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Abstract

In turbulent premixed �ames, not only the isotropy of velocity �uctuations is altered

by the thermal expansion e�ect, the dissipative structure of the turbulent �ow�eld and

the �ow topology are also deeply in�uenced by the �ame. Considering the joint proba-

bility density function (JPDF) of the second and third invariants of the velocity gradient

tensor (VGT) — or its traceless counterpart — is a classical way to educe the topology

of turbulent �ows at these smallest scales. These quantities are analyzed by considering

direct numerical simulation databases of premixed �ame kernel growth in homogeneous

isotropic turbulence (HIT). Two conditions of turbulence–combustion interaction (TCI)

are considered, which correspond to two distinct values of the Bray number. The analysis

of the VGT shows that the propagating premixed �ame and its associated density vari-

ations signi�cantly modify the turbulence structure and �ow topology. To understand

this behavior as the �ow interacts with the �ame front, Lagrangian dynamics of the VGT

and its invariants are studied by considering the conditional mean rate of change vectors.

Special emphasis is thus placed on the Lagrangian evolution equations (LEE) of these in-

variants. To the best of the authors’ knowledge, this is �rst time that such budgets are

scrutinized in premixed combustion conditions. The pressure Hessian contribution to the

VGT invariants transport equations is shown to be one of the leading-order terms in this

evolution, making it critically important to the �ow dynamics and turbulence structure.
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I. SCALAR MIXING AND TURBULENCE-SCALAR INTERACTIONS

Scalar mixing in turbulent �ows and turbulence-scalar interactions (TSI) are longstanding and

challenging �uid dynamics issues that, for many years, have concentrated the research e�orts

of many world-renowned and prominent scientists. Professor E.E. O’Brien is one of them as a

pioneer in the theory of turbulence using statistical approaches. As an example, O’Brien’s early

derivations of one- and two-point PDF transport equations, as well as scalar-gradient probability

density function (PDF) budgets, were seminal contributions to the �eld of turbulence and turbu-

lent reacting �ows1–5. The consideration of such transport equations raises the issues of scalar

mixing and conditional scalar dissipation rate modelling, which have been also investigated us-

ing direct numerical simulations6–8. The in�uence of isothermal or “cold” (i.e., non-exothermic)

chemical reactions was analyzed9 as well as its possible impact on the spectral behaviour of reac-

tive scalar in turbulent �ows10. Finally, the concept of probability density functions was properly

(i.e., rigorously) introduced within the large-eddy simulation framework leading to the �ltered

density function (FDF) transport equation for LES of turbulent reactive �ows11. With all these

developments and seminal �ndings, O’Brien has provided strong and solid bases for the develop-

ment of PDF methods, which o�er a general framework for turbulent combustion modelling12–15.

The scalar gradient (or dissipation rate) and two-point statistics (or structure function) were

thus central to an important part of E.E. O’Brien’s contributions. The possible in�uence of chem-

ical reactions was also analyzed in many of them. However, in addition to the reactions that con-

sume and produce chemical species, another important feature of combustion and �ame is that

turbulence–combustion interactions are made more complex by thermal expansion16,17. Indeed,

the heat released by chemical reactions enforces a two-way coupling between the (turbulent) �ow

and the �ame. Accordingly, the present study is focused on the impact of this thermal expansion

and its consequence on the �uctuating velocity �eld and associated velocity gradient. The cor-

responding velocity gradient does not only drive the turbulence dissipation rate, i.e., the decay

of the turbulent kinetic energy (TKE) as well as the velocity PDF evolution, it is also involved in

the scalar gradient or scalar dissipation rate (SDR) evolution.

Indeed, if we consider a reference scalar ξ (x, t), the �ltered or averaged transport equation

of the corresponding SDR, which is de�ned as

Nξ = D
∂ξ

∂xi

∂ξ

∂xi
, (1)
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with D the scalar di�usivity, can be written as follows:

L
(
ρNξ

)
=

∂

∂ t

(
ρNξ

)
+

∂

∂xi

(
ρuiNξ

)
− ∂

∂xi

(
ρD

∂Nξ

∂xi

)

= TSI−2ρD2 ∂ 2ξ

∂xi∂x j

∂ 2ξ

∂xi∂x j
+OT (2)

where L denotes a conservative transport operator. In the right-hand-side (RHS), TSI refers

to the turbulence-scalar interaction term. The second term in the RHS of Eq. (2) is the SDR

dissipation term, which does involve the curvature of the scalar �eld. Finally, OT represents other

terms associated to scalar production-destruction. Depending on the scalar quantity ξ under

consideration, these terms may be associated to physical processes such as chemical reaction,

vaporization, etc. In the following part of this study, attention will be focused on a scalar quantity

that is used to represent the chemical evolution, i.e., the progress of chemical reactions. The

corresponding variable is generally referred to as a progress variable, hereafter denoted c(x, t).

This quantity can be assumed to be either the temperature T (x, t) or a species mass fraction

Yα(x, t), normalized so that it is zero in the fresh reactants and unity in the burned gases, e.g.,

c ≡ (Yα −Y u
α )/(Y

b
α −Y u

α ) with Y u
α and Y b

α the values of Yα in fresh reactants and fully burned

products, respectively. Its transport equation may be written as

L (ρc) = ρω̇c (3)

with ω̇c its chemical production rate, while the corresponding SDR transport equation is given

by18–26

L
(
ρNc

)
= TSI−2ρD2 ∂ 2c

∂xi∂x j

∂ 2c
∂xi∂x j

+2ρD
∂c
∂x j

∂ω̇c

∂x j
(4)

The TSI term — which appears in its right-hand-side — is de�ned as follows

TSI =−2ρD
∂c
∂xi

∂ui

∂x j

∂c
∂x j

, (5)

an expression that does involve the velocity gradient tensor Ai j = ∂ui/∂x j.

The present study is focused on the analysis of the in�uence of thermal expansion on the dy-

namics of the velocity gradient tensor (VGT) and associated �ow topologies. The study of �ow

topology and dilatation e�ects is a topic of relevance to scalar mixing in turbulent �ows27–30.

