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Abstract

A Boolean network (BN) with n components is a discrete dynamical system de-
scribed by the successive iterations of a function f : {0, 1}n → {0, 1}n. This model
finds applications in biology, where fixed points play a central role. For example, in
genetic regulations, they correspond to cell phenotypes. In this context, experiments
reveal the existence of positive or negative influences among components: component
i has a positive (resp. negative) influence on component j meaning that j tends to
mimic (resp. negate) i. The digraph of influences is called signed interaction digraph
(SID), and one SID may correspond to a large number of BNs (which is, in average,
doubly exponential according to n). The present work opens a new perspective on the
well-established study of fixed points in BNs. When biologists discover the SID of a
BN they do not know, they may ask: given that SID, can it correspond to a BN having
at least/at most k fixed points? Depending on the input, we prove that these problems
are in P or complete for NP, NPNP, NP#P or NEXPTIME. In particular, we prove that
it is NP-complete (resp. NEXPTIME-complete) to decide if a given SID can correspond
to a BN having at least two fixed points (resp. no fixed point).
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1 Introduction

A Boolean network (BN) with n components is a discrete dynamical system described by
the successive iterations of a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

The structure of the network is often described by a signed digraph D, called signed in-
teraction digraph (SID) of f , catching effective positive and negative dependencies among
components: the vertex set is [n] = {1, . . . , n} and, for all i, j ∈ [n], there is a positive (resp.
negative) arc from j to i if fi(x)− fi(y) is positive (resp. negative) for some x, y ∈ {0, 1}n
that only differ in xj > yj . The SID provides a very rough information about f . Indeed,
given a SID D, the set F(D) of BNs whose SID is D is generally huge.

BNs have many applications. In particular, since the seminal papers of Kauffman
[18, 19] and Thomas [40, 41], they are very classical models for the dynamics of gene
networks. In this context, the first reliable experimental information often concern the
SID of the network, while the actual dynamics are very difficult to observe [42, 22]. One
is thus faced with the following question: What can be said about the dynamics described
by f according to D only?

Among the many dynamical properties that can be studied, fixed points are of special
interest. For instance, in the context of gene networks, they correspond to stable patterns
of gene expression at the basis of particular cellular phenotypes [41, 2]. As such, they
are arguably the property which has been the most thoroughly studied. The number of
fixed points and its maximization in particular is the subject of a stream of work, e.g. in
[34, 6, 30, 4, 14, 7, 13, 8].

From the computational complexity point of view, previous works essentially focused on
decision problems of the following form: given f and a dynamical property P , what is the
complexity of deciding if the dynamics described by f has the property P . For instance,
it is well-known that deciding if f has a fixed point is NP-complete in general (see [21]
and the references therein), and in P for some families of BNs, such as non-expansive BNs
[10]. However, as mentioned above, in practice, f is often unknown while its SID is well
approximated. Hence, a more natural question is: given a SID D and a dynamical property
P , what is the complexity of deciding if the dynamics described by some f ∈ F(D) has the
property P . Up to our knowledge, there is, perhaps surprisingly, no work concerning this
kind of questions.

In this paper, we study this class of decision problems, focusing on the maximum and
minimum number of fixed points. More precisely, given a SID D, we respectively denote
by φmax(D) and φmin(D) the maximum and minimum number of fixed points in a BN
f ∈ F(D), and we study the complexity of deciding if φmax(D) ≥ k or φmin(D) < k.
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After the preliminaries given in Section 2, we first study the problem of deciding if
φmax(D) ≥ k when the positive integer k is fixed. In Section 3 we prove that this problem
is in P when k = 1 and, in Section 4, we prove that it is NP-complete when k ≥ 2.
Furthermore, these results remain true if the maximum in-degree ∆(D) is bounded by any
constant d ≥ 2. The case k = 2 is of particular interest since many works have been
devoted to finding necessary conditions for the existence of multiple fixed points, both in
the discrete and continuous settings, see [37, 30, 37, 20, 33] and the references therein.
Section 5 considers the case where k is part of the input. We prove that, given a SID D
and a positive integer k, deciding if φmax(D) ≥ k is NEXPTIME-complete, and becomes
NP#P-complete if ∆(D) is bounded by a constant d ≥ 2. In Section 6, we study the
minimum number of fixed points. We prove that, even for k = 1, deciding if φmin(D) < k
is NEXPTIME-complete. It becomes NPNP-complete when ∆(D) is bounded by a constant
d ≥ 2 and k is a constant, and NP#P-complete when ∆(D) is bounded by a constant d ≥ 2
and k is a parameter of the problem. Note that, from all these results, we immediately
obtain complexity results for the dual decision problems φmax(D) < k and φmin(D) ≥ k.
A summary is given in Table 1.

Problem ∆(D) ≤ d k = 1 k ≥ 2 k given in input

φmax(D) ≥ k
no

P NP-complete
NEXPTIME-complete

yes NP#P-complete

φmin(D) < k
no NEXPTIME-complete

yes NPNP-complete NP#P-complete

Table 1: Complexity results.

2 Preliminaries

2.1 Configurations

Given a finite set V (of components), a configuration on V is an element x ∈ {0, 1}V that
assigns a state xi ∈ {0, 1} to every i ∈ V . For a ∈ {0, 1}, we write x = a to mean that
xi = a for all i ∈ V . Given an enumeration i1, i2, . . . , in of the elements of V , we write
x = xi1xi2 . . . xin . For I ⊆ V , we denote by xI the restriction of x on I, that is, the
configuration y ∈ {0, 1}I such that yi = xi for all i ∈ I; and x extends a configuration
y ∈ {0, 1}I if xI = y. For every i ∈ V , we denote the i-base vector ei, that is, (ei)i = 1
and (ei)j = 0 for all j 6= i. Given x, y ∈ {0, 1}V , we denote by x⊕y the configuration z on
V such that zi = xi⊕yi for all i ∈ V , where the addition is computed modulo two. Hence,
x⊕ei is the configuration obtained from x by flipping component i only. We write x ≤ y
to means that xi ≤ yi for all i ∈ V .
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2.2 Boolean networks

A Boolean network (BN) with component set V is a function f : {0, 1}V → {0, 1}V . Given
an initial configuration x0 on V , the dynamics of the network is described by the successive
iterations of f , that is, xt+1 = f(xt) for all t ∈ N. Hence, the state of component i evolves
according to the local function fi : {0, 1}V → {0, 1}, which is the coordinate i of f , that
is, fi(x) = f(x)i. More generally, given I ⊆ V , we denote by fI the function from {0, 1}V
to {0, 1}I defined by fI(x) = f(x)I . If y ∈ {0, 1}I then fI = y means that fI is a constant
function that always returns y.

2.3 Signed digraphs

A signed digraph D consists of a finite set of vertices V , a set of arcs A ⊆ V × V and an
arc-labeling function σ from A to {−1, 0, 1}, which gives a sign (negative, null or positive)
to each arc (j, i), denoted σji. In the following, it will be convenient to set σ̃ji = 0 if σji ≥ 0
and σ̃ji = 1 otherwise. We say that D is simple if it has no null arc, and full-positive if it
has only positive arcs. Given a vertex i, we denote by ND(i) the set of in-neighbors of i
and, for s ∈ {−1, 0, 1}, we denote by N s

D(i) the set of in-neighbors j of i with σji = s. We
drop D in the previous notations when it is clear from the context. We call N1(i), N0(i)
and N−1(i) the set of positive, null and negative in-neighbors of i, respectively. We say
that i is a source if it has no in-neighbor. The maximum in-degree of D is denoted ∆(D).
Cycles and paths are always directed and without repeated vertices. The sign of a cycle
or a path is the product of the signs of its arcs. We say that i has a positive loop if D has
a positive arc from i to itself (a positive cycle of length one). Given I ⊆ V , we denote by
D \ I the signed digraph obtained from D by deleting the vertices in I (with the attached
arcs). We say that a signed digraph D′ is a spanning subgraph of D if D′ can be obtained
from D by removing arcs only. We say that I is a positive feedback vertex set of D if D \ I
has only negative cycles (or is acyclic). The minimum size of a positive feedback vertex set
of D is denoted τ+(D). Given a signed digraph D, we denote by VD its vertex set.

2.4 Signed interaction digraphs

The signed interaction digraph (SID) of a BN f with component set V is the signed digraph
Df with vertex set V defined as follows. First, given i, j ∈ V , there is an arc (j, i) if and
only if there exists a configuration x on V such that fi(x⊕ej) 6= fi(x) (i.e. the local
function fi depends on component j). Second, the sign σji of an arc (j, i) depends on
whether the local function fi is increasing or decreasing with respect to component j, and
is defined as

σji =


1 if fi(x⊕ej) ≥ fi(x) for all x ∈ {0, 1}V with xj = 0,
−1 if fi(x⊕ej) ≤ fi(x) for all x ∈ {0, 1}V with xj = 0,

0 otherwise.
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A signed digraph is called a SID if it is the SID of at least one BN. Such signed digraphs
are characterized below (as a consequence, every simple signed digraph is a SID).

Proposition 1 ([29]). A signed digraph is a SID if and only if every vertex with a unique
null in-neighbor has at least two non-null in-neighbors.

A fundamental remark regarding the present work is that multiple BNs may have the
same SID. Given a SID D with vertex set V , we denote by F(D) the corresponding BNs:

F(D) = {f : {0, 1}V → {0, 1}V | Df = D}.

The size of F(D) is generally large: there are 2n2n BNs with n components and only 3n

signed digraphs with n vertices. Given i ∈ V , we denote by Fi(D) the possible local
functions for i, that is,

Fi(D) = {fi | f ∈ F(D)}.

The size of Fi(D) is doubly exponential according to the in-degree d of i in D, thus it

scales as the number of Boolean functions on d variables, 22d . The precise value of |Fi(D)|
is not trivial and has been extensively studied when i has only positive in-neighbors, see
A006126 on the OEIS [1].

In the following, we will often consider vertices with in-degree ≤ 2 and, in that case,
the situation is clear. If i is a source, then there are only two possible local functions, the
two constant local functions. If i has a unique in-neighbor, say j, then it is not null by
Proposition 1, and there is a unique possible local function: we have fi(x) = xj⊕σ̃ji. If i
has only positive or negative in-neighbors, we say that fi is the AND (resp. OR) function if
it is the ordinary logical and (resp. or) but inputs with a negative sign are flipped, that is,

fi(x) =
∧

j∈N(i)

xj⊕σ̃ji (resp. fi(x) =
∨

j∈N(i)

xj⊕σ̃ji ).

(If i is of in-degree one, the AND and OR functions are identical.) Now, if i is of in-degree
two and has no null in-neighbor, there are only two possibles local functions: the AND
function and the OR function.

2.5 Fixed points and basic results

A fixed point of f is a configuration x such that f(x) = x. We denote by φ(f) the number
of fixed points of f . In this paper, we are interested in decision problems related to the
maximum and minimum number of fixed points of BNs in F(D), denoted

φmax(D) = max {φ(f) | f ∈ F(D)} ,

φmin(D) = min {φ(f) | f ∈ F(D)} .
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Cycles of D are known to play a fundamental role concerning the number of fixed points.
A basic result by Robert is that if D is acyclic, then every f ∈ F(D) has a unique fixed
point (thus φmax(D) = φmin(D) = 1). Considering positive and negative cycles, Aracena
[2] proved the following other basic results, that show a kind of duality between the two
types of cycle (note that Robert’s result is an immediate consequence of the first two items)

Theorem 1 ([2]). Let D be a SID.

1. If D has only negative cycles then φmax(D) ≤ 1.

2. If D has only positive cycles then φmin(D) ≥ 1.

3. If D is strongly connected and has only negative cycles φmax(D) < 1.

4. If D is strongly connected and has only positive cycles φmin(D) > 1.

The first item can be widely generalized into the following bound (many extensions or
improvements for particular classes of SIDs exist; see [31, 13, 8] for instance).

Theorem 2 (Positive feedback bound [2]). For every SID D we have φmax(D) ≤ 2τ
+(D).

An illustration is given in Figure 1. The positive feedback bound is an immediate
consequence of the following lemma, used many times in the following.

Lemma 1 ([2]). Let D be a SID, let I be a positive feedback vertex set of D and f ∈ F(D).
If f has distinct fixed points x, y, then xI 6= yI .

The proof of all the previous results uses at some point the following lemma, that we
will also use intensively (the first item appears in [13] and the second is a consequence of
the first; we give a proof for completeness). Given a SID D with vertex set V and i ∈ V ,
we define the partial order ≤Di on {0, 1}V by

x ≤Di y ⇐⇒ xN1(i) ≤ yN1(i) and yN−1(i) ≤ xN−1(i) and xN0(i) = yN0(i).

