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Leader-follower consensus formation control of differential-drive
nonholonomic vehicles with time-varying delays

Antonio Lorı́a Emmanuel Nuño Elena Panteley

Abstract— In this paper is addressed the problem of forma-
tion set-point control of mobile robots, exchanging information
over a network affected by communication delays. It is as-
sumed, moreover, that the latter may be time-varying which is
commonly the case of wireless networks. On the other hand,
the autonomous robots are modelled as second-order mechan-
ical systems with nonholonomic constraints; in particular, as
differential-drive vehicles. The control objective is to ensure
that all the robots coordinate their motion and acquire a for-
mation pattern located at a desired position. Furthermore, they
are all required to synchronize their orientations to the leader’s.
The control approach exploits the structural properties of the
system. Being second-order mechanical systems, we design
decentralized controllers of the proportional-derivative (PD)
type, endowed with a time-varying vanishing term that excites
all the system’s modes to render the whole space reachable in
spite of the nonholonomic constraints (nonholonomic systems
are not stabilizable to a point via smooth time-invariant
feedback). We provide theoretical justification of our main
result and illustrate our findings via numerical simulations.

I. INTRODUCTION

The control objective in the consensus of multiple dy-
namical agents is to ensure that the states of all agents
agree on a common value by sharing their state with their
corresponding neighbors [1]. There are mainly two differ-
ent consensus problems in dynamical systems: the leader-
follower, in which the agreement value is given as a desired
value to a set of (follower) agents in the network; and
the leaderless, in which such common value is completely
determined by the initial conditions of all agents in the
network [2], [3], [4]. For autonomous vehicles, which can
obviously not occupy the same physical space, the formation
consensus problem consists in making the positions of all
robots converge to a common value, modulo an offset, i.e., a
vector originating at the formation’s center which determines
a predefined position of the robot with respect to that center.
This is the problem addressed in this paper. Other formation
control problems consist in making the robots follow a
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moving target, these are referred to as formation-tracking and
are fundamentally different in that the reference trajectory
for the swarm is time-varying. Indeed, for nonholonomic
systems, set-point stabilization is not a particular case of
tracking control [5]. For instance, in [6] the problem of
formation-tracking control is addressed in a way that all
robots have access to the virtual reference robot, but consen-
sus per se is not investigated. Also, only the linear-motion
dynamics is controlled —orientations are neglected. Indeed,
in certain scenarii, as the one addressed here, it may be
required that all robots acquire a common orientation or
each a different reference angle. For other classifications of
formation control problems of autonomous vehicles see [7].

Consensus of nonholonomic mobile robots has been stud-
ied, for instance, in [8] where a decentralized feedback
control that drives a system of multiple nonholonomic uni-
cycles to a rendezvous point in terms of both position and
orientation is proposed, the control law is discontinuous
and time-invariant. In [9] necessary and sufficient condi-
tions for the feasibility of a class of position formations
are laid. In [10] the position/orientation formation control
problem for multiple nonholonomic agents using a time-
varying controller that leads the agents to a given formation
using only their orientation is proposed. In [11] a distributed
consensus control law for a network of nonholonomic agents
in the presence of bounded disturbances with unknown
dynamics in all inputs channels is presented. In [12] a
smooth distributed formation control law using a consensus-
based approach to drive a group of agents to a desired
geometric pattern is proposed. The latter result is extended
in [13] by introducing a proportional derivative controller
for the velocity dynamics. In the previously mentioned
references, however, it is assumed that the communications
are completely reliable and do not exhibit time-delays. In
addition, a simplified kinematics model of the nonholonomic
mobile robots is used. In [14] and in [15] a more realistic
torque-controlled second-order dynamics model is used.

In this article we address the leader-follower consensus
problem, with constant desired position and orientation, for
nonholonomic mobile robots under the realistic scenario that
the network is affected by time-varying delays. Although
this problem has been studied, for instance in [16], it is
assumed therein that the delays are constant. The proposed
controller is smooth and decentralized. It consists in two
simple-to-implement proportional-derivative controllers, for
the linear and angular motion dynamics respectively, and an
additional nonlinear time-varying function is added to cope



with the motion restrictions imposed by the nonholonomic
constraints.

The rest of the paper is organized as follows. In the
next section we present the dynamic model and the problem
formulation. Our main result is provided in Section III and
illustrative numerical simulations are provided in Section IV.
The paper is wrapped up with some concluding remarks.

