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Abstract

The need to propagate uncertainties
through a model is present in many appli-
cations. In most cases, the nature of this
model is either graphical or functional. In
this paper, we interest ourselves to the lat-
ter case. We consider here that uncertainty
on each model input is described either
by generalized p-boxes or possibility
distributions, two special cases of random
sets that can be interpreted in term of
confidence bounds over nested sets. We
then study their practical propagation for
different cases.

Keywords: uncertainty propagation, gen-
eralized p-boxes, random sets, possibility
distributions.

1 Introduction

The propagation of uncertainty modeled by classical
probabilities is an old research topic that still faces a
lot of challenges, but past years have also witnessed
a growing interest for the problem of propagating un-
certainty modeled by means of other theories explic-
itly coping with imprecision. The main reasons for
this interest is that imprecision is a feature of the
information that classical probabilities cannot ade-
quately account for, and that the problem of prop-
agating uncertainty is at the core of many practical
applications. Nevertheless, explicitly modeling im-
precision in an uncertainty model often increases the
complexity of the propagation, since propagating im-
precision requires propagating sets of values, while

classical probabilistic propagation is based on re-
peated calculations of precise values. Consequently,
there is a great need of efficient methods to propagate
uncertainty through mathematical models. These
models can be either graphical (e.g. extensions of
bayesian networks [2]) or analytical (e.g. models of
physical phenomena [1]).

Figure 1 gives a synopsis of the general problem
of propagating uncertainty models through a func-
tion. Given the choice of a theoretical framework,
some information on the inputs and on their mutual
(in)dependencies, there are mainly three ways of in-
creasing the efficiency of the propagation1:

• uncertainty models: as a general rule, more ex-
pressive approaches allow to model more com-
plex information, but also implies more compu-
tational effort when propagating. By using less
expressive models, one can intentionally choose
to give away some information in order to gain
some efficiency,

• propagation mechanisms: another way of in-
creasing the propagation efficiency is to design
more efficient algorithms, possibly using some
knowledge we have on the model,

• approximate propagations: as exact propagation
can be difficult to achieve in general, one can
use alternative propagation methods that will
give results approximating the exact propaga-
tion. In this last case, it is important to know
what is the relationship (guaranteed outer/inner
approximation, neither) between this approxi-
mated result and the exact result.

1We consider here that the model is fixed. Otherwise, another
solution is to simplify the model
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Figure 1: Propagating Uncertainty through function:
synopsis

In this paper, we focus on the first and third points,
and take random set theory as our basic theoreti-
cal framework. The uncertainty models we consider
here are so-called generalized p-boxes and/or possi-
bility distributions, that have appealing properties but
have limited expressiveness, as they are special cases
of random sets. We then use the particularities of
generalized p-boxes and/or possibility distributions
to propose practical propagation techniques for vari-
ous situations.

Section 2 recalls the basics needed in the rest of
the paper. Section 3 then concentrates on the case
where uncertainty concerns only one input (univari-
ate case). Finally, section 4 deals with the case of
uncertainty bearing on multiple inputs (multivariate
case) that can be considered mutually independent
(in the sense of the so-called random set indepen-
dence).

2 Preliminaries

We consider in this paper that each input space X i is
a finite space of ni elements xi (i.e., upper indexes de-
note dimension index). When considering one space,
we drop the indices.

2.1 Random sets

Formally, a random set [4] is a mapping from a
probability space to the power set of another space.
In the discrete case [12], a random set can also be
termed as a mass distribution m : ℘(X) → [0,1] s.t.
∑E∈℘(X) m(E) = 1. In this case, subsets E having a
strictly positive mass are called focal elements. From
a random set, we can define two uncertainty mea-
sures, respectively the belief and plausibility func-
tions, which reads, for all A ⊂ X :

Bel(A) = P(A) = ∑
E,E⊆A

m(E)

Pl(A) = P(A) = ∑
E,E∩A6= /0

m(E)

The belief function quantifies our credibility in event
A, by summing all the masses that surely support
A, while the plausibility function measures the maxi-
mal confidence that can be given to event A, by sum-
ming all masses that could support A. They are dual
measures, in the sense that for all events A, we have
Bel(A) = 1−Pl(Ac).

In the sequel, random sets will be denoted (m,F ),
with m the mass distribution and F the set of focal
elements.

