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, considering the continuous linearized Boussinesq system. The goal is to study the approximation by penalization of the free divergence condition in the semidiscrete case. More precisely, considering infinite time horizon LQR optimal control problem, we establish convergence results for the optimal controls, optimal solutions and Riccati operators when the penalization parameter goes to zero. We then propose a numerical validation of these results in a two-dimensional setting.

Introduction

The optimal control of the Boussinesq system and of its linearization around a stationary state are matters of great interest in various applications fields, such as designing and exploiting energy efficient buildings, (see, for instance, [START_REF] Borggaard | Control, estimation and optimization of energy efficient buildings[END_REF], [START_REF] Vaidya | Actuator and sensor placement in linear advection PDE with building system application[END_REF] and [START_REF] Burns | Feedback stabilization of a thermal fluid system with mixed boundary control[END_REF], [START_REF] Ramaswamy | Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions[END_REF]).

In the recent paper [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF], the authors study the approximation by penalization of the free divergence condition for infinite time horizon Linear Quadratic Regulator (LQR) optimal control problem associated to the (continuous) linearized Boussinesq system around a stationary state. From a theoretical point of view, the first interest of considering such an approximation is to write the system as a well-posed control system in the sense of Salomon-Weiss. From a numerical point of view, the second interest is to avoid projection methods to treat the free divergence condition. Indeed, the matrix of the Leray projector is of big size and is not sparse. Note however that projection based efficient numerical methods have been recently developed in the literature, see for instance [START_REF] Benner | Efficient solution of large-scale algebraic riccati equations associated with index-2 daes via the inexact low-rank newton-adi method[END_REF][START_REF] Raymond | Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions[END_REF][START_REF] Heinkenschloss | Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations[END_REF].

In this article, we study the numerical stabilization of the linearized Boussinesq system by localized feedback controls. In particular, we investigate the penalty approach for the semidiscrete linearized Boussinesq system.

Let us first introduce the model that we consider. Let Ω be a smooth domain contained in R d with d = 2, 3, let O be a nonempty open subset contained in Ω, let Γ := ∂Ω and let n be the outer unit normal vector. The incompressible Boussinesq system with Neumann boundary conditions writes as follows

           ∂ t v -div σ(v, p) + (v • ∇)v = ye d + f in (0, ∞) × Ω, ∂ t y -α∆y + v • ∇y = g in (0, ∞) × Ω, div v = 0 in (0, ∞) × Ω, σ(v, p)n = h, ∂ n y = k on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω. (1.1) 
In (1.1), v denotes the fluid velocity, p is the fluid pressure, y is the temperature of the fluid, σ(v, p) = ν((∇v) + (∇v) tr ) -pI is the Cauchy stress tensor, ν > 0 is the kinematic viscosity of the fluid, α > 0 is the heat conductivity of the fluid, e d is the last vector of the canonical basis of R d . The terms f : Ω → R d , g : Ω → R describe respectively the influence of internal field forces and heat sources. The boundary term h : Γ → R d is an open boundary condition which is an example of non-reflecting outlet boundary, it is known to be efficient for low Reynolds number, see [START_REF] Liu | Open and traction boundary conditions for the incompressible Navier-Stokes equations[END_REF]. The Neumann boundary condition k : Γ → R prescribes the heat flux. We assume that (v s , p s , y s ) ∈ W 1,∞ (Ω; R) d+2 is a real-valued solution to the stationary Boussinesq system

       -div σ(v s , p s ) + (v s • ∇)v s = y s e d + f in Ω, -α∆y + v s • ∇y s = g in Ω, div v s = 0 in Ω, σ(v, p)n = h, ∂ n y = k onΓ, (1.2) 
We consider the linearized incompressible Boussinesq system around (v s , p s , y s )

           ∂ t v -div σ(v, p) + (v • ∇)v s + (v s • ∇)v = ye d + ũ1 O in (0, ∞) × Ω, ∂ t y -α∆y + v s • ∇y + v • ∇y s = u d+1 1 O in (0, ∞) × Ω, div v = 0 in (0, ∞) × Ω, σ(v, p)n = 0, ∂ n y = 0 on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω.
(1.3)

In the controlled system (1.3), (v, p, y) : (0, ∞) × Ω → R d+2 is the state, while u := (ũ, u d+1 ) : (0, ∞) × O → R d+1 is the control, i.e. a localized field force ũ and a heat source u d+1 that one can choose in order to modify the dynamics of the velocity y, the pressure p and the temperature y.

It is worth mentioning that without any extra assumption on (v s , y s ), (1.3) with control u = 0 can be unstable. One way to stabilize (1.3) by feedback controls consists in looking for a control u as a solution to a quadratic minimization problem, called LQR optimal control problem, see Section 2.3 for a very brief introduction to this notion. Such a control will be denoted by u opt and the associated trajectory, i.e. the solution to (1.3) with u = u opt by (v opt , p opt , y opt ).

