N

N

GRI: General Reinforced Imitation and its Application
to Vision-Based Autonomous Driving

Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde

» To cite this version:

Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde. GRI: General Reinforced
Imitation and its Application to Vision-Based Autonomous Driving. 2021. hal-03442328v1

HAL Id: hal-03442328
https://hal.science/hal-03442328v1

Preprint submitted on 23 Nov 2021 (v1), last revised 30 Jun 2022 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03442328v1
https://hal.archives-ouvertes.fr

GRI: General Reinforced Imitation
and its Application to Vision-Based Autonomous Driving

Raphael Chekroun'2, Marin Toromanoff?, Sascha Hornauer', Fabien Moutarde'
IMINES ParisTech, 2Valeo DAR
firstname.lastname@{!mines-paristech.fr, 2valeo.com}

[B

Center cam

Demonstration| -
agent

Classification

>
encoder

Pdemo .

percapton | 11 > 4 Hd
dataset | Rightcam
1 Paemo - A4

Segmentation

h encoder
L Left cam

Exploration agent

e » Segmentation

~ Intersection?
- TL state

& dist? : Trained phase 1, frozen
phase 2

: Frozen phase 1, trained
phase 2

Classification| . . .
decoder

DRL backbone

“.)

Replay
buffer

= =» :Used in phase 1

= =» :Used in phase 2
- -» :Used forthe inference

decoder

Figure 1. General Reinforced Imitation (GRI) is applied to visual-based autonomous driving in an end-to-end pipeline composed of a
perception module encoding RGB images from the three cameras on the driving agent and a decision-making module inferring an action
from the encoded features. This pipeline is trained in two phases: (1) Visual encoders are pretrained on a perception dataset on several
auxiliary tasks, which are semantic segmentation, road type classification, relevant traffic light presence, and if there is such a traffic light,
its state and the distance to it. (2) Visual encoders are frozen and a GRI-based DRL network is trained with both pre-generated expert
data with an offline demonstration agent and an online exploration agent gathering data from a simulator. At any given training step, the
next episode to add to the replay buffer comes from the demonstration agent with a probability of pgem.o, €lse from the exploration agent.

Actions correspond to a pair (steering, throttle) to apply to the car.

Abstract

Deep reinforcement learning (DRL) has been demon-
strated to be effective for several complex decision-making
applications such as autonomous driving and robotics.
However, DRL is notoriously limited by its high sample
complexity and its lack of stability. Prior knowledge, e.g. as
expert demonstrations, is often available but challenging to
leverage to mitigate these issues. In this paper, we propose
General Reinforced Imitation (GRI), a novel method which
combines benefits from exploration and expert data and is
straightforward to implement over any off-policy RL algo-
rithm. We make one simplifying hypothesis: expert demon-
strations can be seen as perfect data whose underlying pol-
icy gets a constant high reward. Based on this assumption,
GRI introduces the notion of offline demonstration agents.
This agent sends expert data which are processed both con-

currently and indistinguishably with the experiences com-
ing from the online RL exploration agent. We show that
our approach enables major improvements on vision-based
autonomous driving in urban environments. We further val-
idate the GRI method on Mujoco continuous control tasks
with different off-policy RL algorithms. Our method ranked
first on the CARLA Leaderboard and outperforms World on
Rails, the previous state-of-the-art, by 17%.

1. Introduction

Autonomous driving (AD) in urban areas is a convoluted
task. Agents have to efficiently analyse a highly complex
environment and make online decisions to follow driving
rules whilst simultaneously interacting with other dynamic
agents, such as drivers or pedestrians. That is why, literature

in autonomous driving focuses on different learning meth-
ods rather than the design of general hand-crafted rules.

Imitation learning (IL) [1, 18, 19,27], especially behav-
ior cloning, aims at mimicking expert behavior for a given
task. It requires a significant amount of annotated data, of-
ten recorded by human drivers. Even though this kind of
data can be recorded easily on a large scale, practical safety
concerns in real traffic lead to heavily biased observations
showing predominantly safe driving examples, and under-
represents rare dangerous situations. Hence, IL agents suf-
fer from distribution mismatch and will struggle to recover
from its own mistakes.

Deep reinforcement learning (DRL) [7, 16, 17,22] offers
an alternative, more robust to distribution mismatch than
IL, by letting the agent learn from its own mistakes through
trial-and-error. In the RL framework, the agent explores
its environment by itself and gathers rewards, a numerical
value assessing how much a given action in a given state
is good. The goal of the agent is to maximize its cumu-
lative rewards. To do so, the agent needs to optimize se-
quences of actions rather than instantaneous ones. Nonethe-
less, DRL needs an order of magnitude more data than IL to
converge due to this extensive, and often time-consuming,
exploration of the environment during the training.