II. PROBLEM SETTING AND DYNAMICAL MODEL
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Fig. 1. Schematical representation of a group of differential-drive robots

We consider a swarm of N nonholonomic vehicles mod-
eled as differential drive robots that move in the Cartesian
xy−plane with three degrees of freedom, two translations
and one rotation. Let us define zi := [xi yi]

> ∈ R2

and θi ∈ R as the translation and rotation coordinates,
respectively, of the ith-robot and i ∈ N̄ := {1, . . . , N}.
Let us also define δi ∈ R2 as the relative (constant) desired
translation of the ith-robot with regards to the barycenter of
a given formation pattern. Thus, the corresponding position
of the ith-robot translated to the barycenter of the desired
formation is z̄i := zi − δi. In the rest of the paper we
consider that i ∈ N̄ .

Remark 1 A desired orientation of the formation pattern
may also be also imposed by setting z̄i := zi − δ∗i , where
δ∗i is given by

δ∗i =

[
cos(φd) − sin(φd)
sin(φd) cos(φd)

]
δi,

where φd ∈ R is the (constant) desired formation pattern
orientation. •

A. Interconnection Topology

It is assumed that each robot communicates bilaterally
with a set of neighbours Ni over a wireless network. Their
interconnections are modelled using the Laplacian matrix
L := [`ij ] ∈ RN×N , whose elements are defined as

`ij =

{ ∑
k∈Ni

aik i = k

−aik i 6= k
(1)

where aik > 0 if k ∈ Ni and aik = 0 otherwise. It is
assumed that

(A1) the interconnection graph is undirected, static and
connected.

Therefore, by construction, L has a zero row sum, i.e.,
L1N = 0N . Moreover, Assumption A1, ensures that L is
symmetric, has a single zero-eigenvalue and the rest of the
spectrum of L is strictly positive. Thus, rank(L) = N − 1.
Therefore, the vectors belonging to the kernel of L belong
to span{1N}.

Furthermore we assume that
(A2) there is a non-empty set of robots that has direct

access to the desired position of the barycenter of the
formation z` ∈ R2 and the desired orientation, θ`.

Assumption A2 ensures that there exists at least i ∈ N̄ such
that bi > 0. Then, let us define a diagonal matrix B ∈ RN×N
to model the leader-follower interconnections. The following
lemma, which is a special case of Lemma 3 in [17] and
Lemma 1.6 of [2], provides a fundamental property of the
composed Laplacian matrix L` := L + B.

Lemma 1 Consider a non-negative diagonal matrix B :=
diag{bi} ∈ RN×N and suppose that at least one bi is
strictly positive. Assume that A1 holds, then L` := L + B
is symmetric, positive definite and of full rank. �

It is further assumed that the information exchange be-
tween the vehicles is subjected to time-delays that satisfy
the following assumption.
(A3) The communication from the jth to the ith robot is

subject to a variable time-delay denoted Tij(t) which
is bounded by a known upper-bound T ∗ij ≥ 0. Further,
Tij(t) has bounded time-derivatives.

B. Control Objective

The control objective is to design a decentralized con-
troller for a swarm of N nonholonomic vehicles modeled
as differential drive robots, for which Assumptions A1–A3
hold, to solve the following problem:
Leader-Follower Formation Problem. Given a desired
formation pattern, i.e., given δi ∈ R2, a (constant) desired
barycenter formation position z` ∈ R2, and a (constant)
leader orientation θ` ∈ R which is accessible only to some,
but not necessarily to all the robots, design a decentralized
controller that ensures that all the relative Cartesian positions
and orientations of the robots (globally and asymptotically)
converge to each other and to the desired values, i.e., for all
zi ∈ R2 and θi ∈ R

lim
t→∞

[
z̄i(t)
θi(t)

]
=

[
z`
θ`

]
,

where z̄i := zi − δi.