However, studying the in�uence of the heat release-induced thermal expansion on turbulent

�ows is a di�cult task that gathered an increasingly important research activity over recent
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years16,17,21,23–27,31–36. It requires the use of sophisticated tools such as post-processing proce-

dures based on geometrical analyses and streamline topology classi�cation 22,23,26,27,37 or �ow

velocity decomposition31,36,38. For instance, the recent studies of Sabelnikov et al.36,38 have

been performed on the basis of the Helmholtz-Hodge decomposition of the velocity �eld u into

solenoidal and potential components while Robin et al.31 introduced a splitting of the velocity

�eld u into two distinct contributions with the �rst component associated to turbulent motion

v and its consequence on the �ame surface and the second component w resulting from the ac-

celeration induced by the local �ame front. The corresponding kinetic energy of the �ow, i.e.,

(uiui)/2, is redistributed and dissipated through pressure and viscous e�ects and, from a general

viewpoint, whatever the strategy it seems di�cult to get rid of the di�culty associated to the non-

local action of the pressure �eld which is itself in�uenced by the thermal expansion. It is also

noteworthy that the rate of dissipation of the kinetic energy ε = τi jAi j/ρ and the components

of the corresponding dissipation rate tensor εi j are non linear functions of the VGT components

and do not depend solely on solenoidal εs
i j and potential ε

p
i j contributions (or turbulent dissipa-

tion rate εvvi j and local �ame dissipation rate εww
i j ). They do involve also mixed or cross terms

the contributions of which are non-negligible31,38. From the above discussion, it is quite clear

that the VGT is a central issue for the study of turbulence and mixing in turbulent premixed

�ames. The VGT can be characterized through its invariants, namely the three coe�cients of its

characteristic polynomial. Lagrangian evolution equations (LEE) are written for these invariants.

Direct numerical simulations databases are used to analyze the various contributions (interaction

between invariants, pressure Hessian, baroclinic e�ect, and viscous processes) and the possible

impact of thermal expansion.

The manuscript is organized as follows: the next section (Section II) settles the fundamen-

tal bases of the analysis and describes the associated mathematical background. It includes the

presentation of the LEE for the three invariants of the VGT. The DNS databases are then brie�y

described in Section III. The post-processed results and their analyses are gathered in Section IV.

Finally, the paper ends with a conclusion section (Section V) where the main outcomes of the

present study are summarized.
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II. CURRENT STATE OF KNOWLEDGE AND THEORETICAL BACKGROUND

The present study is focused on the analysis of the in�uence of thermal expansion on the

dynamics of the velocity gradient tensor (VGT). The VGT can be characteristized through its

invariants, namely the three coe�cients of its characteristic polynomial. In fact the in�uence of

the thermal expansion on the large-scale features of the turbulent velocity �eld has been early

emphasized in the pioneering works of Libby and Bray and their coworkers39,40, leading to re-

�ned closures for turbulent transport in �ames able to reproduce the �ame-generated turbulence

phenomena41–43. The corresponding studies have required signi�cant e�orts devoted to the mod-

elling of pressure terms in the Reynolds stresses and scalar �uxes transport equations42,43, with

some speci�c insights gained into their relationships with the heat release rate. Most of these

studies have been concerned with the description of the large-scale characteristics of the turbu-

lent reactive �ows. Following the recent achievements obtained in the application of large-eddy

simulations to reactive �ows, the analysis of thermal expansion e�ects has been more recently

focused on the study of the smallest scales21,24–26,44.

As emphasized in the previous section, the present study is focused on the analysis of the

velocity gradient tensor A, the component of which are given by

Ai j ≡
∂ui

∂x j
= Si j +Wi j , (6)

with S its symmetric part

Si j ≡
1
2
(
Ai j +A ji

)
=

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (7)

and W its antisymetric part

Wi j ≡
1
2
(
Ai j−A ji

)
=

1
2

(
∂ui

∂x j
−

∂u j

∂xi

)
. (8)

The eigen values of the VGT, i.e., λ1, λ2 and λ3 (in decreasing order λ1 ≥ λ2 ≥ λ3) are the

roots of its characteristic equation

det[A−λI] = 0.0 , (9)

while the invariants P, Q, and R of the VGT are de�ned as the normalized coe�cients of this

characteristic equation

λ
3 +Pλ

2 +Qλ +R = 0 . (10)
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They can be expressed as45

P =−tr[A] =−Akk , (11a)

Q =
1
2
(
P2− tr[AA]

)
=

1
2
(
P2−Ai jA ji

)
, (11b)

R =
1
3
(
−P3 +3PQ− tr[AAA]

)
=

1
3
(
−P3 +3PQ−Ai jA jkAki

)
. (11c)

Their deviatoric counterparts may also be de�ned from the traceless part of the VGT tensor

A∗

A∗i j ≡ Ai j−
θ

3
δi j , (12)

with δi j the Kronecker tensor and θ ≡ tr[A] = Akk =−P the dilatation-rate, i.e., the trace of A.

Similarly, the symmetric and antisymmetric parts of A∗ are denoted as S∗ and W ∗, respectively,

and the invariants of A∗ can be expressed as46

P∗ =−A∗kk ≡ 0 , (13a)

Q∗ =−1
2

A∗i jA
∗
ji , (13b)

R∗ =−1
3

A∗i jA
∗
jkA∗ki . (13c)

From the above set of de�nitions, the Lagrangian evolution equations (LEE) of the VGT in-

variants can be derived30,47. The starting point of such a derivation is the transport equation of

the VGT component, which is given by47–50

Ȧi j ≡
DAi j

Dt
=

∂Ai j

∂ t
+uk

∂Ai j

∂xk
=− ∂

∂x j

(
1
ρ

∂ p
∂xi

)
+

∂

∂x j

(
1
ρ

∂τik

∂xk

)
, (14)

where D/Dt denotes the substantial (or total) derivative, p is the pressure, and τi j = 2µS∗i j is the

viscous stress tensor.

