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Introduction

When planning the decommissioning and dismantling of a nuclear facility, dose rate estimation constitutes a crucial step to dene operational margins and to ensure that safety limits are respected. To this aim, one can distinguish two main families of computer codes:

The deterministic ones, like RANKERN [START_REF] Miller | RANKERN -a point kernel integration code for complicated geometry problems[END_REF] and CEA's NARMER [START_REF] Visonneau | NARMER-1: a photon point-kernel code with build-up factors[END_REF], are often based on Point-Kernel Integration (PKI) method, with build-up and/or albedo factors. PKI is a macroscopic approach that consists in considering any radiation source as an ensemble of independent beam-like point sources. These straight beams of radiation are attenuated through matter by the means of macroscopic coecients, such as the linear attenuation coecient. The build-up and albedo factors are correction factors used to estimate the eect of scattering in matter and surface reection, respectively.

The stochastic ones, like MCNP [START_REF] Christopher | MCNP Version 6.2 Release Notes[END_REF], GEANT4 [START_REF] Agostinelli | [END_REF] and CEA's TRIPOLI-4 ® [START_REF] Brun | TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code[END_REF], are based on Monte Carlo (MC) method. This technique is a microscopic approach that can numerically evaluate arbitrarily complex stochastic processes by starting from basic known probability distributions. In the particle transport eld, these distributions are based on isotopic data and the stochastic process is the random-walk of single particles, mainly photons in the case of dismantling applications.

Deterministic PKI-based codes are inherently fast from a computational point of view, as they calculate the dose purely by analytical means, by exponentially attenuating gammas on a straight-line path and integrating over the radiation source volume. This allows the PKI method to be used in real-time dose computation tools like Visiplan [START_REF] Vermeersch | Development of the VISIPLAN ALARA planning tool[END_REF] and Mercurad [START_REF]MERCURAD -Dose Rate Calculation Software, User's Manual[END_REF], and opens the door to virtual reality implementation [START_REF] Sz®ke | Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments[END_REF]. However, the speed of the PKI method comes at the cost of accuracy; the analytical dose calculations are based on several assumptions and simplications which may break down in specic situations, such as scattering-dominated problems, or in the case of very short distance between radiation source and detector [START_REF] Longeot | PANTHERE: simulation software for 3D dose rate calculation in complex nuclear facilities[END_REF].

In contrast, MC codes enable a precise estimation of gamma dose rate and can converge to any user-specied level of condence. However, the determination of local equivalent dose rate needs a very large number of gamma histories to achieve reliable results, which lead to long computation times. For large geometries (i.e. reactor-level calculations) the computational burden becomes unfeasible for practical use. Luckily, there exists a large number of options to speed up any MC calculation, in the form of variance reduction techniques (VRTs) [START_REF] Gualdrini | Monte Carlo variance reduction techniques: an overview with some practical examples[END_REF]. These techniques consist in modifying the analog random sampling procedure to focus computational eorts on the simulation of important particles, i.e. particles that are expected to contribute more to the solution [START_REF] Haghighat | Monte Carlo variance reduction with deterministic importance functions[END_REF].

Alongside VRTs, another way of enhancing the eciency of a MC simulation is the correct choice of the estimator.

