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Abstract

We study the numerical approximation of the stabilization of the semidiscrete linearized
Boussinesq system around an unstable stationary state. The stabilization is achieved by in-
ternal feedback controls applied on the velocity and the temperature equations, localized in
an arbitrary open subset. This article follows the framework of [11], considering the contin-
uous linearized Boussinesq system. The goal is to study the approximation by penalization
of the free divergence condition in the semidiscrete case. More precisely, considering infinite
time horizon LQR optimal control problem, we establish convergence results for the optimal
controls, optimal solutions and Riccati operators when the penalization parameter goes to
zero. We then propose a numerical validation of these results in a two-dimensional setting.
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1 Introduction

The optimal control of the Boussinesq system and of its linearization around a stationary state
are matters of great interest in various applications fields, such as designing and exploiting
energy efficient buildings, (see, for instance, [3], [17] and [5], [13]).

In the recent paper [11], the authors study the approximation by penalization of the free
divergence condition for infinite time horizon Linear Quadratic Regulator (LQR) optimal control
problem associated to the (continuous) linearized Boussinesq system around a stationary state.
From a theoretical point of view, the first interest of considering such an approximation is to
write the system as a well-posed control system in the sense of Salomon-Weiss. From a numerical
point of view, the second interest is to avoid projection methods to treat the free divergence
condition. Indeed, the matrix of the Leray projector is of big size and is not sparse. Note
however that projection based efficient numerical methods have been recently developed in the
literature, see for instance [2, 14, 9].

In this article, we study the numerical stabilization of the linearized Boussinesq system by lo-
calized feedback controls. In particular, we investigate the penalty approach for the semidiscrete
linearized Boussinesq system.

Let us first introduce the model that we consider. Let Ω be a smooth domain contained in
Rd with d = 2, 3, let O be a nonempty open subset contained in Ω, let Γ := ∂Ω and let n be
the outer unit normal vector. The incompressible Boussinesq system with Neumann boundary
conditions writes as follows

∂tv − div σ(v, p) + (v · ∇)v = yed + f in (0,∞)× Ω,
∂ty − α∆y + v · ∇y = g in (0,∞)× Ω,
div v = 0 in (0,∞)× Ω,
σ(v, p)n = h, ∂ny = k on (0,∞)× Γ,
v(0, ·) = v0, y(0, ·) = y0 in Ω.

(1.1)

In (1.1), v denotes the fluid velocity, p is the fluid pressure, y is the temperature of the fluid,
σ(v, p) = ν((∇v) + (∇v)tr)− pI is the Cauchy stress tensor, ν > 0 is the kinematic viscosity of
the fluid, α > 0 is the heat conductivity of the fluid, ed is the last vector of the canonical basis of
Rd. The terms f : Ω→ Rd, g : Ω→ R describe respectively the influence of internal field forces
and heat sources. The boundary term h : Γ → Rd is an open boundary condition which is an
example of non-reflecting outlet boundary, it is known to be efficient for low Reynolds number,
see [12]. The Neumann boundary condition k : Γ→ R prescribes the heat flux. We assume that
(vs, ps, ys) ∈W 1,∞(Ω;R)d+2 is a real-valued solution to the stationary Boussinesq system

−div σ(vs, ps) + (vs · ∇)vs = ysed + f in Ω,
−α∆y + vs · ∇ys = g in Ω,
div vs = 0 in Ω,
σ(v, p)n = h, ∂ny = k onΓ,

(1.2)

We consider the linearized incompressible Boussinesq system around (vs, ps, ys)
∂tv − div σ(v, p) + (v · ∇)vs + (vs · ∇)v = yed + ũ1O in (0,∞)× Ω,
∂ty − α∆y + vs · ∇y + v · ∇ys = ud+11O in (0,∞)× Ω,
div v = 0 in (0,∞)× Ω,
σ(v, p)n = 0, ∂ny = 0 on (0,∞)× Γ,
v(0, ·) = v0, y(0, ·) = y0 in Ω.

(1.3)

In the controlled system (1.3), (v, p, y) : (0,∞) × Ω → Rd+2 is the state, while u := (ũ, ud+1) :
(0,∞)×O → Rd+1 is the control, i.e. a localized field force ũ and a heat source ud+1 that one
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can choose in order to modify the dynamics of the velocity y, the pressure p and the temperature
y.

It is worth mentioning that without any extra assumption on (vs, ys), (1.3) with control u = 0
can be unstable. One way to stabilize (1.3) by feedback controls consists in looking for a control
u as a solution to a quadratic minimization problem, called LQR optimal control problem, see
Section 2.3 for a very brief introduction to this notion. Such a control will be denoted by uopt

and the associated trajectory, i.e. the solution to (1.3) with u = uopt by (vopt, popt, yopt).
Now we introduce a perturbed form of (1.3) which may be easier to solve in practice. More

precisely, we penalize the free divergence condition. This method has been introduced for the
first time in [15] for the Navier-Stokes system. Taking ε > 0 a small parameter, we consider the
system 

∂tv − div σ(v, p) + (v · ∇)vs + (vs · ∇)v = yed + ũ1O in (0,∞)× Ω,
∂ty − α∆y + vs · ∇y + v · ∇ys = ud+11O in (0,∞)× Ω,
div v + εp = 0 in (0,∞)× Ω,
σ(v, p)n = 0, ∂ny = 0 on (0,∞)× Γ,
v(0, ·) = v0, y(0, ·) = y0 in Ω.

(1.4)

By eliminating the pressure in (1.4), we can reformulate the above equations as the following
parabolic system

∂tv − div σ(v, p) + (v · ∇)vs + (vs · ∇)v − 1
ε∇div v = yed + ũ1O in (0,∞)× Ω,

∂ty − α∆y + vs · ∇y + v · ∇ys = ud+11O in (0,∞)× Ω,
σ(v, p)n = 0, ∂ny = 0 on (0,∞)× Γ,
v(0, ·) = v0, y(0, ·) = y0 in Ω.

(1.5)

As before, let us denote by uopt,ε the optimal control for the associated LQR problem to (1.5)
and (vopt,ε, yopt,ε) the corresponding trajectory, i.e. the solution (v, y) of (1.5) with u = uopt,ε.

In [11], for homogeneous Dirichlet boundary conditions instead of homogeneous Neumann
boundary conditions that are considered here, the authors roughly prove that

lim
ε→0

uopt,ε = uopt and lim
ε→0

[
vopt,ε

yopt,ε

]
=

[
vopt

yopt

]
, (1.6)

see [11, Theorem 3.2] for a precise version of this statement.
The goal of this article consists in obtaining the convergence results (1.6) for semidiscrete

approximations of the continous systems (1.3) and (1.5), then proposing a numerical validation
of these results.