Lemma 2. Let D be a SID with vertex set V and sign function σ, and let f ∈ F(D). For
every i ∈ V , we have the following properties:

1. The local function fi is non-decreasing with respect to ≤Di , that is, for any configu-
rations x, y on V we have

x ≤Di y ⇒ fi(x) ≤ fi(y).

2. If i has at least one in-neighbor and at most one null in-neighbor then, for any
configuration x on V , there is a non-null in-neighbor j of i such that fi(x) = xj⊕σ̃ji.
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1 2

3

x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)

000 100 100 100 100 100 100 100 100
001 000 001 010 011 100 101 110 111
010 100 101 100 101 100 101 100 101
011 001 001 011 011 101 101 111 111
100 000 000 010 010 100 100 110 110
101 010 011 010 011 010 011 010 011
110 000 001 010 011 100 101 110 111
111 011 011 011 011 011 011 011 011

Figure 1: Example of simple SID D with three vertices. Green arrows represent positive
arcs and T-end red arrows represent negative arcs; this convention is used throughout the
paper. D has two positive cycles (of length 1 and 2) and two negative cycles (of length 1
and 3). Each vertex is of in-degree two, so for each f ∈ F(D) and i ∈ {1, 2, 3} the local
functions fi is either the AND function of the OR function. Thus, |F(D)| = 8. The table
of the 8 BNs in F(D), denoted from f1 to f8, is given; fixed points are in bold. These
BNs have either 0 or 1 fixed point. Thus, φmin(D) = 0 and φmax(D) = 1. Note that {3}
is a positive feedback vertex set, hence τ+(D) = 1. The positive feedback bound gives
φmax(D) ≤ 2; it is not reached.

Proof. To prove the first property, let x, y be configurations on V such that x ≤Di y. Let
∆(x, y) be the set of j ∈ V such that xj 6= yj . We proceed by induction on |∆(x, y)|,
the Hamming distance between x and y. If |∆(x, y)| = 0 then x = y so fi(x) = fi(y).
Otherwise, there exists j ∈ ∆(x, y) and we set z = x⊕ej . Since zj = yj , it is clear that
z ≤Di y. Furthermore, we have ∆(z, y) = ∆(x, y) \ {j} so fi(z) ≤ fi(y) by induction
hypothesis. If j 6∈ N(i), we have fi(x) = fi(z) ≤ fi(y). Otherwise, j is either a positive
or a negative in-neighbor of i (since xj 6= yj and x ≤Di y). If j is a positive in-neighbor,
then xj < yj = zj so fi(x) ≤ fi(z), and we deduce that fi(x) ≤ fi(y). If j is a negative
in-neighbor, then xj > yj = zj , so fi(x) ≤ fi(z) and we have again fi(x) ≤ fi(y). This
concludes the induction step.

We now prove the second property. Suppose that fi(x) = 0 and suppose, for a contra-
diction, that there is no non-null in-neighbor j of i such that xj⊕σ̃ji = 0. This means that
xN1(i) = 1 and xN−1(i) = 0 or, equivalently, that x is a ≤Di -maximal configuration. If i has

no null in-neighbor, for any configuration y we have y ≤Di x and we deduce from the first
property that fi(y) = 0. Hence, fi is the 0 constant function, which is a contradiction since
i has at least one in-neighbor. Suppose now that i has a unique null in-neighbor, say k. For
any configuration y with yk = xk we have y ≤Di x and we deduce from the first property
that fi(y) = 0, so that fi(y) ≤ fi(y⊕ek). It follows that k is a positive in-neighbor if xk = 0
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and a negative in-neighbor if xk = 1, a contradiction. The case fi(x) = 1 is similar.

2.6 Decision problems

We will study the complexity of deciding if φmax(D) ≥ k or φmin(D) < k, where k is a
positive integer, fixed or not. This gives the following decision problems.

k-Maximum Fixed Point Problem (k-MaxFPP)
Input: a SID D.
Question: φmax(D) ≥ k?

Maximum Fixed Point Problem (MaxFPP)
Input: a SID D and an integer k ≥ 1.
Question: φmax(D) ≥ k?

k-Minimum Fixed Point Problem (k-MinFPP)
Input: a SID D.
Question: φmin(D) < k?

Minimum Fixed Point Problem (MinFPP)
Input: a SID D and an integer k ≥ 1.
Question: φmin(D) < k?

All these problems are in NEXPTIME (they can be decided in exponential time on a
non-deterministic Turing machine). For instance the problem MaxFPP can be decided as
follows. Given a SID D with vertex set V and an integer k:

1. Choose non-deterministically a BN f with component set V ; this can be done in
exponential time since f can be represented using |V |2|V | bits.

2. Compute the SID Df of f ; this can be done in exponential time by comparing fi(x)
and fi(x⊕ej) for all configurations x on V and vertices i, j ∈ V .

3. Compute φ(f) by considering each of the 2|V | configurations.

4. Accept if and only if φ(f) ≥ k and Df = D.

This non-deterministic exponential time algorithm has an accepting branch if and only if
φmax(D) ≥ k. Therefore, the problem MaxFPP is in NEXPTIME. This algorithm can be
adapted to the other problems.

However, as we will see later, this complexity bound can be refined for some problems
or when we restrict the problems to some subclass of SIDs, such as SIDs with a maximum
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in-degree bounded by a constant d. This is because the SIDs of this subclass only admit
a simple exponential number of BNs. Indeed, if f ∈ F(D) and ∆(D) ≤ d, then each local
function fi can be regarded as a Boolean function with |N(i)| ≤ d inputs. Consequently,

there are at most c = 22d possible choices for each local function, and |F(D)| ≤ cn is a
simple exponential.

Remark 1 below shows that the restriction to SIDs D with maximum in-degree ≤ 1
reduces drastically the hardness of the problems. Therefore, in the rest of the article, we
will only consider SIDs whose maximum in-degree is bounded by a constant d ≥ 2 or not
bounded at all.

Remark 1. The decisions problems k-MaxFPP, MaxFPP, k-MinFPP and MinFPP
restricted to SIDs D such that ∆(D) ≤ 1 are in P. Indeed, if ∆(D) ≤ 1 and D has exactly
p positive cycles, then for any f ∈ F(D), one easily check that

φ(f) =

{
0 if D has a negative cycle,

2p otherwise.

As a consequence, computing φ(f), which is obviously equal to both φmax(D) and φmin(D),
can be done in polynomial time, and it is sufficient to compare this value to k in order to
answer any problem.

3 k-Maximum Fixed Point Problem for k = 1

In this Section, we are interested in the problem of deciding if a SID D admits a BN with
at least one fixed point. This is the only decision problem we consider for which we do not
prove tight complexity bounds. More precisely, Theorem 3 shows that the problem is in P,
but it remains open to know whether it is P-hard.

Theorem 3. 1-MaxFPP is in P.

The next lemma shows that we can efficiently transform any SID D into a simple SID
D′ such that φmax(D) ≥ 1 if and only if φmax(D′) ≥ 1. As a consequence, in order to prove
that 1-MaxFPP is in P, we can consider that the input SID is simple.

Lemma 3. Let D be a SID and let D′ be the simple SID obtained from D by deleting the
set of arcs (j, i) such that i has at least two null in-neighbors in D or such that j is the
unique null in-neighbor of i in D. We have

φmax(D) ≥ 1 ⇐⇒ φmax(D′) ≥ 1.

Proof. Suppose that φmax(D) ≥ 1 and let f ∈ F(D) with a fixed point y. We define
componentwise a BN f ′ ∈ F(D′) that admits y as fixed point. Let i be any vertex. We
consider three cases:
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1. If i has no null in-neighbor in D, then i has the same in-coming arcs in D and D′

thus we can set f ′i = fi, so that f ′i(y) = fi(y) = yi.

2. If i has a unique null in-neighbor in D, then f ′i is defined as the AND function if
yi = 0, and the OR function otherwise. Suppose first that yi = 0. Then fi(y) = 0
so, by the second property of Lemma 2, there is a non-null in-neighbor j of i such
that yj⊕σ̃ji = 0, where σ is the sign function of D. Since f ′i is the AND function, we
deduce that f ′i(y) = 0. We prove similarly that f ′i(y) = 1 when yi = 1.

3. If i has at least two null in-neighbors in D, then i is a source of D′ so f ′i has to be a
constant function. We then set f ′i = yi, so that f ′i(y) = yi.

In this way, f ′ is a BN in F(D′) which has y as fixed point. Hence, φmax(D′) ≥ 1.

Conversely, suppose that φmax(D′) ≥ 1 and let f ′ ∈ F(D′) with a fixed point y. We
define componentwise a BN f ∈ F(D) that admits y as fixed point. Let i be any vertex.
We consider three cases:

1. If i has no null in-neighbor in D, then i has the same in-coming arcs in D and D′

thus we can set fi = f ′i , so that fi(y) = f ′i(y) = yi.

2. Suppose that i has a unique null in-neighbor in D, say k. Note that i has at least two
non-null in-neighbors in D by Proposition 1. Suppose that yi = 0. Then f ′i(y) = 0
so, by the second property of Lemma 2, there is a non-null in-neighbor j of i such
that yj⊕σ̃ji = 0. We then define fi by:

fi(x) =
(
(xj⊕σ̃ji

)
∨ (xk⊕yk)

)
∧

∧
`∈ND(i)\{j,k}

(
(x`⊕σ̃`i) ∨ (xk⊕¬yk)

)
.

It is easy to check that fi ∈ Fi(D) and, since the first term of the conjunction vanishes
for x = y, we have fi(y) = 0 = yi. If yi = 1 we prove similarly that there is fi ∈ Fi(D)
with fi(y) = 1 (in that case, there is a non-null in-neighbor j such that yj⊕σ̃ji = 1
and fi is defined as above by swapping ∧ and ∨, and by swapping yk and ¬yk).

3. Suppose that i has at least two null in-neighbors in D. If yi = 0 we define fi by:

fi(x) =

 ⊕
j∈N0

D(i)

xj⊕yj

 ∧ ∧
j∈ND(i)\N0

D(i)

(xj⊕σ̃ji).

It is easy to check that fi ∈ Fi(D) and, since the first term of the conjunction vanishes
for x = y, we have fi(y) = 0 = yi. The case yi = 1 is symmetric (with ∨ instead of
∧ and ¬yj instead of yj).

In this way, f is a BN in F(D) which has y as fixed point. Hence, φmax(D) ≥ 1.
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We now give a graph-theoretical characterization of the simple SIDs D such that
φmax(D) ≥ 1. We need some additional definitions. A strongly connected component
H in a signed digraph D is trivial if it has a unique vertex and no arc, and initial if D has
no arc (i, j) where j is in H but not i.

Lemma 4. Let D be a simple SID. We have φmax(D) ≥ 1 if and only if each non-trivial
initial strongly connected component of D has a positive cycle.

Proof. The left to right implication has been proven by Aracena in [4, Corollary 3] and is
an easy consequence of the third item in Theorem 1. We present a version rewritten with
the notations of this paper. Let σ be the sign function of D, and let f ∈ F(D) with a fixed
point x. Consider an arbitrary non-trivial initial strongly connected component H of D,
and let us prove that H has a positive cycle. Since H is non-trivial, by the second property
of Lemma 2, each vertex i in H has a non-null in-neighbor j such that xj⊕σ̃ji = fi(x) = xi,
and j is necessarily in H since H is initial. We deduce that H has a spanning subgraph
H ′ in which each vertex is of in-degree one, and such that xj⊕σ̃ji = xi for any arc (j, i) of
H ′. Hence, for any vertices i, j in H, if xj = xi then any walk in H ′ from j to i visits an
even number of negative arcs. In particular, any cycle of H ′ is positive. Since H ′ has no
source, H ′ has a cycle, which is positive. Thus, H has a positive cycle as desired.

Conversely, suppose that each non-trivial initial strongly connected component of D
has a positive cycle. Then it is easy to see that D has a spanning subgraph D′ with only
positive cycles, and with the same sources as D. Let any f ′ ∈ F(D′). By the second item of
Theorem 1, f ′ has at least one fixed point, say x. We then define f ∈ F(D) componentwise
as follows. For any vertex i, if i is a source, then we set fi = xi, so that fi(x) = xi.
Otherwise, by the second property of Lemma 2, i has an in-neighbor j in D′ such that
xj⊕σ̃ji = f ′i(x) = xi. We then define fi as the AND function if xj⊕σ̃ji = xi = 0 and the
OR function if xj⊕σ̃ji = xi = 1. It is then clear that fi(x) = xi. Hence, x is a fixed point
of f .