It has actually been shown [START_REF] Jerey | Monte Carlo evaluation of kerma at a point for photon transport problems: Monte Carlo calculation of kerma at a point[END_REF] that the appropriate choice of an estimator can dramatically reduce the computation time needed to obtain a suciently small condence interval about the MC estimate. The most basic estimator in MC simulations is the so-called collision estimator, which simply estimates the particle ux in a volume by tallying all the interactions taking place inside the volume and weighting them by the inverse of the total macroscopic cross section. This estimator is simple and eective enough to be implemented in virtually every MC code. However, since it is intrinsically related to the number of collisions taking place in the estimation volume, its eciency drops when it is used in low-density regions or in optically thin regions. In these instances, the collision estimator can produce unreliable estimates with very high variance. Another class of estimators, called track-length estimators (TLEs) can eciently tackle such problems. TLEs are based on the equivalence between particle uence and total particle path length per unit volume [13]. The gain in eciency comes from the fact that, for this class of estimators, every particle trajectory intersecting the estimation volume contributes to the tally; it is easy to see how, for the same number of histories generated, the TLE will always have a number of contributions larger than or equal to the collision estimator. That is why this estimator, in its most simple implementation (called linear TLE or just TLE for short), is nowadays largely used in MC codes [START_REF] Baldacci | A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance[END_REF], and has shown good performance for low-energy applications in medical elds [START_REF] Mittone | An ecient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy[END_REF] and for reaction rate estimations in the nuclear eld [START_REF] Viitanen | Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry[END_REF]. Starting from the classic formulation of the linear TLE, it is possible to derive a more sophisticated estimator called exponential track-length estimator or e TLE. The main dierence between TLE and e TLE is that the latter replaces a stochastic decision, i.e. the free ight of the particle, by its expected outcome averaged over the probability distribution of particle ight lengths. Such replacement of a random decision by its expected outcome is a frequently used VRT [START_REF] Mcgrath | Techniques for Ecient Monte Carlo Simulation[END_REF]. In the e TLE, after each collision the particle is analytically transported in a straight line up until the simulation boundary, while being exponentially attenuated. It can therefore be viewed as a hybrid transport method, combining stochastic MC and deterministic straight-line transport. Starting from the idea that MC calculations of dose deposition could be accelerated by deterministic transport of photons, a new hybrid approach was developed by Freud et al. [START_REF] Freud | A hybrid approach to simulate multiple photon scattering in X-ray imaging[END_REF][START_REF] Freud | A Hybrid Approach for Fast Simulation of Dose Deposition in Stereotactic Synchrotron Radiotherapy[END_REF]. In this approach, a forced detection [START_REF] Haynor | The use of importance sampling techniques to improve the eciency of photon tracking in emission tomography simulations[END_REF] algorithm was added to the method, transporting the photons in predened directions to maximize eciency. The proposed method, even if just in a very preliminary way, showed good results when compared to the classical MC approach with TLE.

In a previous work [START_REF] Ettore Guadagni | A hybrid deterministicstochastic method for the calculation of dose rate in reactor dismantling operations[END_REF], we described the rst implementation of e TLE in TRIPOLI-4 ® for dismantling purposes. This rst study highlighted the acceleration capabilities of the new estimator, which provided consistent results by reducing computation time by more than a half in the best cases, when compared to the classic TLE. In the same study the e TLE was also coupled with two of TRIPOLI-4 ® 's variance reduction techniques, the exponential transform and the advanced multilevel splitting, showing encouraging results. In this paper, we couple the e TLE with a forced detection (FD) algorithm that automatically sends particles towards detectors, drastically improving the eciency of the estimator in dealing with localized dose deposition calculations. This process of sending a particle towards a detector to improve the simulation's eciency shares some important similarities with some other algorithms employed in particle transport; notably, the next-event point estimator [START_REF] Cramer | Variance reduction methods applied to deep-penetration problems[END_REF] on one side, and algorithms like DXTRAN [START_REF] Hendricks | MCNP variance reduction overview[END_REF] or the one developed by Tickner [START_REF] Tickner | Algorithm for forcing scattered radiation to arbitrary convex regions in neutral particle Monte Carlo simulation[END_REF] on the other. However, the e TLE with FD is fundamentally dierent from these approaches. The next-event point estimator, also present in TRIPOLI-4® with the name FLUX_PT, is a well known estimator in the eld of MC simulations. As the name implies, it allows to estimate quantities in a point; it also involves deterministic transport and exponential attenuation of the particle's weight. In practice, it can be viewed as a limit version of the e TLE with FD, where the target detector becomes innitely small, converging to a single point. As explained by Cramer in [START_REF] Cramer | Variance reduction methods applied to deep-penetration problems[END_REF], this change from volume to point leads to the appearance, in the estimator, of a 1/R² term, where R is the distance between the point of collision and the point of detection. This term causes the point estimator's variance to drastically diverge whenever a collision takes place very close to the point of detection, and it is the reason why every MC implementation of next-event point estimation usually includes an exclusion sphere inside of which any contribution to the estimator is not taken into account. Therefore, the main dierence between the e TLE with FD and a point estimator is that the former does not require any exclusion sphere. As for DXTRAN [START_REF] Hendricks | MCNP variance reduction overview[END_REF] and DXTRAN-like transport algorithms [START_REF] Tickner | Algorithm for forcing scattered radiation to arbitrary convex regions in neutral particle Monte Carlo simulation[END_REF], the dierence is more related to the mechanics of the particle. In these algorithms, the particle is split at every interaction, and deterministically transported to the surface of some element: a sphere in the case of DXTRAN, any convex volume in Tickner's implementation. Then, the transported particle is left free to continue its simulation, until it is absorbed or leaves the simulation domain. Therefore, the transported particle can, in principle, interact many times inside the volume of interest before ending its simulation history. This in turn means that the mother particle has to be killed if it tries to enter the volume of interest, as its interactions have already been simulated by the split particle. The fundamental dierence between this approach and the e TLE with FD is that, in the latter, there is no actual particle being transported towards the detection volume, but rather a virtual particle representing a single contribution of the mother particle to the score. This virtual particle gives one and only one contribution, and then it is killed, as will be better detailed in Section 2.2. Moreover, the real particle only serves as a mean to simulate collision points, ####_ Page 3 of 12 but it never registers any score: all the contributions to the e TLE with FD come from the virtual particles. This is also why, in our method, there is no need to kill the real particle if it tries to enter the detection volume.