The organization of the paper is as follows. In Section 2, we introduce the semidiscrete
approximations of the linearized Boussinesq system and recall standard results related to LQR
problems. In Section 3, we present the main results of the article, that is to say, convergence
results for the optimal control and the optimal trajectories. In Section 4, we give the proofs of
the main results by insisting only on the main differences between the proofs in the continuous
case and the semidiscrete case. Finally, in Section 5, we proceed to the numerical validation of
our results for several examples in a two-dimensional setting.

Acknowledgements. The authors have benefited from financial support of the French
State, managed by the French National Research Agency (ANR) in the frame of the “Invest-
ments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02). The last
author has been supported by the grant “Numerical simulation and optimal control in view
of temperature regulation in smart buildings” of the Nouvelle Aquitaine Region. The last au-
thor is partially supported by the Project TRECOS ANR-20-CE40-0009 funded by the ANR
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(2021–2024). The authors would like to thank Marius Tucsnak for his advises and discussions
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2 Semidiscrete approximations

2.1 Finite dimensional approximations of the systems

The goal of this part is to introduce the discrete spatial approximations, based on a finite element
method, associated to the controlled systems (1.3) and (1.5).

To approximate the systems (1.3) and (1.5) by a finite element method, we introduce finite
dimensional subspaces Vh ⊂ H1(Ω;Rd) for the velocity, Mh ⊂ L2(Ω;R) for the pressure, Yh ∈
H1(Ω;R) for the temperature and Uh ⊂ L2(O;Rd+1) for the control. We denote by (φi)16i6Nv

a basis of Vh, by (ψi)16i6Np a basis of Mh, by (θi)16i6Ny a basis of Yh and by (ζi)16i6Nu a basis
of Uh. We set

v =

Nv∑
i=1

Viφi, p =

Np∑
i=1

piψi, y =

Ny∑
i=1

Yiθi, u =

Nu∑
i=1

Uiζi, (2.1)

v0 =

Nv∑
i=1

V0,iφi, y0 =

Ny∑
i=1

Y0,iθi. (2.2)

If we denote by boldface letters the coordinate vectors, we have

v = (V1, . . . , VNv)T , p = (p1, . . . , pNp)T , y = (Y1, . . . , YNy)T , u = (U1, . . . , UNu)T , (2.3)

v0 = (w0,1, . . . , V0,NV
)T , y0 = (Y0,1, . . . , Y0,Ny)T . (2.4)

The finite dimensional approximation of (1.3) consists in finding v ∈ H1
loc([0,∞);Vh), p ∈

L2
loc([0,∞);Mh), y ∈ H1

loc([0,∞);Yh), such that

d

dt

∫
Ω

(v(t) · φ) dx = avv0 (v(t), φ) + b(φ, p(t)) + avy0 (y(t), φ) + 〈ũ(t), φ〉L2(O)d , ∀φ ∈ Vh, (2.5)

d

dt

∫
Ω

(y(t)θ) dx = ayv0 (v(t), θ) + ayy0 (y(t), θ) + 〈ud+1(t), θ〉L2(O), ∀θ ∈ Yh, (2.6)

b(v(t), ψ) = 0, ∀ψ ∈Mh, (2.7)

where

avv0 (v, φ) = −ν
∫

Ω
∇v : ∇φ dx−

∫
Ω

[(vs · ∇)v + (v · ∇)vs] · φ dx, (2.8)

b(φ, p) =

∫
Ω

(div φ)p dx, (2.9)

avy0 (y, φ) =

∫
Ω
yφd dx, (2.10)

ayv0 (v, θ) = −
∫

Ω
[v · ∇ys] · θ dx, (2.11)

ayy0 (y, θ) = −α
∫

Ω
∇y · ∇θ dx−

∫
Ω

[vs · ∇y] · θ dx. (2.12)
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We introduce the stiffness matrices Avv, Avp, Avy, Ayv, Ayy; the mass matrices Mvv,Mpp,Myy;
and the matrices of control Buv, Buy by

Aijvv = avv0 (φj , φi), A
ij
vp = b(φi, ψj), A

ij
vy = avy0 (θj , φi), A

ij
yv = avy0 (φj , θi), A

ij
yy = avy0 (θj , θi),

M ij
zz = (φi, φj)L2(Ω)d , M

ij
yy = (θi, θj)L2(Ω),

Bij
uv = (ζ̃i, φj)L2(O)d , B

ij
uy = ((ζi)d+1, θj)L2(O).

System (2.5)-(2.7) may be written in the following form

Mvvv
′(t) = Avvv(t) +Avpp(t) +Avyy(t) +Buvũ(t), (2.13)

Myyy
′(t) = Ayvv(t) +Ayyy(t) +Buyud+1(t), (2.14)

ATvpv(t) = 0. (2.15)

Similarly for the perturbed form (1.5) the finite dimensional approximation consists in finding
v ∈ H1

loc([0,∞);Vh), y ∈ H1
loc([0,∞);Yh), such that

d

dt

∫
Ω
v(t) · φdx = avvε (v(t), φ) + avy0 (y(t), φ) + 〈ũ(t), φ〉L2(O)d , ∀φ ∈ Vh, (2.16)

d

dt

∫
Ω
y(t)θdx = ayv0 (v(t), θ) + ayy0 (y(t), θ) + 〈ud+1(t), θ〉L2(O), ∀θ ∈ Yh, (2.17)

where

avvε (v, φ)

= −ν
∫

Ω
∇v : ∇φ dx−

∫
Ω

[(vs · ∇)v + (v · ∇)vs] · φ dx− 1

ε

∫
Ω

(div v)(div φ) dx. (2.18)

and the other bilinear forms have already been defined in (2.10), (2.11) and (2.12).
System (2.16)-(2.17) may be written in the following form

Mvvv
′(t) = Avv,εv(t) +Avyy(t) +Buvũ(t), (2.19)

Myyy
′(t) = Ayvv(t) +Ayyy(t) +Buyud+1(t). (2.20)

2.2 Finite-dimensional linear controlled systems

The goal of this part is to first reformulate (2.13)-(2.15) into a more suitable differential system,
without the constraint formula (2.15). This will be done thanks to the projection of the dynamics
by the discrete Leray projector. Then, we state a well-posedness result for both finite-dimensional
linear controlled systems.

In the following result whose proof is an easy adaptation of [1, Proposition 3.1], we define
the discrete Leray projector Ph and state some important properties for Ph.