C. Dynamic Model

We assume that for each robot, the geometrical center
and the center of mass are located at the same point zi :=



[xi yi]
>. Then, the corresponding kinematics of the ith-robot

is given by

˙̄zi = ϕivi, (2a)
θ̇i = ωi (2b)

and its dynamics is given by[
v̇i
ω̇i

]
=

[ 1
mi

0

0 1
Ii

]
Miτ i, (3)

where ϕi = [cos(θi) sin(θi)]
>; vi and ωi are the linear

and the angular velocities of the center of mass, respectively;
mi is the mass; Ii is the moment of inertia; ri the radius of
the wheels; and Ri is the distance between point zi and the
wheels. τ i is the control input torque of the left and right

wheels, i.e., τ i = [τil, τir]
>, and Mi = 1

ri

[
1 1
Ri −Ri

]
—see Fig. 1.

A first step in the controller design is to propose the
following inner control-loop

τ i = M−1
i ui =

ri
2

[
1 1

Ri

1 − 1
Ri

] [
uvi
uωi

]
, (4)

where the extra input term ui ∈ R2 will be defined in
the next section. Then, the closed-loop (3) and (4) has the
structure of two second-order mechanical systems, one that
corresponds to the linear-motion dynamics and another to
the angular-motion. That is,

linear motion :


˙̄zi = ϕi(θi)vi

v̇i = − 1

mi
uvi

angular motion :

 θ̇i = ωi

ω̇i = − 1

Ii
uωi

˙̄zi = ϕi(θi)vi (5a)

v̇i = − 1

mi
uvi (5b)

θ̇i = ωi (6a)

ω̇i = − 1

Ii
uωi (6b)

Then, we design control laws for these equations.

III. MAIN RESULT

We solve the previously formulated problem using a
smooth controller that is composed of two parts, one for the
linear motion and another for the angular motion. The linear-
motion control input is designed as a simple proportional-
derivative (PD) controller, given by

uvi = −pvibiϕ>i (z̄i − z̄`)− pviϕ>i ezi − dvivi, (7)

where pvi and dvi > 0 are the proportional and the damping
gains respectively while the gain bi is positive if the leader
(desired) barycenter of the formation, z̄`, is available to the
ith-robot and bi = 0 otherwise. The variable ezi denotes the
ith Cartesian position error, which is defined as

ezi :=
∑
j∈Ni

aij(z̄i − z̄j(t− Tij(t))). (8)

It is to be noted that the proportional terms are also pre-
multiplied by the vector ϕi(θi) to account for the system’s
kinematics.

The angular-motion control input is also of the PD type,
but an extra time-varying input is added to cope with the
nonholonomic constraints1. More precisely, we pose

uωi = −pωibi(θi−θ`)−pωieθi−dωiωi+γi(t, θi, ezi), (9)

in which the orientation consensus error eθi is given by

eθi :=
∑
j∈Ni

aij(θi − θj(t− Tij(t))) (10)

and γi, which is given by

γi(t, θi, ezi) := kγifi(t)ϕ
⊥>
i [bi(z̄i − z̄`) + ezi] , (11)

is added to introduce persistency of excitation to the con-
troller as long as the consensus errors are different from zero
—cf. [18]. To that end, fi(t) is defined as any sufficiently
smooth function such that fi, ḟi, f̈i ∈ L∞, lim

t→∞
fi(t) 6= 0

and lim
t→∞

ḟi(t) 6= 0. Furthermore, the function ϕ⊥i is the

annihilator of ϕi, i.e., ϕ>i ϕ
⊥
i = ϕ⊥>i ϕi = 0, and it is given

by ϕ⊥i = [− sin(θi) cos(θi)]
>. The control gain kγi > 0

and
Our main statement, presented next, is that the Leader-

Follower Formation Problem is solved via the controller
introduced above.

Proposition 1 Suppose that Assumptions A1, A2, and A3
hold for the systems (2)–(4). Then, the controller defined by
(7)–(11) solves the (LF) problem, provided that the damping
gains dvi and dωi satisfy

dvi >
1

2
pvi

∑
j∈Ni

aij

(
βi +

T ∗2ij
βj

)
(12)

dωi >
1

2
pωi

∑
j∈Ni

aij

(
αi +

T ∗2ij
δj

)
(13)

for some αi, βi > 0 for all i ∈ N̄ . �

Proof of Proposition 1. The linear-motion closed-loop
dynamics resulting from using (7) in (5a) and recalling (2a),
yields

Σv


˙̄zi = ϕivi

v̇i = −pvi
mi

[
biϕ
>
i (z̄i − z̄`) +ϕ>i ezi +

dvi
pvi

vi
]
.