In this paper, the new e TLE with forced detection is tested on a series of simplied scenarios representative of decommissioning congurations. Its performances are compared with the simpler version of the e TLE without forced detection and with the legacy TLE, as implemented in TRIPOLI-4 ® .

Methodology

Theoretical basis of eTLE

The idea behind the family of TLEs is the following: all the particle ights that intersect the scoring volume (see g. [START_REF] Miller | RANKERN -a point kernel integration code for complicated geometry problems[END_REF] contribute to the estimate. If we compare this approach to the collision estimator, that only tallies the interactions happening inside the scoring volume, any type of TLE can in principle lower the variance of the simulation, as this last set of events is always smaller than, or equal to, the former. Depending on the implementation, several types of track-length estimators exist; for the purpose of this discussion, we shall concentrate on the estimators for the particle ux.

In the linear formulation of TLE, the contribution of a ight is proportional to the length of the ight segment inside the scoring volume V . This uence estimator would give a non-zero value after collisions 2, 3 and 4 in g. 1a, whereas a collision estimator would only register collision 4. More specically, the contribution to volume V given to the linear TLE by a ight from r j to r j+1 is equal to:

K TLE V (r j , r j+1 ) = w L V (r j , r j+1 ) V , (1) 
where w is the weight of the particle and L V (r j , r j+1 ) is the straight-line distance traveled by the particle inside the scoring volume between the two successive interactions r j and r j+1 ; more rigorously, we can write:

L V (r j , r j+1 ) = |rj+1-rj | 0 Π V (r j + sΩ) ds (2) 
where Ω is the direction of the vector pointing from r j to r j+1 and Π V (r) is the characteristic function of the scoring volume V (which is equal to 1 if the point r is inside the volume and equal to 0 otherwise).

We can derive the e TLE from its linear correspondent by replacing the estimator in Eq. ( 1) with its average value over all possible ights lengths emerging from collision j in the direction Ω. As such, the e TLE estimator is still a ight-based estimator (i.e. it contributes to the score every time a particle performs a ight), but its value does not depend on the end point of the ight r j+1 (only on the direction Ω). According to the denition, for the e TLE we can write:

K eTLE V (r j , Ω) = ∞ 0 K TLE (r j , r j + sΩ) exp - s 0 Σ t (r j + tΩ) dt ds, (3) 
where Σ t (r) is the total macroscopic cross section at position r. If the scoring volume V is uniform (Σ t (r) constant inside the detector) and convex, then the e TLE estimator can be rewritten in the simpler form

K eTLE V (r j , Ω) = w Σ t V exp - s V 0 Σ t (r j + sΩ) ds [1 -exp (-Σ t L V (r j , ∞))] ; (4) 
where s V is the distance from r j to the scoring volume V along direction Ω, and L V (r j , ∞) is the length of the chord intersected by V after collision in r j along direction Ω, the expression of which can be obtained by Eq. ( 2) by extending to innity the distance between r j and r j+1 :

L V (r j , ∞) = ∞ 0 Π V (r j + sΩ) ds. (5) 
The eciency of this method can be illustrated by g. 1b, where we can see that the particle is not even required to cross the scoring volume to contribute to the score.

An additional improvement can be brought by observing that the e TLE estimator can only contribute to the score if the line of ight intersects the scoring volume. By transforming the e TLE estimator in a collision-based estimator, we can sample virtual collisions directed towards the detection volume and weight them by their probability of occurrence.