The LEE of the three invariants (P, Q, and R) write as follows:

Ṗ≡ DP
Dt

=
(
P2−2Q

)︸ ︷︷ ︸
IP

+H p
ii︸︷︷︸

IIP

+H b
ii︸︷︷︸

IIIP

+(−Tii)︸ ︷︷ ︸
IVP

, (15a)

Q̇≡ DQ
Dt

=(PQ−3R)︸ ︷︷ ︸
IQ

+(PH p
ii +Ai jH

p
ji )︸ ︷︷ ︸

IIQ

+(PH b
ii +Ai jH

b
ji )︸ ︷︷ ︸

IIIQ

+(−PTii−Ai jT ji)︸ ︷︷ ︸
IVQ

, (15b)

Ṙ≡ DR
Dt

=(PR)︸︷︷︸
IR

+(QH p
ii +PAi jH

p
ji +AikAk jH

p
ji )︸ ︷︷ ︸

IIR

+(QH b
ii +PAi jH

b
ji +AikAk jH

b
ji )︸ ︷︷ ︸

IIIR

+(−QTii−PAi jT ji−Ai jA jkTki)︸ ︷︷ ︸
IVR

, (15c)

6



where the �rst terms (I) of the RHS of these equations are associated to mutual interactions

between the invariants. The second (II) and third terms (III) correspond to pressure Hessian and

baroclinic e�ects49, respectively. Finally, the fourth terms (IV) represent viscous contributions.

The two contributions involved in the pressure terms, i.e., pressure Hessian and baroclinic

terms, are de�ned as follows

Hi j ≡
∂

∂x j

(
1
ρ

∂ p
∂xi

)
=

1
ρ

∂ 2 p
∂xi∂x j

+

(
− 1

ρ2
∂ρ

∂x j

∂ p
∂xi

)
≡H p

i j +H b
i j , (16)

while the viscous term is given by

Ti j ≡
∂

∂x j

(
1
ρ

∂τik

∂xk

)
. (17)

At this level, it must emphasized that similar LEE can be readily derived for the invariants

of the traceless VGT A∗, as it is shown in Appendix A. The traceless VGT is indeed often con-

sidered to analyze non-reactive turbulent �ows featuring compressibility and/or dilatational ef-

fects29,30,46,51. At this level, it must also be emphasized that some similarities are expected be-

tween the present reactive �ows featuring local premixed �ame fronts and other turbulent �ows

featuring sharp density variations, e.g., shock waves, detonations, or two-phase �ows featuring

mass transfer (evaporation). Such a claim is supported by recent analyses of turbulent mixing in

compressible �ows with shock waves29,51, where signi�cant increases of the probability to �nd

non-focal streamline topologies have been put into evidence. Thus, the interest of the present

analysis may exceed the restricted scope of turbulent premixed combustion. From a general

point of view, the investigation of �ow topologies in such variable-density �ows remains rather

limited in comparison with that of incompressible turbulence. In this respect, the joint statistics

of the second and third invariants of the traceless VGT (i.e., Q∗ and R∗) in turbulent premixed

�ames has been only very recently reported by ourselves52. Speci�c thermal expansion e�ects

were put into evidence and one of the objectives of the present study is to proceed with a re�ned

and comprehensive analysis of the corresponding e�ects based on the LEE. To the best of the

authors’ knowledge, this is the �rst time such an analysis of the LEE is conducted in turbulent

premixed �ames. In the next sections, the DNS databases retained to proceed with this analysis

are presented and the various terms present in the RHS of the LEE of both the traceless VGT A∗

and the VGT A are scrutinized.
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III. DNS DATABASES OF FLAME KERNEL GROWTH INWEAKLY TURBULENT

FLOWS

The detailed analysis of LEE (i.e., the dynamics of the VGT invariants) is conducted on the

basis of databases issued from the direct numerical simulation (DNS) of �ame kernel growth in

initially homogeneous isotropic turbulence (HIT). The corresponding set of data has been gen-

erated with the Asphodele solver53. This solver, the main features of which have been already

presented elsewhere53, is based on a dilatable low-Mach number framework. Spatial derivatives

are evaluated on regular meshes by making use of high-order precision centered �nite di�er-

ence (FD) schemes while time integration is carried out with a minimal storage third-order ex-

plicit Runge–Kutta (RK) scheme. The pressure–velocity coupling is handled within a standard

projection-correction framework. We consider lean mixtures of iso-octane C8H18 and air featur-

ing an equivalence ratio value Φ = 0.8. The temperature in the fresh reactants is Tu = 700 K and

the pressure is P0 = 5 bar. The corresponding values of the laminar �ame speed is approximately

S0
L = 70 cm/s. Two distinct direct numerical simulations of �ame kernel development are per-

formed in three-dimensional computational domains of 4.0× 4.0× 4.0 mm3 featuring 256 grid

points in each direction. Periodic boundary conditions are considered along each of these three

directions. The turbulence characteristics for the two cases are di�erent and the values of the

turbulent velocity �uctuation (uRMS), integral length scale (lt ), Kolmogorov length scale (ηK), and

turbulent Reynolds number (Ret = uRMSlt/νu) of the corresponding initial turbulent �ow�elds

are gathered in Table I.

Table I. Characteristics of the initial HIT for both simulation cases

Simulation uRMS (m/s) lt (mm) ηK (µm) Ret

F1 0.5 0.6 57 23

F2 1.0 0.4 30 31

The two conditions are denoted F1 and F2, and the RMS of velocity �uctuations is approxi-

mately two times larger in the second case. Based on the unity �ame Reynolds number assump-

tion (i.e., Re f = S0
Lδ 0

L/νu = 1, with νu the molecular viscosity in the fresh mixture), the values of

the Damköhler and Karlovitz numbers can be evaluated. These values may be used to delineate
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Table II. Turbulence-combustion interaction characteristics for both simulated cases

Simulation lt/δ 0
L (-) uRMS/S0

L (-) Da (-) Ka (-) NB (-)

F1 32.8 0.71 44.9 0.11 1.65

F2 21.9 1.43 14.9 0.37 0.83

the combustion regimes in a standard combustion diagram54–56. Note that the value of the ratio

τS0
L/(2uRMS), hereafter referred to as the Bray number NB

25,31,57 is also reported in Table II. The

condition F1 corresponds to a quasi-laminar �ame that lies in the wrinkled �ame regime. The

values of NB reported in Table 1 con�rm that it is dominated by thermal expansion e�ects. The

computed values of the Damköhler number Da = (lt/uRMS)× (S0
L/δ 0

L ) are signi�cantly larger

than unity in both cases; Da is approximately forty-�ve for �ame F1 and �fteen for �ame F2. The

turbulent premixed �ame F2 lies within the corrugated �amelets regime. However, the value of

the Karlovitz number Ka in this case is approximately four times larger than its counterpart in

case F1, see Table II. The two cases F1 and F2 can be relevant to small-scale Laboratory �ames

such as those studied for micro gas turbine applications58,59.