Remark 2. If D is not simple, we can have φmax(D) = 0 even if each non-trivial initial
strongly connected component of D has a positive cycle. Indeed, let D and D′ be the
following SIDs:

D

1 2

3

D′
1 2

3

The black arrow from vertex 1 to vertex 2 represents a null arc, thus D is not simple.
Furthermore, D is strongly connected and has a positive cycle: the positive loop on vertex
1. However, φmax(D) = 0. Indeed, by Lemma 3, φmax(D) ≥ 1 if and only if φmax(D′) ≥ 1.
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However, since D′ is simple and has a non-trivial initial strongly connected component with
only negative cycles, that containing vertices 2 and 3, by Lemma 4 we have φmax(D′) = 0
and thus φmax(D) = 0.

The last ingredient for the proof of Theorem 3 is a difficult result independently proven
by Robertson, Seymour and Thomas in [36], and McCuaig in [25].

Theorem 4 ([25, 36]). There is a polynomial time algorithm to decide if a given digraph
contains a cycle of even length.

Proof of Theorem 3. As a consequence of Lemmas 3 and 4, to decide if φmax(D) ≥ 1, it is
sufficient to compute the non-trivial initial strongly connected components of the simple
SID D (this can be done in linear time [38]) and to check if each of them contains a positive
cycle. Using the following transformation, the algorithm from Theorem 4 can be used to
perform this in polynomial time.

Let D be a signed digraph with n vertices, and let D̃ be the digraph obtained from D
by replacing each positive arc by a path of length two (with one new vertex), and each
negative arc by a path of length one. Then D̃ has at most n + n2 vertices, and D has a
positive cycle if and only if D̃ has a cycle of even length (this transformation also appears
in [27]). This concludes the proof of Theorem 3.

4 k-Maximum Fixed Point Problem for k ≥ 2

In this section we study k-MaxFPP for k ≥ 2 and prove the following complexity result.

Theorem 5. k-MaxFPP is NP-complete for every k ≥ 2, even when restricted to SIDs
D such that ∆(D) ≤ 2.

We first prove the upper bound and then the lower bound.

4.1 Upper bound

Lemma 5. k-MaxFPP is in NP for any k ≥ 2.

Proof. Let D be a SID with vertex set V . Suppose that k ≤ 2|V |, otherwise D is obviously
a false instance. The algorithm we consider is fairly simple. It first guesses k fixed points
and, for each non-negative (resp. non-positive) arc (j, i) in D, it guesses a configuration in
which an increase of component j produces an increase (rep. decrease) of the local function
fi. It finally checks that these non-deterministic guesses do not contradict the first property
of Lemma 2. If so, this partial knowledge of the local functions can be extended into a
BN in F(D) with the k guessed fixed points, i.e. D is a true instance. More precisely, the
algorithm is as follows:
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1. Choose non-deterministically k distinct configurations x1, . . . , xk on V and, for every
i ∈ V , compute the sets Fi = {x` |x`i = 0, ` ∈ [k]} and Ti = {x` |x`i = 1, ` ∈ [k]}.

2. For each non-negative arc (j, i) of D, choose non-deterministically a configuration
xji+ on V with xji+j = 0. Then add xji+ in the set Fi and xji+⊕ej in the set Ti.

3. For each non-positive arc (j, i) of D, choose non-deterministically a configuration
xji− on V with xji−j = 0. Then add xji− in the set Ti and xji−⊕ej in the set Fi.

4. Accept if and only if there is no i ∈ V , x ∈ Fi and y ∈ Ti such that y ≤Di x.

This algorithm runs in O(|V |∆(D)3), which is actually the time complexity of the last
item, the most consuming one. Indeed, we have |Fi||Ti| ≤ (∆(D) + k)2, and the relation
y ≤Di x can be checked in O(∆(D)).

We will prove that there is an accepting branch if and only if φmax(D) ≥ k.

Suppose first that there is f ∈ F(D) with at least k fixed points. One can consider the
following execution. First, the configurations x1, . . . , xk chosen in the first step are fixed
points of f . Second, for each non-negative arc (j, i) of D, the configuration xji+ chosen in
the second step is such that fi(x

ji+) < fi(x
ji+⊕ej); this configuration exists since D is the

SID of f . Third, for each non-positive arc (j, i), the configuration xji− chosen in the third
step is such that fi(x

ji−) > fi(x
ji−⊕ej); this configuration exists since D is the SID of f .

Hence, for all i ∈ V , x ∈ Fi and y ∈ Ti we have fi(x) = 0 and fi(y) = 1 and we deduce
from the first property of Lemma 2 that y 6≤Di x, so the algorithm has an accepting branch.

For the other direction, suppose that the algorithm has an accepting branch. Let us
prove that there is f ∈ F(D) with at least k fixed points. For each i ∈ V , we define fi has
follows: for all configurations x on V ,

fi(x) =

{
1 if there is y ∈ Ti such that y ≤Di x,
0 otherwise.

Clearly, fi(x) = 1 if x ∈ Ti. Furthermore, if x ∈ Fi then, since we are considering an
accepting branch, there is no y ∈ Ti such that y ≤Di x, and we deduce that fi(x) = 0.
Consequently, fi(x

`) = x`i for 1 ≤ ` ≤ k. Thus, x1, . . . , xk are fixed points of f .

It remains to prove that the SID Df of f is equal to D. Suppose first that Df has a non-
negative arc (j, i). Then there is a configuration x with xj = 0 such that fi(x) < fi(x⊕ej).
We deduce that x 6≤Di y ≤Di x⊕ej for some y ∈ Ti. So (j, i) is an arc of D and, since
xj ≤ yj and y ≤Di x⊕ej , if this arc is negative then y ≤Di x, a contradiction. Thus, (j, i)
is a non-negative arc of D. We prove similarly that every non-positive arc of Df is a non-
positive arc of D. Now, suppose that D has a non-negative arc (j, i) and let x = xji+ be
the corresponding configuration chosen in the second step. We have x ∈ Fi and x⊕ej ∈ Ti,
so fi(x) < fi(x⊕ej) and since xj = 0 we deduce that (j, i) is a non-negative arc of D′. We
prove similarly that every non-positive arc of D is a non-positive arc of Df . This proves
that Df = D.

13



4.2 Lower bound

We now prove the lower bound. We first show that the problem can be reduced to k = 2:
by the following lemma, 2-MaxFPP is as hard as k-MaxFPP for all k > 2.

Lemma 6. Let k > 2 and let D be any SID. Let D′ be the SID obtained from D by adding
dlog2 ke − 1 new vertices and a positive loop on each new vertex. We have

φmax(D′) ≥ k ⇐⇒ φmax(D) ≥ 2.

Proof. Let ` = dlog2 ke so that 2`−1 < k ≤ 2` and ` ≥ 2. Let H be the SID with ` − 1
vertices and a positive loop on each vertex. Then F(H) contains a unique BN, which is
the identity, thus φmax(H) = 2`−1. Since D′ is the disjoint union of D and H,

φmax(D′) = φmax(D) · φmax(H) = φmax(D) · 2`−1.

Thus, φmax(D′) ≥ 2` ≥ k if φmax(D) ≥ 2, and φmax(D′) ≤ 2`−1 < k otherwise.

It remains to prove the case k = 2: it is NP-hard to decide if φmax(D) ≥ 2. This is
the main contribution of the paper. First, from a technical point of view, the reduction
used for this decision problem will be adapted for all the other hardness results of this
paper. Second, from a more general point of view, many works have been devoted to the
study of the SID of dynamical systems with multiple steady states, both in the continuous
and discrete setting, see [37, 30, 37, 20, 33] and the references therein. The basic observa-
tion, answering a conjecture of the biologist Thomas, is that a non-negative cycle must be
present. The biological motivation behind is that dynamical systems (in particular BNs)
with multiple steady states (fixed points in the discrete setting) should account for very
important biological phenomena: cell differentiation processes. In our setting, the principal
observation we just mention is the first item of Theorem 1: if φmax(D) ≥ 2 then D has a
non-negative cycle. This necessary condition for φmax(D) ≥ 2 (which can be checked in
polynomial time) is obviously not sufficient, and it is natural to seek for a characterization.
By proving that it is NP-hard to decide that φmax(D) ≥ 2, we show that any such char-
acterization is difficult to check. Together with the complexity upper bound established
above, this answers a question stated in [32].

The rough idea is the following. We know that if a SID D1 has no source and is full-
positive then φmin(D1) ≥ 2 (this is an easy consequence of the last item of Theorem 1).
More precisely, every f ∈ F(D1) has two distinct fixed points x and y such that x ≤ y.
If, in addition, D1 has a positive feedback vertex set of size one, then φmax(D1) ≤ 2 thus
every f ∈ F(D1) has exactly two distinct fixed points x and y such that x ≤ y. The
simplest example is the full-positive cycle. Now, if we add some negative arcs in D1,
without producing additional positive cycles, this can only reduce the maximum number
of fixed points. In many cases the reduction is effective: the resulting SID D2 is such that
φmax(D2) ≤ 1. The simplest example is a full-positive cycle plus any negative arc. The
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idea then to add to D2 some additional sources that “control” the negative arcs in such
a way that some BNs behave as if their SID were D1 (the negative arcs are “dynamically
absent”) and have thus two fixed points, while some others behave as if their SID were
D2 (the negative arcs are “dynamically present”) and have at most one fixed point. If
this “control” is possible if and only if rather particular graphical conditions are satisfied,
then some complexity lower bound should be obtained. Actually, the reduction consists in
encoding, in these graphical conditions, a 3-SAT formula.

So consider a 3-SAT formula ψ over a set λ of n variables and with a set of m clauses
µ. To each variable λ ∈ λ is associated a positive literal λ+ and a negative literal λ−. The
resulting sets of positive and negative literals are denoted λ+ and λ−, and each clause is
regarded as a triplet of elements taken in λ+ ∪ λ−. An assignment for ψ is regarded as
a configuration z on a set V such that λ ⊆ V . A positive literal λ+ is satisfied by z if
zλ = 1, and a negative literal λ− is satisfied by z if zλ = 0. A clause is satisfied by z if at
least one of its literals is satisfied by z. The formula ψ is satisfied by z (or z is a satisfying
assignment for ψ) if every clause in µ is satisfied by z. We say that ψ is satisfiable if it has
at least one satisfying assignment.

The reduction from the 3-SAT problem is based on the following definition; see Figure 2
for an illustration.

Definition 1 (Dψ). Let ψ be a 3-CNF formula over a set λ of n variables and with a set of
m clauses µ. Given an enumeration λ = {λ1, . . . , λn} of the variables and an enumeration
µ = {µ1, . . . , µm} of the clauses, we define a SID Dψ with 4n+ 2m+ 1 vertices as follows:

• The vertex set is

Vψ = λ ∪ Uψ with Uψ = λ+ ∪ λ− ∪ ` ∪ µ ∪ c,

where ` = {`0, . . . , `n} and c = {c1, . . . , cm}.

• The arcs are, for all r ∈ [n] and s ∈ [m],

– (λr, λ
+
r ), (`r−1, λ

+
r ),

– (λr, λ
−
r ), (`r−1, λ

−
r ),

– (λ+
r , `r), (λ

−
r , `r),

– (c1, `0),

– (i, µs) for all i ∈ λ+ ∪ λ− such that i is a literal in µs,

– (µs, cs), (cs+1, cs), where cm+1 means `n.

• For all r ∈ [n] and s ∈ [m], the arcs (λr, λ
−
r ) and (µs, cs) are negative, and all the

other arcs are positive.
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λ1 λ2 λ3

λ+1

λ−1

λ+2

λ−2

λ+3

λ−3

`0 `1 `2 `3

µ1 µ2

c1 c2

Figure 2: SID Dψ of Definition 1 for the 3-CNF formula ψ = (λ1∨¬λ2∨¬λ3)∧(¬λ1∨¬λ3).
Using our notations, the set of variables is λ = {λ1, λ2, λ3} and the set of clauses is
µ = {µ1, µ2} where, for instance, µ1 = (λ+

1 , λ
−
2 , λ

−
3 ) and µ2 = (λ−1 , λ

−
3 , λ

−
3 ) (what matter

is that λ+
1 , λ

−
2 , λ

−
3 appear in µ1 and λ−1 , λ

−
3 appear in µ2). Clauses are encoded in Dψ

through dashed arrows.
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Note that ∆(Dψ) ≤ 3. More precisely, vertices in λ (variables) have in-degree 0 (they
are sources), vertices in µ (clauses) have in-degree at most 3, and all the other vertices
have in-degree 2, excepted `0 which has in-degree 1.

Intuitively, the SID Dψ,1 obtained from Dψ by deleting the sources and the negative
arcs corresponds to the SID D1 in the above rough description of the construction: Dψ,1

has no source and is full-positive, so that φmin(Dψ,1) ≥ 2, and since any vertex in `∪ c is a
positive feedback vertex set we have φmin(Dψ,1) = φmax(Dψ,1) = 2. Let Dψ,2 be obtained
from Dψ,1 by adding the negative arcs (µs, cs). One can check that the addition of these
negative arcs decreases the maximum number of fixed points: we have φmax(Dψ,2) ≤ 1 (see
[32], Theorem 3). This SID Dψ,2 plays the role of SID D2 in the above rough description
of the construction.