Now we introduce a perturbed form of (1.3) which may be easier to solve in practice. More precisely, we penalize the free divergence condition. This method has been introduced for the first time in [START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF] for the Navier-Stokes system. Taking ε > 0 a small parameter, we consider the system

           ∂ t v -div σ(v, p) + (v • ∇)v s + (v s • ∇)v = ye d + ũ1 O in (0, ∞) × Ω, ∂ t y -α∆y + v s • ∇y + v • ∇y s = u d+1 1 O in (0, ∞) × Ω, div v + εp = 0 in (0, ∞) × Ω, σ(v, p)n = 0, ∂ n y = 0 on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω.
(1.4)

By eliminating the pressure in (1.4), we can reformulate the above equations as the following parabolic system

       ∂ t v -div σ(v, p) + (v • ∇)v s + (v s • ∇)v -1 ε ∇div v = ye d + ũ1 O in (0, ∞) × Ω, ∂ t y -α∆y + v s • ∇y + v • ∇y s = u d+1 1 O in (0, ∞) × Ω, σ(v, p)n = 0, ∂ n y = 0 on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω. (1.5) 
As before, let us denote by u opt,ε the optimal control for the associated LQR problem to (1.5) and (v opt,ε , y opt,ε ) the corresponding trajectory, i.e. the solution (v, y) of (1.5) with u = u opt,ε .

In [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF], for homogeneous Dirichlet boundary conditions instead of homogeneous Neumann boundary conditions that are considered here, the authors roughly prove that

lim ε→0 u opt,ε = u opt and lim ε→0 v opt,ε y opt,ε = v opt y opt , (1.6) 
see [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF]Theorem 3.2] for a precise version of this statement. The goal of this article consists in obtaining the convergence results (1.6) for semidiscrete approximations of the continous systems (1.3) and (1.5), then proposing a numerical validation of these results.

The organization of the paper is as follows. In Section 2, we introduce the semidiscrete approximations of the linearized Boussinesq system and recall standard results related to LQR problems. In Section 3, we present the main results of the article, that is to say, convergence results for the optimal control and the optimal trajectories. In Section 4, we give the proofs of the main results by insisting only on the main differences between the proofs in the continuous case and the semidiscrete case. Finally, in Section 5, we proceed to the numerical validation of our results for several examples in a two-dimensional setting.
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Semidiscrete approximations

Finite dimensional approximations of the systems

The goal of this part is to introduce the discrete spatial approximations, based on a finite element method, associated to the controlled systems (1.3) and (1.5).

To approximate the systems (1.3) and (1.5) by a finite element method, we introduce finite dimensional subspaces V h ⊂ H 1 (Ω; R d ) for the velocity, M h ⊂ L 2 (Ω; R) for the pressure, Y h ∈ H 1 (Ω; R) for the temperature and U h ⊂ L 2 (O; R d+1 ) for the control. We denote by

(φ i ) 1 i Nv a basis of V h , by (ψ i ) 1 i Np a basis of M h , by (θ i ) 1 i Ny a basis of Y h and by (ζ i ) 1 i Nu a basis of U h . We set v = Nv i=1 V i φ i , p = Np i=1 p i ψ i , y = Ny i=1 Y i θ i , u = Nu i=1 U i ζ i , (2.1) 
v 0 = Nv i=1 V 0,i φ i , y 0 = Ny i=1 Y 0,i θ i . (2.2)
If we denote by boldface letters the coordinate vectors, we have

v = (V 1 , . . . , V Nv ) T , p = (p 1 , . . . , p Np ) T , y = (Y 1 , . . . , Y Ny ) T , u = (U 1 , . . . , U Nu ) T , (2.3) 
v 0 = (w 0,1 , . . . , V 0,N V ) T , y 0 = (Y 0,1 , . . . , Y 0,Ny ) T . (2.4) 
The finite dimensional approximation of (1.3) 

consists in finding v ∈ H 1 loc ([0, ∞); V h ), p ∈ L 2 loc ([0, ∞); M h ), y ∈ H 1 loc ([0, ∞); Y h ), such that d dt Ω (v(t) • φ) dx = a vv 0 (v(t), φ) + b(φ, p(t)) + a vy 0 (y(t), φ) + ũ(t), φ L 2 (O) d , ∀φ ∈ V h , (2.5) d dt Ω (y(t)θ) dx = a yv 0 (v(t), θ) + a yy 0 (y(t), θ) + u d+1 (t), θ L 2 (O) , ∀θ ∈ Y h , (2.6) b(v(t), ψ) = 0, ∀ψ ∈ M h , (2.7) 
where

a vv 0 (v, φ) = -ν Ω ∇v : ∇φ dx - Ω [(v s • ∇)v + (v • ∇)v s ] • φ dx, (2.8) b(φ, p) = Ω (div φ)p dx, (2.9) 
a vy 0 (y, φ) = Ω yφ d dx, (2.10) 
a yv 0 (v, θ) = - Ω [v • ∇y s ] • θ dx, (2.11) 
a yy 0 (y, θ) = -α Ω ∇y • ∇θ dx - Ω [v s • ∇y] • θ dx.
(2.12)