(a) t∗ = 2.0 (b) t∗ = 3.0

Figure 1. Instantaneous snapshots of the turbulent �ame kernels F2 at times t∗ = 2.0 (a) and t∗ = 3.0 (b):

iso-contour c = 0.01 colored by the second invariant Q.

The DNS databases correspond to freely-evolving turbulence, no arti�cial forcing has been

considered. The values reported in Table I apply to initial values of the turbulent velocity �elds
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(a) Case F1 (b) Case F2

Figure 2. Field (in colors) of the averaged progress variable c at t∗ = 3.0 together with three instantaneous

progress variable iso-lines issued from a cut-plane of the computational domain (solid line: c = 0.01,

dot-dashed line: c = 0.50, dashed line: c = 0.95). Case F1 on the left (a) and case F2 on the right (b).

that are initialized at time t = 0.0 with a Passot–Pouquet spectrum60 and the details of this initial-

ization procedure can be found elsewhere52. Instantaneous snapshots of the three-dimensional

turbulent �ame kernels are displayed in Fig. 1. The displayed �ame contour corresponds to an

iso-value of the progress variable c, which is de�ned according to

c≡
YC8H18

−Y u
C8H18

Y b
C8H18

−Y u
C8H18

, (18)

with YC8H18
the mass fraction of iso-octane, Y u

C8H18
and Y b

C8H18
the mass fraction values of iso-

octane in the fresh reactants and fully burnt products, respectively. The corresponding iso-

contour value is c = 0.01. It is colored by the value of the second invariant Q of the VGT and it

is plotted for two distinct values of the non-dimensional time t∗ = t/τ f , i.e., the physical time t

normalized by the �ame transit time τ f = δ 0
L/S0

L. The corresponding set of �gures clearly con-

�rms that the turbulent �ame F2 displays signi�cant levels of curvature and wrinkling. In the

following, unless otherwise stated, the results that are presented have been obtained at t∗ = 3.0.

The �ame-turbulence interaction is further illustrated in Fig. 2 that displays three instantaneous

iso-values of the progress variable c superimposed on the mean progress variable �eld c. These

mean values are obtained by averaging the progress variable �eld at time t on a spherical shell

around the radius r≡ |x−xc|, where xc denotes the center of the computational domain. Thus,
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averaged �elds of the progress variable c are obtained based on a radial symmetry assumption,

which is also often retained to analyze experimental databases61. In this �gure, the depicted

iso-lines of the progress variable correspond to c = 0.01, c = 0.95, and c = 0.50. The �rst two

are used to delineate the �ame boundaries, while the last one corresponds approximately the

maximum derivative of the heat release rate (HRR) with respect to the progress variable, as de-

termined from the laminar premixed �ame of reference. These isolines have been extracted from

the computational data in the medium horizontal plane (x,y), i.e., at z = 0. From this �gure,

it is noteworthy that the spacing (i.e., the distance) between two consecutive iso-levels of c is

larger in case F2 than in case F1. The consideration of instantaneous progress variable iso-lines

undoubtedly con�rms that, for �ame F2, there is indeed non-negligible local thickening of the

preheat zone20,62.

Figure 3. Local streamline topology classi�cation in the second and third VGT invariants sub-space.
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IV. ANALYSIS OF THE LAGRANGIAN EVOLUTION EQUATIONS (LEE) OF THE VGT

INVARIANTS

The main objective of the present study is to analyze the heat-release-induced thermal ex-

pansion e�ects on the VGT. Accordingly, attention is focused on case F1, which is associated to

the largest value of the Bray number. Similar (but less important) e�ects are observed with the

data gathered in case F2. For the sake of conciseness and in order to avoid many repetitions, the

study of the �ame F2 has been therefore summarized in Appendix C.

In a �rst step of the analysis, the invariants of the traceless VGT are analyzed. Four distinct

regions can be delineated in the map of the third and second invariants (R∗,Q∗) by consider-

ing the iso-line R∗ = 0.0 and the two curves originating from the origin (R∗ = 0.0,Q∗ = 0.0),

curves that gather solutions to ∆∗ ≡ (27/4)R∗2 +Q∗3 = 0.0, i.e., zero values of the discriminant

of the characteristic polynomial of A∗. According to the terminology of Perry and Chong63,64,

the four regions mentioned above correspond to unstable-focus compressing (UF/C), stable-focus

stretching (SF/S), stable-node saddle-saddle (SN/S/S), and unstable-node saddle-saddle (UN/S/S)

from the top right-hand corner to the bottom right-hand corner (counter-clockwise). These vari-

ous regions are depicted in Fig. 3. The topologies above the zero-discriminant lines, i.e., UF/C and

SF/S, are spiraling in nature and are often referred to as focal topologies whereas the topologies

below these lines, i.e. SN/S/S and UN/S/S, do not spiral about a focus and are therefore termed

as non-focal topologies. These four regions will be hereafter denoted by quadrants Q1, Q2, Q3,

and Q4, respectively.

In this respect, it has been early shown that, in standard incompressible turbulence, e.g., ho-

mogeneous isotropic turbulence (HIT), there is an increased probability of points where R > 0

and Q < 0 along the so-called Vieillefosse tail65. The joint PDF of (R∗,Q∗) has a tear-drop shape

with high probability levels associated to the SF/S topology. This is in contrast with the be-

haviour observed for the invariants of the traceless VGT across a laminar premixed �ame. In-

deed, it can be shown (see Appendix B) that, in one-dimensional laminar premixed �ame struc-

tures, the invariants pairs (R∗,Q∗) evolve along the left branch of the zero discriminant curve

∆∗ = 27/4R∗2 +Q∗3 = 0.0. This is a direct outcome of the �ow acceleration that is induced by

thermal expansion. Thus, provided that the local velocity gradient remains dominated by the

local acceleration that takes place across �amelets25 (i.e., for su�ciently large values of the Bray

number), it is expected that, in turbulent premixed �ames, the SN/S/S topology (quadrant Q3)
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(a) Median cut-planes along x-, y-, and z-direction

(b) Mollweide projection of the sphere associated to the iso-surface c = 0.01

(c) Mollweide projection of the sphere associated to the iso-surface c = 0.50

Figure 4. Illustration of the �ow topology in median cut-planes along x-, y-, and z-direction (a), on the

surface associated to the iso-contour c = 0.01 of the mean progress variable (b), and on the surface as-

sociated to the iso-contour c = 0.50 of the mean progress variable (c) for simulation F1. Solid white line:

iso-contour c = 0.01, dot-dashed line: c = 0.50, dashed line: c = 0.95.
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displays increased probability levels in the �ame region.