This construction works intuitively as follows. For the first direction, we consider an
assignment z ∈ {0, 1}λ and we construct f ∈ F(Dψ), in such a way that, at the first
iteration, each source λr is “fixed” to the state zλr . By taking the OR function for the
local functions associated with the positive and negative literals, it results that, at the
second iteration, exactly one of λ+

r , λ
−
r is “fixed” to state 1: the positive literal if zλr = 1,

and the negative literal otherwise. At this point, if z is a true assignment, each clause µs
has at least one in-neighbor “fixed” to state 1, and by taking fµs as the OR function, µs
is fixed at state 1 at the third iteration. By taking fcs as the OR function, each vertex cs
is still “free”, and by taking f`r as the AND function, each vertex `r is still “free”. Hence,
there is a positive cycle containing only “free” vertices, which “produces” two fixed points.
This is like if, in three iterations, all the negative arcs “disappear” leaving “free” a full-
positive cycle. In this construction, only the local functions associated with the sources
depend on the assignment z, and f has at least one fixed point even if z is not a true
assignment. These two properties will be very useful for the other hardness results. Below,
we do not described formally this “three iterations process”. We only prove what we need
for the following.

Lemma 7. Let z ∈ {0, 1}λ and f ∈ F(Dψ) defined by: fλ = z and, for all i ∈ Uψ, fi is
the AND function if i ∈ ` and the OR function otherwise. Then f has at least one fixed
point, and if ψ is satisfied by z, then f has at least two fixed points.

Proof. Let x be the configuration on Vψ defined by xλ = z and xUψ = 1. First, f(x)λ = z =
xλ. Second, f`0(x) = xc1 = 1 = x`0 and, for all r ∈ [n], f`r(x) = xλ+r ∧xλ−r = 1∧1 = 1 = x`r .
Third, any vertex i ∈ Uψ \ ` has a positive in-neighbor j ∈ Uψ. Since fi is the OR function
and xj = 1, we have fi(x) = 1 = xi. Thus, f(x) = x.

Let y be the configuration on Vψ be defined by: yλ = z and, for all i ∈ Uψ,

yi = 1 ⇐⇒


i is a clause µs, or
i is a positive literal λ+

r such that zλr = 1, or
i is a negative literal λ−r such that zλr = 0.

17



Note that yλ+r = zλr 6= yλ−r for all r ∈ [n], so x 6= y. Suppose that ψ is satisfied by
z, and let us prove that y is a fixed point of f . It is clear that f(y)λ = z = yλ. Let
r ∈ [n]. Since exactly one of yλ+r , yλ−r is 0, we have f`r(y) = yλ+r ∧ yλ−r = 0 = y`r ; and
f`0(y) = yc1 = 0 = y`0 . Then

fλ+r (y) = yλr ∨ y`r−1 = zλr ∨ 0 = zλr = yλ+r ,

fλ−r (y) = ¬yλr ∨ y`r−1 = ¬zλr ∨ 0 = ¬zλr = yλ−r .

Let s ∈ [m]. Since ψ is satisfied by z, µs has at least one in-neighbor which is a positive
literal λ+

r with zλr = 1 or a negative literal λ−λr such that zλr = 0. Hence, µs has an in-
neighbor i with yi = 1 and since fµs is the OR function we deduce that fµs(y) = 1 = yµs .
We finally prove that fcs(y) = 0 = ycs by induction on s from m + 1 to 1. Since cm+1

means `n, the case s = m + 1 is already proven. Then, for s ∈ [m], we have ycs+1 = 0 by
induction so fcs(y) = ¬yµs ∨ ycs+1 = ¬1 ∨ 0 = 0 = ycs . Thus, f(y) = y.

For the other direction, we suppose that there is f ∈ F(Dψ) with two distinct fixed
points x and y. Then we prove that either x ≤ y or y ≤ x, exactly as if the SID of f where
Dψ,1 (or any full-positive SID without two vertex-disjoint positive cycles); this results from
Lemma 8 below. Furthermore, for each clause µs it appears that xµs = yµs , the clause is
“fixed”. Since x ≤ y or y ≤ x, this is possible only if µs has an in-neighbor (a positive
or negative literal associated to some variable λr) which is also “fixed”; this results from
Lemma 9 below. Beside, an easy consequence of x 6= y is that at most one λ+

r , λ
−
r is “fixed”

and from that point we easily obtain a satisfying assignment.

Lemma 8. Let D be a simple SID, without two vertex-disjoint positive cycles, such that ev-
ery positive cycle is full-positive and, for any negative arc (j, i), either j is a source or every
positive cycle contains i. Let f ∈ F(D) with two fixed point x and y. The following holds:

• We have x ≤ y or y ≤ x.

• If (j, i) is a negative arc and i is of in-degree two, then xj = yj.

Proof. Let I be the set of vertices i in D such that xi 6= yi. We prove that each i ∈ I has
an in-neighbor j ∈ I such that xj⊕σ̃ji = xi. Let i ∈ I and suppose that xi < yi, the other
case being similar. Then fi(x) < fi(y) and thus y 6≤Di x by Lemma 2. Hence, i has at least
one in-neighbor j such that: (j, i) is positive and xj < yj , or (j, i) is negative and xj > yj .
In both cases, j ∈ I and xj⊕σ̃ji = xi.

We deduce that D has a subgraph D′ with vertex set I, in which each vertex is of
in-degree one, and such that xj⊕σ̃ji = xi for any arc (j, i) of D′. Hence, for any i, j ∈ I,
if xj = xi then any walk in D′ from j to i visits an even number of negative arcs. In
particular, any cycle of D′ is positive. Thus, by hypothesis, any cycle of D′ is full-positive.

Since, in D′, each vertex is of in-degree one, D′ has a cycle C (which is full-positive).
Furthermore, D′ has no other cycle (since otherwise D has two vertex-disjoint positive
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cycles). Thus, D′ is connected. Furthermore, D′ is full-positive: if (j, i) is a negative arc
of D′ then j is not a source (since j ∈ I) so, by hypothesis, i is in C, and thus j too. But
then C has a negative arc, and it is a contradiction. So D′ is full-positive and we deduce
that xj = xi for any arc (j, i) of D′. Since D′ is connected, we deduce that xj = xi for
any i, j ∈ I and this implies that yj = yi for any i, j ∈ I. Thus, either x ≤ y or y ≤ x.
Suppose, without loss, that x ≤ y.

Let (j, i) be a negative arc of D. Suppose that i is of in-degree two in D and, for a
contradiction, that xj 6= yj . Then xj < yj since x ≤ y. By hypothesis, i is in C thus
xi < yi. Since i is of in-degree two, fi is either the AND function or the OR function.
If fi is the OR function, then fi(x) = 1 since xj = 0 and (j, i) is negative, which is a
contradiction since xi = 0. If fi is the AND function, then fi(y) = 0 since yj = 1 and (j, i)
is negative, which is a contradiction since yi = 1. Thus, xj = yj .

Lemma 9. Let D be a SID and f ∈ F(D) with two fixed points x, y such that x ≤ y. Every
vertex i with only positive in-neighbors such that xi = yi has a positive in-neighbor j such
that xj = yj.

Proof. Let i be as in the statement. If xi = yi = 0 then, by Lemma 2, i has a positive
in-neighbor j such that yj = fi(y) = yi = 0, and since x ≤ y we have xj = yj = 0. If
xi = yi = 1 then, by Lemma 2, i has a positive in-neighbor j such that xj = fi(x) = xi = 1,
and since x ≤ y we have xj = yj = 1.

We go back to our construction Dψ and prove a kind of converse of Lemma 7. We
need a definition. For every r ∈ [n], `r is of in-degree two in Dψ, so f`r is either the AND
function or the OR function; we then define ε(f) ∈ {0, 1}λ as follows: for all r ∈ [n],

ε(f)λr =

{
0 if f`r is the OR function,

1 if f`r is the AND function.

Lemma 10. If f ∈ F(Dψ) has distinct fixed points x and y, then ψ is satisfied by xλ⊕ε(f).

Proof. Let f ∈ F(Dψ) and ε = ε(f). Suppose that f has distinct fixed points x and y. By
Lemma 8, we have x ≤ y or y ≤ x. Suppose, without loss, that x ≤ y. Since vertices in λ
are sources, there is z ∈ {0, 1}λ such that xλ = yλ = z. Note also that, for every i ∈ `, {i}
is a positive feedback vertex, and thus xi < yi by Lemma 1.

Consider any clause µs, and let us prove that it is satisfied by z ⊕ ε. By Lemma 8,
we have xµs = yµs and, by Lemma 9, µs has an in-neighbor i such that xi = yi. This
in-neighbor i is a positive or negative literal contained in µs and associated with some
variable, say λr. We prove that this literal is satisfied by z ⊕ ε, and so is µs. We consider
two cases:
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1. Suppose that i = λ+
r . Since x`r−1 < y`r−1 , if fi is the OR function we have

xi = fi(x) = xλr ∨ x`r−1 = xλr ∨ 0 = xλr = zλr ,

and if fi is the AND function we have

yi = fi(y) = yλr ∧ y`r−1 = yλr ∧ 1 = yλr = zλr .

Since xi = yi, we have zλr = xi = yi and consider two cases.

(a) If zλr = 1 then xi = 1 so, if f`r is the OR function, then

x`r = f`r(x) = xi ∨ xλ−r = 1 ∨ xλ−r = 1,

and this contradicts x`r < y`r . Hence, f`r is the AND function so ελr = 0.

(b) If zλr = 0 then yi = 0 so, if f`r is the AND function, then

x`r = f`r(y) = yi ∧ yλ−r = 0 ∧ yλ−r = 0,

and this contradicts x`r < y`r . Hence, f`r is the OR function so ελr = 1.

In both cases we have zλr⊕ελr = 1 thus i = λ+
r is satisfied by z ⊕ ε.

2. Suppose that i = λ−r . Since x`r−1 < y`r−1 , if fi is the OR function we have

xi = fi(x) = ¬xλr ∨ x`r−1 = ¬xλr ∨ 0 = ¬xλr = ¬zλr ,

and if fi is the AND function we have

yi = fi(y) = ¬yλr ∧ y`r−1 = ¬yλr ∧ 1 = ¬yλr = ¬zλr .

We deduce that zλr 6= xi = yi. If zλr = 0 then xi = 1 and we deduce as in the first
case that ελr = 0. If zi = 1 then yi = 0 and we deduce as in the first case that
ελr = 1. In both cases we have zλr⊕ελr = 0 thus i = λ−r is satisfied by z⊕ε.

We can now prove the main property of Dψ.

Lemma 11.

φmax(Dψ) =

{
2 if ψ is satisfiable,
1 otherwise.

Proof. By Lemma 7 and the positive feedback bound, we have 1 ≤ φmax(Dψ) ≤ 2. By
Lemma 10, if φmax(Dψ) = 2 then ψ is satisfiable, and the converse is given by Lemma 7.
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j1 j2 j3
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i

Figure 3: Transformation in Lemma 12 used to reduce the maximum in-degree.

The following lemma is useful to reduce the maximum in-degree without modifying the
maximum and minimum number of fixed points. The proof is a simple exercise and is
omitted.

Lemma 12. Let D be a SID and let I be the set of vertices with exactly three in-neighbors,
all positive. Let D′ be obtained from D by doing the following transformation for every
i ∈ I: denoting j1, j2, j3 the three in-neighbors of i, the arcs (j1, i), (j2, i) are replaced by
positive arcs (j1, i

′), (j2, i
′), where i′ is a new vertex, and a positive arc (i′, i) is added (see

Figure 3). Suppose that there is fmax, fmin ∈ F(D) with φmax(D) and φmin(D) fixed points,
respectively, where each of fmax

i , fmin
i is the OR function for every i ∈ I. We have

φmax(D′) = φmax(D) and φmin(D′) = φmin(D).

.

We then deduce the NP-hardness of 2−MaxFPP.

Lemma 13. 2-MaxFPP is NP-hard, even when restricted to SIDs D such that ∆(D) ≤ 2.

Proof. Given a 3-SAT formula ψ with n variables and m clauses, Dψ has 4n + 2m + 1
vertices and, by Lemma 11, we have φmax(Dψ) ≥ 2 if and only if ψ is satisfiable. Since
∆(Dψ) ≤ 3 and since vertices of in-degree three correspond to clauses and have only positive
in-neighbors, the SID D′ψ be obtained from Dψ as in Lemma 12 has at most 4n+ 3m+ 1
vertices and ∆(D′ψ) ≤ 2. By Lemmas 7 and 11, there is f ∈ F(Dψ) with φmax(Dψ) fixed
points such that fi is the OR function for every vertex i of in-degree three. Hence, by
Lemma 12, we have φmax(D′ψ) = φmax(Dψ) and the lemma is proven.

