,∣∣tk − tl∣∣ ≥ TD. (15)

Remark 1: Both conditions, (14) and (15), are required
to hold uniformly in the output trajectories, hence, in t0
and compact sets of initial conditions z0. The persistency of
excitation condition cannot, in general, be verified analytically,
but it is common in the literature (even in scenarii involving
output feedback control) because of its clear meaning and of
its importance as a necessary condition for uniform global
asymptotic stability. It holds, for instance, if t 7→ γ(y(t)) is
oscillatory. Also, we stress the second part of Assumption 1
does not define dwell-time —for this see, e.g., [31]—, but
TD gives a lower bound on the time between two consecutive
switches of the sign of γ(y(t)).
Assumption 1 ensures that the change of time (13) is defined
via a globally invertible function. More precisely, the following
statement holds —the proof is presented in Section IV.

Lemma 1: Consider a continuous function y 7→ γ(y) and
an absolutely continuous function t 7→ y(t, t0, z0), bounded
uniformly in t0 and satisfying Assumption 1. Then, for each
pair (t0, z0), the function ν(·, t0, z0) : [t0,+∞) 7→ [0,+∞),
defined by (13), is continuous, strictly increasing, and radially
unbounded. It is thus globally invertible. Moreover, for each
(t0, z0), ν(t, t0, z0)→∞ as t→∞, uniformly in t0. /

Furthermore, the dwell-time condition (15) ensures that the
time instants at which the observability singularity {γ(y) = 0}
is crossed do not accumulate. This condition is fundamental
for the following reasons. For the purpose of implementation,
according to (8), the value of the observer gain is assigned by
verifying whether the sign of ρ(t) := γ(y(t)) is positive or
negative. In turn, this defines a switching signal in the natural
time-scale, i.e., with respect to t. For the purpose of analysis,
however, the system’s behavior is considered as defined in
the transformed time-scale, with respect to τ . The following
statement, whose proof is also provided in Section IV, ensures
that the dwell-time condition is preserved under the time-scale
transformation.

Lemma 2: Let γ(y) and y(t, t0, z0) satisfy Assumption 1
and consider the function ν(·, t0, z0) defined in (13). Let ρ :
R → {−1,+1} and σ : R≥0 → {−1,+1} be two functions
related by σ(τ) = ρ ◦ ν−1(τ). If t 7→ ρ(t) has a dwell-time,
then so does τ 7→ σ(τ). /

Furthermore, by imposing TD to be independent of the output
trajectory that generates each switching sequence, it is ensured
that stability and convergence for the switched system in
the τ time-scale remain uniform in the natural time-scale. Our
main statement, presented below, relies on Theorem 1 and
Lemmata 1 and 2; its proof is presented in Section IV.

Theorem 2 (main result): Consider system (1), with (A,C)
observable and under Assumption 1. Consider also the ob-
server given by (2) and (8), with K+ such that A − K+C
is Hurwitz. Then, there exists K− such that, for the estima-
tion error dynamics (3), the origin is globally asymptotically
stable, uniformly in the output trajectories. Furthermore, for
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a pair (A,C) in observable companion form, the elements of
K− := [k−1 · · · k−n ] may be taken according to (12). /

III. APPLICATION EXAMPLE

In this section, we illustrate the performance of the pro-
posed observer on a concrete example of automotive control;
specifically, concerning the antilock braking system (ABS).
The objective is to estimate the unmeasurable tyre extended
braking stiffness (XBS) —a variable closely related to the
adhesion coefficient between the wheel and the road— through
measurements of the acceleration of the wheel and the vehicle.
The interest in doing so is that using the XBS one may control
the ABS so as to maximize tyre-road adherence. For an in-
depth discussion on this problem, see e.g., [13] and [16].