We introduce the stiffness matrices A vv , A vp , A vy , A yv , A yy ; the mass matrices M vv , M pp , M yy ; and the matrices of control B uv , B uy by

A ij vv = a vv 0 (φ j , φ i ), A ij vp = b(φ i , ψ j ), A ij vy = a vy 0 (θ j , φ i ), A ij yv = a vy 0 (φ j , θ i ), A ij yy = a vy 0 (θ j , θ i ), M ij zz = (φ i , φ j ) L 2 (Ω) d , M ij yy = (θ i , θ j ) L 2 (Ω) , B ij uv = ( ζi , φ j ) L 2 (O) d , B ij uy = ((ζ i ) d+1 , θ j ) L 2 (O) .
System (2.5)-(2.7) may be written in the following form

M vv v (t) = A vv v(t) + A vp p(t) + A vy y(t) + B uv ũ(t), (2.13) 
M yy y (t) = A yv v(t) + A yy y(t) + B uy u d+1 (t), (2.14) 
A T vp v(t) = 0. (2.15)
Similarly for the perturbed form (1.5) the finite dimensional approximation consists in finding

v ∈ H 1 loc ([0, ∞); V h ), y ∈ H 1 loc ([0, ∞); Y h ), such that d dt Ω v(t) • φdx = a vv ε (v(t), φ) + a vy 0 (y(t), φ) + ũ(t), φ L 2 (O) d , ∀φ ∈ V h , (2.16 
)

d dt Ω y(t)θdx = a yv 0 (v(t), θ) + a yy 0 (y(t), θ) + u d+1 (t), θ L 2 (O) , ∀θ ∈ Y h , (2.17) 
where 

a vv ε (v, φ) = -ν Ω ∇v : ∇φ dx - Ω [(v s • ∇)v + (v • ∇)v s ] • φ dx - 1 ε Ω (div v)(div φ) dx. (2.

Finite-dimensional linear controlled systems

The goal of this part is to first reformulate (2.13)-(2.15) into a more suitable differential system, without the constraint formula (2.15). This will be done thanks to the projection of the dynamics by the discrete Leray projector. Then, we state a well-posedness result for both finite-dimensional linear controlled systems.

In the following result whose proof is an easy adaptation of [1, Proposition 3.1], we define the discrete Leray projector P h and state some important properties for P h . Proposition 2.1. The projector P h in R Nv onto ker(A T vp M -1 vv ) parallel to Im(A vp ) and the projector P T h in R Nv onto ker(A T vp ) parallel to Im(M -1 vv A vp ) are defined by

P h = I -A vp (A T vp M -1 vv A vp ) -1 A T vp M -1 vv , P T h = I -M -1 vv A vp (A T vp M -1 vv A vp ) -1 A T vp .
(2.21)

Moreover, we have

P h A vp = 0, P h M vv = M vv P T h , M -1 vv P h = P T h M -1 vv .
The above result enables us to project the dynamics of (2.13)-(2.15), we then obtain

M vv P T h v (t) = A vv P T h v(t) + A vy y(t) + P h B uv ũ(t), M yy y (t) = A yv v(t) + A yy y(t) + B uy u d+1 (t),
and then using that A T vp v(t) = 0 so P T h v(t) = v(t), we thus obtain

M vv P T h v (t) = A vv P T h v(t) + A vy y(t) + P h B uv ũ(t), (2.22) 
M yy y (t) = A yv P T h v(t) + A yy y(t) + B uy u d+1 (t), (2.23) 
P T h v(t) = v(t).
(2.24)

Before going further, we define the following matrices

P = P h 0 0 I Ny , M = M vv 0 0 M yy , A 0 = A vv A vy A yv A yy , A ε = A vv,ε A vy A yv A yy , B = B uv B uy , B 0 = P B,
and finite-dimensional spaces

H h = Ker(A T vp ) × Y h , X h = V h × Y h .
We have the following standard well-posedness results for (2.22)-(2.24) and (2.19)-(2.20).