Fig. 1c shows the additional improvement in eciency obtained by adding a forced detection (FD) algorithm to the e TLE. Assuming the detection volume is a sphere, we sample a uniformly random direction Ω under the constraint that the half line from the collision point r 1 directed along Ω intersects the sphere. We can write the score for the e TLE with FD as:

K eTLE,FD V (r 1 , Ω) = w Σ t V exp - s V 0 Σ t (r 1 + s Ω) ds (1 -exp (-Σ t L)) p (r 1 , Ω) ∆Ω (6) 
where p(r 1 , Ω) is the probability density, per unit solid angle, of scattering in the direction Ω after an interaction at r 1 , and ∆Ω is the solid angle of the scoring volume seen from the interaction point. If the detection volume is not spherical, the solid angle can be hard to calculate; however, the problem is easily solved by dening a bounding sphere surrounding the volume and then scoring only the particles that eectively cross the volume, as shown in g. 1c. In this case, the solid angle of the bounding sphere can be easily calculated by knowing the sphere radius R and the distance D between the interaction point and the center of the sphere: We will now describe how the e TLE with FD algorithm is implemented in TRIPOLI-4 ® . The algorithm takes place immediately after the calculation of the random free ight of the particle, when the particle's interaction has not yet been sampled. Since the estimator acts on a virtual particle trajectory, the rst step consists in creating a ctive particle, which retains the original particle's direction of motion, energy, and simulation weight. The ctive particle immediately undergoes a ctive collision which sends it towards the detector volume, and is then killed after the score.

∆Ω = 2π 1 - √ D 2 -R 2 D 2 (7) 
The detailed implementation (see also g. 2) is as follows:

1. First, the user associates a bounding sphere to each detection volume. The sphere must fully enclose the detection volume while still being as small as possible for maximum eciency.

2. If the simulation has more than one detector, we start a loop over all of them.

3. We create a virtual particle as an exact copy of the original particle.

4. Based on the bounding radius and the distance between the interaction point and the sphere center, we calculate the solid angle subtended by the sphere, ∆Ω. Then, we sample a random direction uniformly distributed within ∆Ω.

5. The code samples a virtual collision for the ctive particle, adjusting its weight (for implicit capture and for the scattering probability, through the factor p(r j , Ω)∆Ω) and assigning the direction determined at the previous step, eectively directing the particle towards the bounding sphere. The energy of the ctive particle is sampled by taking into account the dierential cross-section of the collision, according to the direction randomly selected at point 4. This ensures that the physics of the simulation remains unbiased.

6. We calculate the straight-line distance d j between the virtual particle and the closest volume frontier. 7. The virtual particle is displaced to its new position on the volume frontier; a value k j = w j-1 (1 -e -Σtdj )/Σ t is stored in memory for the volume just crossed. Here, w j-1 is the weight of the virtual particle before the j-th displacement and Σ t is the total macroscopic cross section in the traversed volume. Therefore w j1 (1 -e -Σtdj ) represents the weight loss due to attenuation, and 1/Σ t is the expected value of the particle's free ight in the medium.

8. The weight of the particle w j is updated: w j = w j-1 e -Σtdj . 9. We go back to point 6 and repeat the process until the virtual particle reaches a domain boundary (i.e., until it leaves the geometric domain of the simulation).

10. If the particle has crossed the detector volume, we register the score calculated at point 7. Then, we kill the particle and go back to point 2, selecting the next detector in the list.

11. Finally, the virtual particle is deleted and all transport quantities are reinitialized, before going back to the transport of the real particle.

At the end of the process, the quantity searched can be calculated for the detector volume starting from k j . For example, if the quantity under consideration is the absorbed dose in the volume D j,V , the result is given by:

D j,V = k j E j µen ρ V ( 8 
)
where E j is the photon's energy, µ en /ρ is the mass energy absorption coecient of the material, and V is the detector's volume.

