
HAL Id: hal-03442313
https://hal.science/hal-03442313v1

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A pendulum with a broken cylindrical symmetry:
normal modes and beats

Gilles Dolfo, Jacques Vigué

To cite this version:
Gilles Dolfo, Jacques Vigué. A pendulum with a broken cylindrical symmetry: normal modes and
beats. European Journal of Physics, 2022, 43 (1), pp.015005. �10.1088/1361-6404/ac1e7a�. �hal-
03442313�

https://hal.science/hal-03442313v1
https://hal.archives-ouvertes.fr


A pendulum with a broken cylindrical symmetry:

normal modes and beats

Gilles Dolfo and Jacques Vigué
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Abstract.

A pendulum, which has the cylindrical symmetry around its suspension wire,

has two degenerate normal modes. We break this symmetry by putting a small

magnet in the pendulum body and by running the pendulum in the presence of an

inhomogeneous magnetic field. The force due to the magnetic field gradient modifies

the equilibrium position and the spatial derivatives of this force define the normal

modes of the pendulum with two different oscillation frequencies. We describe this

system theoretically and we test these results by a series of experiments. This

system provides a classical analogue of the degenerate perturbation theory in quantum

mechanics.

PACS numbers:
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1. Introduction

Since the discovery of the isochronism of small oscillations by Galileo Galilei, the

pendulum has been used for an extraordinary variety of physical and technical

applications [1, 2, 3]. In the present paper, we analyze the normal modes of a pendulum

with a slightly broken cylindrical symmetry. When this symmetry is perfect, the

normal modes are degenerate: the pendulum can oscillate in any direction with the

same frequency and any combination of two orthogonal oscillations, which represents an

elliptic oscillation, is also a solution of Newton’s equations of motion. If a perturbation

breaks the cylindrical symmetry, the frequency degeneracy of the normal modes is lifted.

If the perturbation is conserved by time reversal, the normal modes correspond to

two orthogonal directions of oscillation: this behavior is illustrated by the Blackburn

pendulum also called the Y-suspended pendulum [4, 5] and by the experiment described

in the present paper. If the perturbation changes sign by time reversal, the normal

modes are circular oscillations in opposite sense of rotation as illustrated by the Foucault

pendulum [6]: for this pendulum, the mode degeneracy is lifted by the Coriolis force

and this pendulum provides a classical effect of a geometric phase [7, 8].

Finally, the lifting of an eigenstate degeneracy is well known in perturbation theory

in quantum mechanics and the present study provides a perfect analogue in classical

mechanics. In both cases, starting from a degenerate situation, the perturbation defines

the new eigenstates or the new normal modes which are obtained by the diagonalization

of the perturbation matrix expressed in the initial basis describing the degenerate normal

modes.

We have built a pendulum made of sphere supported a piano string. This suspension

makes that the pendulum is a good example of 2D quasi-harmonic oscillator (the

usual suspension by a spring used in clocks or the use of knives limit the pendulum

motion to in-plane oscillations and the pendulum is then described as a 1D quasi-

harmonic oscillator [1]). A small magnet was placed near the sphere center in order

to excite the pendulum oscillation in a controlled manner, thanks to the force due

to a magnetic field gradient. If the laboratory magnetic field is inhomogeneous, the

pendulum cylindrical symmetry is broken. The pendulum equilibrium position is

then displaced, proportionally to the first derivatives of the field, and the frequency

degeneracy of the normal modes is lifted, the new normal modes corresponding to linear

oscillations. The rigidity with respect to torsion of the piano string is large so that the

rotation of the magnet in the horizontal plane is negligible.

We develop the theory of this effect in the general case and in the practical case of

the magnetic field produced by a magnetic dipole. If the two normal modes are excited

simultaneously with equal oscillation amplitudes, one observes a beat pattern, with the

oscillation varying from linear in one direction to linear in the perpendicular direction,

with intermediate periods of elliptic and even circular oscillations. All the calculations

are feasible by undergraduate students and the experiment is easy to build.

This paper is organized as follows: we first develop the theory of a pendulum



A pendulum with a broken cylindrical symmetry: normal modes and beats 3

carrying a magnet in the presence of an inhomogeneous magnetic field; we then express

the magnetic field of a dipole in cartesian coordinates; its first and second spatial

derivatives, which are presented in an appendix, are used to calculate the magnetic

field effect on the pendulum motion ; we describe our experimental set-up and some

experimental tests of the theory. We present some concluding remarks.