(14)
while the closed-loop system corresponding to the angular
motion, results from replacing (9) in (6b) and recalling (2b).
That is

Σω

 θ̇i = ωi

ω̇i = −pωi
Ii

[
bi(θi − θ`) + eθi +

dωi
pωi

ωi −
1

pωi
γi
]

(15)

1The problem under study here is inherently of set-point stabilization,
but nonholonomic systems are not stabilizable to a point via smooth time-
invariant feedback.



The analysis of these sets of equations is divided in two
stages. First, we establish boundedness of all trajectories and
then we show that all error trajectories converge to zero.

Stage 1a) Boundedness of z̄i(t)− z̄j(t) and vi(t): Con-
sider the Lyapunov-Krasovskii functional

V :=
1

2

∑
i∈N̄

bi|z̄i − z̄`|2+

∑
i∈N̄

 mi

2pvi
v2
i +

1

4

∑
j∈Ni

aij |z̄i − z̄j |2

+
1

2βi

∑
j∈Ni

aijT
∗
ij

∫ 0

−T∗
ij

∫ t

t+σ

v2
j (η)dηdσ

 .
(16)

Then, evaluating the total derivative of V along the trajecto-
ries of Σv in (14) yields

V̇ = −
∑
i∈N̄

dvi
pvi

v2
i + ˙̄z

>
i

∑
j∈Ni

aij(z̄i − z̄j(t− Tij(t)))

− 1

2

∑
j∈Ni

aij( ˙̄zi − ˙̄zj)
>(z̄i − z̄j)

− 1

2βi

∑
j∈Ni

aij

(
T ∗2ij v

2
j − T ∗ij

∫ t

t−T∗
ij

v2
j (σ)dσ

) .
= −

∑
i∈N̄

dvi
pvi

v2
i +

∑
j∈Ni

aij ˙̄z
>
i

∫ t

t−Tij(t)

˙̄zj(σ)dσ

− 1

2βi

∑
j∈Ni

aij

(
T ∗2ij v

2
j − T ∗ij

∫ t

t−T∗
ij

v2
j (σ)dσ

) .
(17)

where, to obtain the last equation, we used the fact that
1

2

∑
i∈N̄

∑
j∈Ni

aij( ˙̄zi− ˙̄zj)
>(z̄i−z̄j) =

∑
i∈N̄

∑
j∈Ni

aij ˙̄z
>
i (z̄i−z̄j).

The latter holds under Assumption A1 —cf. [2, Lemma 6.1]
and since

z̄j − z̄j(t− Tij(t)) =

∫ t

t−Tij(t)

˙̄zj(σ)dσ.

Next, we apply Young’s and Cauchy-Schwarz’ inequalities
on the second right-hand-term of (17) to obtain

− ˙̄z
>
i

∫ t

t−Tij(t)

˙̄zj(σ)dσ ≤βi
2
| ˙̄zi|2 +

1

2βi

∣∣∣∣∣
∫ t

t−Tij(t)

˙̄zj(σ)dσ

∣∣∣∣∣
2

≤βi
2
| ˙̄zi|2 +

T ∗ij
2βi

∫ t

t−T∗
ij

| ˙̄zj(σ)|2dσ,

for any βi > 0. Now, since ϕ>i ϕi = 1 then | ˙̄zi|2 = v2
i .

Thus,

V̇ ≤ −
∑
i∈N̄

(dvi
pvi
− βi

2
lii

)
v2
i −

∑
j∈Ni

aij
T ∗2ij
2βi

v2
j

 ,

where lii :=
∑
j∈Ni

aij is the ith-diagonal element of the

Laplacian matrix.
Following [19] and defining s(v2

i ) := col
[
v2

1 , ..., v
2
N

]
and

Ψ =


dv1

pv1
− β1

2 l11 −T
∗2
21

2β1
a12 . . . −T

∗2
N1

2β1
a1N

−T
∗2
12

2β2
a21

dv2

pv2
− β2

2 l22 . . . −T
∗2
N2

2β2
a2N

...
...

. . .
...

−T∗2
1N

2βN
aN1 −T∗2

2N

2βN
aN2 . . . dvN

pvN
− βN

2 lNN

 ,

we can write V̇ ≤ −1>NΨs(v2
i ) or, equivalently,

V̇ ≤ −
∑
i∈N̄

dvi
pvi
−
∑
j∈Ni

aij

(
βi
2

+
T ∗2ij
2βj

) v2
i .

