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Abstract. This work describes the implementation of a deterministic-like straight-line transport routine
inside the TRIPOLI-4® Monte Carlo code, aimed at developing a hybrid estimator that can speed-up
the MC calculation while retaining its precision. The algorithm is based on the exponential track length
estimator or eTLE, a next-event estimator that has already been investigated for medical applications. In
this implementation, the eTLE is paired with a forced detection algorithm which is shown to drastically
improve its performance. We describe the implementation of the method in TRIPOLI-4®, then we present
the �rst results obtained over some test cases and compare them with the classic track-length estimator
already implemented in TRIPOLI-4®.

1 Introduction

When planning the decommissioning and dismantling of a nuclear facility, dose rate estimation constitutes a crucial
step to de�ne operational margins and to ensure that safety limits are respected. To this aim, one can distinguish two
main families of computer codes:

� The deterministic ones, like RANKERN [1] and CEA's NARMER [2], are often based on Point-Kernel Integration
(PKI) method, with build-up and/or albedo factors. PKI is a macroscopic approach that consists in considering
any radiation source as an ensemble of independent beam-like point sources. These straight beams of radiation are
attenuated through matter by the means of macroscopic coe�cients, such as the linear attenuation coe�cient. The
build-up and albedo factors are correction factors used to estimate the e�ect of scattering in matter and surface
re�ection, respectively.

� The stochastic ones, like MCNP [3], GEANT4 [4] and CEA's TRIPOLI-4® [5], are based on Monte Carlo (MC)
method. This technique is a microscopic approach that can numerically evaluate arbitrarily complex stochastic
processes by starting from basic known probability distributions. In the particle transport �eld, these distributions
are based on isotopic data and the stochastic process is the random-walk of single particles, mainly photons in the
case of dismantling applications.

Deterministic PKI-based codes are inherently fast from a computational point of view, as they calculate the dose
purely by analytical means, by exponentially attenuating gammas on a straight-line path and integrating over the
radiation source volume. This allows the PKI method to be used in real-time dose computation tools like Visiplan [6]
and Mercurad [7], and opens the door to virtual reality implementation [8]. However, the speed of the PKI method
comes at the cost of accuracy; the analytical dose calculations are based on several assumptions and simpli�cations
which may break down in speci�c situations, such as scattering-dominated problems, or in the case of very short
distance between radiation source and detector [9].

In contrast, MC codes enable a precise estimation of gamma dose rate and can converge to any user-speci�ed level
of con�dence. However, the determination of local equivalent dose rate needs a very large number of gamma histories to
achieve reliable results, which lead to long computation times. For large geometries (i.e. reactor-level calculations) the
computational burden becomes unfeasible for practical use. Luckily, there exists a large number of options to speed up
any MC calculation, in the form of variance reduction techniques (VRTs) [10]. These techniques consist in modifying
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the analog random sampling procedure to focus computational e�orts on the simulation of important particles, i.e.

particles that are expected to contribute more to the solution [11].