Proposition 2.2. For every

v 0 y 0 ∈ H h , u ∈ L 2 ([0, ∞); U h ), the Cauchy problem M v ẏ = A 0 v y + B 0 u, v(0) y(0) = v 0 y 0 , (2.25 
)

admits an unique solution v y ∈ C 0 ([0, +∞); H h ) defined by v(t) y(t) = e tM -1 A 0 v 0 y 0 + t 0 e (t-σ)M -1 A 0 M -1 B 0 u(σ) dσ (t 0). (2.26) Similarly, for every v 0 y 0 ∈ X h , u ∈ L 2 ([0, ∞); U h ), the Cauchy problem M v ẏ = A ε v y + Bu, v(0) y(0) = v 0 y 0 , (2.27 
)

admits an unique solution v y ∈ C 0 ([0, +∞); X h ), defined by v(t) y(t) = e tM -1 Aε v 0 y 0 + t 0 e (t-σ)M -1 Aε M -1 Bu(σ) dσ (t 0). (2.28)
The proof is standard so we omit it.

Some background on LQR optimal control problems

We recall below some basic facts on LQR problems in a finite dimensional context. Roughly speaking, the main result of the theory stipulates that the optimal control of the cost quadratic function is a feedback controller that can be explicitly determined by solving a Riccati equation. Let A ∈ R n×n and B ∈ R n×m . The LQR theory in infinite horizon focus on trajectories of the linear control system x = Ax+Bu, x(0) = x 0 , which minimize the quadratic cost functional

J (u; x 0 ) = +∞ 0 u(t) 2 R m + x(t) 2 R n dt (u ∈ L 2 (0, +∞; R m )).
(2.29)

We recall below the well-known notion of stabilizability.

Definition 2.3. The pair (A, B) is stabilizable if there exist K ∈ R m×n , M > 0 and ω > 0 such that e t(A-BK) M e -ωt (t 0).

One of the main results of the LQR theory states that the optimal control associated to (2.29) is given by a feedback law, see for instance [START_REF] Trélat | Contrôle optimal, Mathématiques Concrètes[END_REF]Théorème 4.4.5].

Theorem 2.4. If the pair (A, B) is stabilizable then for every x 0 ∈ R n , J(•; x 0 ) admits a unique minimum u opt given by

u opt (t) = -B * Pe t(A-BB * P) x 0 (t ∈ [0, ∞)). (2.30) 
where P ∈ R n×n , is the unique nonnegative self-adjoint solution of the Riccati equation

A * P + PA -PBB * P + I n = 0. (2.31) 
Moreover, for every

x 0 ∈ R n , min u∈L 2 ([0,+∞);R m ) J (u; x 0 ) = Px 0 , x 0 .
(2.32)

Main result

In this section, we use the notations introduced in Section 2 and we state the main result of the paper. Assume that (A 0 , B 0 ) is stabilizable. By Theorem 2.4, let us denote by Π 0 ∈ L(H h ) the unique nonnegative self-adjoint solution of

A * 0 Π 0 + Π 0 A 0 -Π 0 B 0 B * 0 Π 0 + I H h = 0. (3.1)
In (3.1), I H h denotes the identity operator on H h . In the same way, assume that

(A ε , B) is stabilizable. Then let us denote by Π ε ∈ L(X h ) the unique nonnegative self-adjoint solution of A * ε Π ε + Π ε A ε -Π ε BB * Π ε + I X h = 0. (3.2)
In (3.2), I X h denotes the identity operator on X h . The main result of the article focuses on asymptotic properties of Π ε in the limit ε → 0.

Theorem 3.1. We assume that

rank(B) = N v + N y . (3.3)
Then, (A 0 , B 0 ) is exponentially stabilizable and (A ε , B) is uniformly (with respect to ε) exponentially stabilizable. Moreover, there exist C > 0 and ω > 0, independent of ε such that the solution

Π ε L(X h ;X h ) C (ε 0), (3.4) 
e t(Aε-BB * Πε) L(X h ;X h ) Ce -ωt (ε, t 0), (3.5) 
In addition, lim

ε→0+ Π ε P -Π 0 L(H h ;X h ) = 0 (t 0) , (3.6 
)

lim ε→0+ e t(Aε-BB * Πε) P -e t(A 0 -B 0 B * 0 Π 0 ) L(H h ;X h ) = 0 (t 0) , (3.7 
)

lim ε→0+ -B * Π ε e t(Aε-BB * Πε) P -(-B * 0 Π 0 e t(A 0 -B 0 B * 0 Π 0 ) ) L(H h ;U h ) = 0 (t 0) , (3.8)
and the last two convergences are uniform with respect to t on compact intervals.

Before going further, let us make some comments on Theorem 3.1. • Note that Theorem 3.1 proves convergence results for LQR problems associated to the pairs (A 0 , B 0 ) and (A ε , B) but the proof that we will sketch can be easily adapted to the pairs (M -1 A 0 , M -1 B 0 ) and (M -1 A ε , M -1 B). Therefore, one can recover the expected convergence results for LQR problems associated to the true semidiscrete systems (2.25) and (2.27), that we consider in the numerical validation, see Section 5.