Figures 4 and 5 display an illustration of the �ow topology obtained in median cut-planes along

x-, y-, and z-directions, for simulations F1 and F2, respectively. However, with the objective of

analyzing thermal expansion and associated density variation e�ects — e�ects which are taking

place within the thickness the turbulent �ame brush (where the mean progress variable is larger

than zero and smaller than unity) — it is quite standard to display variations on surfaces associ-

ated to iso-values of the mean progress variable c. Therefore, the �ow topology is also displayed

on sphere surfaces associated to iso-contours c = 0.01 (i.e., at the leading edge of the turbulent

premixed �ame) and c = 0.50. At this level, it seems worth precising that the corresponding re-

sults, collected on the spherical surfaces, have been displayed by using the Mollweide projection

method. The Mollweide projection is an equal-area pseudo-cylindrical projection procedure that

has been often used to produce maps of the earth surface. It trades accuracy of angle and shape

for accuracy of proportions in area. It is therefore suited to illustrate global distributions such as

those reported in Figs. 4 and 5. The projection transforms latitude and longitude coordinates, i.e.,

(φ ,λ ), into two-dimensional cartesian coordinates x = (2
√

2/π)λ cosθ and y =
√

2sinθ , where

θ is an auxiliary angle de�ned by 2θ + sin2θ = π sinφ . Figure 4 shows that, in the �ame region,

the probability of SF/S (quadrant Q2, green color) is decreased compared to its level in the fresh

reactants region. This �gure also con�rms undoubtedly that the probability of SN/S/S (quadrant

Q3, yellow color) is increased in the �ame region. Similar changes are observed in Fig. 5 but they

are less marked, a behaviour that is fully consistent with the value of the Bray number NB, which

is approximately two times smaller for case F2 compared to case F1, see Table II.

The conclusions of the above discussion are more quantitatively assessed in Fig. 6, which dis-

plays the joint PDF of (R∗,Q∗) obtained in the fresh reactants (left column), in the �ame region

(middle column), and in the burned products (right column), for case F1 (top) and case F2 (bot-

tom). These values of the invariants are normalized with the squared vorticity averaged over the

whole computational domain, hereafter denoted by 〈ω2〉. In the fresh reactants (left column of

Fig. 6), standard teardrop shapes are recovered for the joint PDFs in both conditions (case F1 and

case F2). They are associated to signi�cant probability levels of SF/S (quadrant Q2) and UN/S/S

(quadrant Q4) topologies. Obtaining, in the fresh reactants, such joint PDF statistics similar to

those observed in constant density �ows66 is fully consistent with the results previously docu-

mented by Cifuentes et al.27 and Wacks et al.37. This is however in contrast with the behaviour

observed inside the �ame brush (middle column of Fig. 6), where there is a signi�cant increase

14



(a) Median cut-planes along x-, y-, and z-direction

(b) Mollweide projection of the sphere associated to the iso-surface c = 0.01

(c) Mollweide projection of the sphere associated to the iso-surface c = 0.50

Figure 5. Illustration of the �ow topology in median cut-planes along x-, y-, and z-direction (a), on the

surface associated to the iso-contour c = 0.01 of the mean progress variable (b), and on the surface as-

sociated to the iso-contour c = 0.50 of the mean progress variable (c) for simulation F2. Solid white line:

iso-contour c = 0.01, dot-dashed line: c = 0.50, dashed line: c = 0.95.
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(a) Case F1

(b) Case F2

Figure 6. Iso-contours of the joint PDF of the third and second invariants (R∗,Q∗) of the traceless VGT in

case F1 (a) and case F2 (b). Left column: fresh reactants (c < 0.01), middle: �ame region (0.01 < c < 0.95),

right: burnt gases (c > 0.95). The three thin lines are the iso-contours of log10(JPDF) equals to -2.0, -1.0,

and 0.0.
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(a) Case F1

(b) Case F2

Figure 7. Conditional mean vectors in the (R∗,Q∗) invariants plane for case F1 (a) and case F2 (b). Left

column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.

in the probability associated to SN/S/S topologies especially in the vicinity of the left branch of

the zero discriminant iso-line (∆∗ = 0.0). This tendency is quite pronounced in case F1 whereas

it remains almost negligible in case F2. In the burnt gases (right column of Fig. 6), the ranges

of variations of both quantities R∗ and Q∗ are signi�cantly decreased by viscous e�ects. It is,
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however, noteworthy that the joint PDFs tend to relax towards standard tear-drop shapes similar

to those already observed in the fresh reactants, although the SF/S topology seems to be quite

less relevant in the burnt gases.

The Lagrangian evolution of the turbulence and �ow topology are examined in further detail

by considering the conditional mean rates of change of R∗ and Q∗ in the invariants plane67. The

corresponding rates of change are used to form a vector at each point in this plane. The resulting

trajectories are followed to get some new insights into the role of thermal expansion on turbu-

lence modulation. The normalized conditional mean vectors
(
(DR∗/Dt)/〈ω2〉3/2,(DQ∗/Dt)/〈ω2〉

)
are displayed in Fig. 7 for various regions of the turbulent reacting �ows. The vectors obtained in

the fresh reactants are rather similar to those previously documented for homogeneous isotropic

turbulence (HIT) or other incompressible/compressible canonical turbulent �ows47,67. Indeed, in

such canonical turbulent �ows, the conditional mean vectors (CMVs) exhibit a circulating behav-

ior in the (R,Q) plane around the origin and in the clockwise direction, indicating that the �ow

evolves from SF/S to UF/C, UN/S/S, SN/S/S and then back to SF/S on average. Such a circulating

behavior is relevant to the Lagrangian dynamics in fully developed turbulence that maintains

the tear-drop shape of the joint statistical distribution of (R,Q). However, although the main part

of the CMV �eld seems to contribute to maintain the tear-drop shape of the joint PDF of the

third and second invariants, it exhibits also a non-negligible contribution that drives this joint

PDF from the origin point towards the left branch of the line ∆∗ = 0.0. This behaviour is quite

remarkable for case F1, which is associated to the largest value of the Bray number. Moreover, as

shown in the middle column of Fig. 7, this phenomenon is more signi�cant in the pre-heat zone

(0.01 < c < 0.50) where the most important part of the (DR∗/Dt,DQ∗/Dt) vector is oriented

towards the left branch of the zero-discriminant line. This is in contrast to the statistics gathered

in the region where chemistry is more active (0.50 < c < 0.95), which is displayed in the right

column of Fig. 7: in this region, the joint PDF (R∗,Q∗) is relaxed towards the origin, leading to a

much smaller tear-drop shape, as previously shown in Fig. 6.