2. Theory

2.1. The pendulum

We consider a pendulum having a perfect cylindrical symmetry around the vertical

axis except that the pendulum body carries a small magnet, of magnetic moment mP ,

which interacts with the laboratory magnetic field B. We consider only small amplitude

oscillations and we neglect the torsion of the suspension wire so that the direction of

the magnetic moment mP is fixed in space.

2.2. Newton’s equations in zero magnetic field

We describe the pendulum as a point mass M at the end of a wire of length l. The

equilibrium position chosen as the origin O of the coordinate system with the x and y

axes in the horizontal plane. The z-axis is vertical, oriented upward. Because of the

wire, the mass M is on the sphere of radius l centered at x = y = 0, z = l and, neglecting

fourth order terms in x, y, its altitude is z ≈ (x2 + y2) / (2l). The gravitational potential

energy is given by

Eg = Mgz ≈Mg
x2 + y2

2l
, (1)

where g is the local acceleration of gravity. From Eg, we deduce the restoring force

Fg = −∇Eg and Newton’s equations of motion

M
d2x

dt2
≈ − kgx,

M
d2y

dt2
≈ − kgy. (2)

We note kg = Mg/l the gravitational restoring force constant. The motion is harmonic

in the x and y directions with the same angular frequency ω =
√
kg/M =

√
g/l. The

two normal modes, corresponding to oscillations along the x and y axes, are degenerate

and any other choice of orthogonal axes is equivalent. The general solution of Newton’s

equations is

x = ax cos (ωt+ ϕx) ,

y = ay cos (ωt+ ϕy) . (3)

These equations describe any linear or elliptic harmonic oscillation of angular frequency

ω.
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2.3. Newton’s equations in the presence of a magnetic field

If the magnetic moment mP interacts with the external magnetic field B, there is a

supplementary potential energy Em

Em = −mP ·B = −
3∑

i=1

mP,iBi, (4)

where the indices i = 1, 2, 3 are used to label the x,y,z coordinates and the cartesian

components of the vectors. The magnetic force Fm exerted on the magnet is given by

Fm = −∇Em whose components are given by

Fm,j =
3∑

i=1

mP,i
∂Bi

∂xj
(5)

If the magnetic force is very small with respect to the weight Mg, the sole effect of

the vertical component of the force is to slightly correct the weight, a negligible effect.

The horizontal components of the magnetic force displace the equilibrium position to

the point where the total force vanishes. The coordinates xe,j of the new equilibrium

position are

xe,j =
3∑

i=1

mP,i

kg

∂Bi

∂xj
for j = 1, 2 (6)

The pendulum oscillation is sensitive to the second derivatives of the potential energy

calculated in the x-y plane at the new equilibrium position. We consider small horizontal

displacements εi from the new equilibrium position and we limit the total potential

energy Epot = Eg + Em to its second order Taylor expansion

Epot = Epot (xe, ye) +
1

2

∑
i,j

[kgδij + km,i,j] εiεj

with km,i,j = km,j,i =
∂2Em

∂xi∂xj
= −

3∑
k=1

mP,k
∂2Bk

∂xi∂xj
(7)

where δij is the Kronecker symbol. We derive Newton’s equations of motion

M
d2

dt2

[
εx
εy

]
= −

[
kg + km,x,x km,x,y

km,x,y kg + km,y,y

][
εx
εy

]
. (8)

As this matrix is symmetric, it can be diagonalized by a rotation of the coordinate

system to new axes u and v. Newton’s equations are then uncoupled

M
d2

dt2

[
u

v

]
= −

[
kg + km,u,u 0

0 kg + km,v,v

][
u

v

]
. (9)

Provided that (kg + km,u,u) and (kg + km,v,v) are both positive (in the opposite case, the

new equilibrium position is unstable), the normal modes describe harmonic oscillations

along the new axes with the angular frequencies

ωu =

√
kg + km,u,u

M
≈ ω

(
1 +

km,u,u

2kg

)
,
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ωv =

√
kg + km,v,v

M
≈ ω

(
1 +

km,v,v

2kg

)
(10)

where the approximate forms are valid if km,u,u, km,v,v � kg and then, the frequency

difference is equal to

ωu − ωv ≈ ω
km,u,u − km,v,v

2kg
(11)