•
• The convergence results of Theorem 3.1 are not uniform with respect to the parameter h because the constants C that appear in (3.4) and in (3.5) depend a priori on h. Obtaining such a uniform result in the spirit of [START_REF] Labbé | Uniform controllability of semidiscrete approximations of parabolic control systems[END_REF] is an interesting open question.

Proof of the main result

In this section, we give the main points for obtaining the proof of Theorem 3.1. We crucially follow the methodology developed in [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF] that we briefly recall here. One of the key point consists in obtaining convergence results for the free solution, i.e. e tAε P → e tA 0 P and for the input-to-state maps i.e. t 0 e (t-s)Aε Bu(s)ds → t 0 e (t-s)A 0 B 0 u(s)ds as ε → 0. This type of results will be collected in Section 4.1. Then, to prove Theorem 3.1, we first establish uniform bounds (3.4) and (3.5). For this, we prove uniform null-controllability results for the pairs (A 0 , B 0 ) and the pairs (A ε , B). While this type of results are obtained in the continuous case through observability estimates for the adjoint systems, here we simply derive these results using the full-rank condition on the matrix B, i.e. (3.3) that implies that the so-called Kalman condition is fulfilled then null-controllability holds true. These results will be proved in Section 4.2. The last point consists in proving the convergence results (3.6), (3.7), (3.8) by following carefully [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF]Section 6]. Some details of the proofs will be omitted, we will only insist on the main differences with [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF].

4.1 Uniform bounds, convergence results for the free solution and the inputto-state maps

The goal of this part is to obtain convergence results for the free solution and the controlled solution, thanks to convergence results for the resolvents and the use of Trotter-Kato theorem.

We have the following result.

Proposition 4.1. There exist C 1 and ω ∈ R such that for every ε > 0

e tAε L(X h ;X h ) Ce ωt (ε > 0, t 0). (4.1) 
Proof. By integration by parts and Young's inequalities, it is not difficult to see that there exists a positive constant c > 0 depending on

(v s , y s ) W 1,∞ (Ω) d+1 (independent of ε > 0), such that -A ε ϕ ζ , ϕ ζ L 2 (Ω) d+1 ν ∇ϕ 2 L 2 (Ω) d + 1 ε div ϕ 2 L 2 (Ω) + α ∇ζ 2 L 2 (Ω) d -c (ϕ, ζ) 2 L 2 (Ω) d+1 ϕ ζ ∈ X h . (4.2) 
We then easily deduce that

e t(Aε-cI) L(X h ;X h ) 1 (ε > 0, t 0),
which gives the expected result.

We next prove the convergence of the resolvents of A ε (respectively A * ε ) towards the resolvents of A 0 (respectively A * 0 ).

Proposition 4.2.

There exists λ 0 > 0 such that for every λ ∈ C with Re λ λ 0 , we have

lim ε→0 [λI -A ε ] -1 -[λI -A 0 ] -1 P L(X h ) = 0, (4.3) 
lim ε→0 [λI -A * ε ] -1 -[λI -A * 0 ] -1 P L(X h ) = 0. (4.4)
Proof. We only prove (4.3), since the proof of (4.4) is fully similar.

Let f g ∈ X h and λ 0 > c > 0, (4.5) 
where the constant c is the one appearing in (4.2). Then, for λ ∈ C with Re λ λ 0 , by setting

ϕ ε ζ ε = (λI -A ε ) -1 f g , we have λ Ω ϕ ε • ψ dx + ν Ω ∇ϕ ε : ∇ψ dx + Ω [(v s • ∇)ϕ ε + (ϕ ε • ∇)v s ] • ψ dx + 1 ε Ω (div ϕ ε )(div ψ) dx - Ω ζ ε ψ d dx + λ Ω ζ ε η dx + α Ω ∇ζ ε • ∇η dx + Ω [v s • ∇ζ ε + ϕ ε • ∇y s ] • η dx = Ω f • ψ dx + Ω gη dx ψ η ∈ X h ) . (4.6) 
Taking

ψ η = ϕ ε ζ ε in (4.6
) and using (4.2) we obtain

ϕ ε 2 H 1 (Ω) d + 1 ε div ϕ ε 2 L 2 (Ω) + ζ ε 2 H 1 (Ω) c f g 2 X h (ε > 0),
where c > 0 is some another constant. The above estimate implies that there exists

ϕ ζ ∈ H h such that ϕ ε ζ ε → ϕ ζ as ε → 0 in X h , For ψ η ∈ H h , note that ψ ∈ Ker(A T vp )
, we can thus pass to the limit in (4.6) to obtain that

λ Ω ϕ • ψ dx + ν Ω ∇ϕ : ∇ψ dx + Ω [(v s • ∇)ϕ + (ϕ • ∇)v s ] • ψ dx - Ω ζψ d dx + λ Ω ζη dx + α Ω ∇ζ • ∇η dx + Ω [v s • ∇ζ + ϕ • ∇y s ] • η dx = Ω f • ψ dx + Ω gη dx, ψ η ∈ H h ) , (4.7) 
then using

Ω f • ψ dx + Ω gη dx = Ω P f g • ψ η dx ψ η ∈ H h ) , (4.8) 
we deduce (4.3) from (4.7).