To overcome IL distribution mismatch and RL data in-
efficiency, we propose General Reinforced Imitation (GRI),
a novel method which combines both exploration and prior
knowledge from demonstrations. GRI is based on the sim-
plifying hypothesis that expert data presents a perfect be-
havior and therefore, an expert’s action should receive a
constant, high reward. Straightforward to implement over
any off-policy algorithm, GRI introduces the notion of an
offline demonstration agent. This offline agent sends ex-
pert data associated with a constant demonstration reward
to the replay buffer of an RL online exploration agent. We
note that those expert data are processed by the DRL al-
gorithm concurrently and indistinguishably from the explo-
ration data

The GRI method is applied to visual-based autonomous
driving in an end-to-end pipeline on the CARLA simulator
[6], an open-source simulator for research in autonomous
driving. We call this algorithm GRI for Autonomous Driv-
ing (GRIAD). The whole pipeline is represented in Fig. 1.
On the CARLA Leaderboard, an online benchmark ranking
agents according to the quality of their driving, we achieved
17% better results than World on Rails [2], the prior top
ranking entry. In addition, our method used only three cam-
eras and no LiDAR, which is fewer sensors than the pre-
vious top two entries [2, 19]. At the time of writing (early
November 2021), we are ranked first on the CARLA leader-
board according to the main metric, the driving score. We
also conducted ablation studies to highlight the impact of
GRIAD compared to standard RL training on the CARLA

NoCrash Benchmark [4].

Finally, we conducted experiments on the Mujoco [24]
benchmark to investigate our method adaptability and gen-
eralizability. Tests were conducted on four different Mujoco
environments, with two different DRL algorithm as back-
bones. Our experiments demonstrate that using the GRI
framework systematically leads to better results, even when
the expert data are noisy or not significantly better than the
trained vanilla RL algorithm.

We summarize our main contributions below:

* Definition of the novel GRI method to combine offline
demonstrations and online exploration.

* Presentation and ablation study of GRI for visual-
based Autonomous Driving (GRIAD) algorithm.

* Further analysis of GRI-based algorithms on the Mu-
joco benchmark.

2. Related work

The GRI method aims at leveraging both offline expert
demonstrations and online simulator exploration. Our main
application is end-to-end vision-based autonomous driv-
ing on the CARLA simulator [6]. Therefore, this section
focuses both on end-to-end autonomous driving methods
that achieved milestones on CARLA, and existing decision-
making methods learning from demonstration and explo-
ration.

2.1. End-to-end Autonomous Driving on CARLA

End-to-end autonomous driving, i.e. directly mapping
sensor signals to control is a highly complex task on which
training an agent with DRL is tedious. IL methods were the
first to lead the CARLA Leaderboard. In particular, Learn-
ing by Cheating (LBC) [3] presents an efficient method to
train a behavior cloning agent in two steps: (i) train a priv-
ileged behavior cloning agent which has access to all the
ground truth data, and (ii) train a behavior cloning agent to
mimic the privileged one. An evaluation of several methods
on the NoCrash benchmark, presented in Chen et al. [2],
shows that LBC presents great results on the training con-
ditions but generalizes poorly on unknown environments.

DRL can also be used for end-to-end autonomous driv-
ing. However, vision-based DRL comes with some draw-
backs. Indeed, image inputs are often of high dimensions
thus requiring larger DRL networks which are usually dif-
ficult to train to convergence. Therefore, for vision-based
DRL, one can encode the sensors’ signal in a more com-
pact and semantically rich representation to train the DRL
network on this predefined latent space as in D. Gordon et
al. [10]. This latent space can be obtained by pretraining a
visual encoder on some visual tasks, such as segmentation
or classification.

Based on this principle, Toromanoff et al. [26] intro-
duced the Implicit Affordances (1As) method. They design
and train an efficient DRL agent on CARLA, winning the
CARLA challenge two years in a row (ranked #4 at the time
of writing). To do so, they propose an end-to-end pipeline
composed of two subsystems trained successively. First, a
visual encoder is trained on some auxiliary tasks. Those
tasks are semantic segmentation, classification of the type
of road, detection of traffic lights, and if there is a relevant
traffic light, the state of, and distance to, the light. Then,
the visual encoder is frozen and the DRL-based decision-
making subsystem is trained on the encoder latent space.

Another top ranked (#3) agent on the CARLA Leader-
board is World on Rails [2] which assumes the world to be
on rails, meaning that the agent’s actions affect only its own
state and do not influence its environment. Based on that
hypothesis, they transpose the driving problem into a sim-
ple, yet powerful, tabular RL setup.

Finally, Transfuser+ [19], a more recent top ranked (#2)
agent on the CARLA Leaderboard, applies an IL method
principally focused on LiDAR and camera fusion.