2.2 Possibility distributions

A possibility distribution [6] is a mapping π : X →
[0,1] from a (here finite) space X to the unit inter-
val such that π(x) = 1 for at least one element x in
X . Formally, a possibility distribution is equivalent
to the membership function of a fuzzy set. From
this possibility distribution, we can define two un-
certainty measures, respectively the belief and plau-
sibility functions, which reads, for all A ⊂ X :

Π(A) = sup
x∈A

π(x)

N(A) = 1−Π(Ac)
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Given a possibility distribution π and a de-
gree α ∈ [0,1], the strong and regular α-
cuts are subsets respectively defined as the sets
Aα = {x ∈ X |π(x) > α} and Aα = {x ∈ X |π(x) ≥
α}. These α-cuts are nested, since if α > β , then
Aα ⊂ Aβ . In the finite case, a possibility distribution
takes at most n values. Let us note α0 = 0 < α1 <
.. . < αm = 1 these m values.

Possibility distributions can also be interpreted as
particular random sets. Namely, they are equivalent
to random sets whose focal elements are nested: a
belief function (resp. a plausibility function) is a ne-
cessity measure (resp a possibility measure) if and
only if it derives from a mass function with nested
focal sets. Given a possibility distribution π , the cor-
responding random set will have the following focal
elements Ei with masses m(Ei), i = 1, . . . ,m:{

Ei = {x ∈ X |π(x)≥ αi}= Aαi

m(Ei) = αi−αi−1
(1)

and this random set is called consonant by
Shafer [12].

As practical models, possibility distributions can be
naturally interpreted as nested sets of confidence in-
tervals (i.e. cuts of level α has confidence 1−α),
and are thus easy to assess. Moreover, their simplic-
ity makes them easy to use. The weak side of possi-
bility distributions is that their expressivity is limited
(i.e. for an event A, bounds [N(A),Π(A)] are either
of the kind [0,α] or [β ,1])), thus they can be found
insufficient models if available information is more
complex.

2.3 Generalized p-boxes

A Generalized p-box is defined as follows:
Definition 1. A generalized p-box [F,F] over a finite
space X is a pair of comonotonic2mappings F ,F , F :
X → [0,1] and F : X → [0,1] from X to [0,1] such
that F is point-wise lower than F (i.e. F ≤ F) and
there is at least one element x in X for which F(x) =
F(x) = 1.

Given a generalized p-box [F,F], we can always de-
fine a complete pre-ordering ≤[F,F ] on elements x

2Two mappings f and f ′ on a ranked-space X = {x1, . . . ,xn}
are said comonotonic if there exist a common permutation σ
such that f (xσ(1)) ≥ f (xσ(2)) ≥ . . . ≥ f (xσ(n)) and f ′(xσ(1)) ≥

f ′(xσ(2)) ≥ . . . ≥ f ′(xσ(n))

of X that is such that x ≤[F,F] y if F(x) ≤ F(y) and
F(x)≤ F(y). The name generalized p-box comes
from the fact that if X is the real line and the order
is the natural order of numbers, we retrieve the usual
notion of p-boxes [9].

To shorten notations, we will consider in the sequel
that given a general p-box [F,F] on X , elements x of
X are indexed by natural integers in a way such that
xi ≤[F,F ] x j if and only if i≤ j. Let us now denote for
all i = 1, . . . ,n by Ai the sets {x j ∈ X |x j ≤ xi}.

Uncertainty modeled by generalized p-boxes can
also be mapped into a set of constraints that are up-
per and lower confidence bounds on the uncertainty
of Ai, namely, for i = 1, . . . ,n:

αi ≤ P(Ai)≤ βi (2)

where αi = F(xi), βi = F(xi), P(Ai) is the (unknown)
probability of event Ai and with A0 = /0, α0 = β0 = 0.
We also have, for all i from 0 to n−1, αi ≤ αi+1,βi ≤
βi+1 and Ai ⊆ Ai+1.

It can also be shown [5] that the uncertainty mod-
eled by any generalized p-box can be mapped into a
particular random set. This random set can be built
by the following procedure: consider a threshold
θ ∈ [0,1]. When αi+1 > θ ≥ αi and β j+1 > θ ≥ β j,
then, the corresponding focal set is Ai+1 \ A j, with
weight

m(Ai+1 \A j) = min(αi+1,β j+1)−max(αi,β j). (3)

Generalized p-boxes can also be linked to possibil-
ity distributions in the following way [5]: the un-
certainty modeled by a generalized p-box [F,F] is
equivalent to the uncertainty modeled by a pair of
possibility distributions πF ,πF that are such that, for
i = 1, . . . ,n,

πF(xi) = βi

and

πF(xi) = 1−max{α j| j = 0, . . . , i α j < αi}.
and the random sets mπF

and mπF modeling the un-
certainty of these distributions are such that, for i =
0, . . . ,n−1,

mπF
(Ac

i ) = βi−βi−1 and mπF (Ai+1) = αi+1−αi

Thus, we have three different ways of characterizing
a generalized p-box: by a set of lower/upper bounds
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on nested sets, by an equivalent random set or by a
pair of possibility distributions. Each of these views
suggest different propagation techniques, that will be
explored in the next section.