Alongside VRTs, another way of enhancing the e�ciency of a MC simulation is the correct choice of the estimator.
It has actually been shown [12] that the appropriate choice of an estimator can dramatically reduce the computation
time needed to obtain a su�ciently small con�dence interval about the MC estimate. The most basic estimator in
MC simulations is the so-called �collision estimator�, which simply estimates the particle �ux in a volume by tallying
all the interactions taking place inside the volume and weighting them by the inverse of the total macroscopic cross
section. This estimator is simple and e�ective enough to be implemented in virtually every MC code. However, since it
is intrinsically related to the number of collisions taking place in the estimation volume, its e�ciency drops when it is
used in low-density regions or in optically thin regions. In these instances, the collision estimator can produce unreliable
estimates with very high variance. Another class of estimators, called track-length estimators (TLEs) can e�ciently
tackle such problems. TLEs are based on the equivalence between particle �uence and total particle path length per
unit volume [13]. The gain in e�ciency comes from the fact that, for this class of estimators, every particle trajectory
intersecting the estimation volume contributes to the tally; it is easy to see how, for the same number of histories
generated, the TLE will always have a number of contributions larger than or equal to the collision estimator. That is
why this estimator, in its most simple implementation (called linear TLE or just TLE for short), is nowadays largely
used in MC codes [14], and has shown good performance for low-energy applications in medical �elds [15] and for
reaction rate estimations in the nuclear �eld [16]. Starting from the classic formulation of the linear TLE, it is possible to
derive a more sophisticated estimator called exponential track-length estimator or eTLE. The main di�erence between
TLE and eTLE is that the latter replaces a stochastic decision, i.e. the free �ight of the particle, by its expected
outcome averaged over the probability distribution of particle �ight lengths. Such replacement of a random decision
by its expected outcome is a frequently used VRT [17]. In the eTLE, after each collision the particle is analytically
transported in a straight line up until the simulation boundary, while being exponentially attenuated. It can therefore
be viewed as a hybrid transport method, combining stochastic MC and deterministic straight-line transport. Starting
from the idea that MC calculations of dose deposition could be accelerated by deterministic transport of photons, a
new hybrid approach was developed by Freud et al. [18,19]. In this approach, a forced detection [20] algorithm was
added to the method, transporting the photons in prede�ned directions to maximize e�ciency. The proposed method,
even if just in a very preliminary way, showed good results when compared to the classical MC approach with TLE.
In a previous work [21], we described the �rst implementation of eTLE in TRIPOLI-4® for dismantling purposes.
This �rst study highlighted the acceleration capabilities of the new estimator, which provided consistent results by
reducing computation time by more than a half in the best cases, when compared to the classic TLE. In the same
study the eTLE was also coupled with two of TRIPOLI-4®'s variance reduction techniques, the exponential transform
and the advanced multilevel splitting, showing encouraging results. In this paper, we couple the eTLE with a forced
detection (FD) algorithm that automatically sends particles towards detectors, drastically improving the e�ciency of
the estimator in dealing with localized dose deposition calculations.

This process of sending a particle towards a detector to improve the simulation's e�ciency shares some important
similarities with some other algorithms employed in particle transport; notably, the next-event point estimator [22] on
one side, and algorithms like DXTRAN [23] or the one developed by Tickner [24] on the other. However, the eTLE with
FD is fundamentally di�erent from these approaches. The next-event point estimator, also present in TRIPOLI-4®
with the name FLUX_PT, is a well known estimator in the �eld of MC simulations. As the name implies, it allows
to estimate quantities in a point; it also involves deterministic transport and exponential attenuation of the particle's
weight. In practice, it can be viewed as a limit version of the eTLE with FD, where the target detector becomes
in�nitely small, converging to a single point. As explained by Cramer in [22], this change from volume to point leads
to the appearance, in the estimator, of a 1/R² term, where R is the distance between the point of collision and the
point of detection. This term causes the point estimator's variance to drastically diverge whenever a collision takes
place very close to the point of detection, and it is the reason why every MC implementation of next-event point
estimation usually includes an �exclusion sphere� inside of which any contribution to the estimator is not taken into
account. Therefore, the main di�erence between the eTLE with FD and a point estimator is that the former does
not require any exclusion sphere. As for DXTRAN [23] and DXTRAN-like transport algorithms [24], the di�erence
is more related to the mechanics of the particle. In these algorithms, the particle is split at every interaction, and
deterministically transported to the surface of some element: a sphere in the case of DXTRAN, any convex volume
in Tickner's implementation. Then, the transported particle is left free to continue its simulation, until it is absorbed
or leaves the simulation domain. Therefore, the transported particle can, in principle, interact many times inside the
volume of interest before ending its simulation history. This in turn means that the �mother� particle has to be killed
if it tries to enter the volume of interest, as its interactions have already been simulated by the split particle. The
fundamental di�erence between this approach and the eTLE with FD is that, in the latter, there is no actual particle
being transported towards the detection volume, but rather a �virtual� particle representing a single contribution of
the mother particle to the score. This �virtual� particle gives one and only one contribution, and then it is killed, as
will be better detailed in Section 2.2. Moreover, the �real� particle only serves as a mean to simulate collision points,



Eur. Phys. J. Plus _#####################_ ####_ Page 3 of 12

but it never registers any score: all the contributions to the eTLE with FD come from the �virtual� particles. This is
also why, in our method, there is no need to kill the �real� particle if it tries to enter the detection volume.