The proof of Theorem 5 is an obvious consequence of Lemmas 5, 6 and 13.

Remark 3. Let D′′ψ be obtained from D′ψ by adding: two new vertices u, v; a positive arcs
(`0, u); a negative arc (`0, v); and, for every r ∈ [n], the positive arcs (u, λr), (v, λr). One
can check that these operations does not change the maximum number of fixed points, that
is, φmax(D′′ψ) = φmax(D′ψ). Since D′′ψ is strongly connected this shows that 2-MaxFPP is
NP-hard, even when restricted to strongly connected SIDs D with ∆(D) ≤ 2. By adapting
conveniently Lemma 6, we obtain that, for all k ≥ 2, k-MaxFPP is NP-hard, even when
restricted to strongly connected SIDs D such that ∆(D) ≤ 2.
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4.3 Extensions

We now present easy extensions of the key Lemmas 7 and 10, which will be useful for the
other hardness results. We start some definitions.

Definition 2 (Extensions of Dψ and partial fixed points). An extension of Dψ is a SID
D which is the union of Dψ and a SID H with VH ∩ Vψ ⊆ λ; equivalently:

• Dψ is a subgraph of D ( i.e. each arc of Dψ is in D with the same sign), and

• in- and out-neighbors of vertices in Uψ are identical in D and Dψ.

Let D be an extension of Dψ and I = VD\Uψ. Given f ∈ F(D), we say that a configuration
z on I is a partial fixed point of f if f(x)I = xI = z for some configuration x on VD
(which thus extends z); since there is no arc from Uψ to I, if z is a partial fixed point, then
f(x)I = z for every configuration x on VD extending z.

Note that every fixed point extends a partial fixed point. Note also that Dψ is an
extension of itself with I = λ, and each f ∈ F(Dψ) has a unique partial fixed point: the
configuration z on λ such that fλ = z. If f is as in Lemma 7 and ψ is satisfied by z, then
z can be extended into two (global) fixed points. Conversely, in any case, by Lemma 10, if
z can be extended into two (global) fixed points, then ψ is satisfied by z⊕ε(f). The next
two lemmas show that, more generally, if the SID of f is an extension of Dψ, then these
properties remain true for every partial fixed point z.

Lemma 14. Let D be an extension of Dψ. Let f ∈ F(D) such that, for all i ∈ Uψ, fi is
the AND function if i ∈ ` and the OR function otherwise. Let z be a partial fixed point
of f . Then f has at least one fixed point extending z and, if ψ is satisfied by zλ, then f
has at least two fixed points extending z.

Proof. Let I = VD \ Uψ and let f̃ ∈ F(Dψ) be defined by f̃λ = zλ and, for all i ∈ Uψ, f̃i
is the AND function if i ∈ ` and the OR function otherwise. By Lemma 7, f̃ has a fixed
point x̃. Let x be the configuration on VD defined by xI = z and xUψ = x̃Uψ . Since z
is a partial fixed point, we have f(x)I = xI , and since each vertex i ∈ Uψ has the same
in-neighbors in D and Dψ, and since fi and f̃i are either both AND functions or both OR
functions, we have fi(x) = f̃i(x̃) = x̃i = xi. Thus, x is a fixed point of f . By Lemma 7,
if ψ is satisfied by zλ, then f̃ has a fixed point ỹ 6= x̃. Similarly, the configuration y on
VD defined by yI = z and yUψ = ỹUψ is a fixed point of f . Since ỹλ = x̃λ = zλ, we have
x̃Uψ 6= ỹUψ and thus x 6= y.

If D is an extension of Dψ, each vertex `r is of in-degree two in D thus, for each
f ∈ F(D), f`r is either the AND function or the OR function. Then, as previously, we
define ε(f) ∈ {0, 1}λ by ε(f)λr = 0 if f`r is the OR function and ε(f)λr = 1 otherwise.
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Lemma 15. Let D be an extension of Dψ. Let f ∈ F(D) and let z be a partial fixed
point of f . Then f has at most two fixed points extending z, and if f has two fixed points
extending z, then ψ is satisfied by zλ⊕ε(f).

Proof. Let I = VD \ Uψ. Since z ∈ {0, 1}I and D \ I has a positive feedback vertex
set of size one, by Lemma 1, f has at most two fixed points extending z. Let f̃ be the
BN with component set Vψ defined by: f̃λ = zλ and for all configurations x on VD,
f̃(xVψ)Uψ = f(x)Uψ ; there is no ambiguity since all the in-neighbors of vertices in Uψ are
in Vψ. Since vertices in λ are sources of Dψ and since every vertex in Uψ have exactly the
same in-neighbors in D and Dψ it is clear that f̃ ∈ F(Dψ). Suppose now that f has two
distinct fixed points x, y extending z. We easily check that the restrictions x̃, ỹ of x, y on
Vψ are fixed points of f̃ and that ε(f̃) = ε(f). Since xI = yI = z and x 6= y, we have x̃ 6= ỹ
thus, by Lemma 10, ψ is satisfied by x̃λ⊕ε(f̃) = zλ⊕ε(f).

5 Maximum Fixed Point Problem

In this section, we study the case where k is not a constant but a parameter of the problem.
Contrary to the two previous sections, we will see here that the restriction to SIDs with a
bounded maximum in-degree reduces the complexity of the problem.

5.1 ∆(D) bounded

In this first subsection, we study the problem MaxFPP for the family of SIDs with a
maximum in-degree bounded by a constant d ≥ 2, and prove that it is NP#P-complete. To
introduce this complexity class, let us first recall that problems in #P consist in counting
the number of certificates of decision problems in NP (the number of accepting branches
of a non-deterministic polynomial time algorithm). The canonical #P-complete problem
is #SAT, which asks for the number of satisfying assignments of an input 3-CNF formula.
The class NP#P then corresponds to decision problems computable in polynomial time by
a non-deterministic Turing machine with an oracle in #P (a “black box” answering any
problem in the class #P without using any resource).

Theorem 6. When ∆(D) ≤ d, MaxFPP is NP#P-complete.

We first prove the upper bound.

Lemma 16. When ∆(D) ≤ d, MaxFPP is in NP#P.

Proof. Let d ≥ 2 be a fixed integer. Consider the algorithm, which takes as input a SID
D with vertex set V such that ∆(D) ≤ d and an integer k, and proceeds as follows.

1. Choose non-deterministically a BN f with component set V such that, for all i ∈ V ,
the local function fi only depends on components in N(i); this can be done in linear
time since each local function fi can be represented using 2|N(i)| ≤ 2d bits.

23



2. Compute the SID Df of f ; this can be done in quadratic time since, to compute
the in-neighbors of each i ∈ V and the corresponding signs, we only have to consider
2|N(i)| ≤ 2d configurations (for each configuration x onN(i) and j ∈ N(i), we compare
fi(x̃) and fi(x̃⊕ej) where x̃ is any configuration on V extending x).

3. Compute φ(f), the number of fixed points of f , with a call to the #P oracle (the prob-
lem of deciding if f has a fixed point is trivially in NP: choose non-deterministically
a configuration, and accept if and only if it is a fixed point).

4. Accept if and only if φ(f) ≥ k and Df = D.

This non-deterministic polynomial time algorithm has an accepting branch if and only
φmax(D) ≥ k, so MaxFPP is in NP#P.

For the lower bound, it is convenient to define NP#P in another way. The class PP
regroups decision problems decided by a probabilistic Turing machine in polynomial time,
with a probability of error less than a half. The canonical PP-complete decision problem is
Majority-SAT, which asks if the majority of the assignments of a given 3-CNF formula
are satisfying. The class NPPP then corresponds to decision problems computable in poly-
nomial time by a non-deterministic Turing machine with an oracle in PP. It is well known
that P#P = PPP [28], and from that we easily deduce that NP#P = NPPP. The following
problem is known to be NPPP-complete [24], and thus also NP#P-complete.

Existential-Majority-3SAT (E-Maj3SAT)
Input: a 3-CNF formula ψ over λ = {λ1, . . . , λn} and s ∈ [n].
Question: does there exist z′ ∈ {0, 1}λ′ , where λ′ = {λ1, . . . , λs}, such that ψ
is satisfied by the majority of the assignments z ∈ {0, 1}λ extending z′?

Lemma 17. When ∆(D) ≤ d, MaxFPP is NP#P-hard.

Proof. We present a reduction from E-Maj3SAT. Let ψ be a 3-CNF formula over the set
of variables λ = {λ1, . . . , λn}. Let s ∈ [n] and λ′ = {λ1, . . . , λs}. Given z′ ∈ {0, 1}λ′ , we
denote by E(z′) the 2n−s assignments z ∈ {0, 1}λ extending z′. Then we denote by α(z′)
the number of z ∈ E(z′) satisfying ψ, and α∗ is the maximum of α(z′) for z′ ∈ {0, 1}λ′ .
Thus, (ψ, s) is a true instance of E-Maj3SAT if and only if α∗ ≥ 2n−s−1.

Let Dψ,s be obtained from Dψ by adding, for every i ∈ λ \ λ′, a positive loop on i.
Thus, Dψ,s is an extension of Dψ. Let us prove that:

φmax(Dψ,s) = 2n−s + α∗.

Let z′ ∈ {0, 1}λ′ such that α(z′) = α∗. Let f ∈ F(Dψ,s) such that fλ′ = z′ and, for all
i ∈ Uψ, fi is the AND function if i ∈ ` and the OR function otherwise. Since each vertex
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in λ \ λ′ has a positive loop and no other in-coming arc, E(z′) is the set of partial fixed
points of f . Hence, by Lemma 14, for every z ∈ E(z′), f has a fixed point extending z
and, if ψ is satisfied by z, then f has another fixed point extending z. We deduce that f
has at least 2n−s + α(z′) fixed points, and thus φmax(Dψ,s) ≥ 2n−s + α(z′) = 2n−s + α∗.

For the other direction, let any f ∈ F(Dψ,s) and set ε = ε(f). Since vertices in λ′ are

sources, fλ′ = z′ for some z′ ∈ {0, 1}λ′ . Since each vertex in λ \ λ′ has a positive loop
and no other in-coming arc, E(z′) is the set of partial fixed points of f . By Lemma 15,
for every z ∈ E(z′), f has at most two fixed points extending z, and if f has two fixed
points extending z, then ψ is satisfied by z⊕ε. Since every fixed point extends a partial
fixed point, we deduce that f has at most 2n−s + β fixed points, where β is the number of
z ∈ E(z′) such that z⊕ε is satisfying. Since β = α(z′ + ελ′) ≤ α∗, we deduce that f has at
most 2n−s + α∗ fixed points. Hence, φmax(Dψ,s) ≤ 2n−s + α∗.

Consequently, we have α∗ ≥ 2n−s−1 if and only if φmax(Dψ,s) ≥ 3 · 2n−s−1. Thus, (ψ, s)
is a true instance of E-Maj3SAT if and only if (Dψ,s, k) is a true instance of MaxFPP,
where k = 3 · 2n−s−1.

We have ∆(Dψ,s) ≤ 3 but, using Lemma 12, we can obtain from Dψ,s a SID D′ψ,s (by
adding at most one vertex and one arc per clause) with ∆(D′ψ,s) ≤ 2 and φmax(D′ψ,s) =
φmax(Dψ,s) (for that we use the fact, showed above, that there is f ∈ F(Dψ,s) with
φmax(Dψ,s) fixed points where fi is the OR function for every vertex i of in-degree three).

5.2 ∆(D) unbounded

In this second subsection, we study MaxFPP without restriction on the maximum in-
degree, and prove the following.

Theorem 7. MaxFPP is NEXPTIME-complete.

In Section 2 we proved that MaxFPP is in NEXPTIME, so we only have to prove its
NEXPTIME-hardness; this is done with a reduction from Succint-3SAT, which is a basic
complete problem for this class (see Theorem 20.2 of [28]).

Succint-3SAT takes as input a succinct representation of a 3-CNF formula Ψ, under
the form of a circuit, and asks if Ψ is satisfiable. To give details, we need to introduce
circuits and, to work in a single framework, it is convenient to introduce circuits in the
language of BNs.