From a practical point of view, there are various rea-
sons to give attention to generalized p-boxes and to
their propagation: similarly to possibility distribu-
tions, they can be interpreted in terms of confidence
bounds given to nested subsets, making them easy to
assess and explain; they have more expressive power
than possibility distributions, since lower and upper
confidence bounds on an event A can now be of the
kind [α,β ], and since they remain special cases of
random sets, we can try to use their specific prop-
erties to derive propagation methods more efficient
than those used for general random sets.

2.4 Propagation of random sets

Let f be a function from the Cartesian product
×p

i=1X i of input spaces X i to the output space Y .

If we then consider a joint random set (m,F )1,...,p

with n focal elements E j ⊂ ×p
i=1X i and weights

m(E j), then, the propagated random set is such that,
for j = 1, . . . ,n:

Ey
j = f (E j) = { f (x) ∈ Y |x ∈ E j}

m(Ey
j ) = m(E j)

where x denote a vector of ×p
i=1X i. The propagation

of the joint random set thus consists of mapping ev-
ery focal element E j into f (E j). Depending on our
knowledge of f , this operation can be more or less
complex. For instance, if sets E j are Cartesian prod-
ucts of closed intervals defined on the real line, com-
puting f (E j) is usually easy when f is isotone, but
can become very greedy in computational efforts if
the behavior of f is complex and/or ill-known.

In the case where the information is given in terms
of p marginal random sets (m,F )i on each space X i,
a first step before propagating the information is to
build the joint random set (m,F )1,...,p. We will deal
with this step in section 4, since we do not need it in
the univariate case.

3 Univariate case

In this section, we consider propagating uncertainty
bearing on variable x (which takes values on X)

through a function f (x) = y where y is the output
variable. Note that f can depend on other param-
eters and be a complex functional, but we consider
that only the value of x is imperfectly known. We
thus consider that uncertainty on x is modeled by a
generalized p-box [F,F] that we have to propagate.

There is (at least) three ways of doing this prop-
agation: by propagating the nested sets and their
lower/upper confidence bounds, by propagating the
random set equivalent to this generalized p-box, and
by independently propagating the two possibility dis-
tributions. After each propagation, we can build the
corresponding random set, and then compare these
random sets.

The first solution, propagating nested sets and their
confidence bounds consists of computing for each set
Ai the propagated set f (Ai), and to consider the gen-
eralized p-box induced by the constraints:

∀i = 1, . . . ,n, αi ≤ P( f (Ai))≤ βi (4)

where αi,βi are the confidence bounds originally re-
lated to set Ai. Given this propagated generalized p-
box (it is still a generalized p-box, since sets f (Ai)
are also nested), we can build the counterpart of the
random set given by equation (3), which is here:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j

 m( f (Ai+1)\ f (A j)) =
min(αi+1,β j+1)−max(αi,β j)

that we note (m,F ) f ([F,F ])

The second solution, directly propagating through
function f the focal elements Ai+1 \A j of the random
set given by (3), gives:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j

 m( f (Ai+1 \A j)) =
min(αi+1,β j+1)−max(αi,β j)

a random set potentially different from the one given
by the first propagation. We note this second random
set (m,F ) f ((m,F )).

The third solution consists of propagating both pos-
sibility distributions by the so-called extension prin-
ciple. This is equivalent to propagate the respec-
tive focal elements of each distribution through f ,
which gives us the random sets (m,F ) f (πF ) and
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(m,F ) f (πF ) whose mass functions respectively are,
for i = 0, . . . ,n−1,

m( f (Ac
i )) = βi−βi−1 and m( f (Ai+1)) = αi+1−αi

and, if we take from these two random sets the coun-
terpart of the random set given by equation (3), we
end up with:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j

 m( f (Ai+1)\ f (Ac
j)

c) =
min(αi+1,β j+1)−max(αi,β j)

that we note (m,F ) f (πF ,πF ).