In this paper, the new eTLE with forced detection is tested on a series of simpli�ed scenarios representative of
decommissioning con�gurations. Its performances are compared with the simpler version of the eTLE without forced
detection and with the legacy TLE, as implemented in TRIPOLI-4®.

2 Methodology

2.1 Theoretical basis of eTLE

The idea behind the family of TLEs is the following: all the particle �ights that intersect the scoring volume (see �g. 1)
contribute to the estimate. If we compare this approach to the collision estimator, that only tallies the interactions
happening inside the scoring volume, any type of TLE can in principle lower the variance of the simulation, as this
last set of events is always smaller than, or equal to, the former. Depending on the implementation, several types of
track-length estimators exist; for the purpose of this discussion, we shall concentrate on the estimators for the particle
�ux.

In the linear formulation of TLE, the contribution of a �ight is proportional to the length of the �ight segment
inside the scoring volume V . This �uence estimator would give a non-zero value after collisions 2, 3 and 4 in �g. 1a,
whereas a collision estimator would only register collision 4. More speci�cally, the contribution to volume V given to
the linear TLE by a �ight from rj to rj+1 is equal to:

KTLE
V (rj , rj+1) = w

LV (rj , rj+1)

V
, (1)

where w is the weight of the particle and LV (rj , rj+1) is the straight-line distance traveled by the particle inside the
scoring volume between the two successive interactions rj and rj+1; more rigorously, we can write:

LV (rj , rj+1) =

∫ |rj+1−rj |

0

ΠV (rj + sΩ) ds (2)

where Ω is the direction of the vector pointing from rj to rj+1 and ΠV (r) is the characteristic function of the scoring
volume V (which is equal to 1 if the point r is inside the volume and equal to 0 otherwise).

We can derive the eTLE from its linear correspondent by replacing the estimator in Eq. (1) with its average value
over all possible �ights lengths emerging from collision j in the direction Ω. As such, the eTLE estimator is still a
�ight-based estimator (i.e. it contributes to the score every time a particle performs a �ight), but its value does not
depend on the end point of the �ight rj+1 (only on the direction Ω). According to the de�nition, for the eTLE we
can write:

KeTLE
V (rj ,Ω) =

∫ ∞
0

KTLE(rj , rj + sΩ) exp

(
−
∫ s

0

Σt(rj + tΩ) dt

)
ds, (3)

where Σt(r) is the total macroscopic cross section at position r. If the scoring volume V is uniform (Σt(r) constant
inside the detector) and convex, then the eTLE estimator can be rewritten in the simpler form

KeTLE
V (rj ,Ω) =

w

ΣtV
exp

(
−
∫ sV

0

Σt(rj + sΩ) ds

)
[1− exp (−ΣtLV (rj ,∞))] ; (4)

where sV is the distance from rj to the scoring volume V along direction Ω, and LV (rj ,∞) is the length of the
chord intersected by V after collision in rj along direction Ω, the expression of which can be obtained by Eq. (2) by
extending to in�nity the distance between rj and rj+1:

LV (rj ,∞) =

∫ ∞
0

ΠV (rj + sΩ) ds. (5)

The e�ciency of this method can be illustrated by �g. 1b, where we can see that the particle is not even required to
cross the scoring volume to contribute to the score.

An additional improvement can be brought by observing that the eTLE estimator can only contribute to the score
if the line of �ight intersects the scoring volume. By transforming the eTLE estimator in a collision-based estimator, we
can sample virtual collisions directed towards the detection volume and weight them by their probability of occurrence.
Fig. 1c shows the additional improvement in e�ciency obtained by adding a forced detection (FD) algorithm to the
eTLE. Assuming the detection volume is a sphere, we sample a uniformly random direction Ω under the constraint



####_ Page 4 of 12 Eur. Phys. J. Plus _#####################_

that the half line from the collision point r1 directed along Ω intersects the sphere. We can write the score for the
eTLE with FD as:

KeTLE,FD

V (r1,Ω) =
w

ΣtV
exp

(
−
∫ sV

0

Σt(r1 + s′Ω) ds′
)
(1− exp (−ΣtL)) p (r1,Ω)∆Ω (6)

where p(r1,Ω) is the probability density, per unit solid angle, of scattering in the direction Ω after an interaction at
r1, and ∆Ω is the solid angle of the scoring volume seen from the interaction point. If the detection volume is not
spherical, the solid angle can be hard to calculate; however, the problem is easily solved by de�ning a bounding sphere
surrounding the volume and then scoring only the particles that e�ectively cross the volume, as shown in �g. 1c. In
this case, the solid angle of the bounding sphere can be easily calculated by knowing the sphere radius R and the
distance D between the interaction point and the center of the sphere:

∆Ω = 2π

(
1−
√
D2 −R2

D2

)
(7)

Fig. 1. Visual representation of di�erent track-length estimators: a) linear TLE; b) exponential TLE or eTLE; c) eTLE with
forced detection algorithm

2.2 eTLE implementation in TRIPOLI-4®

We will now describe how the eTLE with FD algorithm is implemented in TRIPOLI-4®. The algorithm takes place
immediately after the calculation of the random free �ight of the particle, when the particle's interaction has not yet
been sampled. Since the estimator acts on a �virtual� particle trajectory, the �rst step consists in creating a �ctive
particle, which retains the original particle's direction of motion, energy, and simulation weight. The �ctive particle
immediately undergoes a �ctive collision which sends it towards the detector volume, and is then killed after the score.
The detailed implementation (see also �g. 2) is as follows:

1. First, the user associates a bounding sphere to each detection volume. The sphere must fully enclose the detection
volume while still being as small as possible for maximum e�ciency.

2. If the simulation has more than one detector, we start a loop over all of them.
3. We create a �virtual� particle as an exact copy of the original particle.
4. Based on the bounding radius and the distance between the interaction point and the sphere center, we calculate

the solid angle subtended by the sphere, ∆Ω. Then, we sample a random direction uniformly distributed within
∆Ω.
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5. The code samples a �virtual� collision for the �ctive particle, adjusting its weight (for implicit capture and for
the scattering probability, through the factor p(rj ,Ω)∆Ω) and assigning the direction determined at the previous
step, e�ectively directing the particle towards the bounding sphere. The energy of the �ctive particle is sampled
by taking into account the di�erential cross-section of the collision, according to the direction randomly selected
at point 4. This ensures that the physics of the simulation remains unbiased.

6. We calculate the straight-line distance dj between the virtual particle and the closest volume frontier.
7. The virtual particle is displaced to its new position on the volume frontier; a value kj = wj−1(1− e−Σtdj )/Σt

is stored in memory for the volume just crossed. Here, wj−1 is the weight of the virtual particle before the j-th
displacement and Σt is the total macroscopic cross section in the traversed volume. Therefore wj1(1 − e−Σtdj )
represents the weight loss due to attenuation, and 1/Σt is the expected value of the particle's free �ight in the
medium.

8. The weight of the particle wj is updated: wj = wj−1e
−Σtdj .

9. We go back to point 6 and repeat the process until the virtual particle reaches a domain boundary (i.e., until it
leaves the geometric domain of the simulation).

10. If the particle has crossed the detector volume, we register the score calculated at point 7. Then, we kill the particle
and go back to point 2, selecting the next detector in the list.

11. Finally, the virtual particle is deleted and all transport quantities are reinitialized, before going back to the transport
of the �real� particle.

At the end of the process, the quantity searched can be calculated for the detector volume starting from kj . For
example, if the quantity under consideration is the absorbed dose in the volume Dj,V , the result is given by:

Dj,V =
kj Ej

µen

ρ

V
(8)

where Ej is the photon's energy, µen/ρ is the mass energy absorption coe�cient of the material, and V is the detector's
volume.