Proposition 2.1. The projector Ph in RNv onto ker(ATvpM
−1
vv ) parallel to Im(Avp) and the

projector P Th in RNv onto ker(ATvp) parallel to Im(M−1
vv Avp) are defined by

Ph = I −Avp(ATvpM−1
vv Avp)

−1ATvpM
−1
vv , P

T
h = I −M−1

vv Avp(A
T
vpM

−1
vv Avp)

−1ATvp. (2.21)

Moreover, we have PhAvp = 0, PhMvv = MvvP
T
h , M

−1
vv Ph = P Th M

−1
vv .
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The above result enables us to project the dynamics of (2.13)-(2.15), we then obtain

MvvP
T
h v
′(t) = AvvP

T
h v(t) +Avyy(t) + PhBuvũ(t),

Myyy
′(t) = Ayvv(t) +Ayyy(t) +Buyud+1(t),

and then using that ATvpv(t) = 0 so P Th v(t) = v(t), we thus obtain

MvvP
T
h v
′(t) = AvvP

T
h v(t) +Avyy(t) + PhBuvũ(t), (2.22)

Myyy
′(t) = AyvP

T
h v(t) +Ayyy(t) +Buyud+1(t), (2.23)

P Th v(t) = v(t). (2.24)

Before going further, we define the following matrices

P =

[
Ph 0
0 INy

]
, M =

[
Mvv 0

0 Myy

]
, A0 =

[
Avv Avy
Ayv Ayy

]
, Aε =

[
Avv,ε Avy
Ayv Ayy

]
,

B =

[
Buv
Buy

]
, B0 = PB,

and finite-dimensional spaces

Hh = Ker(ATvp)× Yh, Xh = Vh × Yh.

We have the following standard well-posedness results for (2.22)-(2.24) and (2.19)-(2.20).

Proposition 2.2. For every
[
v0

y0

]
∈ Hh, u ∈ L2([0,∞);Uh), the Cauchy problem

M

[
v̇
ẏ

]
= A0

[
v
y

]
+B0u,

[
v(0)
y(0)

]
=

[
v0

y0

]
, (2.25)

admits an unique solution
[
v
y

]
∈ C0([0,+∞);Hh) defined by

[
v(t)
y(t)

]
= etM

−1A0

[
v0

y0

]
+

∫ t

0
e(t−σ)M−1A0M−1B0u(σ) dσ (t > 0). (2.26)

Similarly, for every
[
v0

y0

]
∈ Xh, u ∈ L2([0,∞);Uh), the Cauchy problem

M

[
v̇
ẏ

]
= Aε

[
v
y

]
+Bu,

[
v(0)
y(0)

]
=

[
v0

y0

]
, (2.27)

admits an unique solution
[
v
y

]
∈ C0([0,+∞);Xh), defined by

[
v(t)
y(t)

]
= etM

−1Aε

[
v0

y0

]
+

∫ t

0
e(t−σ)M−1AεM−1Bu(σ) dσ (t > 0). (2.28)

The proof is standard so we omit it.
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2.3 Some background on LQR optimal control problems

We recall below some basic facts on LQR problems in a finite dimensional context. Roughly
speaking, the main result of the theory stipulates that the optimal control of the cost quadratic
function is a feedback controller that can be explicitly determined by solving a Riccati equation.

Let A ∈ Rn×n and B ∈ Rn×m. The LQR theory in infinite horizon focus on trajectories of
the linear control system x′ = Ax+Bu, x(0) = x0, which minimize the quadratic cost functional

J (u;x0) =

∫ +∞

0

(
‖u(t)‖2Rm + ‖x(t)‖2Rn

)
dt (u ∈ L2(0,+∞;Rm)). (2.29)

We recall below the well-known notion of stabilizability.

Definition 2.3. The pair (A,B) is stabilizable if there exist K ∈ Rm×n, M > 0 and ω > 0 such
that ∥∥∥et(A−BK)

∥∥∥ 6Me−ωt (t > 0).

One of the main results of the LQR theory states that the optimal control associated to
(2.29) is given by a feedback law, see for instance [16, Théorème 4.4.5].

Theorem 2.4. If the pair (A,B) is stabilizable then for every x0 ∈ Rn, J(·;x0) admits a unique
minimum uopt given by

uopt(t) = −B∗Pet(A−BB∗P)x0 (t ∈ [0,∞)). (2.30)

where P ∈ Rn×n, is the unique nonnegative self-adjoint solution of the Riccati equation

A∗P + PA− PBB∗P + In = 0. (2.31)

Moreover, for every x0 ∈ Rn,

min
u∈L2([0,+∞);Rm)

J (u;x0) = 〈Px0, x0〉. (2.32)

3 Main result

In this section, we use the notations introduced in Section 2 and we state the main result of the
paper.

Assume that (A0, B0) is stabilizable. By Theorem 2.4, let us denote by Π0 ∈ L(Hh) the
unique nonnegative self-adjoint solution of

A∗0Π0 + Π0A0 −Π0B0B
∗
0Π0 + IHh

= 0. (3.1)

In (3.1), IHh
denotes the identity operator on Hh.

In the same way, assume that (Aε, B) is stabilizable. Then let us denote by Πε ∈ L(Xh) the
unique nonnegative self-adjoint solution of

A∗εΠε + ΠεAε −ΠεBB
∗Πε + IXh

= 0. (3.2)

In (3.2), IXh
denotes the identity operator on Xh.

The main result of the article focuses on asymptotic properties of Πε in the limit ε→ 0.
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Theorem 3.1. We assume that
rank(B) = Nv +Ny. (3.3)

Then, (A0, B0) is exponentially stabilizable and (Aε, B) is uniformly (with respect to ε) expo-
nentially stabilizable. Moreover, there exist C > 0 and ω > 0, independent of ε such that the
solution

‖Πε‖L(Xh;Xh) 6 C (ε > 0), (3.4)∥∥∥et(Aε−BB∗Πε)
∥∥∥
L(Xh;Xh)

6 Ce−ωt (ε, t > 0), (3.5)

In addition,
lim
ε→0+

‖ΠεP −Π0‖L(Hh;Xh) = 0 (t > 0) , (3.6)

lim
ε→0+

∥∥∥et(Aε−BB∗Πε)P − et(A0−B0B∗0Π0)
∥∥∥
L(Hh;Xh)

= 0 (t > 0) , (3.7)

lim
ε→0+

∥∥∥−B∗Πεe
t(Aε−BB∗Πε)P − (−B∗0Π0e

t(A0−B0B∗0Π0))
∥∥∥
L(Hh;Uh)

= 0 (t > 0) , (3.8)

and the last two convergences are uniform with respect to t on compact intervals.