Simulation setup and test cases

This section presents the various geometrical congurations that have been tested to estimate the performance of e TLE, and the general setup of the MC simulations. For each conguration, the estimator was tested with and without the forced detection algorithm and compared to the well validated linear TLE of TRIPOLI-4

® . In all simulations, 60 Co is used as a photon source, emitting photons at energies of 1.33 MeV and 1.17 MeV with an intensity of 1.59x10 10 photons/s. The calculated quantity is the KERMA rate, which is equal to the absorbed dose rate in conditions of charged particle equilibrium. Electron and positron transport is deactivated, therefore all energy related to these particles is assumed to be deposited locally. The congurations studied are fairly simple and only include the following four materials, all assumed to be at room temperature (weight percentages are indicated):

Air: 77% N, 23% O, 0.00128 g/cm 3 Concrete: 54% O, 34% Si, 4% Ca, 3.5% Al, 1.5% Fe, 1.5% H, 1.5% Na, 2.3 g/cm 3 Lead: 100% Pb, 11.35 g/cm 3 Iron: 100% Fe, 7.85 g/cm 3 Batches of 10000 photons are used. The total number of batches for each simulation may vary, as the stopping criterion is dened as a limit on the maximum statistical uncertainty σ over all detectors, which will be detailed below for every conguration. The machine used for all simulations is equipped with two Intel Xeon E5-2620v3 processors. A gure of merit (F OM ) is dened for each detector volume as:

F OM = 1 t σ 2 (9)
where t is the total simulation time and σ 2 is the variance of the dose rate estimated in the detector, expressed in percent. Additional geometrical and simulation details for each conguration are given in the following.

Back-scattering conguration

The rst conguration reproduces a set of shielding benchmarks originally performed by Odano et al. [START_REF] Odano | Experimental Assessment of Gamma-Ray Shielding Transport Calculations by Monte Carlo Calculation Code and Point-Kernel Code[END_REF]. The backscattering conguration (g. 3a) assesses the performance of an estimator concerning the phenomenon of photon back-scattering, or reection, on concrete. The direct path between the 60 Co point-wise source and the detector Fig. 2. Flowchart of the eTLE algorithm with forced detection; w is the particle's weight, E is its energy and Ω is its direction.

volumes is shielded by a lead slab of 10 × 40 × 5 cm 3 . A concrete slab measuring 100 × 100 × 20 cm 3 is placed at a distance of 50 cm from the photon source, allowing photons to scatter towards the detectors bypassing the shield.

The ve detectors are modeled as 1 cm radius spheres spaced 5 cm from each other. The maximum target σ for the simulation is set at 5%.

Slant penetration conguration

The slant penetration conguration (g. 3b) determines the estimator response to photons traveling inside an attenuating medium with increasing slant angles. The attenuating medium is a 100 × 200 × 20 cm 3 concrete slab placed between photon source and detectors at a distance of 1 cm from either side. The rst detector is placed vertically above the source; the remaining ten are spaced 10 cm from each other, creating increasing slant angles with respect to the source, up to an angle of about 78 • . The detectors are modeled as 1 cm radius spheres. The maximum target σ for the simulation is set at 5%.

Streaming duct conguration

The streaming duct conguration (g. 4a) tests the performance of the estimator in the case of a streaming problem, i.e. an empty tube traversing a scattering medium thus creating a preferential way for particle transport. The pointwise isotropic 60 Co source is placed in a lead collimator which eectively turns it into a conical-emitting source. A concrete structure with an empty steel tube traversing it is placed at a distance of two meters from the source with a 45 • angle. Eighteen 1 cm radius spherical detectors are placed along the duct at six dierent axial positions. Each axial position has three detectors, spaced 7.5 cm from each other. The maximum target σ for the simulation is set at 5%. 

Bunker conguration

The bunker conguration (g. 4b) aims at condensing all the relevant ways of photon transport (scattering, penetration, streaming) in a unied and simple geometrical setup. It represents a typical shielding problem, with a photon source placed in an empty room with scattering concrete walls and a highly-absorbing lead shield partially covering the detector. The bunker's internal dimensions are 1 × 1 × 1 m 3 , with concrete walls measuring 20 cm in thickness; the detector volume is a 10 cm radius sphere and the lead shield, placed at 50 cm from the source, varies in height and in depth. A total of six congurations were studied, with dierent shield dimensions as described in table 1. The maximum target σ for the simulation is set at 1%. 3 Results

Validation

This step serves to ensure that the new estimator converges to the same results as the classic TLE already implemented in TRIPOLI-4

® . The dose rate computed by e TLE with and without the FD algorithm is compared with the dose rate obtained with the TLE. Fig. 5 shows the ratio between the two estimates, with tolerance margins of ±2σ highlighted on the plots. The tolerance was chosen according to the central limit theorem: an interval of ±2σ includes the exact simulation result with a probability of 95.45% Each point on the plots shows the dose rate of a single detector, with the exception of the streaming duct case, where results for each triplet of detectors occupying the same axial position were averaged to improve legibility. In general, we note a very good accordance with the TLE results: all results fall inside the error margin, if we consider their relative uncertainty. Both versions of the e TLE, with and without FD, are therefore validated. To assess the performance of the new estimator, we compare in g. 6 the F OM of the simulations with the e TLE to the F OM of the simulations performed with the normal track-length estimator. Therefore, a ratio higher than 1 means that the new exponential estimator performs better than the classic linear one.