2.2. Learning from demonstration and exploration

The aforementioned IL and RL strengths and weak-
nesses are complementary. Indeed, IL suffers from distri-
bution mismatch contrarily to online RL. Alternatively, as
RL learns from scratch it is less data efficient than IL which
incorporates prior demonstration knowledge during train-
ing.

To take the best of both worlds, some algorithms com-
bine IL and RL to maximize efficacy by leveraging both
expert data and exploration [13, 15,20, 21]. In particular,
demonstrations can be used to initialize policies by pretrain-
ing the network [13,20,28] or leveraged with a specifically
designed reward [13,21].

Soft-Q Imitation Learning (SQIL) [21] and Deep Q-
learning from Demonstrations (DQfD) [13] are the two
closest approaches to ours as both take advantage of demon-
strations in a different way and can be applied to any off-
policy RL algorithms.

SQIL [21] does IL using an RL agent. To do so, the
replay buffer is initially filled with demonstrations, associ-
ated with a constant reward e, = 1. A RL agent collects
data from exploration into the replay buffer, associated with
a constant reward 7¢zp10 = 0. Thus, SQIL designed an RL
agent that learns to imitate expert behavior, and has been
mathematically demonstrated to be equivalent to regular-
ized behavior cloning. However, SQIL does not efficiently
leverage exploration as environment rewards are never used.
Our method combines both the IL part from SQIL and the
classical, rich RL online exploration.

DQIfD [13]is based on DQN [17], an off-policy RL algo-
rithm with a replay buffer. DQfD first pretrains the agent on

expert data with both IL and RL losses using the real reward
given by the environment. After some steps of pretrain-
ing, the agent starts gathering data from the environment in
the memory buffer. The network is then trained on batches
composed of exploration data with a RL loss and expert data
with both IL and RL losses. Nonetheless, DQfD uses si-
multaneously reinforcement and imitation which can have
divergent losses and are difficult to jointly optimize [9].
Our method leverages demonstrations and exploration ex-
clusively with an RL loss, and thus cannot suffer from di-
vergent losses issue. Moreover, DQfD, contrarily to GRI,
relies on the true environment reward for the expert data,
which cannot always be obtained.

3. General Reinforced Imitation (GRI)

Our pipeline for autonomous driving is an end-to-end
system. Its decision-making subsystem uses the GRIAD
algorithm, which is an adaptation of the GRI method to
visual-based autonomous driving (AD) on CARLA. This
section presents the GRI method and details the whole
pipeline.

3.1. Method

GRI is a method which is straightforward to implement
over any off-policy RL algorithm using a replay buffer, such
as SAC [11], DDPG [14], DQN [17] and its successive im-
provements [5, 12]. GRI is built upon the hypothesis that
expert demonstrations can be seen as perfect data whose
underlying policy gets a constant high reward. We denote
this as demonstration reward, 7gemo. In OUr experiments we
chose 7 gemo to be the maximum of the reward.

Algorithm 1: GRI: General Reinforced Imitation

Input: rgemo demonstration reward value, Pgemo
probability to use demonstration agent;

Initialize empty buffer B;

while not converged do

if len(B) > min_buffer then

‘ do a DRL network update;
end
if random.random() > pgemo then
(Stonlme7 g, Tty s?ﬁme)t in

collect episode
buffer B with exploration agent
else

. offline offline, .
add episode (s; y Gty Tdemos S¢p1)t il

buffer B with demonstration agent;

end

end

The idea of GRI is to distill expert knowledge from
demonstrations into an RL agent during the training phase.

To do so, we defined two types of agents: (i) the online ex-

ploration agent, which is the regular RL agent exploring its

environment to gather experiences (s?in€ q, r,. sff{me)

into the memory buffer, and (ii) the offline demonstration
agent which sends expert data associated with a constant

. offline offline
demonstration reward (stﬁl ,at,rdemo,stﬁ) to the

memory buffer. s, is the state, a; the chosen action and
r¢ the reward at time ¢. At any given training step, the next
episode to add to the replay buffer comes from the demon-
stration agent with a probability of pgem., else from the ex-
ploration agent. GRI is summarized in Algorithm 1.

3.2. GRI for Autonomous Driving

We applied GRI on a pipeline inspired by Toromanoff
et al. Implicit Affordances method [26]. As this method is
trained in two phases, hence making it modular, we opti-
mized both the visual and the decision-making subsystems
independently.

Design of the vision subsystem We first train two visual
encoders on segmentation and classifications tasks with dif-
ferent camera perspectives to extract compact semantic fea-
tures.

We found that single camera setup is leading to more
collisions on intersections, as sensors are not able to see
close obstacles while turning. Thus, we mounted three RGB
cameras on the hood of our agent vehicle, at the coordinates
x =25m,z=12mand y € {-0.8,0,0.8}m relatively
to the center of the car. The side cameras are angled at 70°.
All three cameras have a 100° field of view.