An important consequence of Proposition 4.2 is the following result.

Proposition 4.3. We have

lim ε→0 e tAε P -e tA 0 L(H h ;X h ) = 0 (t 0) , (4.9 
)

lim ε→0 (e tAε ) * P -(e tA 0 ) * L(H h ;X h ) = 0 (t 0) , (4.10) 
uniformly with respect to t on compact intervals.

The proof comes from an adaptation of Trotter-Kato's theorem, see [START_REF] Balc'h | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system[END_REF]Proposition 4.2] for details. Note again that the convergence are norm-convergence operators because the functional spaces are finite-dimensional.

For u ∈ L 2 ([0, +∞; U h ), we define the input-to-state maps

Ξ ε t u = t 0 e (t-s)Aε Bu(s)ds and Ξ 0 t u = t 0 e (t-s)A 0 B 0 u(s)ds. (4.11)
We have the following result.

Proposition 4.4. With the above notation, we have

lim ε→0+ Ξ ε t u -Ξ 0 t u X h = 0 t 0, u ∈ L 2 ([0, +∞; U h ) , (4.12) lim ε→0+ (Ξ ε t ) * u -(Ξ 0 t ) * u X h = 0 t 0, u ∈ L 2 ([0, +∞; U h ) , (4.13) 
Moreover, the convergence above is uniform for t in compact intervals.

The proof uses Lax-Phillips semigroups theory and Trotter-Kato's theorem, see [11, Proposition 4.5] for details.

Uniform null-controllability and stabilization results

The goal of this part is to state a uniform null-controllability result for the the pair (A ε , B).

Here, the proof is different from the one in the continuous case that has been obtained through Carleman estimates. By using the full-rank condition on B, explicit controls are designed.

The main result of this part is the following.

Proposition 4.5. For every ε > 0, the pair (A ε , B) is exactly controllable. Moreover, for every T > 0, there exists C > 0 such that for every ε > 0, v 0 y 0 ∈ X h , there exists

u ε ∈ L 2 ([0, T ]; U h ) satisfying u ε L 2 ([0,T ];U h ) C v 0 y 0 X h , (4.14) 
such that the solution to

v ε (t) y ε (t) = A ε v ε (t) y ε (t) + Bu ε (t), v ε (0) y ε (0) = v 0 y 0 , (4.15) 
satisfies v ε (T ) y ε (T ) = 0 0 . (4.16)
It is a well-known fact that in finite dimension, the exact-controllablity (which is equivalent to the null-controllability) is equivalent to the Kalman rank condition

rank(B|A ε B| . . . |A Nv+Ny ε B) = N v + N y , (4.17) 
then does not depend on the time of control T > 0. Here, we recall that we have assumed (3.3) so (4.17) trivially holds. So the main difficulty of Proposition 4.5 is to obtain the uniform bound on the control cost, i.e (4.14).

Proof. We recall that B is full-rank by (3.3), so there exists B such that B B = I Nv+Ny . Let us fix T > 0 and v 0 y 0 ∈ X h , and let us define the following controlled trajectory for t ∈ [0, T ],

v ε (t) y ε (t) = T -t T e tAε v 0 y 0 , u ε (t) = - 1 T Be tAε v 0 y 0 . ( 4 

.18)

We check easily that

v ε (t) y ε (t) = A ε v ε (t) y ε (t) + Bu ε (t), v(0) y(0) = v 0 y 0 , v ε (T ) y ε (T ) = 0. (4.19)
Finally, (4.14) is an easy consequence of the definition of u ε and (4.1).

A similar proof enables us to obtain the null-controllability of the pair (A 0 , B 0 ) in H h . By following carefully [11, Section 6], we can use Proposition 4.5 to prove uniform stabilization results, stated in (3.4) and (3.5) then convergence results (3.6), (3.7) and (3.8) which leads to the conclusion of the proof of Theorem 3.1

Numerical experiments and assessments

Prior to any numerical discussion, we briefly describe the finite element discretization we use in our computations for achieving the numerical validation of the method. To alleviate the presentation, we consider that Ω is a two dimensional domain. Assume that it is polygonal and is the union of a finite number of triangles. Then, we introduce a regular family (T h ) h of triangulations of Ω.

• The domain Ω is the union of all elements of T h ;

• The intersection of two different elements of T h , if not empty, is a vertex or a whole edge of both of them;

• The ratio of the diameter h K of any element K of T h to the diameter of its inscribed circle is smaller than a constant σ independent of h.