The various contributions that appears in the RHS of the LEE of the second and third invari-

ants of the traceless VGT, see Eqs. (A3), are now analyzed in details for case F1. The interactions

between invariants, i.e., (IR∗ , IQ∗), are plotted in Fig. 8(a). On the fresh gas side (left column), the

e�ects of this term is quite similar to the whole contribution (DR∗/Dt,DQ∗/Dt). In the preheat

zone, this term seems to drive the PDF towards the origin point. Finally, the right column of

Fig. 8(a) shows that this term tends to drag back the joint PDF towards the Vieillefosse’s tail in
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(a) (IQ∗ , IR∗)

(b) (IIQ∗ + IIIQ∗ , IIR∗ + IIIR∗)

(c) (IVQ∗ , IVR∗)

Figure 8. Contributions I (a), II+III (b), and IV (c) to the CMV as given by the LEE for Q∗ and R∗ (case F1).

Left column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.
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the combustion zone. This is the main contribution that leads the tear-drop shape of the joint

PDF to be recovered in the burned gases. From Fig. 8(b), it is clear that the high probability

of �nding (R∗,Q∗) on the left branch of the zero-discriminant line (i.e., ∆∗ = 0.0) is mainly an

outcome of the pressure terms, (IIR∗ , IIQ∗) and (IIIR∗, IIIQ∗). In this low-Mach number reactive

�ow, the corresponding pressure e�ects are felt on the fresh reactants side and the left column of

Fig. 8(b) puts into evidence the probability �ux that drives the PDF from the Vieillefosse’s tail, i.e.,

the right branch of the zero-discriminant line, towards its left counterpart. The probability �ux

along the left branch of the zero-discriminant line is signi�cantly enhanced in the preheat zone,

as it can be seen in the middle column of Fig. 8(b). However, the overall e�ect of the pressure

terms becomes more distributed in the reacting zone (right column of Fig. 8(b)): it drives the PDF

towards negative values of the second invariant Q∗ (i.e., strain-dominated �ow). In the reacting

zone, the increase in temperature makes the viscous contribution (IVR∗, IVQ∗) signi�cant (the

value of the molecular viscosity is increased) and, as expected, the corresponding term tends to

counteract the e�ects of the other terms so as to decrease the velocity gradient and drives the

joint PDF towards the origin, see the right column of Fig. 8(c). This is however in sharp contrast

with the behaviour of this term on the fresh reactants side (left column of Fig. 8(c)) and in the

preheat zone (middle column of Fig. 8(c)). Indeed, in the fresh reactants region, this term induces

a probability �ux toward the left branch of the zero-discriminant line, which is rather similar to

the one resulting from the pressure e�ects. In this region, the viscous contribution also gener-

ates a signi�cant probability �ux from the SF/S topology towards the origin. In the preheat zone

(middle column of Fig. 8(c)), the probability �uxes that are induced by the viscous contribution

(IVR∗ , IVQ∗) tend to maintain a high probability level for the SN/S/S topology in the vicinity of

the left branch of the zero-discriminant line.

There exist some di�erences between the two contributions of the pressure �elds namely the

one of the pressure Hessian term (IIR∗ , IIQ∗) and the one of the baroclinic term (IIIR∗, IIIQ∗). These

di�erences are negligible in the reaction zone (right column of Fig. 9) but quite remarkable in the

preheat zone (middle column of Fig. 9). Indeed, in the corresponding region, the probability �ux

generated by the baroclinic terms (IIIR∗ , IIIQ∗) seems to feature a direction that is opposite to the

one associated to the pressure Hessian term (IIR∗, IIQ∗). In fact, in the preheat region, the density

variations are non-negligible, and the in�uence of the correlations between density, pressure and

velocity gradients may di�er between the two contributions. However, as it is con�rmed by con-

sidering the sum of both (IIR∗, IIQ∗) and (IIIR∗, IIIQ∗), baroclinic e�ects remains rather moderate
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(a) (IIQ∗ , IIR∗)

(b) (IIIQ∗ , IIIR∗)

Figure 9. Contributions of the pressure Hessian term II (a) and baroclinic term III (b) to the CMV in the

(R∗,Q∗) plane (case F1). Left column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right

column: 0.50 < c < 0.95.

compared to the in�uence of the pressure Hessian terms in this weekly turbulent �ame con�gu-

ration. This corroborates some theoretical analyses, which previously emphasized the important

role of the pressure Hessian and its in�uence on the topology of both scalar and velocity �elds
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(a) Case F1

(b) Case F2

Figure 10. Iso-contours of the joint PDF of the third and second invariants (R,Q) of the VGT in (a) case

F1 and (b) case F2. Left column: fresh reactants (c < 0.01), middle: �ame region (0.01 < c < 0.95), right:

burnt gases (c > 0.95). The three thin lines are the iso-contours of log10(JPDF) equals to -2.0, -1.0, and 0.0.

in turbulent �ows featuring density variations49 and exothermal chemical reactions68. Finally, it

is noteworthy that, on the fresh reactants side (left column of Fig. 9), the action of the baroclinic

term is restricted to the vicinity of the left branch of the line ∆∗ = 0.0.

22



The results issued from the budget analysis reported above, which has been performed for

the various terms present in the transport of Q∗ and R∗ seems to be quite consistent. Indeed,

for expanding turbulent �ame kernels such as those considered herein, the �ow topology in the

fresh reactants is slightly altered by pressure terms through the development of the kernel of

combustion products. The preheat zone is signi�cantly in�uenced by the expanding �ame front,

while the high levels of viscosity in the hot burning gases enhance the dissipation of velocity

�uctuations and associated velocity gradients, which �nally leads to the recovery of a HIT-like

behavior within the kernel of hot burned products.