2.3 Simulation setup and test cases

This section presents the various geometrical con�gurations that have been tested to estimate the performance of eTLE,
and the general setup of the MC simulations. For each con�guration, the estimator was tested with and without the
forced detection algorithm and compared to the well validated linear TLE of TRIPOLI-4®. In all simulations, 60Co
is used as a photon source, emitting photons at energies of 1.33 MeV and 1.17 MeV with an intensity of 1.59x1010

photons/s. The calculated quantity is the KERMA rate, which is equal to the absorbed dose rate in conditions of
charged particle equilibrium. Electron and positron transport is deactivated, therefore all energy related to these
particles is assumed to be deposited locally. The con�gurations studied are fairly simple and only include the following
four materials, all assumed to be at room temperature (weight percentages are indicated):

� Air: 77% N, 23% O, 0.00128 g/cm3

� Concrete: 54% O, 34% Si, 4% Ca, 3.5% Al, 1.5% Fe, 1.5% H, 1.5% Na, 2.3 g/cm3

� Lead: 100% Pb, 11.35 g/cm3

� Iron: 100% Fe, 7.85 g/cm3

Batches of 10000 photons are used. The total number of batches for each simulation may vary, as the stopping criterion
is de�ned as a limit on the maximum statistical uncertainty σ over all detectors, which will be detailed below for every
con�guration. The machine used for all simulations is equipped with two Intel Xeon E5-2620v3 processors. A �gure
of merit (FOM) is de�ned for each detector volume as:

FOM =
1

t σ2
(9)

where t is the total simulation time and σ2 is the variance of the dose rate estimated in the detector, expressed in
percent. Additional geometrical and simulation details for each con�guration are given in the following.

2.3.1 Back-scattering con�guration

The �rst con�guration reproduces a set of shielding benchmarks originally performed by Odano et al. [25]. The back-
scattering con�guration (�g. 3a) assesses the performance of an estimator concerning the phenomenon of photon
back-scattering, or re�ection, on concrete. The direct path between the 60Co point-wise source and the detector
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Fig. 2. Flowchart of the eTLE algorithm with forced detection; w is the particle's weight, E is its energy and Ω is its direction.

volumes is shielded by a lead slab of 10 × 40 × 5 cm3. A concrete slab measuring 100 × 100 × 20 cm3 is placed at
a distance of 50 cm from the photon source, allowing photons to scatter towards the detectors bypassing the shield.
The �ve detectors are modeled as 1 cm radius spheres spaced 5 cm from each other. The maximum target σ for the
simulation is set at 5%.

2.3.2 Slant penetration con�guration

The slant penetration con�guration (�g. 3b) determines the estimator response to photons traveling inside an atten-
uating medium with increasing slant angles. The attenuating medium is a 100 × 200 × 20 cm3 concrete slab placed
between photon source and detectors at a distance of 1 cm from either side. The �rst detector is placed vertically
above the source; the remaining ten are spaced 10 cm from each other, creating increasing slant angles with respect
to the source, up to an angle of about 78◦. The detectors are modeled as 1 cm radius spheres. The maximum target
σ for the simulation is set at 5%.
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2.3.3 Streaming duct con�guration

The streaming duct con�guration (�g. 4a) tests the performance of the estimator in the case of a streaming problem,
i.e. an empty tube traversing a scattering medium thus creating a preferential way for particle transport. The point-
wise isotropic 60Co source is placed in a lead collimator which e�ectively turns it into a conical-emitting source. A
concrete structure with an empty steel tube traversing it is placed at a distance of two meters from the source with
a 45◦ angle. Eighteen 1 cm radius spherical detectors are placed along the duct at six di�erent axial positions. Each
axial position has three detectors, spaced 7.5 cm from each other. The maximum target σ for the simulation is set at
5%.

Fig. 3. Geometry of the back-scattering (a) and slant penetration (b) con�gurations - Red points represent the detector
locations, red lines represent some of the possible photon paths.

2.3.4 Bunker con�guration

The bunker con�guration (�g. 4b) aims at condensing all the relevant ways of photon transport (scattering, penetration,
streaming) in a uni�ed and simple geometrical setup. It represents a typical shielding problem, with a photon source
placed in an empty room with scattering concrete walls and a highly-absorbing lead shield partially covering the
detector. The bunker's internal dimensions are 1 × 1 × 1 m3, with concrete walls measuring 20 cm in thickness; the
detector volume is a 10 cm radius sphere and the lead shield, placed at 50 cm from the source, varies in height and
in depth. A total of six con�gurations were studied, with di�erent shield dimensions as described in table 1. The
maximum target σ for the simulation is set at 1%.