Before going further, let us make some comments on Theorem 3.1.

• Theorem 3.1 is the analogue discrete version of [11, Theorem 3.2]. It is worth mentioning
that the norm-convergence results of the Riccati operators (3.6), the closed-loop semigroups
(3.7) and the optimal controls (3.8) are actually equivalent to ponctual convergence results
because the functional spaces Hh, Xh and Uh are finite dimensional.

• The full-rank condition on B, i.e. (3.3) is used for obtaining null-controllability results
for the pairs (A0, B0) and (Aε, B), see the proof of Proposition 4.5 below. This condition
is checked numerically. It is worth mentioning that [11, Section 7] asserts that in the
continuous case, the control matrix B has not to satisfy a full-rank condition. Obtaining
the same results of Theorem 3.1 without assuming (3.3) is an interesting open problem.

• Note that Theorem 3.1 proves convergence results for LQR problems associated to the
pairs (A0, B0) and (Aε, B) but the proof that we will sketch can be easily adapted to the
pairs (M−1A0,M

−1B0) and (M−1Aε,M
−1B). Therefore, one can recover the expected

convergence results for LQR problems associated to the true semidiscrete systems (2.25)
and (2.27), that we consider in the numerical validation, see Section 5.

• The convergence results of Theorem 3.1 are not uniform with respect to the parameter h
because the constants C that appear in (3.4) and in (3.5) depend a priori on h. Obtaining
such a uniform result in the spirit of [10] is an interesting open question.

4 Proof of the main result

In this section, we give the main points for obtaining the proof of Theorem 3.1. We crucially
follow the methodology developed in [11] that we briefly recall here.

One of the key point consists in obtaining convergence results for the free solution, i.e.
etAεP → etA0P and for the input-to-state maps i.e.

∫ t
0 e

(t−s)AεBu(s)ds →
∫ t

0 e
(t−s)A0B0u(s)ds

as ε → 0. This type of results will be collected in Section 4.1. Then, to prove Theorem 3.1,
we first establish uniform bounds (3.4) and (3.5). For this, we prove uniform null-controllability
results for the pairs (A0, B0) and the pairs (Aε, B). While this type of results are obtained
in the continuous case through observability estimates for the adjoint systems, here we simply
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derive these results using the full-rank condition on the matrix B, i.e. (3.3) that implies that
the so-called Kalman condition is fulfilled then null-controllability holds true. These results will
be proved in Section 4.2. The last point consists in proving the convergence results (3.6), (3.7),
(3.8) by following carefully [11, Section 6]. Some details of the proofs will be omitted, we will
only insist on the main differences with [11].

4.1 Uniform bounds, convergence results for the free solution and the input-
to-state maps

The goal of this part is to obtain convergence results for the free solution and the controlled
solution, thanks to convergence results for the resolvents and the use of Trotter-Kato theorem.

We have the following result.

Proposition 4.1. There exist C > 1 and ω ∈ R such that for every ε > 0∥∥etAε
∥∥
L(Xh;Xh)

6 Ceωt (ε > 0, t > 0). (4.1)

Proof. By integration by parts and Young’s inequalities, it is not difficult to see that there exists
a positive constant c > 0 depending on ‖(vs, ys)‖W 1,∞(Ω)d+1 (independent of ε > 0), such that

−
〈
Aε

(
ϕ
ζ

)
,

(
ϕ
ζ

)〉
L2(Ω)d+1

> ν ‖∇ϕ‖2L2(Ω)d +
1

ε
‖div ϕ‖2L2(Ω) + α ‖∇ζ‖2L2(Ω)d − c ‖(ϕ, ζ)‖2L2(Ω)d+1

([
ϕ
ζ

]
∈ Xh

)
. (4.2)

We then easily deduce that∥∥∥et(Aε−cI)
∥∥∥
L(Xh;Xh)

6 1 (ε > 0, t > 0),

which gives the expected result.

We next prove the convergence of the resolvents of Aε (respectively A∗ε) towards the resolvents
of A0 (respectively A∗0).

Proposition 4.2. There exists λ0 > 0 such that for every λ ∈ C with Reλ > λ0, we have

lim
ε→0

∥∥[λI −Aε]−1 − [λI −A0]−1P
∥∥
L(Xh)

= 0, (4.3)

lim
ε→0

∥∥[λI −A∗ε]−1 − [λI −A∗0]−1P
∥∥
L(Xh)

= 0. (4.4)

Proof. We only prove (4.3), since the proof of (4.4) is fully similar.

Let
[
f
g

]
∈ Xh and

λ0 > c > 0, (4.5)

where the constant c is the one appearing in (4.2). Then, for λ ∈ C with Reλ > λ0, by setting[
ϕε
ζε

]
= (λI −Aε)−1

[
f
g

]
,

9



we have

λ

∫
Ω
ϕε · ψ dx+ ν

∫
Ω
∇ϕε : ∇ψ dx+

∫
Ω

[(vs · ∇)ϕε + (ϕε · ∇)vs] · ψ dx

+
1

ε

∫
Ω

(div ϕε)(div ψ) dx−
∫

Ω
ζεψd dx+ λ

∫
Ω
ζεη dx+ α

∫
Ω
∇ζε · ∇η dx

+

∫
Ω

[vs · ∇ζε + ϕε · ∇ys] · η dx =

∫
Ω
f · ψ dx+

∫
Ω
gη dx

([
ψ
η

]
∈ Xh)

)
. (4.6)

Taking
[
ψ
η

]
=

[
ϕε
ζε

]
in (4.6) and using (4.2) we obtain

‖ϕε‖2H1(Ω)d +
1

ε
‖div ϕε‖2L2(Ω) + ‖ζε‖2H1(Ω) 6 c

∥∥∥∥[fg
]∥∥∥∥2

Xh

(ε > 0),

where c > 0 is some another constant. The above estimate implies that there exists
[
ϕ
ζ

]
∈ Hh

such that [
ϕε
ζε

]
→
[
ϕ
ζ

]
as ε→ 0 in Xh,

For
[
ψ
η

]
∈ Hh, note that ψ ∈ Ker(ATvp), we can thus pass to the limit in (4.6) to obtain that

λ

∫
Ω
ϕ · ψ dx+ ν

∫
Ω
∇ϕ : ∇ψ dx+

∫
Ω

[(vs · ∇)ϕ+ (ϕ · ∇)vs] · ψ dx

−
∫

Ω
ζψd dx+ λ

∫
Ω
ζη dx+ α

∫
Ω
∇ζ · ∇η dx

+

∫
Ω

[vs · ∇ζ + ϕ · ∇ys] · η dx =

∫
Ω
f · ψ dx+

∫
Ω
gη dx,

([
ψ
η

]
∈ Hh)

)
, (4.7)

then using ∫
Ω
f · ψ dx+

∫
Ω
gη dx =

∫
Ω
P

[
f
g

]
·
[
ψ
η

]
dx

([
ψ
η

]
∈ Hh)

)
, (4.8)

we deduce (4.3) from (4.7).