2.4. Motion of the pendulum

In the general case, the excitation of the pendulum produces an oscillation which is a

superposition of the two normal modes with amplitudes u0 and v0 and initial phases ϕu

and ϕv

u(t) = u0 cosψu(t) and v(t) = v0 cosψv(t)

with ψu(t) = ωut+ ϕu and ψv(t) = ωvt+ ϕv (12)

If the x,y axes are deduced from the u,v axes by a rotation of angle θ, the pendulum

position is given by[
εx(t)

εy(t)

]
=

[
cos θ sin θ

− sin θ cos θ

][
u(t)

v(t)

]
. (13)

We note xu = u0 cos θ, xv = v0 sin θ, yu = −u0 sin θ and yv = v0 cos θ. We thus get

εx(t) = [xu + xv] cosψ− cosψ+

+ [−xu + xv] sinψ− sinψ+

εy(t) = [yu + yv] cosψ− cosψ+

+ [−yu + yv] sinψ− sinψ+ (14)

with ψ+(t) = [ψu(t) + ψv(t)] /2 and ψ−(t) = [ψu(t)− ψv(t)] /2. ψ+(t) describes a fast

oscillation at the normal mode mean frequency ω+ = (ωu + ωv) /2 and ψ−(t) a slow

oscillation at the difference frequency ω− = (ωu − ωv) /2. The modulus of the amplitudes

of the fast oscillation are given by

ε̃xω+
(t) =

√
x2u + x2v + 2xuxv cos (2ψ−(t)) exp (−t/τ) ,

ε̃yω+
(t) =

√
y2u + y2v + 2yuyv cos (2ψ−(t)) exp (−t/τ) .

(15)

We have taken into account the damping of the oscillation by the factor exp (−t/τ). We

assume that the damping forces are equal for the two normal modes, as a consequence

of the cylindrical symmetry of the pendulum (a possible exception may occur if the

pendulum magnet induces eddy currents in nearby conductors). The amplitudes ε̃xω+
(t)

and ε̃yω+
(t) present beats at the frequency

ωbeat = |ωu − ωv| ≈ ω
|km,u,u − km,v,v|

2kg
(16)
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The total (kinetic and potential) energy E(t) is proportional to

E(t) =
(kg + km,u,u)u20 + (kg + km,v,v) v

2
0

2
exp (−2t/τ) .

(17)

E(t) decays because of damping but without any oscillation. The energy is partly

transferred between the oscillations along the x and y-directions but the total energy is

conserved, if damping can be neglected. The energy transfer is complete in the particular

case u0 = ±v0 and θ = ±π/4.

3. Toward an experiment

We consider that the inhomogeneous part of the magnetic field B is produced by a

magnetic dipole and that we can neglect the inhomogeneous part of the magnetic field

due to other sources.

3.1. Calculation of the magnetic potential energy

x 

y 

Y 

X 

Φ 

P 

mp 

mF 

Figure 1. Schematic drawing of a top-view of the arrangement. The pendulum

equilibrium position is at the origin of the x, y system of axes while the magnetic

moment mF , represented by a red arrow, is at the origin of the X, Y system of axes.

Φ is the angle between X and x. The pendulum, represented by the red dashed circle,

carries the magnetic moment mP parallel to the x-axis and represented by the blue

arrow. The distance between the two magnetic moments is noted r.

Figure 1 represents the geometrical arrangement of our experiments. The magnetic

moment mP carried by the pendulum and the fixed magnetic moment mF are in the

same horizontal plane. The line going through the center of the fixed magnet and

through the equilibrium position O of the pendulum is parallel to mF . This line is

chosen as the X-axis of a second system of axes with its origin at the center of the

magnetic moment mF . The Y-axis is in the horizontal plane, perpendicular to the X-

axis, and the Z-axis is in the vertical direction. We note Φ the angle between the x axis
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and the X axis. The potential energy of the magnetic moment mP is given by

Em = −mP (BX cos Φ +BY sin Φ) (18)

The values of BX and BY , their first and second derivatives with respect to X and

Y are given in the Appendix. From now on, we assume that the displacement of the

equilibrium position of the pendulum due to the presence of the magnetic moment mF

is very small with respect to the distance r between the two magnetic moments and we

calculate the field derivatives at the equilibrium position in the absence of mF . Using

eq. (6) written in the X, Y coordinate system, we deduce the new equilibrium position