Our visual subsystem is composed of two highly special-
ized Efficientnet-b1 [23] models, one for the segmentation
and one for the classification and regression tasks, as shown
in Fig. 2. We concatenate the four outputs (three segmenta-
tions, one for each camera, and one classification from the
front camera only) of both Efficientnet-bl and use it simi-
larly as Implicit Affordances (IAs) for the DRL training.

This architecture allows to keep the same accuracy on
classification and segmentation metrics as if we were using
a single bigger encoder for all the auxiliary tasks like in
Toromanoff et al. [26], while reducing the encoder latent
space dimension by a factor of ~ 5.

The visual part for the CARLA Leaderboard has been
trained on a dataset of 400,000 samples which corresponds
to 44 hours of driving. This dataset has been generated
with the CARLA autopilot on every town with random
trajectories. Each sample of the dataset is composed of
three images from the three cameras and the corresponding
ground truth information, which are segmentation maps
from CARLA, booleans indicating the presence of an
intersection and the presence of a traffic light in front of
the car. And if there is a traffic light, a class corresponding
to its color, and the distance to it in meters. Trajectories

232x352x3

=
004 I
Classification R Classification

B
encoder ! decoder

Center cam
1568

Segmentation f » Segmentation:

=z encoder |3x448" | decoder
<
Left cam 9

Figure 2. Feature extraction from RGB camera images for the vi-
sual subsystem. Two encoder-decoder networks are pretrained on
segmentation, classifications and regression tasks. Classifications
and regression are only performed on the center image while all
three images are segmented. After training, the visual encoders
serve as fixed feature extractors with frozen weights. For the
DRL backbone training, both encoder outputs are concatenated
and sent to the memory buffer as input to DRL. Both encoders are
Efficientnet-b1l. The segmentation decoder is fully convolutional,
and the classification decoder is an MLP with several outputs.

~ Intersection?
- TL state
& dist?

Right cam [§

Seg maps

have been augmented with random cameras translations
and rotations.

Design of the Decision Subsystem The decision sub-
system takes as input four consecutive encodings of the
three camera images and outputs an action. Therefore, a
state contains visual features from the last 300 milliseconds,
as the simulator runs at 10 FPS. An action is defined by the
combination of the desired steering of the wheel, and the
throttle or brake to apply.

Generating data on the CARLA simulator is very compu-
tationally expensive. We used a Rainbow-IQN Ape-X [25],
which is a distributed DRL backbone, to mitigate this issue.

Due to Rainbow-IQN Ape-X being based on DQN [17]
the action state has to be discrete. Therefore, we discretized
the action state in 27 steering values, and 4 throttle or brake
values. The discretized action space contains 27 x 4 = 108
actions.

We called this setup GRI for Autonomous Driving
(GRIAD). We diagram it in Fig. 3.

The demonstration dataset contains 200,000 samples,
which correspond to 22 hours of driving, generated using
the autopilot from CARLA on predefined tracks published
by the CARLA team'. Each sample from the demonstration
dataset consists of three images from the three cameras and
a discrete action obtained by mapping continuous actions of
the expert to our discrete set of RL actions. We did not use
any data augmentation. We note that the autopilot makes
driving errors such as collisions, red light infractions, or the

Ihttps://github.com/carla-simulator/scenario_
runner

https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner

CARLA
+
exploration
agents

CARLA
+
exploration
agents

Memory Rainbow-IQN Ape-X

- buffer
Demonstration
data /

Ny

Demonstration
agents

CARLA
+

exploration
agents

Figure 3. Simplified representation of the distributed GRIAD
setup with a Rainbow-IQN Ape-X backbone. A central computer
receives data in a shared replay buffer from both exploration and
demonstration agents running on other computers. Data are sam-
pled from this replay buffer to make the backpropagation and up-
date the weights of all the agents. Images from the agents are
encoded using the network presented in Fig. 2 before being stored
in the memory buffer.

car getting stuck for hundreds of frames. As a result ~ 10%
of our demonstrations correspond to poor action choices.
However, we decided to use this demonstration dataset as it
is in order to assess the robustness of our method to noisy
demonstrations.

In our experiments on CARLA, GRIAD had a total of
12 agents, including 3 demonstration agents, running in a
distributed setup and sending data to the memory buffer. As
demonstration agents have been constrained to send data at
the same frequency as exploration agents, this is equivalent
to having pgemo = 25%.

The reward function used for the exploration agents is
the same as in Toromanoff et al. [26]. Since this reward has
a range between 0 and 1, we set the demonstration reward
t0 Tdemo = 1.