An important consequence of Proposition 4.2 is the following result.

Proposition 4.3. We have

lim
ε→0

∥∥etAεP − etA0
∥∥
L(Hh;Xh)

= 0 (t > 0) , (4.9)

lim
ε→0

∥∥(etAε)∗P − (etA0)∗
∥∥
L(Hh;Xh)

= 0 (t > 0) , (4.10)

uniformly with respect to t on compact intervals.

The proof comes from an adaptation of Trotter-Kato’s theorem, see [11, Proposition 4.2] for
details. Note again that the convergence are norm-convergence operators because the functional
spaces are finite-dimensional.

For u ∈ L2([0,+∞;Uh), we define the input-to-state maps

Ξεtu =

∫ t

0
e(t−s)AεBu(s)ds and Ξ0

tu =

∫ t

0
e(t−s)A0B0u(s)ds. (4.11)

We have the following result.
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Proposition 4.4. With the above notation, we have

lim
ε→0+

∥∥Ξεtu− Ξ0
tu
∥∥
Xh

= 0
(
t > 0, u ∈ L2([0,+∞;Uh)

)
, (4.12)

lim
ε→0+

∥∥(Ξεt )
∗u− (Ξ0

t )
∗u
∥∥
Xh

= 0
(
t > 0, u ∈ L2([0,+∞;Uh)

)
, (4.13)

Moreover, the convergence above is uniform for t in compact intervals.

The proof uses Lax-Phillips semigroups theory and Trotter-Kato’s theorem, see [11, Propo-
sition 4.5] for details.

4.2 Uniform null-controllability and stabilization results

The goal of this part is to state a uniform null-controllability result for the the pair (Aε, B).
Here, the proof is different from the one in the continuous case that has been obtained through
Carleman estimates. By using the full-rank condition on B, explicit controls are designed.

The main result of this part is the following.

Proposition 4.5. For every ε > 0, the pair (Aε, B) is exactly controllable. Moreover, for every

T > 0, there exists C > 0 such that for every ε > 0,
[
v0

y0

]
∈ Xh, there exists uε ∈ L2([0, T ];Uh)

satisfying

‖uε‖L2([0,T ];Uh) 6 C

∥∥∥∥[v0

y0

]∥∥∥∥
Xh

, (4.14)

such that the solution to[
v′ε(t)
y′ε(t)

]
= Aε

[
vε(t)
yε(t)

]
+Buε(t),

[
vε(0)
yε(0)

]
=

[
v0

y0

]
, (4.15)

satisfies [
vε(T )
yε(T )

]
=

[
0
0

]
. (4.16)

It is a well-known fact that in finite dimension, the exact-controllablity (which is equivalent
to the null-controllability) is equivalent to the Kalman rank condition

rank(B|AεB| . . . |A
Nv+Ny
ε B) = Nv +Ny, (4.17)

then does not depend on the time of control T > 0. Here, we recall that we have assumed (3.3)
so (4.17) trivially holds. So the main difficulty of Proposition 4.5 is to obtain the uniform bound
on the control cost, i.e (4.14).

Proof. We recall that B is full-rank by (3.3), so there exists B̃ such that BB̃ = INv+Ny . Let us

fix T > 0 and
[
v0

y0

]
∈ Xh, and let us define the following controlled trajectory for t ∈ [0, T ],

[
vε(t)
yε(t)

]
=
T − t
T

etAε

[
v0

y0

]
, uε(t) = − 1

T
B̃etAε

[
v0

y0

]
. (4.18)

We check easily that[
v′ε(t)
y′ε(t)

]
= Aε

[
vε(t)
yε(t)

]
+Buε(t),

[
v(0)
y(0)

]
=

[
v0

y0

]
,

[
vε(T )
yε(T )

]
= 0. (4.19)

Finally, (4.14) is an easy consequence of the definition of uε and (4.1).
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A similar proof enables us to obtain the null-controllability of the pair (A0, B0) in Hh.
By following carefully [11, Section 6], we can use Proposition 4.5 to prove uniform stabiliza-

tion results, stated in (3.4) and (3.5) then convergence results (3.6), (3.7) and (3.8) which leads
to the conclusion of the proof of Theorem 3.1

5 Numerical experiments and assessments

Prior to any numerical discussion, we briefly describe the finite element discretization we use
in our computations for achieving the numerical validation of the method. To alleviate the
presentation, we consider that Ω is a two dimensional domain. Assume that it is polygonal
and is the union of a finite number of triangles. Then, we introduce a regular family (Th)h of
triangulations of Ω.

• The domain Ω is the union of all elements of Th;

• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge
of both of them;

• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle
is smaller than a constant σ independent of h.

The mesh-size h is the maximum of the diameters hK . We refer to [4, 6, 7] for the basics of
the finite element method.

Furthermore, it is well known that the velocity and pressure approximation spaces used in
the spatial discretization are required to satisfy a discrete LBB condition, see [7] for more details
concerning this point and more details about the finite element discretization of Navier-Stokes
problem. In this work we choose to use the standard P2−P1 and P2 to respectively approximate
the velocity, pressure and temperature fields. More precisely, we consider the discrete spaces
defined by

Yh =
{
χh ∈ H1(Ω); ∀K ∈ Th, (χh)|K ∈ P2(K)

}
, Vh = (Yh ∩H1

0 (Ω))2,

and
Mh =

{
χh ∈ L2(Ω); ∀K ∈ Th, (χh)|K ∈ P1(K)

}
,

where Pi(K) stands for the space of restrictions to K of polynomial functions of degree lower
or equal to i on R2.

5.1 First example

We first describe an example to assess and illustrate the main results of the paper, i.e. the
convergence results (3.6), (3.7) and (3.8).