Xe − r
r

= − km
4kg

cos Φ and
Ye
r

= +
km
8kg

sin Φ

with km =
24µ0mPmF

4πr5
(19)

km is a restoring force constant. We also rewrite eq. (7) in the X, Y coordinate system

Epot (Xe + εX , Ye + εY ) =
kg
2

(
ε2X + ε2Y

)
+
km
2

[
−ε2X cos Φ + εXεY sin Φ +

ε2Y
2

cos Φ

]
, (20)

where the potential energy Epot (Xe, Ye) has been omitted. To calculate the normal

modes, we must give a diagonal form to the potential energy term. This calculation is

easy but the general expressions are not very simple and we discuss only two particular

cases in the next subsection.

3.2. Two particular positions of the magnet mF

In the case Φ = 0, the potential energy Epot is given by

Epot =
1

2

[
kg
(
ε2X + ε2Y

)
+ km

(
−ε2X +

ε2Y
2

)]
(21)

The matrix is already diagonal in the X, Y basis and the normal modes correspond to

oscillations along the X and Y directions with the angular frequencies

ωX =

√
kg − km
M

and ωY =

√
kg + (km/2)

M
(22)

The beat frequency is given by

ωbeat = |ωX − ωY | ≈ ω
3km
4kg

. (23)

In the case Φ = π/2, the potential energy Epot is given by

Epot =
1

2

[
kg
(
ε2X + ε2Y

)
+ kmεXεY

]
(24)
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The symmetry by exchange of X and Y proves that the potential is diagonal in the U ,

V basis with U = (X + Y )/
√

2 and V = (−X + Y )/
√

2 i.e. in a basis rotated by an

angle equal to π/4. In this basis, Epot is given by

Epot =
1

2

[
kg
(
ε2U + ε2V

)
+
km
2

(
ε2U − ε2V

)]
. (25)

The normal modes correspond to the oscillations along the U and V axes with the

angular frequencies

ωU =

√
kg + (km/2)

M
and ωV =

√
kg − (km/2)

M
(26)

and the beat frequency is given by

ωbeat = |ωV − ωU | ≈ ω
km
2kg

. (27)

4. The experiment

4.1. The set-up

The pendulum is placed in a box to protect it from air currents. Its suspension wire is

a piano string (diameter 0.49 ± 0.01mm, length 404 ± 0.5 mm) which is rigid against

rotation, so that the magnet rotation due to the torque exerted by the magnetic field

is negligible and the angle Φ is constant. This pendulum was used to test the Stokes

drag force on a sphere [9]. It is made of a plastic sphere (radius a ≈ 15 mm) containing

an aluminium alloy cylinder holding the pendulum magnet which is fixed to the piano

string. Because the piano string wire is also rigid with respect to flexion, the restoring

force is partly due to elastic forces. We have published the theoretical description of

this type of pendulum [10]. We note keff = Mω2 the effective restoring force constant

which replaces kg. The fixed magnet is cubic (side length 20 mm) and the pendulum

magnet is a parallelepiped (2×3×10 mm3): both magnets are made of various grades of

sintered NdFeB alloys. Following Petruska and Abbott [12], for a cube-shaped magnet

with uniform magnetization, the magnetic field of a cube-shaped magnet is very close to

the field of a magnetic dipole even at distances as small as twice the cube edge length.

We have measured this field as a function of the distance along the direction of the

magnetic moment and we have thus deduced the magnetic moments mP and mF : their

measured values agree with the value calculated with the equation BrVm/µ0 (Vm being

the magnet volume), using a remanent field Br ≈ 1.3 T, very close to the value given

by the company which produced the magnets.

The pendulum oscillation is resonantly excited by the force exerted by a magnetic

gradient on the pendulum magnet. To produce this magnetic field gradient, we use

a flat coil with about 1000 turns and a mean radius R ≈ 15 mm, located out of the

box enclosing the pendulum, at a distance equal to ∼ 160 mm from the pendulum

magnet. This coil is powered by a sine signal at the pendulum frequency. This signal
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is produced by the computer and amplified by a power amplifier. With a peak voltage

equal to 6 V applied for about 20 seconds, we obtain oscillations amplitudes ∼ 0.5 mm.