Setting dvi such that (12) holds, it follows that there exists
λi > 0 such that V̇ ≤ −

∑
i∈N̄

λiv
2
i . Thus vi ∈ L2. Further,

since V is positive definite and radially unbounded with
regards to vi and z̄i−z̄j , it follows that vi(t) and z̄i(t)−z̄j(t)
are bounded. Furthermore, since ϕi is bounded for all θi,
from (14), it follows that v̇i is also bounded. In addition,
boundedness of ezi is established with the fact that vi ∈ L2

and z̄i − z̄j ∈ L∞.
Stage 1b) Boundedness of ωi(t) and eθi(t): In order to

establish boundedness of ωi we first consider Σω subject
to γi = 0 and the Lyapunov-Krasovskii functional

W :=
1

2

∑
i∈N̄

bi(θi − θ`)2+

∑
i∈N̄

 Ii
2pωi

ω2
i +

1

4

∑
j∈Ni

aij(θi − θj)2

+
1

2αi

∑
j∈Ni

aijT
∗
ij

∫ 0

−T∗
ij

∫ t

t+σ

ω2
j (η)dηdσ

 ,
(18)

where αi > 0. Proceeding like for the computation of the
bound on V̇ , we obtain

Ẇ ≤ −
∑
i∈N̄

(dωi
pωi
− αi

2
lii

)
ω2
i −

∑
j∈Ni

aij
T ∗2ij
2αi

ω2
j

 ,
hence,

Ẇ ≤ −
∑
i∈N̄

dωi
pωi
−
∑
j∈Ni

aij

(
αi
2

+
T ∗2ij
2δj

)ω2
i .

Then, setting dωi such that (13) holds, it follows that there
exists λi > 0 such that Ẇ ≤ −

∑
i∈N̄

λiω
2
i . Thus ωi ∈ L2.

Further, since W is positive definite and radially unbounded
with regards to ωi and θi−θj , then these signals are bounded.
Which, in turn, imply that ω̇i ∈ L∞. Invoking Barbălat’s
Lemma it is established that lim

t→∞
ωi(t) = 0. This implies

that

lim
t→∞

∫ t

0

ω̇i(s)ds = ωi(0).



On the other hand, differentiating on both sides of the
second equation in (15) (with γi = 0) we see that ω̈i is
bounded so ω̇i is uniformly continuous. It follows, after
Barbălat’s Lemma, that ω̇i → 0.

Remark 2 Similar steps lead to concluding that v̇i → 0 too.
Now, once more from (15), it follows that

lim
t→∞

bi(θi(t)− θ`) +
∑
j∈Ni

aij (θi(t)− θj(t− Tij(t))) = 0,

Considering all the N elements we have that

lim
t→∞

B(θ(t)− 1N ⊗ θ`) + Lθ(t) = 0,

and because L1N = 0 then lim
t→∞

L`(θ(t) − 1N ⊗ θ`) = 0,
where L` is defined in Lemma 1. Further, since A2 ensures,
by Lemma 1, that L` is of full-rank then lim

t→∞
θ(t) = 1N⊗θ`.

If γ 6≡ 0, because γi ∈ L∞ and Σω is an asymptotically
stable linear time-varying system with uniformly bounded
time-delays then ω̇i, ωi ∈ L∞, by Proposition 3 in [20].
Thus eθi and θi − θ` are also bounded. This finishes Stage
1) of the proof.

Stage 2) Convergence. We have vi ∈ L2 ∩ L∞ and v̇i ∈
L∞. This implies, by Barbălat’s Lemma, that vi → 0 and,
in turn, that v̇i → 0. Therefore, from the second equation in
(14), we conclude that

lim
t→∞

ϕi(t)
>[z̄i(t)− z̄`(t) + ezi(t)

]
= 0.

However, note that ϕ>i
[
z̄i−z̄`+ezi

]
= 0 has many solutions

other than
[
z̄i − z̄` + ezi

]
= 0. Therefore, it must also be

established that

lim
t→∞

ϕi(t)
>⊥[z̄i(t)− z̄`(t) + ezi(t)

]
= 0

in order to conclude that

lim
t→∞

(L` ⊗ I2)(z̄(t)− 1N ⊗ z̄`) = 0.