The mesh-size h is the maximum of the diameters h K . We refer to [START_REF] Brenner | Mathematical Theory of Finite Element Methods[END_REF][START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] for the basics of the finite element method.

Furthermore, it is well known that the velocity and pressure approximation spaces used in the spatial discretization are required to satisfy a discrete LBB condition, see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] for more details concerning this point and more details about the finite element discretization of Navier-Stokes problem. In this work we choose to use the standard P 2 -P 1 and P 2 to respectively approximate the velocity, pressure and temperature fields. More precisely, we consider the discrete spaces defined by

Y h = χ h ∈ H 1 (Ω); ∀K ∈ T h , (χ h ) |K ∈ P 2 (K) , V h = (Y h ∩ H 1 0 (Ω)) 2 ,
and

M h = χ h ∈ L 2 (Ω); ∀K ∈ T h , (χ h ) |K ∈ P 1 (K) ,
where P i (K) stands for the space of restrictions to K of polynomial functions of degree lower or equal to i on R 2 .

First example

We first describe an example to assess and illustrate the main results of the paper, i.e. the convergence results (3.6), (3.7) and (3.8).

Let us introduce first the data used in the numerical experiments. The whole domain (see Fig. 1) is Ω = [0, 1] 2 , and the subset of control is

O = {(x 1 , x 2 ) ∈ Ω ; (x 1 -0.5) 2 + (x 2 -0.5) 2 < 0.01}.
(5.1)

We choose as stationary state the velocity and temperature given by 

  v 1 s (x 1 , x 2 ) v 2 s (x 1 , x 2 ) y s (x 1 , x 2 )   =   100x 2 (1 -x 2 ) 0 -100(1 -x 2 )   , (5.2) 
 v 1 0 (x 1 , x 2 ) v 2 0 (x 1 , x 2 ) y 0 (x 1 , x 2 )   =   2 sin(2πx 1 ) cos(2πx2) 2 sin(2πx 1 ) cos(2πx2) 1 -x 2   . (5.3)
All our computations are realized by means of the free finite element software FreeFem++ (see [START_REF] Hecht | New development in freefem++[END_REF]). The time and space approximation step are fixed to be ∆t = 0.01 and h = 0.05

The resolution strategy consists of first proving the numerical evidence that the matrix A 0 is unstable. This can be confirmed by studying numerically the presence of eigenvalues with positive real part for the resulting discrete generalized eigenvalue problem

  A vv A vp A vy A T zp 0 0 A yv 0 A yy     v p y   = λ   M vv 0 0 0 0 0 0 0 M yy     v p y   .
(5.4)

Figure 2 illustrates the computed generalized eigenvalue problem (5.4) solved by using the ARPACK eigenvalue package. The spectrum confirms the unstable nature of the matrix A 0 .

Our method is mainly based on the penalty method and it is therefore essential to be aware of the quality of the convergence of our results with respect to the parameter of penalization ε.

In Figure 3 we represent the errors in a logarithm scale between the Riccati matrices Π ε and Π 0 as a function of ε. The numerical behavior is in total agreement with the result given by (3.6). The computation of the Riccati matrices are done thanks to the package "control" in Octave. We estimate a convergence rate of about one, which is in agreement with the usual results of penalty methods.

Figure 4 shows the error in a logarithm scale between the controlled solutions (v, y) ε and (v, y) while the same measurement is give for controls u ε and u in Figure 5, as a function of ε. Once again the numerical behaviors are in total agreement with the theory. To solve the evolution problems, the time derivative is approximated thanks to a standard Euler explicit scheme. We estimate a convergence rate of about one. We present in the following array the exact computing values of the errors. Remark 5.1. We observe for the three previous cases a slope that is equal to one. This illustrates numerically the expected speed of convergence with respect to ε. Hence, we naturally conjecture that we actually have

ε Π ε P -Π 0 / Π 0 (v, y) ε -(v, y) u ε -u 1 e
Π ε P -Π 0 L(H h ;X h ) = O(ε) (t 0) , (5.5) 
e t(Aε-BB * Πε) P -e t(A 0 -B 0 B *

0 Π 0 ) L(H h ;X h ) = O(ε) (t 0) , (5.6) 
-B * Π ε e t(Aε-BB * Πε) P -(-B * 0 Π 0 e t(A 0 -B 0 B * 0 Π 0 ) ) L(H h ;U h ) = O(ε) (t 0) . (5.7) 
We now give some snapshots of the evolution of the horizontal velocity and the temperature during the control process in Figures 6 and7. We observe the stabilization of the solution. We also observe that it is in the control zone where the values of the solution are the smallest.

To better appreciate the efficiency of the method we continue our study by giving some snapshots of the evolution of the horizontal velocity and the temperature without control in Figures 8 and9. We remark that the both velocity and temperature do not converge to 0, this is due to the instability of the spectrum of the linearized system.