4. Experimental results

The GRI method was assessed on its primary application
of visual-based autonomous driving on the CARLA Leader-
board and with an ablation study comparing it to vanilla RL.
Further studies of the method have also been conducted on
the Mujoco benchmark to analyze its behavior depending
on the proportion of demonstration agents and highlight its
generalizability to other DRL backbones.

4.1. GRIAD on CARLA

On the CARLA leaderboard. We trained GRIAD for
60M steps (~45M exploration steps + 200,000 expert data
sampled ~15M times). Both visual and decision-making
parts were trained on all available maps with all available
weather. We compare to LBC [3], [As [26], Transfuser+

[19] and World on Rails [2]. Our method outperforms
World on Rails, the previous leading method on the CARLA
leaderboard, by ~ 17% on the main metric, the driving
score, while using fewer sensors. Our method also gives
a higher driving score than Transfuser+ [19], submitted a
month after GRIAD, while using more cameras and a Li-
DAR. CARLA Leaderboard results are presented in Tab. 1.

Cam. | LiDAR DS RC IS
LBC [3] 3 X 109 21.3 0.5
IAs [26] 1 X 2498 4697 0.52
Rails [2] 4 X 31.37 57.65 0.56
Transfuser+ [19] 4 v 3458 69.84 0.56
GRIAD 3 X 36.79 61.85 0.60

Table 1. Comparison of sensors used and CARLA Leaderboard’s
driving metrics: driving score (DS, main metric), route completion
(RC), and infraction score (IS). Results from the public CARLA
Leaderboard website on November 2021. Higher is better for all
metrics. Our method improves the driving score by 17% relative
to the prior state of the art [2] while using fewer sensors than the
two other best. GRIAD was trained on CARLA 0.9.10.

Ablation study on the NoCrash benchmark. We com-
pared GRIAD to regular RL by using the same global ar-
chitecture with and without demonstration agents on the
NoCrash benchmark [4]. In the NoCrash benchmark,
agents need to be trained on a single environment (Town01)
under a specific set of training weather. Then, agents are
evaluated on several scenarios with different traffic density
on the training (Town01) and test (Town02) town with train-
ing and test sets of weather.

For these experiments, GRIAD was trained on 16M sam-
ples corresponding to 12M exploration steps + 25,000 ex-
pert data which have been sampled 4M times in total. We
present an ablation study to show how GRIAD compares
to RL without GRI i.e. without demonstration agents, us-
ing two vanilla RL models: one trained on 12M exploration
steps and the other on 16M exploration steps. Each agent
was trained using the exact same visual encoder trained on
another demonstration dataset of 100,000 samples coming
exclusively from TownOl under training weather. Results
are presented in Tab. 2.

We first observe that GRIAD systematically gives better
results than RL with 12M steps, while taking approximately
the same time to train (+~ 4%). Indeed, as demonstration
agents do not require any interaction with the simulator, we
can add them at a negligible cost and still improve results.

We also observe that while RL with 16M steps does bet-
ter than GRIAD on train weather, GRIAD gives better re-
sults on the test weather while being ~ 25% faster to train.
We believe this is because RL tends to overfit on a given
environment if it explores it too much. Hence, replacing
4M exploration data with 25,000 demonstration data sam-

Task Town | Weather | RL12M RL 16M GRIAD
Empty 98 99 929
Regular | train train 96 100 98
Dense 92 97 92
Empty 83 97 96
Regular | test train 83 97 93
Dense 62 76 72
Empty 66 76 84
Regular | train test 76 82 86
Dense 68 80 82
Empty 60 62 68
Regular | test test 60 58 64
Dense 42 46 48

Table 2. Ablation study of GRIAD using the NoCrash bench-
mark. Score is the percentage of road completed without any
crash. GRIAD experimentally shows to generalize more on test
weather than RL with 12M and 16M steps and globally gives the
best agent. We note that, for computational reason, neither the RL
nor GRIAD was trained until convergence. Hence, comparison to
the state-of-the-art should rather be done on the CARLA Leader-
board with the fully trained GRIAD model, cf Tab. 1.

pled ~ 160 times each appears to reduce the overfitting and
allows a better generalization.

We also trained the same pipeline using the SQIL
method during 20M steps, but the evaluation reward stayed
particularly low during training. First test showed SQIL to
be inefficient for autonomous driving on CARLA as it did
not learn to drive at all, staying static or drifting off the road
most of the time. It reached the score of 0 on every evalu-
ated tasks. We believe that the reward signal as defined by
SQIL is not rich enough to allow the network to converge
on such a highly complex task.

4.2. GRI on the Mujoco benchmark

To further validate the GRI method we conducted ex-
periments on selected Mujoco [24] environments, shown
in Fig. 4. Expert data were generated using chainerrl [8]
pretrained RL agent weights and contain 200,000 samples.
For each environment, the value of r4.,,,, Was chosen as the
highest value chainerrl expert agent reached during the gen-
eration of the dataset. As we did not find real expert data
on Mujoco environments, expert data is not always signif-
icantly better than our trained vanilla RL network. Hence,
this study assesses the efficiency of GRI even with subopti-
mal expert data.