The parameters (diameter, number of turns) of this coil have not been optimized: in

particular, the maximum gradient force of a flat coil occurs at a distance equal to half

its radius and a considerably more efficient excitation is obviously possible.

To measure simultaneously the two displacements εx(t) and εy(t) of the pendulum,

we use two shadow detectors described in our previous paper [9]. With a laser beam

radius w ≈ 1 mm, the sensitivity is about 1 − 2 × 103 V/m and the deviations from

linearity are below 5% for a displacement smaller than ±0.5 mm, as measured using

the shadow of a knife edge placed on a translation stage. The shadow detector signals

are digitized at 40 Hz and we thus get the measurements of the displacements εx(t) and

εy(t) as a function of the time t.

In another set of experiments, we have used a magnetic induction detector made

of a pair of similar coils of solenoid valves [11]: this detector is less sensitive than the

shadow detectors. We compensate this reduced sensitivity by increasing the pendulum

magnet volume to 1 cm3 and the oscillation amplitude to a few millimeters. We thus

obtain very nice signals. We have then used a 1 cm3 magnet as the fixed magnet so

that the magnetic moment product mPmF keeps a similar value. The advantages of the

magnetic induction detector are that it does not require any fine alignment and that

its linearity range is considerably larger. However, as we have only one such detector,

we have recorded only one displacement, εx(t): this explains why we do not present the

results of this second set of experiments. In order to record the two displacements with

two such detectors, the coils should be placed on the axes (x± y) /
√

2.

4.2. The experiments

With the excitation coil axis and the pendulum magnet aligned with the x-axis, we

excite the oscillation in this direction. We have fixed the angle Φ = π/2 because, in this

case, the normal modes are theoretically excited with the same amplitude, leading to the

maximum beat contrast. Moreover, when Φ = π/2, the displacement of the pendulum

is along the Y-axis (see eqs; 19) and the modification of the distance r, being of the

Table 1. This table gives the mass M of the pendulum body, its oscillation frequency

ω/(2π), the effective restoring force constant keff = Mω2, the dimensions and

magnetic moments mP and mP of the two magnets.

M (g) 20.9

ω/(2π) (Hz) 0.844

keff (N/m) 0.588

mP (A.m2) 0.060± 0.003

mF (A.m2) 8.5± 0.2
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second order in the displacement, is negligible. We have measured the beat pattern for

various values of the distance r between the centers of the two magnets.

4.3. Experimental protocol

We first measure the shadow detector signal during 200 s with a numerical oscilloscope

and, using its FFT function, we measure the two pendulum frequencies, if they are

resolved or their mean value in the opposite case. Then, we choose the excitation

frequency as the mean of the two frequencies in order to excite equally the two normal

modes. After the excitation period, the pendulum oscillates freely for a duration equal

to 4000 s before a new excitation. Because of the sensitivity of the shadow detectors, any

adjustment of pendulum or of the shadow detectors put the pendulum in oscillation and

the damping of this oscillation takes a long time. Because of this uncontrolled excitation,

the first excitation period usually occurs while the pendulum is already oscillating and

the initial conditions are ill-defined while at the end of a recording period, the oscillation

amplitudes are negligibly small and the excitation puts the pendulum in a well-defined

state. We show in figure 2 an example of a small part of the recorded signals. The beat

patterns are obvious and they exhibit a very good contrast.

-0.2

-0.1

0.0

0.1

0.2 εx , εy (mm)

320310300290280270260

t(s)

Figure 2. The recorded signals εx(t) (blue line) and εy(t) (red line) converted

in millimeters, thanks to the measured sensitivities of the shadow detectors. The

experiment is done with a distance r = 140 ± 2 mm and the beat period is Tbeat =

26.47± 0.02 s.

4.4. Data analysis

We extract the oscillation amplitudes of the fast oscillation ε̃xω+
(t) and ε̃yω+

(t) by a

sliding Fast Fourier Transform over 256 points i.e. over 6.4 s. The measured amplitudes

are fitted by the following equation

ε̃ω+(t) =

√
A+B cos

(
2πt

Tbeat
+ φ

)
exp (−t/τ) , (28)



A pendulum with a broken cylindrical symmetry: normal modes and beats 11

which is equivalent to eq. (15). Figure 3 presents an example of these amplitudes and

the squared amplitudes with their fits by eq. (28). The quantities Ai and Bi (i = x

or i = y) would be equal in the ideal case and the beat contrast is then maximum.