We then plot the evolution of the controlled and uncontrolled solution. The stationary state (v s , y s ) and the initial condition (v 0 , y 0 ) are chosen as in (5.2) and (5.3), respectively.

The purpose here is to illustrate our numerical results in a quantitative way. This consists in displaying some snapshots of the evolution of the horizontal velocity and the temperature during the control process in Figures 16 and17 
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 2131415 Figure 2: Eigenvalues associated to (5.4)
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 15 Figure 15: Domain Ω with obstacle and the control zone O
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IsoValue

  

  Figure 16: Snapshots of the controlled horizontal velocity Figure 17: Snapshots of the controlled temperature

	IsoValue	IsoValue IsoValue
	-2.23553 -0.0526316	-0.144755 -1.5857
	-1.91619 0.0263158	-0.118052 -1.42349
	-1.7033 0.0789474	-0.10025 -1.31535
	-1.4904 0.131579	-0.0824477 -1.20721
	-1.27751 0.184211	-0.0646456 -1.09907
	-1.06461 0.236842	-0.0468434 -0.990934
	-0.851717 0.289474	-0.0290413 -0.882795
	-0.638822 0.342105	-0.0112391 -0.774655
	-0.425927 0.394737	0.00656301 -0.666515
	-0.213032 0.447368	0.0243652 -0.558375
	-0.00013761 0.5	0.0421673 -0.450235
	0.212757 0.552632	0.0599694 -0.342096
	0.425652 0.605263	0.0777716 -0.233956
	0.638547 0.657895	0.0955737 -0.125816
	0.851442 0.710526	0.113376 -0.0176764
	1.06434 0.763158	0.131178 0.0904634
	1.27723 0.815789	0.14898 0.198603
	1.49013 0.868421	0.166782 0.306743
	1.70302 0.921053	0.184584 0.414883
	2.23526 1.05263	0.22909 0.685232
	t = 0 t = 0	t = 0.5 t = 0.5
	IsoValue IsoValue	IsoValue IsoValue
	-0.125358 -1.69242	-0.107115 -1.5629
	-0.0975793 -1.51007	-0.0795284 -1.37871
	-0.0790604 -1.38851	-0.0611372 -1.25593
	-0.0605415 -1.26695	-0.0427461 -1.13314
	-0.0420226 -1.14538	-0.0243549 -1.01035
	-0.0235037 -1.02382	-0.00596375 -0.887561
	-0.00498476 -0.902256	0.0124274 -0.764773
	0.0135341 -0.780693	0.0308186 -0.641984
	0.032053 -0.659129	0.0492097 -0.519196
	0.0505719 -0.537566	0.0676009 -0.396408
	0.0690908 -0.416003	0.0859921 -0.273619
	0.0876097 -0.294439	0.104383 -0.150831
	0.106129 -0.172876	0.122774 -0.0280428
	0.124648 -0.0513124	0.141166 0.0947455
	0.143166 0.070251	0.159557 0.217534
	0.161685 0.191814	0.177948 0.340322
	0.180204 0.313378	0.196339 0.46311
	0.198723 0.434941	0.21473 0.585899
	0.217242 0.556505	0.233121 0.708687
	0.263539 0.860413	0.279099 1.01566
	t = 1 t = 1	t = 1.5 t = 1.5
	IsoValue IsoValue	IsoValue IsoValue
	-0.116688 -1.33018	-0.108608 -1.21445
	-0.0885274 -1.15765	-0.081432 -1.05057
	-0.0697539 -1.04264	-0.0633146 -0.941311
	-0.0509804 -0.927623	-0.0451972 -0.832055
	-0.032207 -0.812607	-0.0270798 -0.722799
	-0.0134335 -0.697591	-0.00896232 -0.613542
	0.00533995 -0.582576	0.00915511 -0.504286
	0.0241134 -0.46756	0.0272725 -0.39503
	0.0428869 -0.352544	0.04539 -0.285774
	0.0616603 -0.237528	0.0635074 -0.176518
	0.0804338 -0.122512	0.0816248 -0.0672621
	0.0992073 -0.00749639	0.0997423 0.041994
	0.117981 0.107519	0.11786 0.15125
	0.136754 0.222535	0.135977 0.260506
	0.155528 0.337551	0.154095 0.369762
	0.174301 0.452567	0.172212 0.479018
	0.193075 0.567583	0.190329 0.588274
	0.211848 0.682599	0.208447 0.697531
	0.230622 0.797614	0.226564 0.806787
	0.277555 1.08515	0.271858 1.07993
	t = 2 t = 2	t = 2.5 t = 2.5
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(5.8)

To illustrate the effect of the control we will give hereafter We now some snapshots of the evolution of the horizontal velocity and the temperature during the control process in Figures 13 and14. We observe the stabilization of the solution as well as that it is in the control zone where the values of the solution are the smallest.