Let C be a SID obtained from an acyclic SID by adding a positive loop on some sources.
Let I be the set of vertices with a positive loop, called input vertices, and let O the set of
vertices of out-degree zero, called output vertices. We say that C is a circuit structure. Then
any h ∈ F(C) is a circuit that encodes a map g from {0, 1}I to {0, 1}O as follows. Since
input vertices have a positive loop and no other in-coming arc, we have h(x)I = xI for every
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configuration x on VC . Then, since C \ I is acyclic, for any input configuration z ∈ {0, 1}I ,
h has exactly one fixed point x extending z (and thus h has exactly 2|I| fixed points). We
then call z̃ = xO the output configuration computed by h from z. Thus, h encodes the map
g from {0, 1}I to {0, 1}O defined by g(z) = z̃ or, equivalently, by g(xI) = xO for every fixed
point x of h. We say that C is a basic circuit structure if ∆(C) ≤ 2 and every vertex i of
in-degree two has only positive in-neighbors, so that hi is either the AND gate or the OR
gate. In that case, the fixed points of h can be characterized by a short 3-CNF formula.

Lemma 18. Let C be a basic circuit structure and h ∈ F(C). There is a 3-CNF formula
ω, which can be computed in polynomial time with respect to |VC |, whose variables are in
VC , and containing at most 3|VC | clauses, such that, for all configurations x on VC :

h(x) = x ⇐⇒ ω is satisfied by x.

Proof. Since input vertices have a positive loop and no other incoming arc, we only have
to prove that ω is satisfied by x if and only if hi(x) = xi for all non-input vertex i. We
construct ω as follows, for every non-input vertex i, and simultaneously prove the lemma.

• If i is a source and hi is the 1 constant function, we add the clause (i+, i+, i+). This
clause is satisfied by x if and only if xi = 1 = hi(x).

• If i is a source and hi is the 0 constant function, we add the clause (i−, i−, i−). This
clause is satisfied by x if and only if xi = 0 = hi(x).

• If i has a unique in-neighbor j, which is positive, we add the clauses (i+, j−, j−) and
(i−, j+, j+). These clauses are simultaneously satisfied by x if and only if xi = xj =
hi(x).

• If i has a unique in-neighbor j, which is negative, we add the clauses (i+, j+, j+) and
(i−, j−, j−). These clauses are simultaneously satisfied by x if and only if xi = ¬xj =
hi(x).

• If i has two in-neighbors j, k, and hi is the AND gate, we add three clauses: (i−, j+, j+),
(i−, k+, k+) and (i+, j−, k−). These clauses are simultaneously satisfied by x if and
only if xi = xj ∧ xk = hi(x).

• If i has two in-neighbors j, k, and hi is the OR gate, we add three clauses: (i+, j−, j−),
(i+, k−, k−) and (i−, j+, k+). These clauses are simultaneously satisfied by x if and
only if xi = xj ∨ xk = hi(x).

Consider a 3-CNF formula Ψ over a set Λ of 2n variables and with a setM of 2m clauses.
To simplify notations, we take two sets W,U of size n and m respectively, and write:

Λ = {Λw}w∈{0,1}W , M = {Mu}u∈{0,1}U , Mu = (Mu,01,Mu,10,Mu,11).
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A succinct representation of Ψ is then a couple (h,C), where C is a basic circuit structure
and h ∈ F(C), with the following specifications: the set of input vertices is U ∪ P , where
P = {p1, p2}, and the set of output vertices is W∪{ρ} (these four sets are pairwise disjoint);
and for every fixed point x of h with xP 6= 00, we have:

MxU ,xP =

{
Λ+
xW

if xρ = 1,
Λ−xW if xρ = 0.

(∗)

Hence, each input configuration with xP 6= 00 corresponds to a clause (xU ) and a valid
position in that clause (xP ), and the output configuration gives the corresponding positive
or negative literal: the involved variable (xW ) and the polarity of the literal (xρ). See
Figure 4 for an illustration. In all the following, (h,C) is a given succinct representation
of Ψ.

The next definition provides some flexibility regarding the representation of Ψ.

Definition 3 (ε-fixed points and consistency). Let C,C ′ be circuit structures with VC ⊆
VC′, h

′ ∈ F(C ′) and ε be a configuration on VC′. A configuration x on VC′ is an ε-fixed
point of h′ if x⊕ε is a fixed point of h′. We say that h′ is ε-consistent if every ε-fixed point
x of h′ extends a fixed point of h and has a valid position, that is, xP 6= 00 (thus (∗) holds
for every ε-fixed point x, so h′ embeds in some way the calculations performed by h). We
say that h′ is consistent if it is ε-consistent with ε = 0.

We will construct, from the succinct representation (h,C) of Ψ, a SID DΨ with a
number of vertices linear in |VC | such that φmax(DΨ) ≥ 2m+1 if and only if Ψ is satisfiable;
and since Dψ will have a positive feedback vertex set of size m + 1, the inequality in
this equivalence is actually an equality (by Theorem 2). We first give a sketch of the
construction, proceeding in three steps.

First, we construct a circuit structure C ′ over C, whose input configurations correspond
to the clauses of Ψ (so the corresponding BNs have 2m fixed points, one per clause) and
with two output vertices: ρ (which is already in C) and ν. We then show two properties.

(1) Given an assignment ζ ∈ {0, 1}Λ, there is a consistent BN h′ ∈ F(C ′) such that, for
every fixed point x, the clause MxU is satisfied by ζ if and only if xρ = xν .

(2) Conversely, for every ε-consistent BN h′ ∈ F(C ′) there is an assignment ζ ∈ {0, 1}Λ
such that, for every ε-fixed point x, the clause MxU is satisfied by ζ whenever xρ = xν .

The trick is then to encode the consistency conditions and the condition “xρ = xν”
into a 3-CNF formula. First consider the formula ω characterizing the fixed points of h.
Then configuration x on VC′ extends a fixed point of h if and only if ω is satisfied by xVC .
By adding few clauses in ω, we can then obtain a formula ψ which is satisfied by x if and
only if x extends a fixed point of h, xP 6= 00 and xρ = xν . In particular, if ψ is satisfied
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u1 p1 p2 v1 v2 w1 w2 ρ

OR AND

clause position

input output

variable polarity

M0,01 0 0 1 1 1 0 1 1 Λ+
01

M0,10 0 1 0 1 0 1 0 0 Λ−10

M0,11 0 1 1 1 0 1 1 0 Λ−11

M1,01 1 0 1 0 1 0 1 0 Λ−01

M1,10 1 1 0 0 0 1 1 0 Λ−11

M1,11 1 1 1 0 0 1 1 0 Λ−11

Figure 4: A circuit h ∈ F (C) encoding a 3-CNF formula Ψ over the set of variables Λ =
{Λ00,Λ01,Λ10,Λ11} and containing the clauses M0 = (M0,01,M0,10,M0,11) = (Λ+

01,Λ
−
10,Λ

−
11)

and M1 = (M1,01,M1,10,M1,11) = (Λ−01,Λ
−
11,Λ

−
11). In other word Ψ = (Λ01∨¬Λ10∨¬Λ11)∧

(¬Λ01∨¬Λ11); this formula is equivalent to the formula ψ of Figure 2. The circuit structure
C, which is basic, is drawn on the top; the set of input vertices is U ∪P with U = {u1} and
P = {p1, p2}, and the set of output vertices is W ∪ {ρ} with W = {w1, w2}. The circuit
h is the BN in F(C) such that hw2 is the OR function and hρ is the AND function (there
is a unique possible local function for the other vertices). The 6 fixed points x of h with
xP 6= 00 are displayed. They encode the formula Ψ as indicated.
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by the 2m ε-fixed points of h′, then h′ is ε-consistent. Now, if Ψ is satisfied by ζ, then ψ
is satisfied by the 2m fixed points of the consistent BN h′ described in (1). Conversely, for
any h′ ∈ F(C ′) and ε, if ψ is satisfied by the 2m ε-fixed points of h′, then Ψ is satisfied by
the assignment ζ described in (2). Hence, we obtain:

(3) The following conditions are equivalent: (a) Ψ is satisfiable; (b) there is h′ ∈ F(C ′)
such that ψ is satisfied by the 2m fixed points of h′; (c) there are h′ ∈ F(C ′) and ε
such that ψ is satisfied by the 2m ε-fixed points of h′.

The last step is to consider Dψ. Actually, we define DΨ as the extension of Dψ resulting
from the union of C ′ and Dψ. If Ψ is satisfiable, there is a BN f ∈ F(DΨ), satisfying the
conditions of Lemma 14, whose partial fixed points are the fixed points of the BN h′ ∈ F(C ′)
described in (b). Then, since the 2m partial fixed points are satisfying assignments of ψ,
they give rise to 2m+1 fixed points for f . Conversely, for any f ∈ F(DΨ), the partial fixed
points of f are the fixed points of some h′ ∈ F(C ′), and if f has 2m+1 fixed points, then
each fixed point x of h′ gives rise to two fixed points of f . We then deduce from Lemma 15
that this is possible only if there is ε such that, for every fixed point x of h′, ψ is satisfied
by x⊕ε. This is equivalent to say that ψ is satisfied by the 2m ε-fixed points of h′, so (c)
holds and we deduce that Ψ is satisfiable.

We now proceed to the details.

Definition 4 (C ′). We denote by C ′ the circuit structure obtained from C by removing
the positive loops on vertices p1, p2, and by adding three new vertices, s1, s2, ν, and the
following arcs:

• a null arc (j, p1) and a null arc (j, p2), for all j ∈ U ∪ {s1, s2};

• a null arc (j, ν), for all j ∈W ∪ {s1, s2}.

So C ′ is a circuit structure where U is the set of input vertices (input configurations
correspond to clauses of Ψ) and {ρ, ν} is the set of output vertices. The vertices s1, s2 are
sources. See the top of Figure 5 for an illustration.

The following lemma is a formal statement of the property (1) discussed above.

Lemma 19. For every assignment ζ ∈ {0, 1}Λ there is a consistent circuit h′ ∈ F(C ′) such
that, for every fixed point x of h′,

MxU is satisfied by ζ ⇐⇒ xρ = xν .

Proof. For every configuration x on VC′ , we define h′(x) componentwise as follows. Since
every non-input vertex i of C has exactly the same incoming arcs in C ′ and C, we can set
h′i(x) = hi(xVC ). Next we define h′s1 and h′s2 as the 0 constant function. Since each i ∈ U
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has a positive loop and nothing else, we necessarily set h′i(x) = xi. It remains to define the
local functions of p1, p2 and ν. Let S = {s1, s2}.

First, we set

h′p1(x) =


⊕

i∈U∪S xi if xS 6= 00,
0 if xS = 00 and MxU ,01 is satisfied by ζ,
1 otherwise.

h′p2(x) =


⊕

i∈U∪S xi if xS 6= 00,
0 if xS = 00 and MxU ,10 is satisfied by ζ but not MxU ,01,
1 otherwise.

It is clear h′p1 and h′p2 only depend on components in U ∪ S, and the first case in each
definition ensures that these dependencies are effective and neither positive nor negative,
so that h′p1 ∈ Fp1(C ′) and h′p2 ∈ Fp2(C ′). Furthermore, if h′(x) = x then xS = 00, and it
is easy to check that this implies xP 6= 00 and the following equivalence:

MxU is satisfied by ζ ⇐⇒ MxU ,xP is satisfied by ζ.

Second, we set

h′ν(x) =

{ ⊕
i∈W∪S xi if xS 6= 00

ζΛxW
otherwise.

Similarly, h′ν only depends on components in W ∪ S, and the first case ensures that these
dependencies are effective and neither positive nor negative, so that h′ν ∈ Fν(C ′).

Suppose that h′(x) = x. As said above, we have xS = 00 and xP 6= 00. Furthermore,
for each non-input vertex i of C we have hi(xVC ) = h′i(x) = xi, thus xVC is a fixed point
of h. Hence, h′ is consistent, and MxU ,xP is Λ+

xW
if xρ = 1 and Λ−xW otherwise. Since

xν = h′ν(x) = ζΛxW
, the literal MxU ,xP is satisfied by ζ if and only if xρ = xν , and by the

equivalence above, the clause MxU is satisfied by ζ if and only if xρ = xν .

We now prove a kind of converse, which is a formal statement of the property (2)
discussed above.

Lemma 20. For every ε-consistent circuit h′ ∈ F(C ′) there is an assignment ζ ∈ {0, 1}Λ
such that, for every ε-fixed point x of h′,

xρ = xν =⇒ MxU is satisfied by ζ.

Proof. Since s1, s2 are sources, for every fixed points x, y of h′ we have xs1 = ys1 and
xs2 = ys2 . Thus, if xW = yW then xν = h′ν(x) = h′ν(y) = yν , because all the in-neighbors
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of ν are in W ∪ {s1, s2}. In other words, there is a function g from {0, 1}W to {0, 1} such
that g(xW ) = xν for every fixed point x of h′. Let any ζ ∈ {0, 1}Λ satisfying

ζΛxW⊕εW
= g(xW )⊕εν = xν⊕εν

for every fixed point x of h′. This is equivalent to say that, for every ε-fixed point x of h′,

ζΛxW
= xν .