Figure 11. PDF of the various terms present in the LEE for the �rst invariant P of the VGT (case F1). Left

column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.

The evolution of the �ow topology in these turbulent premixed reactive �ows is further as-

sessed through the consideration of the second and third invariants of the VGT A, i.e., Q and

R, which are now brie�y analyzed. The joint PDF of the corresponding invariants is displayed

in Fig. 10. It seems worth reminding that the �rst invariant P of the VGT di�ers from zero and,

in a �rst step of this analysis, its evolution is examined by considering the PDF of the various

contributions that appear in its LEE, see Fig. 11. In the left column, it can be seen that the fresh

reactants, which are slightly pushed by the expanding kernel, display a small positive value of

the �rst invariant P. However, in the preheat zone, the �ow is more signi�cantly altered by the

expanding �ame kernel through the pressure Hessian term IIP, leading to a large negative value

of DP/Dt (the dilatation rate is increasing, i.e., Dθ/Dt is positive). In the reaction zone, positive

values of the same contribution IIP tends to favor a return-to-zero of the �rst invariant P, which

leads to recover the behavior of an almost incompressible HIT in the burnt products.
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The CMV associated to the invariants Q and R of the VGT A are displayed in Fig. 12. In the

unburnt reactants, the vector �eld is similar to the one relevant to standard HIT: the interaction

between the invariants, i.e., contribution (IR, IQ), drags the joint PDF up in the left half of the

(R,Q) plane and down in its right half associated to positive values of R. The pressure terms, i.e.,

(a) Case F1

(b) Case F2

Figure 12. Conditional mean vectors in the (R,Q) invariants plane for case F1 (a) and case F2 (b). Left

column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.
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(a) (IQ, IR)

(b) (IIQ + IIIQ, IIR + IIIR)

(c) (IVQ, IVR)

Figure 13. Contributions I (a), II+III (b), and IV (c) to the CMV as given by the LEE for Q and R (case F1).

Left column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.
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(a) (IIQ, IIR)

(b) (IIIQ, IIIR)

Figure 14. Contributions of the pressure Hessian term (a) and baroclinic term (b) to the CMV in the (R,Q)

plane (case F1). Left column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column:

0.50 < c < 0.95.

(IIR, IIQ) and (IIIR, IIIQ), tend to expand the joint PDF, while the viscous term (IVR, IVQ) tends to

bring it back to the origin point. The overall e�ect that results from all these contributions leads

to a clockwise circulation (DR/Dt,DQ/Dt) that maintains the tear-drop shape, as shown in the
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left column of Fig. 12(a). However, in the vicinity of the �ame, the observed behaviour is quite

di�erent, especially for the interaction term between invariants (IR, IQ). Indeed, in these regions,

i.e., in the preheat and reaction regions associated to 0.01 < c < 0.95, the vector (IR, IQ) is no

longer straightening the joint probability �eld up and down but instead it is pointing towards the

origin point, as shown in Fig. 13. This is in contrast to the pressure terms, which tend to expand

the joint PDF in both the preheat and the reacting regions, with a more signi�cant contribution

in the reacting region, as shown in Fig. 13(b). At the same time, the viscous term brings the

joint probability towards the origin point, as it does on the fresh reactants side, see Fig. 13(c). In

regard to the pressure terms, Fig. 14 shows that, in the preheat zone, the pressure Hessian term

has a di�erent sign compared to the baroclinic term, a behaviour similar to the one previously

observed for the invariants Q∗ and R∗ of the traceless VGT.

To conclude, it should be emphasized that the same analysis has been conducted on �ame

F2. The obtained results are rather similar to those detailed above for �ame F1. However, the

turbulence dynamics tends to counteract — at least partly — the thermal expansion e�ects that

are induced by the chemical reactions and resulting heat release. The corresponding results are

not reported in this section just for the sake of conciseness and are instead brie�y summarized

in Appendix C.

V. CONCLUSIONS

Flow topology in weakly turbulent premixed �ames is studied on the basis of velocity gra-

dient tensor (VGT) invariants. Whatever the frameworks (geometrical and vectorial, streamline

topology classi�cation, spectral, structure function, etc.) retained to proceed with analyses di-

rected towards a better understanding of turbulence, the velocity gradient plays a crucial role in

one way or another. Thus, the velocity gradient is also central to turbulent combustion: the heat

released by the �ame leads to �ow acceleration (this is a velocity gradient) and the velocity gradi-

ent associated to turbulent motion leads to strain and curvature of the �ame front (variations of

the �ame surface area). The joint statistics of the VGT invariants in turbulent �ames is analyzed

using two DNS databases of �ame kernel growth in initially homogeneous isotropic turbulence

(HIT). The corresponding datasets correspond to turbulent �ames that lie in the �amelet regime

of turbulent combustion and are characterized by two distinct values of the Bray number. The

imprints of the thermal expansion resulting from combustion exothermicity is put into evidence
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on the joint statistics of the second and third invariants (i.e., Q∗ and R∗) of the traceless VGT.

The �ow acceleration that takes place across local �amelets leads clearly to a signi�cant increase

in probability along the left branch of the zero discriminant curve (∆∗ = 27/4R∗2 +Q∗3 = 0.0),

especially for the case featuring the largest value of the Bray number (i.e., �ame F1). The analy-

sis of the present set of turbulent premixed �ames databases shows that non-focal topologies are

favoured compared to more standard conditions relevant to non-reactive incompressible turbu-

lence. However, the origins of this speci�c behaviour remains unknown. Therefore, analyzing

the rate of change of the VGT characteristics appears as a relevant way to get a better under-

standing of the behavior observed in turbulent �ames. The origin of the corresponding proba-

bility �uxes is analyzed in details by considering the Lagrangian evolution equations (LEE) of

the VGT invariants. Each term appearing in the RHS of the corresponding set of LEE is scruti-

nized and the corresponding e�ects are pictured as normalized conditional mean vectors in the