Study on the proportion of demonstration agents. Ex-
periments being faster on Mujoco environments than on
CARLA we were able to investigate the impact of the pro-
portion of demonstration agents. For these experiments we
used a GRI-SAC i.e. a GRI algorithm using SAC [11]
as DRL backbone, and we vary the proportion of demon-

Figure 4. Mujoco environments used for our experiments. Respec-
tively HalfCheetah-v2, Humanoid-v2, Ant-v2, and Walker2d-v2.
Articulations are controlled to make them walk. Rewards depends
on the covered distance.

stration agents between 0% and 40%. Each experiment
has been repeated three times, with different seeds. Fig. 5
presents the results with the variances and the evaluation re-
ward of the expert. Experiments were conducted with pub-
lic code from GitHub” which has been adapted with GRI.

We observe three different dynamics.

¢ For HalfCheetah-v2, a difficult task on which the ex-
pert is significantly stronger than the trained SAC, we
observe that the beginning of the training is slower us-
ing GRI-SAC; we call this a warm up phase which
we will explain further in Sec. 4.3. However the re-
wards turns out to become significantly higher after
some time. On this game, GRI-SAC is better than SAC
with every proportion of demonstration agents. Best
scores were reached with 10% and 20% of demonstra-
tion agents.

* For Humanoid-v2, a difficult task on which the expert
is just a little stronger than the trained SAC, we observe
that the higher the number of demonstration agents is,
the longer the warm up phase is. Nonetheless, GRI-
SAC models end up having higher rewards after their
warm up phase. Best scores are reached with 10% and
20% of demonstration agents.

e Ant-v2 and Walker2d-v2 are the easiest tasks of the
four evaluated. On Ant-v2 the SAC agent reaches the
expert level, converging similarly as GRI-SAC regard-
less of the number of demonstration agents used. Nev-
ertheless, GRI-SAC converges faster with 10% and
20% demonstration agents. On Walker2d-v2 the final
reward of GRI-SAC is significantly higher and reaches
the expert level, while SAC remains below.

More experiments were conducted with the proportion of
demonstration agents varying between 50% and 90%. Re-
sults were significantly worse than using 20% demonstra-
tion agents. We therefore conclude that the proportion of
demonstration agent should not exceed 50%. We discuss
some qualitative insights in the limitation sections.

2Qriginal code from https://github.com/dongminlec94/
deep_rl

https://github.com/dongminlee94/deep_rl
https://github.com/dongminlee94/deep_rl

GRI-SAC on HalfCheetah-v2

17500

[e
o N Wu
o wu o
o o o
o o© o

7500

5000

2500

Average evaluation return

0.00 025 050 075 100 125 1.50
Training steps 1le6

GRI-SAC on Ant-v2

8000

6000

4000

30%
— 20%
— 10%
—— SAC
—— expert

2000

Average evaluation return

—2000
00 02 04 06 08 10 12 14
Training steps 1leb

GRI-SAC on Humanoid-v2

6000

WETA %

T

|

5000

4000
40%
30%
20%
10%
SAC
expert

3000

2000

1000

Average evaluation return

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00

Training steps 1le6

GRI-SAC on Walker2d-v2

5000

4000

3000

2000

1000

Average evaluation return

0.0 0.2 0.4 0.6 0.8 1.0 12
Training steps le6

Figure 5. Evolution of the evaluation reward on Mujoco environments with different proportions of demonstration agents with GRI-SAC.
GRI-SAC with 0% demonstration agent is vanilla SAC. We observe that GRI-SAC always reaches the level of the expert even when the
expert is significantly better than the trained vanilla SAC. The proportion of demonstration agent have a significant impact on the dynamic

of the convergence.

These experiments reveals, at least on the evaluated Mu-
joco environments, that 20% demonstration agents seems to
be the best choice for GRI-SAC to reach the expert level.

4.2.1 GRI with DDPG as DRL backbone

We also investigated the contribution of the DRL backbone
to assess the generalizability of the GRI method. To do so,
we evaluated the same tasks with the Deep Deterministic
Policy Gradient (DDPG) algorithm [14] instead of SAC. For
these experiments, we fixed the proportion of demonstration
agents to 20%. Results are shown in Fig. 6.

We first observe that, alike to GRI-SAC with a propor-
tion of 20% demonstration agents, GRI-DDPG systemati-
cally reaches better results than DDPG on all the tested en-
vironments. However, GRI-DDPG does not systematically
reach the level of the expert. While final rewards are bet-
ter with SAC and GRI-SAC, the dynamics of the rewards
evolution is about the same with both backbones, cf. Fig. 5.
We can conclude that GRI is easily adaptable and general-
izes to locomotion tasks where it robustly outperforms two
alternative methods.