Table 1. Shield height (h) and depth (d) variation for bunker con�guration

Name h (cm) d (cm)

R1 50 10
R2 80 10
R3 100 10
R4 50 20
R5 80 20
R6 100 20

3 Results

3.1 Validation

This step serves to ensure that the new estimator converges to the same results as the classic TLE already implemented
in TRIPOLI-4®. The dose rate computed by eTLE with and without the FD algorithm is compared with the dose rate
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Fig. 4. Geometry of the streaming duct (a) and bunker (b) con�gurations - Red points represent the detector locations, red
lines represent some of the possible photon paths.

obtained with the TLE. Fig. 5 shows the ratio between the two estimates, with tolerance margins of ±2σ highlighted
on the plots. The tolerance was chosen according to the central limit theorem: an interval of ±2σ includes the exact
simulation result with a probability of 95.45% Each point on the plots shows the dose rate of a single detector, with
the exception of the streaming duct case, where results for each triplet of detectors occupying the same axial position
were averaged to improve legibility. In general, we note a very good accordance with the TLE results: all results fall
inside the error margin, if we consider their relative uncertainty. Both versions of the eTLE, with and without FD,
are therefore validated.

Fig. 5. Validation of the estimator over all tested con�gurations. The y axis shows the ratio between the equivalent dose rate
calculated with the eTLE estimator (with and without forced detection) and the one calculated with TRIPOLI-4®'s TLE
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3.2 Performance of eTLE

To assess the performance of the new estimator, we compare in �g. 6 the FOM of the simulations with the eTLE
to the FOM of the simulations performed with the normal track-length estimator. Therefore, a ratio higher than 1
means that the new exponential estimator performs better than the classic linear one.

In the back-scattering con�guration (�g. 6c) the eTLE with FD attains outstanding performances, with acceleration
factors up to 2 × 104. This is an enormous improvement with respect to the normal eTLE, which has acceleration
ratios around 1.2 for this con�guration.

In the bunker con�guration (�g. 6d and 6e), all simulations are accelerated by the eTLE with and without FD.
Speci�cally, with the FD algorithm we reach factors of almost 100, while the normal eTLE had a factor of 2 in the
best case.

Results are more varied in the slant penetration (6a) and streaming con�gurations (6b). In the slant penetration
setup, we see that the eTLE without FD is able to uniformly accelerate the results over all the detectors, with
acceleration ratios of about 2. With the FD algorithm, the estimator shows increasingly good performances as we move
further from the source, with acceleration ratios ranging from lower than 1 (which indicates a drop in performance with
respect to the TLE) to around 10. We can �nd the same behavior in the streaming con�guration, with the estimator
failing to accelerate the convergence over the �rst two detectors and progressively increasing its performances as we
move to the farthest detectors, with ratios close to 30. This is also the only con�guration where the eTLE without
FD fails to accelerate the convergence.

Fig. 6. Performance of the estimator over all tested con�gurations. The y axis shows the ratio between the �gure of merit of
the eTLE estimator (with and without forced detection) and the �gure of merit of TRIPOLI-4®'s TLE

An explanation for this behavior might be found in the fact that having to simulate and transport virtual particles
adds a certain amount of overhead to the transport algorithm. To generate a single particle history, the eTLE with FD
requires the largest amount of time (which increases with the total number of detectors), followed by the normal eTLE
and then by the classic TLE. This of course means that, given a certain amount of computation time, the simulation
with the TLE will generate a larger amount of particle histories than the one using the eTLE. Therefore, if a detector
is close to the source and easily reached by the particles, convergence with the TLE will be quicker.