The dynamics of the system is described by[
ż1
ż2

]
=

z1
vx(t)

([
0 θ1
0 θ3

] [
z1
z2

]
+

[
0
θ4

])
+

[
θ2
0

]
u, (16a)

y = z1, (16b)

where the measured output z1 is the difference between the
linear acceleration of the wheel and the longitudinal accelera-
tion of the vehicle, z2 is the XBS, u is the time derivative of
the brake pressure, θ1 and θ2 are parameters that depend on
the wheel and the brake actuator, θ3 and θ4 are parameters
that depend on the road conditions (all the parameters θi
are assumed to be known and constant), and vx(t) is the
longitudinal speed of the vehicle. The latter is assumed to be
strictly positive and separated from zero and it is considered
as a known external variable. This is important because, then,
the system (16) may be considered as in the form (1) with
γ(y) := y. To better see this, replace the original time dt with
dt/vx(t) and the control input u with uvx(t).

The performance of the switching observer is illustrated
in Figure 1. The simulation scenario corresponds to an ABS
braking maneuver of a vehicle traveling on dry asphalt with
an initial speed of 120 km/h. The system’s parameters are
θ1 = 562.5 N·kg−1, θ2 = 4.37 N·kg−1·bar−1, θ3 = 23.99,
and θ4 = 12.47. The control input is defined by a hybrid ABS
controller [33] that generates an oscillatory output trajectory
(see Figure 1a), hence Assumption 1 holds. The estimation
results of the switching observer are compared with respect to
those obtained via a Kalman observer (see [5, Th. 4]).

Both observers provide a good estimation of the accel-
eration offset, despite the measurement of the latter being
perturbed by a zero-mean white noise with a standard de-
viation σ = 4.5 m/s2, typical in an ABS [13]. Concerning
the estimation of the XBS, however, the switching observer
clearly outperforms the Kalman observer. With the switching
observer the estimation of z2 exhibits a slight deviation from
its true value whenever the latter goes from the troughs of the
waveform towards zero, whereas with the Kalman observer
the estimation exhibits a much larger deviation (starting at
the crest of the waveform) and for a longer amount of time.
Moreover, we remark that a correct estimation of the time
instants in which z2 crosses zero is of critical importance for
the control of the ABS, thus rendering the Kalman observer
unsuited for this particular application.
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Fig. 1. Comparison between the proposed switching observer and the
well-known Kalman observer: application to the antilock braking system.
TOP: Measurement and estimation of the acceleration offset, z1. BOTTOM:
Estimation of the tyre extended braking stiffness, z2.

IV. PROOFS

A. Proof of Theorem 1

Existence: Given K+ such that A+ = A−K+C is Hurwitz
and Q = C>C, let P denote the unique solution of (10). Then,
K− = K+−P−1C> is such that P satisfies (11). The matrix
A− := −A+K+C is necessarily Hurwitz, because (A−, C)
is observable (see, e.g., [34, Prop. 5.4]).

Uniqueness: Assume, without loss of generality, that the
pair (A,C) is in observable companion form. Now, to examine
whether there exist other gains K− such that P satisfies (11),
we start by observing that such P necessarily satisfies

A>0 P + PA0 = −Q, with A0 =
1

2
(A+ +A−) . (17)

This is because A0 belongs to the matrix pencil generated by
A+ and A−. Premultiplying both sides of the first equation in
(17) by P−1, we obtain

P−1A>0 P +A0 = −P−1Q. (18)

Then, observing that A>0 P = PA0 and premultiplying both
sides of this expression by P−1, we obtain

P−1A>0 P = A0. (19)

From (18) and (19) we see that A+ +A− = −P−1Q, i.e.,

(K+ −K−)C = −P−1Q,

whose unique solution is K− = K+ − P−1C>.
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B. Proof of Theorem 2

Let z0 ∈ Rn and t0 ∈ R be arbitrarily fixed ini-
tial conditions generating, through (1a), the state trajec-
tories z(t, t0, z0) and, through (1b), the output trajectory
y(t, t0, z0) = Cz(t, t0, z0). Then, consider the estimation error
equation