Now, since h′ is ε-consistent, for every ε-fixed point x of h′ we have xP 6= 00 and MxU ,xP is
Λ+
xW

if xρ = 1 and Λ−xW otherwise. If xρ = xν = ζΛxW
, then this literal MxU ,xP is satisfied

by ζ, and so is the clause MxU .

Here is the definition of the formula ψ encoding the consistency conditions and the
condition “xρ = xν”.

Definition 5 (Formula ψ associated with h). Let ω be the 3-CNF formula characterizing
the fixed points of h, as in Lemma 18. The formula ψ associated with h is the 3-CNF
formula obtained from ω by adding the following three clauses: (p+

1 , p
+
2 , p

+
2 ), (ρ+, ν−, ν−)

and (ρ−, ν+, ν+). So ψ is a formula over the set of variables λ = VC ∪ {ν}.

Note that, given a fixed point x of h′, ω is satisfied by x if and only if x extends a fixed
point of h (since ω is satisfied by x if and only if ω is satisfied by xVC if and only if xVC
is a fixed point of h), and the three additional clauses are simultaneously satisfied by x if
and only if xP 6= 00 and xρ = xν . In particular, if ψ is satisfied by every ε-fixed point of
h′, then h′ is ε-consistent.

We now prove a formal statement of the property (3) discussed above.

Lemma 21. The following conditions are equivalent:

(a) Ψ is satisfiable;

(b) there is h′ ∈ F(C ′) such that ψ is satisfied by every fixed point of h′;

(c) there are h′ ∈ F(C ′) and ε ∈ {0, 1}VC′ such that ψ is satisfied by every ε-fixed point
of h′.

Proof. Suppose that Ψ is satisfied by ζ ∈ {0, 1}Λ. By Lemma 19, there is a BN h′ ∈ F(C ′)
consistent with h such that xρ = xν for every fixed point x of h. By consistency, xP 6= 00
and x extends a fixed point of h, thus ω is satisfied. We deduce that ψ is satisfied by every
fixed point of h′. This proves that (a) implies (b). Since (b) trivially implies (c), it remains
to prove that (c) implies (a).

Suppose h′ and ε are as in (c). Then h′ is ε-consistent, and xρ = xν for every ε-fixed
point x of h′. Hence, by Lemma 20, there is an assignment ζ ∈ {0, 1}Λ such that, for every
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ε-fixed point x of h′, MxU is satisfied by ζ. Since U is the set of input vertices of C ′, any
input configuration, that is any member of in {0, 1}U , is extended by a fixed point of h′.
Hence, for any input configuration u, the input configuration u⊕εU is extended by a fixed
point x of h′, so u is extended by x⊕ε, which is an ε-fixed point of h′. Hence, all the clauses
of Ψ are satisfied by ζ. This proves that (c) implies (a).

The formal definition of our construction DΨ follows, see Figure 5 for an illustration.

Definition 6 (DΨ). Let C ′ be the circuit structure of Definition 4. Let ψ be the 3-CNF
formula associated with h given in Definition 5, which is a formula over the set of variables
λ = VC ∪ {ν}. Let Dψ be the SID defined from ψ as in Definition 1. We define DΨ as
the extension of Dψ obtained by taking the union of C ′ and Dψ (supposing naturally that
vertices s1, s2 are not in Dψ \ λ). We denote by VΨ the vertex set of DΨ.

Since ψ has at most 3|VC |+ 3 clauses and |λ| = |VC |+ 1, we have

|VΨ| = |Vψ|+ 2 ≤
(
4|λ|+ 2(3|VC |+ 3) + 1

)
+ 2 = 10|VC |+ 13,

which is linear according to the size of the succinct representation of Ψ.

Since C ′ has m positive loops and no other cycle, and since DΨ \ VC′ has a positive
feedback vertex set of size one, we deduce that DΨ has a positive feedback vertex set of
size m + 1. Thus, φmax(DΨ) ≤ 2m+1 by the positive feedback bound. Actually, since DΨ

has m+ 1 vertex-disjoint positive cycles, we have τ+(D) = m+ 1 (since C ′ has m positive
loops and Dψ \λ has a positive cycle). Putting things together, we prove that the positive
feedback bound is reached if and only if Ψ is satisfiable, and this proves Theorem 7.

Lemma 22. φmax(DΨ) = 2m+1 if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfied by an assignment ζ ∈ {0, 1}Λ. By Lemma 21 there is
h′ ∈ F(C ′) such that ψ is satisfied by all the 2m fixed points of h′. Let f ∈ F(DΨ) be
defined as follows. First, f(x)VC′ = h′(xVC′ ) for every configuration x on VΨ. Second,
for every i ∈ VΨ \ VC′ , we define fi has the AND function if i ∈ ` and the OR function
otherwise (vertices in ` are those with two in-neighbors corresponding to the positive and
negative literals associated with a variable in λ). By the first part of the definition, the
set of fixed points of h′ is the set of partial fixed points of f . So ψ is satisfied by the 2m

partial fixed points of f , and we deduce from Lemma 14 that f has at least 2m+1 fixed
points. Thus, φmax(DΨ) ≥ 2m+1 and φmax(DΨ) = 2m+1 by the positive feedback bound.

Conversely, suppose that φmax(DΨ) = 2m+1. Let f ∈ F(DΨ) with 2m+1 fixed points.
Let h′ be the BN with component set VC′ defined by h′(xVC′ ) = f(x)VC′ for all configura-
tions x on VΨ; there is no ambiguity since vertices in C ′ have only in-neighbors in C ′ and,
thanks to this property, the SID of h′ is DΨ \Uψ = C ′. Furthermore, the set of fixed points
of h′ is the set of partial fixed points of f . Hence, f has 2m partial fixed points. Since f has
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s1 s2

u1 p1 p2 v1 v2 w1 w2 ρ ν

u+
1 p+1 p+2 v+1 v+2 w+

1 w+
2 ρ+ ν+

u−1 p−1 p−2 v−1 v−2 w−1 w−2 ρ− ν−

xP 6= 00 xv1 = ¬xu1 xv2 = ¬xp1 xw1 = xp1 xw2 = xu1 ∨ xp2 xρ = xv1 ∧ xv2 xρ = xν

ω

ψ

Dψ \ λ

C ′

Figure 5: The SID DΨ constructed from the circuit h ∈ F(C) described in Figure 4.
Black arrows represent null arcs. Braces correspond to sets of clauses contained in ψ, and
below each brace the necessary and sufficient conditions for the corresponding clauses to
be simultaneously satisfied by an assignment x are given.
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at most two fixed points extending the same partial fixed point, and since every fixed point
of f extends a partial fixed point, we deduce that, for every partial fixed point x, f has
exactly two fixed points extending x. Hence, by Lemma 15, ψ is satisfied by xλ⊕ε(f) for
every fixed point x of h′. This is equivalent to say that ψ is satisfied by every ε-fixed point
of h′, where ε is any configuration on VC′ extending ε(f), and we deduce from Lemma 21
that Ψ is satisfiable.

Remark 4. By this lemma, the problem of deciding if φmax(D) = 2τ
+(D) is NEXPTIME-

complete. This is interesting since many works have been devoted to study the conditions
for similar bounds to be reached, see [14, 12, 8] and the references therein. In particular,
[8] gives a graph-theoretical characterization of the SIDs D with only positive arcs such
that φmax(D) = 2τ

+(D), and we may ask if the problem remains as hard under this restric-
tion. Furthermore, the much studied network coding problem in information theory can
be restated as a problem concerning BNs that consists in deciding if a bound similar to the
positive feedback bound is reached [14].

Remark 5. With slightly more precise arguments, we can prove that φmax(DΨ) = 2m+1+α,
where α is the maximum number of clauses contained in Ψ that can be simultaneously
satisfied.

6 Minimum Fixed Point Problem

In this section, we study decision problems related to the minimum number of fixed points,
and we obtain the following tight complexity results. A new complexity class is involved:
NPNP (often denoted by

∑P
2 ), which contains decision problems computable in polynomial

time on a non-deterministic Turing machine with an oracle in NP.

Theorem 8. Let k ≥ 1 and d ≥ 2 be fixed integers.

• k-MinFPP and MinFPP are NEXPTIME-complete.

• When ∆(D) ≤ d, k-MinFPP is NPNP-complete.

• When ∆(D) ≤ d, MinFPP is NP#P-complete.

We first prove the upper bounds.

Lemma 23. Let k ≥ 1 and d ≥ 2 be fixed integers.

• k-MinFPP and MinFPP are in NEXPTIME.

• When ∆(D) ≤ d, k-MinFPP is in NPNP.

• When ∆(D) ≤ d, MinFPP is in NP#P.
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Proof. As argued in Section 2, k-MinFPP and MinFPP are in NEXPTIME. We now
consider the restrictions to SIDs with bounded maximum in-degree.

For k-MinFPP, consider the algorithm that takes as input a SID D with vertex set V
and such that ∆(D) ≤ d, and proceeds as follows.

1. Choose non-deterministically a BN f with component set V such that, for all i ∈ V ,
the local function fi only depends on components in N(i); this can be done in linear
time since each local function fi can be represented using 2|N(i)| ≤ 2d bits.

2. Compute the SID Df of f ; this can be done in quadratic time since, to compute the
in-neighbors of each i ∈ V and the corresponding signs, we only have to consider
2|N(i)| ≤ 2d configurations (for each configuration x on N(i) and j ∈ N(j), we
compare fi(x̃) and fi(x̃⊕ej) where x̃ is any configuration on V extending x).

3. Decide, with a call to the NP-oracle, if f has at least k fixed points (this decision
problem is trivially in NP: choose non-deterministically k distinct configurations, and
accept is and only if they are all fixed points).

4. Accept if and only if the oracle’s answer is no and Df = D.

This non-deterministic polynomial time algorithm has an accepting branch if and only if
φmin(D) < k. Thus, when ∆(D) ≤ d, k-MinFPP is in NPNP.

For MinFPP, the algorithm we consider is the one described in Lemma 16, excepted
that it accepts if and only if φ(f) < k andDf = D. With this modification, we obtain a non-
deterministic polynomial time algorithm which calls the #P oracle and has an accepting
branch if and only if φmin(D) < k. Thus, when ∆(D) ≤ d, MinFPP is in NP#P.

For the lower bounds, we use reductions based on the construction Dψ given in Sec-
tion 4. We thus use the notations of that section, and we start with an adaptation of that
construction suited for the study of the minimum number of fixed points.

Definition 7 (D−ψ , extension of D−ψ ). We denote by D−ψ the SID obtained from the SID

Dψ of Definition 1 by making negative the arc (c1, `0). An extension of D−ψ is defined as

in Definition 2 with D−ψ instead of Dψ.

As previously, given f ∈ F(D) and setting I = VD \ Uψ, we say that a configuration z
on I is a partial fixed point of f if f(x)I = xI = z for some configuration x on VD (and
since there is no arc from Uψ to I, if z is a partial fixed point, then f(x)I = z for every
extension x of z).

The following lemmas are adaptations of Lemmas 14 and 15 to the above definition.
Together, they show that φmin(D−ψ ) = 0 if and only if ψ is satisfiable.
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Lemma 24. Let D be an extension of D−ψ . Let f ∈ F(D) such that, for all i ∈ Uψ, fi is
the AND function if i ∈ ` and the OR function otherwise. Let z be a partial fixed point
of f . Then f has at most one fixed point extending z and, if ψ is satisfied by zλ, then f
has no fixed point extending z.

Proof. Let I = VD\Uψ, and let f0, f1 be the BNs with component set VD defined as follows.
First, f0

I = f1
I = z. Second, f0

`0
= 0, f1

`0
= 1. Third, f0

i = f1
i = fi for all i ∈ Uψ \ {`0}.

Then f0, f1 have the same SID, which is the SID obtained from D by removing all the arc
(j, i) with i ∈ I ∪ {`0}, and which is thus acyclic. Hence, f0 has a unique fixed point x0

and f1 has a unique fixed point x1.

Let D′ be obtained from D by making positive the arc (c1, `0), so that D′ is an extension
of Dψ. Let f ′ ∈ F(D′) such that f ′i = fi for all vertices i 6= `0. By Lemma 14, f ′ has a
fixed point extending z, and another fixed point extending z if ψ is satisfied by zλ.

It is clear that if x is a fixed point of f or f ′ extending z, then f0(x) = x if x`0 = 0 and
f1(x) = x if x`0 = 1, so x is one of x0, x1. Thus, the set of fixed points of f extending z is
included in {x0, x1}, and similarly for f ′. Furthermore, if f ′(x) = x then f(x) 6= x (because
f`0(x) = ¬xc1 and f ′`0(x) = xc1). Since f ′ has a fixed point extending z, we deduce that
f has at most one fixed point extending z and, since f ′ has two fixed points extending z
if ψ is satisfied by zλ, we deduce that f has no fixed point extending z if ψ is satisfied by
zλ.