As we mentioned before, in the case of multiple detectors, the current implementation of the FD algorithm sends
one virtual particle to each of the detectors before restarting the original particle transport. Intuitively, this implies
that the algorithm's e�ciency is inversely proportional to the number of detectors in the simulation. Therefore, to
try and improve the estimator's performance, we ran an additional set of simulations on both the slant penetration
and the streaming duct con�gurations. In this case, only one detector was active, which means that a total of 22
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simulations were run in the slant penetration case (11 with the TLE, 11 with the eTLE) and 12 simulations were run
in the streaming case (6 with the TLE, 6 with the eTLE). Results of this �single detector� simulations are reported
in �g. 7. As we can see from the plots, the estimator performance is drastically improved when used with only one
detector, with the e�ciency consistently gaining one order of magnitude with respect to the multiple-detector case.
We can still see the same behavior related to the detector's distance from the source: for the farthest detectors, we
register acceleration ratios of around 500 for the slant penetration case and more than 600 for the streaming duct.

Fig. 7. Validation and performance of the estimator in single-detector simulations.

4 Conclusions

This paper provides a closer look at the eTLE recently implemented in TRIPOLI-4®, with a particular focus on its
use with a forced detection algorithm. The new estimator is validated, as it shows good statistical agreement with
the results of the classic TLE of TRIPOLI-4®. Moreover, the estimator shows excellent acceleration capabilities when
dealing with photon transport in void and scattering-intensive environments, with acceleration factors reaching up
to 104. The estimator shows the best performance when used with few detectors, especially if they are su�ciently
far from the photon source. These �rst results are encouraging and open the way to future applications of the new
estimator. Studies on the application of eTLE to neutron transport as well as photons are already being conducted,
as well as a new mesh-scoring implementation which could signi�cantly expand the estimator's domain of application.

References

1. P.C. Miller. RANKERN - a point kernel integration code for complicated geometry problems. Japan Atomic Energy Research
Inst, Japan, 1983. INIS Reference Number: 16031167.

2. Thierry Visonneau, Laurence Pangault, Fadhel Malouch, Fausto Malvagi, and Florence Dolci. NARMER-1: a photon
point-kernel code with build-up factors. EPJ Web of Conferences, 153:06028, 2017.

3. Christopher John Werner, Je�rey S. Bull, C. J. Solomon, Forrest B. Brown, Gregg Walter McKinney, Michael Evan Ris-
ing, David A. Dixon, Roger Lee Martz, Henry G. Hughes, Lawrence James Cox, Anthony J. Zukaitis, J. C. Armstrong,
Robert Arthur Forster, and Laura Casswell. MCNP Version 6.2 Release Notes. Technical Report LA-UR�18-20808, 1419730,
February 2018.



Eur. Phys. J. Plus _#####################_ ####_ Page 11 of 12

4. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand,
F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek,
G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Fergu-
son, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Ca-
denas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger,
R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach,
N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov,
H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire,
E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen,
T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfei�er, M. G. Pia, F. Ranjard,
A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith,
N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott,
H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams,
D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche. Geant4�a simulation toolkit. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250�303, July 2003.
5. E. Brun, F. Damian, C. M. Diop, E. Dumonteil, F. X. Hugot, C. Jouanne, Y. K. Lee, F. Malvagi, A. Mazzolo, O. Petit,

J. C. Trama, T. Visonneau, and A. Zoia. TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code. Annals of
Nuclear Energy, 82:151�160, August 2015.

6. F Vermeersch and C Van Bosstraeten. Development of the VISIPLAN ALARA planning tool. In Proceeding of the

International Conference on Topical issues in Nuclear Radiation and Radioactive Waste Safety, page 6, Vienna, Austria,
September 1998.

7. Canberra Industries. MERCURAD - Dose Rate Calculation Software, User's Manual. Technical Report DEX-DT-61316,
2003.

8. I. Sz®ke, M. N. Louka, T. R. Bryntesen, J. Bratteli, S. T. Edvardsen, K. K. RøEitrheim, and K. Bodor. Real-time
3D radiation risk assessment supporting simulation of work in nuclear environments. Journal of Radiological Protection:

O�cial Journal of the Society for Radiological Protection, 34(2):389�416, June 2014.
9. Matthieu Longeot, Bruno Dupont, Mark Zweers, Fausto Malvagi, Jean-Christophe Trama, and Julien Dubost. PANTHERE:

simulation software for 3D dose rate calculation in complex nuclear facilities. Progress in Nuclear Science and Technology,
4:557�560, 2014.