ė = γ(y(t, t0, z0))
[
A−K(γ(y(t, t0, z0)))C

]
e (20)

with initial conditions (t0, e0), where e0 = ẑ0 − z0.
In view of the dwell-time condition in Assumption 1,

the time instants {tk} where γ(y(tk, t0, z0)) = 0 do not
accumulate, regardless of (t0, z0). Therefore, and since t0
and z0 are arbitrarily fixed, for all t 6= tk, we may define,
with a mild abuse of notation, ρ(t) := sgn

(
γ(y(t, t0, z0))

)
,

where sgn(·) takes values in {−1,+1}. It follows that, for
almost all t ≥ t0,

ė

|γ(y(t))|
= ρ(t)

[
A−K(γ(y(t)))C

]
e, (21)

where, for simplicity, we write y(t) instead of y(t, t0, z0). The
solutions of (21) coincide with those of (20) for all t ≥ t0 and
are absolutely continuous. Furthermore, let τ = ν(t, t0, z0)
be defined as in (13), then τ0 := ν(t0, t0, z0) satisfies τ0 =
0. Moreover, note that in view of Lemma 1, ν(·, t0, z0) is
continuous, strictly increasing, and radially unbounded. This,
in turn, implies that t = ν−1(·, t0, z0) exists and is continuous
on [0,∞). Let ȳ(τ, z0) ≡ y(t, t0, z0), that is, we denote by
ȳ(τ, z0) the system’s output trajectories in the τ time-scale.

It follows that for each e0 the system

de

dτ
= σ(τ)

[
A−K(γ(ȳ(τ, z0)))C

]
e,

where σ is defined in Lemma 2, generates solutions e(·, e0)
that are absolutely continuous functions of τ .

Now, by assumption, A+ in (6) is Hurwitz, so by Theorem 1
we obtain the unique K− such that A− is also Hurwitz and,
moreover, such that the respective Lyapunov equations (10),
(11) admit a common solution P = P> > 0. Thus, define

Aσ(τ) =

{
A+ if σ(τ) > 0

A− if σ(τ) < 0.
(22)

It follows, from Assumption 1 and Lemma 1, that the solutions
of the estimation error equation (20) coincide with those of the
linear switched system described by (9) and (22), with τ0 = 0.

Furthermore, in view of the dwell-time condition (15)
and by virtue of Lemma 2, the switching signal σ has a
dwell time. Therefore, from [31, Th. 4], it follows that the
origin for the system described by (9) and (22) is globally
exponentially stable, uniformly with respect to the switching
signals. In view of the continuity and invertibility of τ (see
the proof of Lemma 2 below) it follows that e = 0 is globally
asymptotically stable. Uniformity follows from the fact that
the previous developments hold regardless of t0.

The second statement is a direct consequence of Theorem 1
and so this concludes the proof of Theorem 2.

C. Proofs of Lemmata 1 and 2

Proof of Lemma 1: Let (t0, z0) be arbitrarily fixed. Then,
with a slight abuse of notation, in the sequel we drop these
arguments when clear from the context. From (13) we see
that ν(t) > 0 for all t ≥ t0 and ν(t0) = 0. Continuity follows
directly from that of γ and absolute continuity of y(·, t0, z0).
To show that ν is strictly increasing we proceed by contra-
diction. If ν is not strictly increasing, there exist an interval
[a, b] ⊂ [t0,∞) and a constant c > 0 such that ν(t) = c for all
t ∈ [a, b] or, equivalently, ν̇(t) =

∣∣γ(y(t))
∣∣ = 0 on the same

interval. Nonetheless, this contradicts the dwell-time condition
in Assumption 1 for any TD ≤ b − a. Moreover, this holds
regardless of (t0, z0) ∈ R× Rn.