4.3. Limitations

The main limitations of this method are consequences of
our initial hypothesis that demonstration data can always be
associated with a constant maximal reward 7 e;n0-

A first limitation occurs if the demonstration data is not
constantly optimal, e.g. due to low expert performance on
some aspect of a given task, as this introduces noise in
the reward function. This is the case in our demonstration
dataset on the CARLA simulator, as expert data have been
generated using an imperfect autopilot containing ~ 10%
noisy demonstrations. Still, GRIAD showed to improve our
model by a significant margin over vanilla RL. Therefore,
we can consider the GRI setup to present some robustness
to noisy demonstrations.

A second limitation of our approach is the warm-up
phase on some difficult environments, as observed in Fig. 5
on HalfCheetah-v2 and Humanoid-v2. This warm up phase
can be seen as the consequence of a distribution shift. In-
deed, GRI suffers from a sort of distribution shift when the
training expert data mostly represent actions made in states
not reached yet by the exploration agents. In particular, we
observed this effect on HalfCheetah-v2: the expert agent

GRI-DDPG on HalfCheetah-v2

14000 20%

12000

o ”’”’“v“uMN

Average evaluation return

6000
4000
2000
0
0.00 025 050 075 1.00 1.25 150 1.75 2.00
Training steps 1le6
GRI-DDPG on Ant-v2
E 0,
5 — 20%
D 4000 DDPG
—_
e
el
S 2000
@©
= 4 A
© V
s W
()
()
(o)}
O 2000
()
>
I

0.00 025 050 0.75 1.00 125 150 1.75 2.00
Training steps 1leb

GRI-DDPG on Humanoid-v2

2500 — 20%
DDPG
2000

1500

1000 n‘fw‘\

Wy
500
\,\/\/J

0.00 0.25

Average evaluation return

050 075 1.00 125 150 175 2.00
Training steps 1le6

GRI-DDPG on Walker2d-v2

C
5 2500 — 20%
§ DDPG
o 2000
°
© 1500 WM“/
=}
© N !
>
2 1000 A JAA ,41
> 500 Al "‘/\/
© e VA
(0] /\/-'I'
> 0 N
I
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training steps le6

Figure 6. Comparaison of the evaluation reward evolution on Mujoco environments between GRI-DDPG with 20% of demonstration agents
and vanilla DDPG. GRI-DDPG systematically leads to a better reward than vanilla DDPG. However, contrarily to GRI-SAC, GRI-DDPG
with 20% demonstration agents does not systematically reach the expert level.

does not walk but jumps as soon as it touches the ground,
which is a complex yet highly efficient strategy. But to
reach a state where it can successfully jump, it needs some
warm up to gain the required speed and momentum by do-
ing some low reward actions. Hence, our GRI-SAC agents
learns to jump before it is able to walk, making it fall. Once
the agent learned how to reach the jumping state, reward
steadily increase until convergence. However, we observe
that the lower the proportion of demonstration agents is,
the faster the model is able to recover from this distribution
shift. Indeed, collecting more exploration data following
the current agent policy compensates the distribution shift
between demonstration and exploration data.

Finally, a third limitation of our approach is the incon-
sistency of the rewards associated to some common ac-
tions collected by both the demonstration and exploration
agents. Still on the HalfCheetah-v2 example, the demon-
stration agent will reward expert actions at the beginning of
the agent run with the high demonstration reward, while the
exploration agent will receive poor reward for the same ex-
act actions. This induces a sort of discrepancy between data
coming from the offline demonstration agent and experi-
ences coming from the online RL exploration agent. It also

implies an overestimation of demonstration actions. How-
ever, allocating high reward to demonstration data which
are not correlated with the actual reward of the environment
might encourage the agent to get to states closer to the ex-
pert’s ones. Nonetheless, it is difficult to assess the impact
on the training in practice.

5. Conclusion

We present GRI, a method that efficiently leverages both
expert demonstrations and environment exploration. GRI is
straightforward to implement over any off-policy deep re-
inforcement learning algorithm. GRI-based algorithms im-
prove data efficiency compared to vanilla reinforcement al-
gorithms and do not suffer from distribution shift as much
as imitation learning methods. This method also proved to
be robust to noisy demonstrations in the expert dataset. We
applied GRI to visual-based autonomous driving with the
distributed GRIAD algorithm and outperformed the previ-
ous state-of-the-art on the CARLA Leaderboard. Finally,
we showed its generalizability using different DRL back-
bones on several Mujoco continuous control environments
and highlighted its robustness.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning
for self-driving cars. CoRR, abs/1604.07316, 2016. 2