This follows from applying successively Barbălat’s Lemma
to conclude that ḟ(t)ϕi(t)

>⊥[z̄i(t) − z̄`(t) + ezi(t)
]
→ 0

and using the assumption that ḟ(t) 6→ 0. The detail of these
lengthy computations is omitted due to space constraints.

IV. SIMULATION RESULTS

To illustrate the performance of the controllers proposed
above, numerical simulations were performed in Simulink®

of Matlab®. The case-study consists in a network of six
differential-drive robots affected by time-varying communi-
cation delays (all considered equal, for simplicity). These
are modelled by a Gaussian distribution function with a
mean of 0.3s and a variance of 0.03s. The robots are
required to acquire an hexagonal formation with center at the
coordinates (x`, y`) = (1, 1) and common leader orientation
of π/3 rad. The initial velocities are all set to zero while
the initial positions are provided in Table I. In the latter, the
offsets (δxi, δyi) are also showed.

The paths described by the robots on the plane are
illustrated in Figure 2. It may be appreciated there in that

ROBOT 1 2 3 4 5 6

xi(0) 5 7 7 3 1 1
yi(0) 2 5.5 3.5 2 3.5 5.5
θi(0) 0 −π/4 −π/2 π/4 π/2 π/4

δxi 2 1 -1 -2 -1 1
δyi 0 2 2 0 -2 -2

TABLE I
INITIAL POSITIONS AND RELATIVE DESIRED TRANSLATION OF THE

iTH-ROBOT WITH REGARDS TO THE BARYCENTER.

the formation goal is achieved. The final orientations of the
robots are depicted by pointing arrows, making evident as
well, the achievement of the consensus-in-orientation goal.
Note that all orientations match the leader’s θ` = π/3.

0 2 4 6
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Fig. 2. Robots’ paths on the plane, achieving consensus to the leader’s
position (1, 1)

The control gains were set to dvi = 800, pvi = 300, bi =
1, dωi = 600, pωi = 300, and kγi = 200 while the function
f(t) was defined to be periodic, as f(t) := 7 sin(0.2t). It is
to be noted that f does not need to be periodic, however,
this is ab ad hoc manner to satisfy the condition that ḟ 6→ 0.
In general, f is chosen so that ḟ be persistently exciting.
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Fig. 3. Relative abscissae coordinates x̄i against time

In Figures 3-5 are depicted the system’s responses regard-



ing the Cartesian coordinate errors x̄i and ȳi as well as the
robots’ individual orientations. It may be appreciated from
these curves that not only all coordinates converge to the
leader’s position and orientation, but during the transients,
they all converge to each other, hence achieving consensus.
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Fig. 4. Relative ordinate coordinates ȳi against time
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Fig. 5. Orientations of the robots achieving consensus and converging to
π/3rad.

V. CONCLUDING REMARKS

We presented a controller for consensus formation and set-
point stabilization of a group of robots communicating under
the effect of time-varying delays. Contrary to trajectory-
tracking formation controllers for nonholonomic vehicles,
where the desired trajectory is restricted to be a solution
of the nonholonomic restriction, the difficulty behind the
solution of formation-consensus problems resides in the
fact that the leader’s position is arbitrary. This problem is
sorted out using a time-varying controller with persistency
of excitation. Although this condition is necessary in the
present setting, it has the disadvantage that the response
may be affected by an undesirable oscillatory behaviour.
Therefore, a careful controller tunning is needed. On the

other hand, the controller that we presented is entirely
decentralized and ensures consensus and stabilization both
in the Cartesian positions and orientations. Further research
is aimed at relaxing the assumption that the whole state,
notably the velocities, are available from measurement.

REFERENCES

[1] W. Ren and R. W. Beard, Distributed consensus in multivehicle
cooperative control. Springer verlag, 2005.

[2] Y. Cao and W. Ren, Distributed Coordination of Multi-agent Net-
works: Emergent Problems, Models, and Issues. Springer-Verlag,
2011.

[3] H. Wang, “Consensus of networked mechanical systems with com-
munication delays: A unified framework,” IEEE Transactions on
Automatic Control, vol. 59, no. 6, pp. 1571–1576, 2014.

[4] T. Hatanaka, N. Chopra, M. Fujita, and M. Spong, Passivity-Based
Control and Estimation in Networked Robotics. Communications and
Control Engineering, Springer, 2015.
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