Let us introduce first the data used in the numerical experiments. The whole domain (see
Fig. 1) is Ω = [0, 1]2, and the subset of control is

O = {(x1, x2) ∈ Ω ; (x1 − 0.5)2 + (x2 − 0.5)2 < 0.01}. (5.1)

We choose as stationary state the velocity and temperature given byv1
s(x1, x2)
v2
s(x1, x2)
ys(x1, x2)

 =

100x2(1− x2)
0

−100(1− x2)

 , (5.2)

12



Figure 1: Domain Ω and subset of control O

and initial condition v1
0(x1, x2)
v2

0(x1, x2)
y0(x1, x2)

 =

2 sin(2πx1) cos(2πx2)
2 sin(2πx1) cos(2πx2)

1− x2

 . (5.3)

All our computations are realized by means of the free finite element software FreeFem++
(see [8]). The time and space approximation step are fixed to be ∆t = 0.01 and h = 0.05

The resolution strategy consists of first proving the numerical evidence that the matrix A0

is unstable. This can be confirmed by studying numerically the presence of eigenvalues with
positive real part for the resulting discrete generalized eigenvalue problemAvv Avp Avy

ATzp 0 0

Ayv 0 Ayy

vp
y

 = λ

Mvv 0 0
0 0 0
0 0 Myy

vp
y

 . (5.4)

Figure 2 illustrates the computed generalized eigenvalue problem (5.4) solved by using the
ARPACK eigenvalue package. The spectrum confirms the unstable nature of the matrix A0.

Our method is mainly based on the penalty method and it is therefore essential to be aware
of the quality of the convergence of our results with respect to the parameter of penalization ε.

In Figure 3 we represent the errors in a logarithm scale between the Riccati matrices Πε

and Π0 as a function of ε. The numerical behavior is in total agreement with the result given
by (3.6). The computation of the Riccati matrices are done thanks to the package “control” in
Octave. We estimate a convergence rate of about one, which is in agreement with the usual
results of penalty methods.

Figure 4 shows the error in a logarithm scale between the controlled solutions (v, y)ε and
(v, y) while the same measurement is give for controls uε and u in Figure 5, as a function of
ε. Once again the numerical behaviors are in total agreement with the theory. To solve the
evolution problems, the time derivative is approximated thanks to a standard Euler explicit
scheme. We estimate a convergence rate of about one.
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Figure 2: Eigenvalues associated to (5.4)
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Figure 3: Illustration of the convergence result (3.6)
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Figure 4: Illustration of the convergence result (3.7)
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Figure 5: Illustration of the convergence result (3.8)

We present in the following array the exact computing values of the errors.

ε ‖ΠεP −Π0‖ / ‖Π0‖ ‖(v, y)ε − (v, y)‖ ‖uε − u‖
1 e-1 9.10 e-3 1.65 e-1 5.90 e-3
1 e-2 9.73 e-4 1.41 e-2 7.76 e-4
1 e-3 9.80 e-5 1.46 e-3 8.03 e-5
1 e-4 9.82 e-6 1.47 e-4 8.06 e-6

Remark 5.1. We observe for the three previous cases a slope that is equal to one. This
illustrates numerically the expected speed of convergence with respect to ε. Hence, we naturally
conjecture that we actually have

‖ΠεP −Π0‖L(Hh;Xh) = O(ε) (t > 0) , (5.5)∥∥∥et(Aε−BB∗Πε)P − et(A0−B0B∗0Π0)
∥∥∥
L(Hh;Xh)

= O(ε) (t > 0) , (5.6)∥∥∥−B∗Πεe
t(Aε−BB∗Πε)P − (−B∗0Π0e

t(A0−B0B∗0Π0))
∥∥∥
L(Hh;Uh)

= O(ε) (t > 0) . (5.7)

We now give some snapshots of the evolution of the horizontal velocity and the temperature
during the control process in Figures 6 and 7. We observe the stabilization of the solution. We
also observe that it is in the control zone where the values of the solution are the smallest.

To better appreciate the efficiency of the method we continue our study by giving some
snapshots of the evolution of the horizontal velocity and the temperature without control in
Figures 8 and 9. We remark that the both velocity and temperature do not converge to 0, this
is due to the instability of the spectrum of the linearized system.

We then plot the evolution of the controlled and uncontrolled solution.
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IsoValue
-2.21145
-1.89553
-1.68492
-1.4743
-1.26369
-1.05307
-0.842458
-0.631844
-0.421229
-0.210615
8.32667e-16
0.210615
0.421229
0.631844
0.842458
1.05307
1.26369
1.4743
1.68492
2.21145

t = 0

IsoValue
-0.0615993
-0.053638
-0.0483306
-0.0430231
-0.0377156
-0.0324081
-0.0271006
-0.0217931
-0.0164856
-0.0111781
-0.00587063
-0.000563135
0.00474436
0.0100518
0.0153593
0.0206668
0.0259743
0.0312818
0.0365893
0.049858

t = 0.1

IsoValue
-0.0282932
-0.024876
-0.0225979
-0.0203198
-0.0180417
-0.0157635
-0.0134854
-0.0112073
-0.00892921
-0.00665109
-0.00437298
-0.00209487
0.000183246
0.00246136
0.00473947
0.00701759
0.0092957
0.0115738
0.0138519
0.0195472

t = 0.2

IsoValue
-0.0183394
-0.0158437
-0.0141798
-0.012516
-0.0108521
-0.00918827
-0.00752442
-0.00586058
-0.00419673
-0.00253288
-0.000869039
0.000794807
0.00245865
0.0041225
0.00578634
0.00745019
0.00911404
0.0107779
0.0124417
0.0166013

t = 0.3

IsoValue
-0.0130102
-0.0109792
-0.00962511
-0.00827106
-0.00691701
-0.00556296
-0.00420891
-0.00285486
-0.00150081
-0.000146758
0.00120729
0.00256134
0.00391539
0.00526944
0.00662349
0.00797755
0.0093316
0.0106856
0.0120397
0.0154248

t = 0.4

IsoValue
-0.00370112
-0.00266575
-0.0019755
-0.00128526
-0.000595011
9.52351e-05
0.000785481
0.00147573
0.00216597
0.00285622
0.00354646
0.00423671
0.00492695
0.0056172
0.00630745
0.00699769
0.00768794
0.00837818
0.00906843
0.010794

t = 1

Figure 6: Snapshots of the controlled horizontal velocity
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

t = 0

IsoValue
0.282861
0.310171
0.328378
0.346584
0.364791
0.382998
0.401204
0.419411
0.437618
0.455824
0.474031
0.492238
0.510444
0.528651
0.546858
0.565064
0.583271
0.601478
0.619684
0.665201

t = 0.1

IsoValue
0.289449
0.305625
0.31641
0.327194
0.337979
0.348763
0.359547
0.370332
0.381116
0.3919
0.402685
0.413469
0.424254
0.435038
0.445822
0.456607
0.467391
0.478175
0.48896
0.515921