Now, because y is uniformly bounded and γ is continuous,
γ(y(·, t0, z0)) is also bounded, uniformly for all t0 ∈ R and
all |z0| < r, and for any r > 0. That is, for any r > 0 there
exists γmax(r) > 0 such that

∣∣γ(y(t, t0, z0))
∣∣ ≤ γmax(r) for all

t ≥ t0 and all |z0| < r. This implies that∫ t

t0

∣∣γ(y(s, t0, z0))
∣∣ds ≤ γmax(r)[t− t0]

and, from (13), it follows that ν(t) ≤ γmax(r)[t− t0]. Hence,
ν is defined on [t0,∞). Furthermore, because

∣∣γ(y(t))
∣∣ ≤

γmax(r), we also have∣∣∣∣γ(y(t))

γmax(r)

∣∣∣∣ ≥ [γ(y(t))

γmax(r)

]2
so, multiplying both sides of the expression above by
(γmax(r))2 and integrating from t to t+ T0, we obtain∫ t+T0

t

γmax(r)
∣∣γ(y(s, t0, z0))

∣∣ds ≥ ∫ t+T0

t

γ(y(t, t0, z0))2ds.

In turn, from the latter and the persistency-of-excitation con-
dition (14), it follows that, for any n ∈ N,∫ t+nT0

t

∣∣γ(y(s, t0, z0))
∣∣ds ≥ n µ0

γmax(r)
.

Evaluating the limit as n → +∞ on both sides of the latter
inequality and comparing it to (13), we see that

lim
t→∞

ν(t) ≥ lim
n→∞

∫ t0+nT0

t0

∣∣γ(y(s, t0, z0))
∣∣ds = +∞

The fact that µ0 and T0 are independent of t0 guarantees that
the limit above holds uniformly in t0.
Proof of Lemma 2: We proceed by contradiction. Assume that
t 7→ ρ(t) has a dwell time, but τ 7→ σ(τ) does not. Therefore,
for any ε > 0 there exists τk and τl such that τk 6= τl and
γ(y(τk)) = γ(y(τl)) = 0 and |τk − τl| < ε. Next, let {εn}
be a sequence converging to zero and, for each εn, consider a
pair (τnk , τ

n
l ) as defined previously. That is, let the converging

sequence {εn} generate a sequence {(τnk , τnl )}. Now, in view
of Lemma 1, t 7→ ν(t) is continuous, strictly increasing and
radially unbounded. Therefore, τ 7→ ν−1(τ) exists and is
continuous on [0,+∞). Then, set δn := |ν−1(τnk )−ν−1(τnl )|.
It follows, from continuity of ν−1, that the sequence {εn}
generates another converging sequence {δn}, which may be
equivalently written as {|tnk − tnl |} → 0. The latter, however,
contradicts the premise that t 7→ ρ(t) has a dwell time.
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V. CONCLUSIONS

The design of our switching observer for non-uniformly
observable systems relies on a singular time-rescaling ap-
proach to transform the estimation error dynamics into a linear
system whose dynamics switches between two stable modes.
Although it was illustrated, through a concrete practical exam-
ple, that the approach may supersede Kalman-based designs,
several interesting theoretical questions remain open. One
pertains to the optimal choice of the observer gains for each
stable mode. For instance, one may consider setting K+ to
the value given by the minimum mean-square linear estimator,
which is computed using the solution of an algebraic Riccati
equation. Nevertheless, the conditions that guarantee both the
solvability of the Riccati equation and equations (10) and (11)
are not straightforward. Identifying the systems for which this
optimal choice generates a common Lyapunov function is an
interesting question to study. Furthermore, it seems interesting
to explore the links between Theorem 1 and the back-and-
forth-nudging technique [35], in which one is confronted to a
similar problem of guaranteeing the stability of a system that
is iteratively integrated forward and backward in time.
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[33] W. Pasillas-Lépine, “Hybrid modeling and limit cycle analysis for a class
of five-phase anti-lock brake algorithms,” Vehicle System Dynamics,
vol. 44, no. 2, pp. 173–188, 2006.

[34] W. J. Terrell, Stability and stabilization: An Introduction. Princeton,
New Jersey: Princeton University Press, 2009.

[35] D. Auroux and J. Blum, “A nudging-based data assimilation method:
the back and forth nudging (BFN) algorithm,” Nonlinear Processes in
Geophysics, vol. 15, no. 2, pp. 305–319, 2008.