We can already note that the three random sets
(m,F ) f ([F,F ]), (m,F ) f ((m,F )), (m,F ) f (πF ,πF ) have
the same mass function distributed over different fo-
cal elements. To compare the results of the three
propagations, we thus have to compare the informa-
tive content of their respective focal elements. The
following proposition can be used to do such a com-
parison:

Proposition 1. Let A and B be two subsets of a space
X such that A ⊂ B, and let f be a function from X to
another space Y . Then, we have the following inclu-
sion relations:

f (B)\ f (A)⊆ f (B\A)⊆ f (B)\ f (Ac)c

and inclusion relationships become equalities if f is
injective

Proof. We will first prove the first inclusion relation-
ship, then the second one, each time showing that we
have equality if f is injective.

Let us first prove that any element of f (B)\ f (A) is in
f (B\A). Let us consider an element y in f (B)\ f (A).
This implies:

y ∈ f (B)
y 6∈ f (A)

}
⇒∃x ∈ X

{
f (x) ∈ f (B)
f (x) 6∈ f (A)

and this x is in B and not in A (i.e. in B \A), which
implies that y = f (x) is in f (B\A). This means that
f (B) \ f (A) ⊆ f (B \ A), and we still have to show
that this inclusion can be strict. To see it, consider
the case where one of the element x in B \A is such
that f (x) takes the same value as f (x′), where x′ is
in A, thus this particular f (x) is in f (B \A) and not
in f (B) \ f (A) (since by assumption it is in f (A)),

showing that the inclusion can be strict. This case
does not happen if f is injective (since if f is injective
f (x) = f (x′) if and only if x = x′).

To prove the second inclusion relation, first note that
f (B \ A) = f (B ∩ Ac) and that ( f (B) \ f (Ac)c) =
( f (B) ∩ f (Ac)). Known results immediately give
f (B∩Ac) ⊆ f (B)∩ f (Ac). Strict inclusion happens
in the case where we have an element x of X in B and
in A, and another element x′ not in A and not in B (i.e.
x′ is in Ac) for which f (x) = f (x′), thus we have that
x and x′ are not in B∩Ac, but are respectively in B
and Ac, and thus f (x) is in f (B)∩ f (Ac). Again, this
case cannot happen when f is injective (since in this
case, x 6= x′ implies f (x) 6= f (x′)).

What proposition 1 tell us is that, when f is not in-
jective, we have in general

(m,F ) f ([F,F ]) ⊆ (m,F ) f ((m,F )) ⊆ (m,F ) f (πF ,πF )

thus showing that (m,F ) f ([F,F ]) is more optimistic
than (m,F ) f ((m,F )), which is itself more optimistic
than (m,F ) f (πF ,πF ). And in the case where f is injec-
tive, all these propagations are equivalent. Note that
other recent works underly the particular role of in-
jectivity when propagating p-boxes and correspond-
ing random sets [13].

The question is then, if f is not injective, why should
we choose one propagation rather than the other?

From a computational complexity standpoint,
(m,F ) f ([F,F ]) seems more convenient than
(m,F ) f (πF ,πF ), which in turn seems more con-
venient than (m,F ) f ((m,F )). The main reason is
that, to compute (m,F ) f ([F,F ]) and (m,F ) f (πF ,πF ),
we have to compute mappings of focal elements
that are collections of nested sets (one collection
in the first case, two in the second), allowing us
to use this nestedness to cut down the number of
required computations, while focal elements of
(m,F ) f ((m,F )) are not nested. To illustrate this,
let us consider that f is a complex non-monotonic
mapping from R to R, where R is the real line. Given
the sets A0 ⊂ A1 ⊆ . . . ⊆ An, let us consider that the
global minimum and maximum of f are respectively
in Ai \ Ai−1, and in A j \ A j−1, and that we know
their values. This means that in the propagation,
we no longer have to compute the lower bounds of
all f (Ak), f (Ac

l ) such that k > i > l nor the upper
bounds of all f (Ak′), f (Ac

l′) such that k′ > j > l′.

Proceedings of IPMU’08 5



Also, the maximal number of sets that have to be
propagated for computing (m,F ) f ((m,F )) is (n +
1)n/2, while it is 2n for (m,F ) f (πF ,πF ) and only n
for (m,F ) f ([F,F ]).