t = 0.2

IsoValue
0.265293
0.276968
0.284751
0.292535
0.300318
0.308102
0.315885
0.323669
0.331452
0.339236
0.347019
0.354803
0.362586
0.37037
0.378153
0.385937
0.39372
0.401504
0.409287
0.428746

t = 0.3

IsoValue
0.241079
0.250383
0.256585
0.262788
0.26899
0.275193
0.281396
0.287598
0.293801
0.300003
0.306206
0.312408
0.318611
0.324813
0.331016
0.337219
0.343421
0.349624
0.355826
0.371333

t = 0.4

IsoValue
0.131352
0.135852
0.138852
0.141852
0.144852
0.147852
0.150853
0.153853
0.156853
0.159853
0.162853
0.165853
0.168853
0.171853
0.174853
0.177853
0.180853
0.183853
0.186853
0.194353

t = 1

Figure 7: Snapshots of the controlled temperature

17



IsoValue
-2.21145
-1.89553
-1.68492
-1.4743
-1.26369
-1.05307
-0.842458
-0.631844
-0.421229
-0.210615
8.32667e-16
0.210615
0.421229
0.631844
0.842458
1.05307
1.26369
1.4743
1.68492
2.21145

t = 0

IsoValue
-0.0534852
-0.0458386
-0.0407408
-0.0356431
-0.0305453
-0.0254476
-0.0203498
-0.0152521
-0.0101543
-0.0050566
4.11474e-05
0.0051389
0.0102366
0.0153344
0.0204321
0.0255299
0.0306276
0.0357254
0.0408231
0.0535675

t = 0.1

IsoValue
-0.0191715
-0.016702
-0.0150556
-0.0134092
-0.0117629
-0.0101165
-0.00847011
-0.00682373
-0.00517735
-0.00353098
-0.0018846
-0.000238229
0.00140815
0.00305452
0.0047009
0.00634727
0.00799365
0.00964002
0.0112864
0.0154023

t = 0.2

IsoValue
-0.0199849
-0.0170631
-0.0151153
-0.0131674
-0.0112196
-0.0092717
-0.00732385
-0.00537599
-0.00342814
-0.00148028
0.000467575
0.00241543
0.00436329
0.00631114
0.008259
0.0102069
0.0121547
0.0141026
0.0160504
0.0209201

t = 0.3

IsoValue
-0.0240332
-0.0202875
-0.0177904
-0.0152932
-0.0127961
-0.010299
-0.00780182
-0.00530468
-0.00280755
-0.000310407
0.00218673
0.00468387
0.00718101
0.00967815
0.0121753
0.0146724
0.0171696
0.0196667
0.0221638
0.0284067

t = 0.4

IsoValue
-0.0662169
-0.0554794
-0.048321
-0.0411627
-0.0340043
-0.026846
-0.0196876
-0.0125293
-0.0053709
0.00178745
0.00894579
0.0161041
0.0232625
0.0304208
0.0375792
0.0447375
0.0518959
0.0590542
0.0662126
0.0841085

t = 1

Figure 8: Snapshots of the uncontrolled horizontal velocity
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

t = 0

IsoValue
0.313729
0.340712
0.358701
0.37669
0.394679
0.412667
0.430656
0.448645
0.466634
0.484622
0.502611
0.5206
0.538589
0.556577
0.574566
0.592555
0.610543
0.628532
0.646521
0.691493

t = 0.1

IsoValue
0.42894
0.440547
0.448285
0.456023
0.46376
0.471498
0.479236
0.486974
0.494712
0.50245
0.510188
0.517925
0.525663
0.533401
0.541139
0.548877
0.556615
0.564353
0.57209
0.591435

t = 0.2

IsoValue
0.488541
0.493442
0.49671
0.499977
0.503244
0.506512
0.509779
0.513047
0.516314
0.519581
0.522849
0.526116
0.529384
0.532651
0.535918
0.539186
0.542453
0.545721
0.548988
0.557156

t = 0.3

IsoValue
0.526453
0.528495
0.529857
0.531219
0.53258
0.533942
0.535304
0.536665
0.538027
0.539389
0.54075
0.542112
0.543473
0.544835
0.546197
0.547558
0.54892
0.550282
0.551643
0.555047

t = 0.4

IsoValue
0.772328
0.772669
0.772897
0.773125
0.773352
0.77358
0.773807
0.774035
0.774262
0.77449
0.774717
0.774945
0.775172
0.7754
0.775627
0.775855
0.776082
0.77631
0.776538
0.777106

t = 1

Figure 9: Snapshots of the uncontrolled temperature
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Figure 10: Evolution of the controlled and uncontrolled horizontal velocity
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Figure 11: Evolution of the controlled and uncontrolled temperature
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Figure 12: Domain Ω including another subset of control O

We end this example by considering the effect of the control location. This consists in
considering our configuration by just replacing

O = {(x1, x2) ∈ Ω ; (x1 − 0.25)2 + (x2 − 0.75)2 < 0.01}. (5.8)

To illustrate the effect of the control we will give hereafter We now some snapshots of the
evolution of the horizontal velocity and the temperature during the control process in Figures
13 and 14. We observe the stabilization of the solution as well as that it is in the control zone
where the values of the solution are the smallest.
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IsoValue
-2.21145
-1.89553
-1.68492
-1.4743
-1.26369
-1.05307
-0.842458
-0.631844
-0.421229
-0.210615
8.32667e-16
0.210615
0.421229
0.631844
0.842458
1.05307
1.26369
1.4743
1.68492
2.21145

t = 0

IsoValue
-0.100388
-0.0885066
-0.0805854
-0.0726642
-0.064743
-0.0568218
-0.0489005
-0.0409793
-0.0330581
-0.0251369
-0.0172156
-0.00929442
-0.0013732
0.00654803
0.0144692
0.0223905
0.0303117
0.0382329
0.0461541
0.0659572

t = 0.1

IsoValue
-0.0662773
-0.0593909
-0.0547999
-0.0502089
-0.0456179
-0.0410269
-0.036436
-0.031845
-0.027254
-0.022663
-0.018072
-0.0134811
-0.00889009
-0.00429911
0.000291869
0.00488285
0.00947383
0.0140648
0.0186558
0.0301332

t = 0.2

IsoValue
-0.0553195
-0.0498317
-0.0461732
-0.0425146
-0.0388561
-0.0351976
-0.031539
-0.0278805
-0.0242219
-0.0205634
-0.0169049
-0.0132463
-0.00958777
-0.00592923
-0.00227069
0.00138785
0.00504639
0.00870494
0.0123635
0.0215098