Given an extension D of D−ψ and f ∈ F(D), we define the assignment ε(f) exactly as
previously: for r ∈ [n], ε(f)λr = 0 if f`r is the OR function, and ε(f)λr = 1 otherwise.

Lemma 25. Let D be an extension of D−ψ . Let f ∈ F(D) and let z be a partial fixed point
of f . If f has no fixed point extending z, then ψ is satisfied by zλ⊕ε(f).

Proof. Let f0, f1, f ′ be the BNs defined from f as in the previous proof, and let x0, x1

be the fixed points of f0, f1, respectively (which extend z). For all vertices i 6= `0 and
all a ∈ {0, 1} we have fi(x

a) = f ′i(x
a) = fai (xa) = xai . Suppose that f has no fixed

point extending z. Then, for all a ∈ {0, 1} we have ¬xac1 = f`0(xa) 6= xa`0 and thus
f ′`0(xa) = xac1 = xa`0 . Consequently, x0 and x1 are distinct fixed points of f ′ extending z
and, according to Lemma 15, ψ is satisfied by zλ + ε(f ′). Since ε(f ′) = ε(f), this proves
the lemma.

The following lemma shows that 1-MinFPP is as hard as k-MinFPP for every k ≥ 2.

Lemma 26. Let k ≥ 2 and let D be any SID. Let D′ be the SID obtained from D by adding
dlog2 ke new vertices and a positive loop on each new vertex. Then

φmin(D′) < k ⇐⇒ φmin(D) = 0.
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Proof. Let ` = dlog2 ke so that k ≤ 2`. Let H be the SID with ` vertices and a positive loop
on each vertex. Then F(H) contains a unique BN, which is the identity, thus φmin(H) = 2`.
Since D′ is the disjoint union of D and H,

φmin(D′) = φmin(D) · φmin(H) = φmin(D) · 2`.

Thus, φmin(D′) = 0 < k if φmin(D) = 0, and φmin(D′) ≥ 2` ≥ k otherwise.

We now prove that, for SIDs with a bounded maximum in-degree, k-MinFPP and
MinFPP are NPNP-hard and NP#P-hard, respectively. The proof is very similar to that
of Lemma 17. The hardness of k-MinFPP is obtained with a reduction from the following
decision problem, known to be NPNP-complete [28, Theorem 17.10].

Quantified satisfiability with 2 alterning quantifiers (QSAT2)
Input: a 3-CNF formula ψ over λ = {λ1, . . . , λn} and s ∈ [n].
Question: does there exist z′ ∈ {0, 1}λ′ , where λ′ = {λ1, . . . , λs}, such that ψ
is satisfied by all the assignments z ∈ {0, 1}λ extending z′?

Lemma 27. Let k ≥ 1 and d ≥ 2 be fixed integers.

• When ∆(D) ≤ d, k-MinFPP is NPNP-hard.

• When ∆(D) ≤ d, MinFPP is NP#P-hard.

Proof. For the second item, we present a reduction from E-Maj3SAT. Let ψ be a 3-CNF
formula over the set of variable λ = {λ1, . . . , λn}. Let s ∈ [n] and λ′ = {λ1, . . . , λs}. Given
z′ ∈ {0, 1}λ′ , we denote by E(z′) the 2n−s assignments z ∈ {0, 1}λ extending z′. Then we
denote by α(z′) the number of z ∈ E(z′) satisfying ψ, and α∗ is the maximum of α(z′) for
z′ ∈ {0, 1}λ′ . Thus, (ψ, s) is a true instance if and only if α∗ ≥ 2n−s−1.

Let Dψ,s be the extension of D−ψ obtained by adding, for every i ∈ λ \ λ′, a positive
loop on i. Let us prove that:

φmin(Dψ,s) = 2n−s − α∗.

Let z′ ∈ {0, 1}λ′ such that α(z′) = α∗. Let f ∈ F(Dψ,s) such that fλ′ = z′ and, for
all i ∈ Uψ, fi is the AND function if i ∈ ` and the OR function otherwise. Since each
vertex in λ \ λ′ has a positive loop and no other in-coming arc, E(z′) is the set of partial
fixed points of f . Hence, by Lemma 24, for every z ∈ E(z′), f has at most one fixed point
extending z and, if ψ is satisfied by z, then f has no fixed point extending z. Since every
fixed point extends a partial fixed point, we deduce that f has at most 2n−s − α(z′) fixed
points, and thus φmin(Dψ,s) ≤ 2n−s − α(z′) = 2n−s − α∗.

For the other direction, let any f ∈ F(Dψ,s) and set ε = ε(f). Since vertices in λ′ are

sources, fλ′ = z′ for some z′ ∈ {0, 1}λ′ . Since each vertex in λ \ λ′ has a positive loop
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and no other in-coming arc, E(z′) is the set of partial fixed points of f . By Lemma 25, for
every z ∈ E(z′), if ψ is not satisfied by z⊕ε, then f has a fixed point extending z. Thus,
f has at least 2n−s − α(z′⊕ελ′) fixed points, and since α(z′⊕ελ′) ≤ α∗, we deduce that
φmin(Dψ,s) ≥ 2n−s − α∗.

We have ∆(Dψ,s) ≤ 3 but, using Lemma 12, we can obtain from Dψ,s a SID D′ψ,s (by
adding at most one vertex and one arc per clause) with ∆(D′ψ,s) ≤ 2 and

φmin(D′ψ,s) = φmin(Dψ,s) = 2n−s − α∗.

(For that we use the fact, showed above, that there is f ∈ F(Dψ,s) with φmin(Dψ,s) fixed
points where fi is the OR function for every vertex i of in-degree three.)

Consequently, we have α∗ ≥ 2n−s−1 if and only if φmin(D′ψ,s) ≤ 2n−s−1. Thus, (ψ, s)
is a true instance of E-Maj3SAT if and only if (D′ψ,s, k) is a true instance of MinFPP,

where k = 2n−s−1 + 1 if s < n and k = 1 otherwise. Thus, when ∆(D) ≤ d, MinFPP is
NP#P-hard.

An other consequence is that φmin(D′ψ,s) = 0 if and only if α∗ = 2n−s, that is, there is

a partial assignment z′ of the variables in λ′ such that ψ is satisfied by all the assignments
extending z′. Thus, (ψ, s) is a true instance of QSAT2 if and only if D′ψ,s is a true instance

of 1-MinFPP, and therefore 1-MinFPP is NPNP-hard. We then deduce from Lemma 26
that, when ∆(D) ≤ d, k-MinFPP is NPNP-hard for all k ≥ 2.

It remains to prove that, in the general case, k-MinFPP and MinFPP are NEXPTIME-
hard. We proceed with a reduction from Succint-3SAT, which is very similar to the one
given in Section 5.2 to obtain the hardness of MaxFPP. We thus use the notations from
that section. We consider a succinct representation of a 3-CNF formula Ψ with a set Λ of
2n variables (indexed by configurations on W ) and with a set M of 2m clauses (indexed
by configurations on U). The following is an adaptation of the construction DΨ suited for
the study of the minimum number of fixed points.

Definition 8 (D−Ψ). We denote by D−Ψ the SID obtained from the SID DΨ of Definition 6
by making negative the arc (c1, `0).

The main property is the following. The proof is almost identical to that of Lemma 22,
using Lemmas 24 and 25 instead of Lemmas 14 and 15.

Lemma 28. φmin(D−Ψ) = 0 if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfied by an assignment ζ ∈ {0, 1}Λ. By Lemma 21 there is
h′ ∈ F(C ′) such that ψ is satisfied by all the 2m fixed points of h′. Let f ∈ F(DΨ) be
defined as follows. First, f(x)VC′ = h′(xVC′ ) for every configuration x on VΨ. Second,
for every i ∈ VΨ \ VC′ , we define fi has the AND function if i ∈ ` and the OR function
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otherwise (vertices in ` are those with two in-neighbors corresponding to the positive and
negative literals associated with a variable in λ). By the first part of the definition, the
set of fixed points of h′ is set of partial fixed points of f . So ψ is satisfied by any partial
fixed point x of f , and we deduce from Lemma 24 that f has no fixed point extending x.
Since every fixed point extends a partial fixed point, we deduce that f has no fixed point
and thus φmin(D−Ψ) = 0.

Conversely, suppose that φmax(DΨ) = 0. Let f ∈ F(DΨ) without fixed point. Let h′ be
the BN with component set VC′ defined by h′(xVC′ ) = f(x)VC′ for all configurations x on
VΨ; there is no ambiguity since vertices in C ′ have only in-neighbors in C ′ and, thanks to
this property, the SID of h′ is DΨ \ Uψ = C ′. Furthermore, the set of fixed points of h′ is
the set of partial fixed points of f . Let x be a fixed point of h′. Since f has no fixed point
extending x, by Lemma 25, ψ is satisfied by xλ⊕ε(f). This is equivalent to say that ψ is
satisfied by every ε-fixed point of h′, where ε is any configuration on VC′ extending ε(f),
and we deduce from Lemma 21 that Ψ is satisfiable.

Remark 6. With slightly more precise arguments, we can prove that φmin(D−Ψ) = 2m+1−α,
where α is the maximum number of clauses contained in Ψ that can be simultaneously
satisfied.

The following hardness results, the last we need to obtain, are immediate consequences.

Lemma 29. MinFPP and k-MinFPP for every k ≥ 1, are NEXPTIME-hard.

Proof. By the previous lemma, D−Ψ is a true instance of 1-MinFPP if and only if (h,C), the
succinct representation of Ψ, is a true instance of Succint-3SAT. Therefore, 1-MinFPP
is NEXPTIME-hard. We then deduce from Lemma 26 that k-MinFPP is NEXPTIME-hard
for all k ≥ 2. Consequently, MinFPP is also NEXPTIME-hard.

7 Conclusion and perspectives

In this paper, we studied the algorithmic complexity of many decision problems related to
counting the number of fixed points of a BN from its SID only. Except for 1-MaxFPP,
we proved exact complexity bounds for each one of these problems, revealing a large range
of complexities, some classes having a pretty scarce literature.

The function problems of computing φmax(D) or φmin(D) can, quite classically, be seen
as n (since the result ranges from 0 to 2n, but the case 2n can be treated separately) decision
problems providing the bits of the answer by binary search. Table 1 gives the worst case
complexity of computing each of these bits in the different cases (minimum/maximum,
degree bounded/unbounded). Note that, even though they do not intuitively correspond
to counting problems, computing φmax(D) or φmin(D) are proven to be #P-hard problems
even for bounded degree, from the proofs of Lemmas 17 and 27.
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Even if the problems we studied are natural, they have not been considered before.
Indeed, most of the works on the complexity of BNs are of the form: does a BN f satisfies
a given dynamical property P? Here, we studied problems of the form: does a SID D
corresponds to a BN f ∈ F(D) satisfying a given property P? In some cases, this new
problem can be easier. For instance, the problem of deciding if a BN (encoded as a
concatenation of local functions in conjunctive normal form) has at least one fixed point is
NP-complete [21], but we showed that deciding if there exists a BN f ∈ F(D) with at least
one fixed point is in P. Conversely, the problem of deciding if a BN f has no fixed point is
in coNP, whereas it is NEXPTIME-complete to decide if there is a BN f ∈ F(D) without
fixed point.

This new theme opens many further investigations. First, we proved that 1-MaxFPP
is equivalent (up to a polynomial reduction) to the problem of finding an even cycle in
a digraph. This problem is known to be in P [25, 36] but, to the best of our knowledge,
no work has been done to show its C-hardness for any complexity class C. It would be
interesting to find such lower bounds, because this problem is equivalent to many other
decision problems of graph theory ([36] lists several of them).

Furthermore, we could study the effect of other restrictions on the SIDs considered. For
instance, what happens for the family of SIDs with positives arcs only? It is an interesting
problem, because the BN having such SIDs are monotone, and since Tarski [39] monotone
networks received great attention [8, 35, 3, 5, 26, 15, 16, 17]. We hope to be able to adapt
our constructions in order to fit this new constraint. We conjecture that, in this case, there
is an integer k0 such that k-MaxFPP is in P if k ≤ k0, and NP-complete otherwise.

As further variations, we could study unsigned interaction digraph, or consider au-
tomata network instead of Boolean network (where a component can take more than two
states), or consider BNs that may ignore some arcs of the SID to get closer to real ex-
perimental conditions (where arcs of the SID are not always a hundred percent accurate).
This could affect the problems’ difficulties drastically, and may reveal relations to network
coding problems in information theory [23, 14, 12].

Finally, we could think of new problems where, given a SID D, we want to decide other
properties shared by all f ∈ F(D). Indeed, there are many other interesting BN properties,
such as the number or the size of the limit cycles, the size of their transients. . . we could
also look for properties of their basins of attraction, some complexity results already being
known for threshold networks [11].
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