If we now take theoretical aspects into account,
the only exact result is provided by the random
set (m,F ) f ((m,F )) resulting from the third prop-
agation. Moreover, the information modeled by
(m,F ) f ((m,F )) is consistent, in the sense that no
mass is affected to the empty set. Also note that it
is also coherent with imprecise probability theory,
which is not considered here, due to lack of space.

We may then find (m,F ) f (πF ,πF ) useful, because it is
conservative when compared to (m,F ) f ((m,F )), en-
suring us that we are cautious and that the resulting
information will be consistent. Moreover, this prop-
agation is consistent with the extension principle of
possibility theory.

Finally, although (m,F ) f ([F,F]) is surely the easi-
est propagation to compute, it is more optimistic
than (m,F ) f ((m,F )), implying that, compared to
(m,F ) f ((m,F )), we could dangerously reduce our
uncertainty on y by adding unwanted assumptions.
Moreover, the random set (m,F ) f ([F,F ]) can be such
that some mass is allocated to the empty set, thus in-
dicating some inconsistency in the information mod-
eled by (m,F ) f ([F,F ]).

Finally, if faced with a practical problem, the best
solution is to compute (m,F ) f ((m,F )) if possible.
If not possible, computing (m,F ) f (πF ,πF ), yields
(m,F ) f ([F,F ]) for free (since for computing the
former we need to propagate sets Ai). So, an-
other solution is to bracket the information con-
tained in (m,F ) f ((m,F )) using (m,F ) f (πF ,πF ) and
(m,F ) f ([F,F ]). Computing (m,F ) f ([F,F]) only is not
cautious.

Again, if f is injective, such analysis is pointless
since the three propagations give the same results.
Note that from a practical point of view, sticking to
injective functions can be very restrictive. For in-
stance, if X is a subset of R, requiring injectivity of
f is equivalent to limiting ourselves to strictly mono-
tone functions on X .

4 Multivariate case

We now consider that our knowledge on multiple
parameters x1, . . . ,xp respectively taking values on
X1, . . . ,X p is tainted with uncertainty and that we
must propagate this uncertainty through a function
y = f (x1, . . . ,xp) where y takes values on a space Y .
Note that the results of the previous section hardly
apply, because such functions are generally not injec-
tive when useful (e.g. monotonic ones)3. To simplify
the problem, we here consider that our uncertainty on
each variable xi is described by a possibility distribu-
tion π i to which correspond a random set (m,F )i.

Before doing anything else, we must first specify
how we build the joint random set (m,F )1,...,p that
we are going to consider. To do this, we assume here
that the random sets are independent between them,
in the sense that, for every subset E of ×p

i=1X i, the
joint mass m(E) is such that:

m(E) = ∑
×p

i=1E i
j=E

E i
j∈F i

(
p

∏
i=1

m(E i
j))

where ×p
i=1E i

j is the Cartesian product of the focal
elements E i

j. This assumption is commonly called
random set independence. The assumption of ran-
dom set independence can be interpreted as the as-
sumption that the sources of information of each
variables xi are independent (e.g. different sensors
measure each variable xi). Also, an assumption of
random set independence is conservative when com-
pared to other notions of independence [3], and can
thus be used as a conservative tool to approximate
such assumptions (which are often difficult to handle
in practice). Although all variables are not often mu-
tually independent, there is often subgroups of vari-
ables that can be judged independent, and to which
the following results apply.

Under independence assumption, propagating
(m,F )1,...,p is not without difficulty, since the
number of focal elements to propagate grows expo-
nentially with the number of input variables tainted
with uncertainty. It is thus important to give practical
approximation methods allowing to reduce the com-
putational cost of the propagation, especially when

3Nevertheless, results of Section 3 still apply when lower
and upper confidence bounds are given for a collection of nested
multi-dimensional sets
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f is complex and the available resources are limited.
In the sequel, we provide a technique to get an outer
approximation of (m,F )1,...,p by means of a joint
possibility distribution, that can then be propagated
more easily than the general structure (m,F )1,...,p.
In other words, what we want to do is to find a
joint possibility distribution π ′1,...,p such that the
consonant random set (m,F )π ′1,...,p

induced by this
possibility distribution is an outer approximation of
(m,F )1,...,p. Such an outer approximation is given
by the following property, which extends a result
found by Dubois and Prade [7] for the 2-dimensional
case:

Proposition 2. For i = 1, . . . , p, given the marginal
distributions π i and the joint random set (m,F )1,...,p,
the minimal possibility distribution π ′1,...,p inducing
a random set (m,F )π1,...,p

that is an outer approxi-
mation of (m,F )1,...,p is such that

π ′1,...,p(x1, . . . ,xp) = min
i=1,.,p

{(−1)p+1(π i(xi)−1)p +1}

The proof consists in a generalization of the proof
given by Dubois and Prade [7] for the 2-dimensional
case, and is omitted here due to lack of space.