t = 0.3

IsoValue
-0.0477027
-0.0430175
-0.039894
-0.0367706
-0.0336471
-0.0305237
-0.0274002
-0.0242767
-0.0211533
-0.0180298
-0.0149064
-0.0117829
-0.00865946
-0.00553601
-0.00241255
0.000710907
0.00383436
0.00695782
0.0100813
0.0178899

t = 0.4

IsoValue
-0.024908
-0.0224642
-0.020835
-0.0192058
-0.0175766
-0.0159474
-0.0143181
-0.0126889
-0.0110597
-0.00943053
-0.00780133
-0.00617212
-0.00454292
-0.00291371
-0.00128451
0.000344699
0.0019739
0.00360311
0.00523231
0.00930533

t = 1

Figure 13: Snapshots of the controlled horizontal velocity
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

t = 0

IsoValue
0.139076
0.178772
0.205236
0.2317
0.258164
0.284628
0.311091
0.337555
0.364019
0.390483
0.416947
0.443411
0.469875
0.496338
0.522802
0.549266
0.57573
0.602194
0.628658
0.694817

t = 0.1

IsoValue
0.164943
0.193902
0.213208
0.232514
0.25182
0.271126
0.290432
0.309737
0.329043
0.348349
0.367655
0.386961
0.406267
0.425573
0.444879
0.464185
0.483491
0.502797
0.522103
0.570368

t = 0.2

IsoValue
0.167598
0.190692
0.206088
0.221483
0.236879
0.252275
0.267671
0.283066
0.298462
0.313858
0.329254
0.344649
0.360045
0.375441
0.390837
0.406232
0.421628
0.437024
0.45242
0.490909

t = 0.3

IsoValue
0.159452
0.178992
0.192019
0.205046
0.218073
0.2311
0.244127
0.257154
0.270181
0.283208
0.296235
0.309262
0.322289
0.335316
0.348343
0.36137
0.374397
0.387423
0.40045
0.433018

t = 0.4

IsoValue
0.0903127
0.100332
0.107011
0.11369
0.12037
0.127049
0.133728
0.140408
0.147087
0.153766
0.160446
0.167125
0.173804
0.180484
0.187163
0.193842
0.200522
0.207201
0.21388
0.230578

t = 1

Figure 14: Snapshots of the controlled temperature
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Figure 15: Domain Ω with obstacle and the control zone O

5.2 Second example: Flow past a square section cylinder

We now consider a more complex configuration described by a rectangle in which we fix an
obstacle. More precisely, we consider the following configuration

Ω := (0, 1)× (0, 4) \ [23/16, 25/16]× [7/16, 9/16], (5.9)

and
O := {(x1, x2) ∈ Ω ; (x1 − 3/8)2 + (x2 − 0.5)2 < 0.01}. (5.10)

The stationary state (vs, ys) and the initial condition (v0, y0) are chosen as in (5.2) and (5.3),
respectively.

The purpose here is to illustrate our numerical results in a quantitative way. This consists
in displaying some snapshots of the evolution of the horizontal velocity and the temperature
during the control process in Figures 16 and 17.
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IsoValue
-2.23553
-1.91619
-1.7033
-1.4904
-1.27751
-1.06461
-0.851717
-0.638822
-0.425927
-0.213032
-0.00013761
0.212757
0.425652
0.638547
0.851442
1.06434
1.27723
1.49013
1.70302
2.23526

t = 0

IsoValue
-0.144755
-0.118052
-0.10025
-0.0824477
-0.0646456
-0.0468434
-0.0290413
-0.0112391
0.00656301
0.0243652
0.0421673
0.0599694
0.0777716
0.0955737
0.113376
0.131178
0.14898
0.166782
0.184584
0.22909

t = 0.5

IsoValue
-0.125358
-0.0975793
-0.0790604
-0.0605415
-0.0420226
-0.0235037
-0.00498476
0.0135341
0.032053
0.0505719
0.0690908
0.0876097
0.106129
0.124648
0.143166
0.161685
0.180204
0.198723
0.217242
0.263539

t = 1

IsoValue
-0.107115
-0.0795284
-0.0611372
-0.0427461
-0.0243549
-0.00596375
0.0124274
0.0308186
0.0492097
0.0676009
0.0859921
0.104383
0.122774
0.141166
0.159557
0.177948
0.196339
0.21473
0.233121
0.279099

t = 1.5

IsoValue
-0.116688
-0.0885274
-0.0697539
-0.0509804
-0.032207
-0.0134335
0.00533995
0.0241134
0.0428869
0.0616603
0.0804338
0.0992073
0.117981
0.136754
0.155528
0.174301
0.193075
0.211848
0.230622
0.277555

t = 2

IsoValue
-0.108608
-0.081432
-0.0633146
-0.0451972
-0.0270798
-0.00896232
0.00915511
0.0272725
0.04539
0.0635074
0.0816248
0.0997423
0.11786
0.135977
0.154095
0.172212
0.190329
0.208447
0.226564
0.271858

t = 2.5

Figure 16: Snapshots of the controlled horizontal velocity
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0.447368
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0.763158
0.815789
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0.921053
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t = 0

IsoValue
-1.5857
-1.42349
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-1.20721
-1.09907
-0.990934
-0.882795
-0.774655
-0.666515
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-0.342096
-0.233956
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-0.0176764
0.0904634
0.198603
0.306743
0.414883
0.685232

t = 0.5

IsoValue
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-1.38851
-1.26695
-1.14538
-1.02382
-0.902256
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-0.659129
-0.537566
-0.416003
-0.294439
-0.172876
-0.0513124
0.070251
0.191814
0.313378
0.434941
0.556505
0.860413

t = 1

IsoValue
-1.5629
-1.37871
-1.25593
-1.13314
-1.01035
-0.887561
-0.764773
-0.641984
-0.519196
-0.396408
-0.273619
-0.150831
-0.0280428
0.0947455
0.217534
0.340322
0.46311
0.585899
0.708687
1.01566

t = 1.5

IsoValue
-1.33018
-1.15765
-1.04264
-0.927623
-0.812607
-0.697591
-0.582576
-0.46756
-0.352544
-0.237528
-0.122512
-0.00749639
0.107519
0.222535
0.337551
0.452567
0.567583
0.682599
0.797614
1.08515

t = 2

IsoValue
-1.21445
-1.05057
-0.941311
-0.832055
-0.722799
-0.613542
-0.504286
-0.39503
-0.285774
-0.176518
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0.041994
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0.479018
0.588274
0.697531
0.806787
1.07993

t = 2.5

Figure 17: Snapshots of the controlled temperature
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