However, any misalignment of the magnetic moments mP and mF and of the direction

of the excitation modifies the relative amplitudes of these modes. Because of the long

duration of the experiments, we have not made much effort to improve the beat contrast.

0.5

0.4

0.3

0.2

0.1

0.0

εx
∼   ,εy

∼    (mm)

400300200100
t (s)

0.25

0.20

0.15

0.10

0.05

0.00

ε2
x

∼   ,ε2
y

∼    (mm)

400300200100
t (s)

Figure 3. The amplitudes of the fast oscillations converted in millimeters thanks

to the measured sensitivities of the shadow detectors. Upper panel: the amplitudes

ε̃x,ω+
(t) (blue full line) and ε̃y,ω+

(t) (red full line). Lower panel : the squares of these

amplitudes showing the almost complete energy exchange between the oscillation along

the x and y directions. The experiment is done with a distance r = 180±2 mm leading

to a beat period Tbeat = 91.94± 0.04 s.

We have measured the beat period Tbeat for various values of the distance r between

the magnet centers, covering the 140 − 220 mm range by 20 mm steps. Equation (27)

relates this period to the pendulum period Tpend = 2π/ω by

Tbeat
Tpend

=
2keff
km

= Cr5

with C =
4πkeff

12µ0mPmF

(29)

where the dependence in r5 is deduced from the dependence of km given by equation

(19). This behavior is tested in fig. 4. The best fit to the measured beat period gives
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C = (4.17± 0.012)×105 m−5 while the value of C deduced from the measured magnetic

moments is C = (4.8± 0.4) 105 m−5.

With Φ = π/2, we deduce from eq. (19) that Xe = 0 and

Ye
r

=
km

8keff
=

Tpend
8Tbeat

. (30)

In our experiments, when r increases from 140 to 220 mm, the ratio Tpend/Tbeat varies

from about 0.045 down to 0.0047 and the ratio Ye/r decreases from 1.1% to 0.12% and

the modification of the distance due to this displacement is fully negligible.

250
200

150

100

50

Tbeat (s)

220200180160140

r (mm)

Figure 4. The beat period Tbeat (s) is plotted as a function of the distance r (mm)

between the centers of the two magnets in a loglog plot. The squares represent the

experimental results and the dashed straight line is the best fit following Tbeat ∝ r5.

4.5. Direct observation of the pendulum motion

If the pendulum starts oscillating along the x-axis at t = 0, its oscillation becomes

elliptic and at t = Tbeat/4, the oscillation is circular in one sense (depending of the sense

of the two magnetic moment); then after a period of elliptic oscillation, the oscillation

becomes linear along the y-axis at t = Tbeat/2; at t = 3Tbeat/4, the oscillation is circular

in the opposite sense and at t = Tbeat, the oscillation is back to linear along the x-axis

exactly as in t = 0. Figure 5 illustrates this behavior.

We have also made a movie of the pendulum motion in the configuration Φ = π/2,

with an excitation along the x-axis at t = 0. The pendulum oscillation follows our

theoretical predictions: some minor deviations are due to the large amplitude used in

this experiment which makes that the pendulum explore a large spatial region while our

calculation is valid in the small amplitude limit [13].

5. Concluding remarks

We have studied the motion of a pendulum having the cylindrical symmetry, with

two normal modes which are degenerate. We have shown that, if the pendulum
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T /Tbeat= 0          1/4             1/2              3/4 

Figure 5. Plot of the calculated motion of the pendulum in the u,v plane, assuming

an equal excitation of the two normal modes in the case Tbeat = 100Tpend. Each top

panel describes the motion during a time interval equal to the pendulum period, chosen

at multiples of Tbeat/4. The bottom panel describes the motion during one full beat

period Tbeat, exhibiting a Lissajous curve.

carries a magnetic moment, an inhomogeneous magnetic field displaces the equilibrium

position and lifts the mode degeneracy. The resulting normal modes are defined by the

symmetry of the perturbation. In the present case, the perturbation is conserved by

time reversal, because, although a magnetic dipole changes sign by time-reversal, the

perturbation involves the product of two magnetic dipoles: the normal modes correspond

to linear oscillations. The Foucault’s pendulum is the most famous case in which the

perturbation, due to Coriolis effect, is not conserved by time reversal and, in this case,

the normal modes are circular oscillations.