In other words, we can transform each distribution
π i into π ′i = (−1)p+1(π i − 1)p + 1 and then, prop-
agating them by means of the possibilistic extension
principle to yield an outer approximation of the exact
propagation of (m,F )1,...,p. Let us recall that prop-
agating distributions π ′i through f comes down to
compute π ′ f such that

π ′ f (y) = sup
x1,...,xp∈×p

i=1X i

f (x1,...,xp)=y

min
i=1,...,p

π ′i(xi)

And, since this extension principle is equivalent to
performing a set propagation of each α-cut [8], it al-
lows us to drastically reduce the computational ef-
fort. To illustrate this, let us consider that every
marginal possibility distribution πi takes the same
q different values on [0,1], then exactly propagat-
ing (m,F )1,...,p would require qp set propagations,
while computing the guaranteed outer approximation
(m,F )π ′1,...,p

by using proposition 2 would only re-
quire q set propagations, whatever the dimension of
the input space.

Nevertheless, the input space dimension does have
an effect on our approximation, since we can

see that, for a particular πi, the transformation
(−1)p+1(πi(x)− 1)p + 1 converges to 1 if πi(x) > 0
as p increases, and is 0 if πi(x) = 0. This means that,
as p increases, the outer approximation converges to
the Cartesian product of the supports of the πi’s. This
loss of information is the price to pay for passing
from an exponential to a linear complexity while hav-
ing a guaranteed outer approximation (which ensures
a cautious approximation). Moreover, the nestedness
of α-cuts of π ′1,...,p can again be used to make the
propagation more efficient [10].

Note that if our marginal uncertainty models are gen-
eralized p-boxes [F,F]i, we can still use proposi-
tion 2 to get an outer approximation of (m,F )1,...,p,
where (m,F )1,...,p is the joint random set resulting
from assuming random set independence between
the marginal random sets induced by generalized p-
boxes [F,F]i. To do this, it is sufficient to apply the
transformation of proposition 2 to each possibility
distributions π i

F ,π i
F , and then propagate all possible

combination of these transformed possibility distri-
butions by the extension principle. If we still as-
sume that each possibility distribution π i

F ,π i
F takes

the same q values, then propagating all combinations
by the extension principle will require 2p · q com-
putations, which is generally lower4 than qp, and
thus remains simpler to compute than (m,F )1,...,p.
But it may be that, due to the lack of injectivity,
the result f (π1

F · · ·π p
F) is not informative. For in-

stance suppose f (x1,x2) = x1 + x2, and xi ∈ [ai,bi] \
[ci,di] with [ci,di] ⊂ [ai,bi], i = 1,2. Then π i

F =
(−∞,ci],∪[di,+∞), but the sum of two such subsets
of reals is the whole real line.

5 Conclusion

Propagating uncertainty through a model is a com-
plex problem, and one of the main difficulty encoun-
tered by such a propagation is the high computational
effort it requires. When the model is simple or the
available resources sufficient enough, this computa-
tional effort can be supported, but it is no longer the
case when resources are limited or when the model
is complex (e.g. nuclear computer codes).

In this paper, we’ve studied the propagation of gen-
eralized p-boxes. This model is more general than

4It is lower when 2p < qp−1, so q must be at least 4 for p = 2
and 3 for p = 3, a constraint often satisfied
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possibility distributions, but remains a special case of
general random sets. It also has a nice interpretation
in terms of lower and upper confidence bounds over a
collection of nested sets. This model is thus particu-
larly interesting, since it is more expressive than sin-
gle possibility distributions and more tractable then
general random sets.

Both for the univariate and multivariate cases, we
have proposed practical methods to propagate gen-
eralized p-boxes. In particular, we have provided
methodologies that makes the propagation easier
while ensuring that the result will encompass the ex-
act propagation (this cautiousness principle is partic-
ularly important in safety studies).

Perspectives include (but are not limited to) the
comparison of our approximation method in the
multivariate case to other conservative propagation
methods (e.g. use of so-called probabilistic arith-
metic [14]), the psychological evaluation of gener-
alized p-boxes in elicitation process [11], and the use
of the presented methods in practical applications.
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