10. G. Gualdrini and P. Ferrari. Monte Carlo variance reduction techniques: an overview with some practical examples.
Radiation Protection Dosimetry, 146(4):425�433, July 2011.

11. Alireza Haghighat and John C. Wagner. Monte Carlo variance reduction with deterministic importance functions. Progress
in Nuclear Energy, 42(1):25�53, January 2003.

12. Je�rey F. Williamson. Monte Carlo evaluation of kerma at a point for photon transport problems: Monte Carlo calculation
of kerma at a point. Medical Physics, 14(4):567�576, July 1987.

13. Robert J. Barish. The Dosimetry of Ionizing Radiation. Vol 3. Radiology, 180(1):120�120, July 1991.
14. F. Baldacci, A. Mittone, A. Bravin, P. Coan, F. Delaire, C. Ferrero, S. Gasilov, J.M. Létang, D. Sarrut, F. Smekens,

and N. Freud. A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation,
properties and performance. Zeitschrift für Medizinische Physik, 25(1):36�47, March 2015.

15. Alberto Mittone, Fabien Baldacci, Alberto Bravin, Emmanuel Brun, François Delaire, Claudio Ferrero, Sergei Gasilov,
Nicolas Freud, Jean Michel Létang, David Sarrut, François Smekens, and Paola Coan. An e�cient numerical tool for dose
deposition prediction applied to synchrotron medical imaging and radiation therapy. Journal of Synchrotron Radiation,
20(5):785�792, September 2013.

16. Tuomas Viitanen and Jaakko Leppänen. Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor
Dosimetry. EPJ Web of Conferences, 106:03010, 2016. Publisher: EDP Sciences.

17. E. J. McGrath and D. C. Irving. Techniques for E�cient Monte Carlo Simulation. Volume 3. Variance Reduction:. Technical
report, Defense Technical Information Center, Fort Belvoir, VA, March 1973.

18. N. Freud, J.-M. Létang, and D. Babot. A hybrid approach to simulate multiple photon scattering in X-ray imaging. Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 227(4):551�558,
January 2005.

19. Nicolas Freud, Jean Michel Letang, Corentin Mary, Caroline Boudou, Claudio Ferrero, HÉlÈne Elleaume, Alberto Bravin,
FranÇois Esteve, and Daniel Babot. A Hybrid Approach for Fast Simulation of Dose Deposition in Stereotactic Synchrotron
Radiotherapy. IEEE Transactions on Nuclear Science, 55(3):1008�1017, June 2008.

20. David R. Haynor, Robert L. Harrison, and Thomas K. Lewellen. The use of importance sampling techniques to improve
the e�ciency of photon tracking in emission tomography simulations. Medical Physics, 18(5):990�1001, 1991. _eprint:
https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.596615.

21. Ettore Guadagni, Y. Pénéliau, Jean Michel Létang, François-Xavier Hugot, and Cindy Le Loirec. A hybrid deterministic-
stochastic method for the calculation of dose rate in reactor dismantling operations. In ANS M&C 2021 - The International

Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Raleigh, North Car-
olina, October 2021.

22. S. N. Cramer. Variance reduction methods applied to deep-penetration problems. Technical Report CONF-8410170-2, Oak
Ridge National Lab., TN (USA), January 1984.



####_ Page 12 of 12 Eur. Phys. J. Plus _#####################_

23. J. S. Hendricks and T. E. Booth. MCNP variance reduction overview. In Raymond Alcou�e, Robert Dautray, Arthur Forster,
Guy Ledanois, and B. Mercier, editors, Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical

Physics, volume 240, pages 83�92. Springer-Verlag, Berlin/Heidelberg, 1985. Series Title: Lecture Notes in Physics.
24. J. R. Tickner. Algorithm for forcing scattered radiation to arbitrary convex regions in neutral particle Monte Carlo

simulation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
267(14):2361�2364, July 2009.

25. Naoteru Odano, Toshimasa Miura, and Yuji Shindo. Experimental Assessment of Gamma-Ray Shielding Transport Calcu-
lations by Monte Carlo Calculation Code and Point-Kernel Code. In Proceedings of the 8th International Conference on

Radiation Shielding, volume 1, pages 1301�1308, Arlington, Texas, April 1994.