We have shown that, when the mode degeneracy is lifted, the pendulum oscillation

measured along a given direction exhibit beats and, with a correct choice of parameters,

the energy transfer from one direction of oscillation to the perpendicular direction can

be complete in theory and almost complete in our experiments. We have also verified

that the beat period varies as r5, where r is the distance between the magnet centers,

in good agreement with theory.
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7. Appendix I: Magnetic field of a permanent magnet

The magnetic field produced by a magnet is given by its multipolar expansion and,

because ∇ · B = 0, one can prove that this expansion contains only odd power terms
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[12]. The field due to the 22n+1-pole decreases like r−(2n+1) where r is the distance to

the magnet center: the first non-vanishing terms is the dipolar term with B ∝ r−3 and

for the next non-vanishing term B ∝ r−5. If r is large with respect to the magnet

dimensions, the magnetic field B of a compact magnet with a uniform magnetization is

very well approximated by the dipolar term [12] and the magnetic moment m is equal

to

µ0m = VmBr (31)

where Vm is the magnet volume and Br is the remanent field of the magnet.

The magnetic field of a magnetic moment m are usually expressed in polar

coordinates. Here, we write the components of the magnetic field in a cartesian

coordinate system X, Y and Z, with the X-axis parallel to the magnetic moment m

and with the origin at the center of the magnet

BX =
µ0mF

4π
× 2X2 − Y 2 − Z2

(X2 + Y 2 + Z2)5/2

BY =
µ0mF

4π
× 3XY

(X2 + Y 2 + Z2)5/2

BZ =
µ0mF

4π
× 3XZ

(X2 + Y 2 + Z2)5/2
(32)

We need the first and second derivatives of BX and BY with respect to X and Y for

Z = 0. Their calculation is simple but tedious and we have used Mathematica to verify

our results. The first derivatives are equal to

∂BX

∂X
=
µ0mF

4π
× 3X (−2X2 + 3Y 2)

(X2 + Y 2)7/2

∂BX

∂Y
=
∂BY

∂X
=
µ0mF

4π
× 3Y (−4X2 + Y 2)

(X2 + Y 2)7/2

∂BY

∂Y
=
µ0mF

4π
× 3X (X2 − 4Y 2)

(X2 + Y 2)7/2

(33)

At the pendulum equilibrium position in the absence of the magnet, X = r with r > 0,

Y = 0, Z = 0, the first derivatives of BX and BY are given by

∂BX

∂X
= − 6µ0mF

4πr4
,

∂BX

∂Y
= 0.

∂BY

∂X
= 0,

∂BY

∂Y
=

3µ0mF

4πr4
(34)

The second derivatives are equal to

∂2BX

∂X2
=
µ0mF

4π
× 3 (8X4 − 24X2Y 2 + 3Y 4)

(X2 + Y 2)9/2



A pendulum with a broken cylindrical symmetry: normal modes and beats 15

∂2BX

∂X∂Y
=
µ0mF

4π
× 15XY (4X2 − 3Y 2)

(X2 + Y 2)7/2
=
∂2BY

∂X2

∂2BX

∂Y 2
=
µ0mF

4π
× 3 (−4X4 + 27X2Y 2 − 4Y 4)

(X2 + Y 2)9/2
=

∂2BY

∂X∂Y

∂2BY

∂Y 2
=
µ0mF

4π
× 15XY (−3X2 + 4Y 2)

(X2 + Y 2)9/2
(35)

The presence of equalities among these derivatives is not surprising. As ∆B = 0 and

∇ × B = 0 in free space, one can prove that the 27 second derivatives ∂2Bi/∂Xj∂Xk

can be expressed as a functions of 7 of them only. At the equilibrium position in the

absence of the magnet, X = r, Y = 0, Z = 0, the second derivatives of BX and BY are

given by

∂2BX

∂X2
=

24µ0mF

4πr5
,

∂2BX

∂X∂Y
= 0 ,

∂2BX

∂Y 2
= − 12µ0mF

4πr5
,

∂2BY

∂X2
= 0 ,

∂2BY

∂X∂Y
= − 12µ0mF

4πr5
,

∂2BY

∂Y 2
= 0. (36)
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