Dian Chen, Vladlen Koltun, and Philipp Kréhenbiihl. Learn-
ing to drive from a world on rails. In ICCV, 2021. 2, 3,
5

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Kréhenbiihl. Learning by cheating. In Conference on Robot
Learning (CoRL), 2019. 2, 5

Felipe Codevilla, Eder Santana, Antonio Lopez, and Adrien
Gaidon. Exploring the Limitations of Behavior Cloning
for Autonomous Driving. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9328-9337,
Seoul, Korea (South), Oct. 2019. IEEE. 2, 5

Will Dabney, Georg Ostrovski, David Silver, and Remi
Munos. Implicit quantile networks for distributional rein-
forcement learning. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1096-1105. PMLR, 10-15
Jul 2018. 3

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1-16, 2017. License: CC-BY. 2
Scott Fujimoto, Herke van Hoof, and David Meger. Ad-
dressing function approximation error in actor-critic meth-
ods. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Re-
search, pages 1587-1596. PMLR, 10-15 Jul 2018. 2
Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and
Takahiro Ishikawa. Chainerrl: A deep reinforcement
learning library. Journal of Machine Learning Research,
22(77):1-14,2021. 6

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine,
and Trevor Darrell. Reinforcement learning from imperfect
demonstrations. CoRR, abs/1802.05313, 2018. 3

Daniel Gordon, Abhishek Kadian, Devi Parikh, Judy
Hoffman, and Dhruv Batra. SplitNet: Sim2Sim and
Task2Task Transfer for Embodied Visual Navigation. In
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 1022-1031, Seoul, Korea (South), Oct.
2019. IEEE. 2

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor, 2018. 3, 6
Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Daniel Horgan, Bilal
Piot, Mohammad Gheshlaghi Azar, and David Silver. Rain-
bow: Combining improvements in deep reinforcement learn-
ing. CoRR, abs/1710.02298, 2017. 3

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot,
Tom Schaul, Bilal Piot, Andrew Sendonaris, Gabriel Dulac-

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, and
Audrunas Gruslys. Learning from demonstrations for real
world reinforcement learning. CoRR, abs/1704.03732, 2017.
3

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. In Yoshua Bengio and Yann LeCun, editors, 4th In-
ternational Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. 3,7

Jesus Bujalance Martin, Raphaél Chekroun, and Fabien
Moutarde. Learning from demonstrations with sacr2: Soft
actor-critic with reward relabeling, 2021. 3

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Maria Florina Balcan and Kil-
ian Q. Weinberger, editors, Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 1928-1937,
New York, New York, USA, 20-22 Jun 2016. PMLR. 2
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir Sadik, loan-
nis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. =~ Human-
level control through deep reinforcement learning. Nature,
518(7540):529-533, Feb. 2015. 2, 3, 4

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew
Bagnell, Pieter Abbeel, and Jan Peters. 2018. 2

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-
modal fusion transformer for end-to-end autonomous driv-
ing. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 2, 3,5

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning
complex dexterous manipulation with deep reinforcement
learning and demonstrations. CoRR, abs/1709.10087, 2017.
3

Siddharth Reddy, Anca D. Dragan, and Sergey Levine.
SQIL: imitation learning via regularized behavioral cloning.
CoRR, abs/1905.11108, 2019. 3

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. CoRR, abs/1707.06347, 2017. 2

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105-6114. PMLR, 09-15 Jun 2019. 4

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026-5033, 2012. 2, 6

[25]

[26]

[27]

(28]

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde.
Is Deep Reinforcement Learning Really Superhuman on
Atari? In Deep Reinforcement Learning Workshop of
39th Conference on Neural Information Processing Systems
(Neurips’2019), Vancouver, Canada, Dec. 2019. 4

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde.
End-to-end model-free reinforcement learning for urban
driving using implicit affordances. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 3,4, 5

Marin Toromanoff, Emilie Wirbel, Frédéric Wilhelm,
Camilo Vejarano, Xavier Perrotton, and Fabien Moutarde.
End to end vehicle lateral control using a single fisheye cam-
era. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3613-3619, 2018.
2

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg,
Li Fei-Fei, and Silvio Savarese. Neural Task Programming:
Learning to Generalize Across Hierarchical Tasks. In 2018
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3795-3802, Brisbane, QLD, May 2018.
IEEE. 3

10

	. Introduction
	. Related work
	. End-to-end Autonomous Driving on CARLA
	. Learning from demonstration and exploration

	. General Reinforced Imitation (GRI)
	. Method
	. GRI for Autonomous Driving

	. Experimental results
	. GRIAD on CARLA
	. GRI on the Mujoco benchmark
	GRI with DDPG as DRL backbone

	. Limitations

	. Conclusion