In the back-scattering conguration (g. 6c) the e TLE with FD attains outstanding performances, with acceleration factors up to 2 × 10 4 . This is an enormous improvement with respect to the normal e TLE, which has acceleration ratios around 1.2 for this conguration.

In the bunker conguration (g. 6d and 6e), all simulations are accelerated by the e TLE with and without FD.

Specically, with the FD algorithm we reach factors of almost 100, while the normal e TLE had a factor of 2 in the best case.

Results are more varied in the slant penetration (6a) and streaming congurations (6b). In the slant penetration setup, we see that the e TLE without FD is able to uniformly accelerate the results over all the detectors, with acceleration ratios of about 2. With the FD algorithm, the estimator shows increasingly good performances as we move further from the source, with acceleration ratios ranging from lower than 1 (which indicates a drop in performance with respect to the TLE) to around 10. We can nd the same behavior in the streaming conguration, with the estimator failing to accelerate the convergence over the rst two detectors and progressively increasing its performances as we move to the farthest detectors, with ratios close to 30. This is also the only conguration where the e TLE without FD fails to accelerate the convergence.

Fig. 6. Performance of the estimator over all tested congurations. The y axis shows the ratio between the gure of merit of the eTLE estimator (with and without forced detection) and the gure of merit of TRIPOLI-4 ® 's TLE An explanation for this behavior might be found in the fact that having to simulate and transport virtual particles adds a certain amount of overhead to the transport algorithm. To generate a single particle history, the e TLE with FD requires the largest amount of time (which increases with the total number of detectors), followed by the normal e TLE and then by the classic TLE. This of course means that, given a certain amount of computation time, the simulation with the TLE will generate a larger amount of particle histories than the one using the e TLE. Therefore, if a detector is close to the source and easily reached by the particles, convergence with the TLE will be quicker.

As we mentioned before, in the case of multiple detectors, the current implementation of the FD algorithm sends one virtual particle to each of the detectors before restarting the original particle transport. Intuitively, this implies that the algorithm's eciency is inversely proportional to the number of detectors in the simulation. Therefore, to try and improve the estimator's performance, we ran an additional set of simulations on both the slant penetration and the streaming duct congurations. In this case, only one detector was active, which means that a total of 22 simulations were run in the slant penetration case (11 with the TLE, 11 with the e TLE) and 12 simulations were run in the streaming case (6 with the TLE, 6 with the e TLE). Results of this single detector simulations are reported in g. 7. As we can see from the plots, the estimator performance is drastically improved when used with only one detector, with the eciency consistently gaining one order of magnitude with respect to the multiple-detector case.

We can still see the same behavior related to the detector's distance from the source: for the farthest detectors, we register acceleration ratios of around 500 for the slant penetration case and more than 600 for the streaming duct. 
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 1 Fig. 1. Visual representation of dierent track-length estimators: a) linear TLE; b) exponential TLE or eTLE; c) eTLE with forced detection algorithm
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 3 Fig. 3. Geometry of the back-scattering (a) and slant penetration (b) congurations -Red points represent the detector locations, red lines represent some of the possible photon paths.
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 4 Fig. 4. Geometry of the streaming duct (a) and bunker (b) congurations -Red points represent the detector locations, red lines represent some of the possible photon paths.
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 5122 Fig. 5. Validation of the estimator over all tested congurations. The y axis shows the ratio between the equivalent dose rate calculated with the eTLE estimator (with and without forced detection) and the one calculated with TRIPOLI-4 ® 's TLE

Fig. 7 . 4 .

 74 Fig. 7. Validation and performance of the estimator in single-detector simulations.

  

  

Table 1 .

 1 Shield height (h) and depth (d) variation for bunker conguration

	Name h (cm) d (cm)
	R1	50	10
	R2	80	10
	R3	100	10
	R4	50	20
	R5	80	20
	R6	100	20