(R∗,Q∗) coordinates. The obtained results show that the pressure Hessian contribution is mostly

responsible for the observed behavior, a conclusion that corroborates recent theoretical analyses

which emphasized the important role of this contribution and its in�uence on the topology of

both scalar and velocity �elds in turbulent reactive �ows. In this respect, a recent study52 devoted

to the evolution of the reactive scalar gradient orientation in the strain-rate tensor eigenframe

clearly puts into evidence a signi�cant rotation of the strain-rate tensor principal axes that can

exceed ninety degrees as it evolves towards the premixed �ame front. The consideration of the

reactive scalar gradient orientation vector showed that the corresponding rotation mechanism

does involve pressure variations through the pressure Hessian, which was therefore thought to

be responsible for the observed behavior. The present set of computational results brings addi-

tional support to this conclusion. It also emphasizes the in�uence of non-local or indirect thermal

expansion e�ects31, which cannot be represented by local �amelet crossing only and must take

into account the �ame wrinkling e�ects. Finally, the present work devoted to the �rst analysis

of LEE for the VGT invariants in turbulent premixed �ames certainly does not give de�nitive an-

swers to all questions regarding the evolution of the corresponding joint-statistics but, at least,

the corresponding set of original results leads to new insights and it provides a solid basis for

further analyses.
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Appendix A: LEE for the invariants of the traceless part of the VGT tensor

From Eqs. (15a)-(15c), it is possible to deduce the transport equations for the invariants of the

deviatoric, i.e., traceless, VGT A∗. Indeed, as the tensor A∗A∗ and A∗A∗A∗ can be written as

follows:

(A∗A∗)i j = A∗ikA∗k j = (Aik +
δik

3
P)(Ak j +

δk j

3
P)

= (AA)i j +
2P
3
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the invariants of A∗ can be expressed using P, Q, and R,
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Applying the chain-rule of di�erential operations to the above equations leads to the transport

equations for P∗, Q∗, and R∗ that can be written as

DP∗

Dt
= 0 (A3a)

DQ∗

Dt
=

DQ
Dt
− 2P

3
DP
Dt

= IQ∗+ IIQ∗+ IIIQ∗+ IVQ∗ (A3b)

DR∗

Dt
=

DR
Dt
− 1

3
(P

DQ
Dt

+Q
DP
Dt

)+
2P2

9
DP
Dt

= IR∗+ IIR∗+ IIIR∗+ IVR∗ (A3c)

where the various terms present in the RHS are given by

IQ∗ = IQ−
2P
3

IP =−2
3

P3 +
7
3

PQ−3R (A4a)

IIQ∗ =
1
3

PH p
ii +Ai jH

p
ji (A4b)

IIIQ∗ =
1
3

PH b
ii +Ai jH

b
ji (A4c)

IVQ∗ =−
1
3

PTii−Ai jT ji (A4d)

and

IR∗ = IR−
1
3
(PIQ +QIP)+

2P2

9
IP =

2
9

P4− 10
9

P2Q+
2
3

Q2 +2PR (A5a)

IIR∗ =
6Q−P2

9
H p

ii +
2P
3

Ai jH
p

ji +AikAk jH
p

ki (A5b)

IIIR∗ =
6Q−P2

9
H b

ii +
2P
3

Ai jH
b
ji +AikAk jH

b
ki (A5c)

IVR∗ =−
6Q−P2

9
Tii−

2P
3

Ai jT ji−AikAk jTki (A5d)

Appendix B: Second and third invariants of the traceless VGT in one-dimensional

laminar premixed �ames

Let us consider a steady one-dimensional planar unstrained laminar premixed �ame that —

just for the sake of simpli�city — is assumed to propagate along the x1-direction. In this case, the

velocity gradient tensor can be written as follows:
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A=


E f 0 0

0 0 0

0 0 0

 (B1)

where E f is a positive-de�ned parameter, which is related to the thermal expansion. Assuming

a linear approximation of the laminar �ame pro�le, it is E f = τS0
L/δ 0

L .

The traceless tensor A∗ can be readily deduced from the above expression of A

A∗ =


ξ1 0 0

0 ξ2 0

0 0 ξ3

=


2E f /3 0 0

0 −E f /3 0

0 0 −E f /3

 (B2)

where ξi with i = 1, ...,3 denotes the three eigenvalues of A∗. Since the tensor is traceless, it is

easy to show that its invariants are given by the following expressions: P∗ =−(ξ1 +ξ2 +ξ3) =

0.0, Q∗ = ξ1ξ2 + ξ2ξ3 + ξ1ξ3 = −E2
f /3, and R∗ = −ξ1ξ2ξ3 = −2E3

f /27. It is remarkable that

these values correspond to zero values of the discriminant ∆∗ of the characteristic polynomial of

A∗ since they verify 4Q∗3−27R∗2 = 0.0. Therefore, in the the map of the invariants (R∗,Q∗), the

corresponding solutions are located on the curve ∆∗ = 0.0. Moreover, since R∗ =−2E3
f /27 < 0,

the couples (R∗,Q∗) associated to the reference laminar premixed �ame are located on the left

branch of ∆∗ = 0.0.

Appendix C: LEE for the invariants of the VGT in case F2

The invariants of the VGT A as well as those of its traceless counterparts A∗ have been also

scrutinized for case F2. The obtained results are rather similar to those obtained for case F1.

There are, however, some di�erences which con�rm that, as expected, the impact of the thermal

expansion is less signi�cant compared to case F1. In this respect, Fig. 7(b) shows that the JPDF

is not that biased towards the left branch of ∆∗ = 0.0 in the �ame zone compared to the JPDF

obtained for the �ame F1. Accordingly, the analysis of the various terms that appear in the LEE of

Q∗ and R∗ con�rms that the terms which lead to the corresponding probability �uxes are much

smaller in case F2, see Figs. 8 and 15. Similar conclusions can be drawn from the analysis of

the LEE of the invariants of A that are not reported herein just for the sake of conciseness. In

any case, although the impact of the �ame is less signi�cant in case F2, the way it modi�es the
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(a) (IQ∗ , IR∗)

(b) (IIQ∗ + IIIQ∗ , IIR∗ + IIIR∗)

(c) (IVQ∗ , IVR∗)

Figure 15. Contributions I (a), II+III (b), and IV (c) to the CMV as given by the LEE for Q∗ and R∗ (case F2).

Left column: c < 0.01 (fresh reactants), middle column: 0.01 < c < 0.50, right column: 0.50 < c < 0.95.
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invariants of the VGT and traceless VGT remains the same as the one it modi�es them in case

F1.
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