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Abstract

The pith location is one of the most important features to detect in order to determine the
quality of wood. Indeed, it allows to extract other important features. In this paper, we address
the problem of pith detection on images of wood cross-sections. Taking such images can be
done at little cost and with a high resolution. However, contrary to computed tomographic
images, digital images exhibit disturbances like sawing marks, dirt or ambient light variations
which make difficult the image analysis. Few studies have focused on such images. Furthermore
these studies do some prior segmentation or cropping before the detection. We propose an
approach for estimating the pith location without any requirements. Our method is based
on an ant colony optimization algorithm. It is a probabilistic approach for solving this task.
We validate our algorithm on images of Douglas fir captured after harvesting. The efficiency
of this algorithm has been demonstrated by performance comparisons with other approaches.
Experiments show an accurate and fast estimation and the algorithm could be used in real time,
at sawmill environment or in forest, with a smartphone.

Source Code

A C++ implementation of Ant Colony Optimization for Pith estimation is available at the web
page of this article1. Compilation and usage instructions are included in the README.txt file of
the archive. The associated online demo is accessible through the web site.

Keywords: agent-based method; Fourier transform; Hough transform; wood quality
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Ant Colony Optimization for Estimating Pith Position on Images of Tree Log Ends

1 Introduction

In this paper, we focus on an automatic tool to extract an important feature for wood quality
estimation. The quality of wood influences both its price and use. The wood quality is defined by
some properties among which:

1. mechanical resistance;

2. dimensional stability. Wood is hygroscopic, meaning that it can gain or lose moisture from the
surrounding air, which could be source of trouble;

3. durability, which is the ability to resist to fungi and insects without chemical treatments;

4. aesthetic, including color, texture and aspect features.

Some of these properties are related to other features that are easily observable on wood. For instance
annual ring width, that indicates how fast the tree has grown, has a direct effect on wood density that
itself is related to mechanical strength, shrinkage, durability and sometimes color. For wood quality
estimation, one of the key features to detect is the pith location. More precisely, pith location allows
to analyse tree rings easily. Moreover, assessing how far the pith is located from the geometric center
of a cross-section (i.e. eccentricity) is an important information on wood quality. It is an indicator
of the presence of reaction wood2 that may affect mechanical properties [1].

The problem of detecting automatically the pith has already been studied in the literature [8,
13, 6, 16, 2, 17, 12]. Many methods have been developed for X-ray computed tomographic (CT)
images [8, 13, 6, 2, 7]. A CT scanner is an investment too heavy for most sawmills. Extracting
external information on log quality by using low cost RGB cameras would be valuable for scientists
and timber industry. Contrary to CT images, digital images exhibit disturbances like dirt or sawing
marks which make the analysis harder. Some images of our dataset are shown in Figure 1. The
dataset is split into 2 subsets: Besle imageset and BBF imageset. Both subsets include the same
log ends shot with different lighting conditions (see Section 5.1 for more details).

Figure 1: Some examples of Besle dataset (the first two rows) and BBF dataset (the last row).

2Reaction wood is a special wood that helps the tree to straighten vertically.
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In this context, Norell et al. [16], Schraml et al. [17] and Kurdthongmee et al. [12] have proposed
algorithms for pith detection on digital images of untreated wood cross-sections. Recently, Deep
Neural Networks (DNNs) have been trained in order to address this problem [11]. On the other
hand, state-of-the-art approaches based on RGB images rely on tree rings analysis. They can be
described with three steps:

1. Estimate normals from tree ring local orientations. Indeed, close to the pith, tree rings describe
approximately concentric circles (with the pith at the center).

2. Add normals in an accumulation space (similar to Hough transform [5]).

3. Extract the pith from the accumulation space.

Figure 2 exemplifies an accumulation space. Six normals are plotted and added in the accumulation
space. The accumulation space is equivalent to a voting grid.

This method has shown its robustness over the others (e.g. morphological or grayscale analysis)
according to Wei et al. [19].

In order to compute local orientation, one can use Fourier transform [17], linear symmetry, quadra-
ture filters [16] or histograms of oriented gradient [12]. Then, different strategies can be used to add
normals into the accumulation space, such as selecting all normals or selecting wisely those to accu-
mulate. Finally, a strategy has to be defined to extract the pith from the accumulation space. For
instance, one can assume that the pith is located at the pixel with maximum accumulation [17, 12]
or at the barycenter of a set of points above a given accumulation threshold [16].

Among the three steps, the normal accumulation is the hardest task as it is difficult to determine
which normals to accumulate. In this paper, we propose to use Ant Colony Optimization (ACO)
as strategy to accumulate normals. ACO is an algorithm inspired by the behavior of ant species.
Ants deposit pheromones that help other ants of the colony to make the best choice in their goal.
Ant system was the first ACO Algorithm [4]. Since then, a large number of ACO algorithms have
been developed to address various problems like edge detection in images [18, 14]. In our ACO-
based algorithm, the main idea is to consider each normal as a set of pheromones to deposit. Our
implementation also has to work without any prior segmentation. To the best of our knowledge, no
such method has been developed so far. Indeed, the algorithms proposed in [16, 17, 12] are robust and
give the pith location with a millimetric precision, but they need some prior assumptions. Norell et
al. [16] manually segmented the wood section. Both Kurdthongmee et al. [12] and Schraml et al. [17]
assumed that the wood section was the center of their images and segmented the wood section. The
robustness, accuracy and speed of our method will be assessed and compared to the literature. The
results show the good performance of our method.

Figure 2: Left: six normals plotted according to tree ring local orientation. The pith is marked by the red circle. Right: the
accumulation space according to these normals. Each accumulation cell is 10× 10 pixels.
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Section 2 explains the preprocessing of images and the proposed ACO method. Section 3 describes
the algorithms. Section 4 details the implementation, including requirements, settings and some
examples of use. Section 5 shows experimentation and results. The conclusion is made in Section 6.

2 Proposed Method
In this section, we present the main steps of our method for pith estimation. Figure 3 shows the three
main steps of our proposed method: the preprocessing, which aims at both removing sawings marks
and enhancing tree rings; the local orientation of tree ring; and, finally, our ACO implementation for
pith estimation.

Figure 3: The three main steps of the proposed method.

2.1 Preprocessing

We first apply a preprocessing. It aims at reducing both time computation and noise. The prepro-
cessing consists in converting RGB to grayscale, downsampling and removing sawing marks.

2.1.1 Grayscale and Downsampling

We convert the RGB image to a grayscale image. Conversion to grayscale is done by using the
formula 0.299R + 0.587B + 0.114G, where R, G and B are respectively red, green and blue color
channels. Then, downsampling is done using a factor δ and bilinear interpolation. It keeps the
image ratio. This step aims at reducing both noise between annual tree rings and calculation time.
The noise is caused by both unsharpened sawing tools and our acquisition device which takes high
resolution images.

2.1.2 Sawing Marks Removal

One of the main disturbances for pith detection on untreated sections is the presence of sawing marks
on the tree log image (see Figure 4a). Since pith detection relies on tree ring orientation, those marks
may increase errors by interfering with tree rings. We propose a simple way to remove them. This
is similar to the one proposed by Norell [15].

One can observe that sawing marks are generally aligned in a circular sector and not always
evenly spaced (see Figure 4a). This repetitive pattern suggests that filtering in Fourier domain is a
suitable choice to reduce them. Indeed, sawing marks correspond to a line in the Fourier spectrum
passing through the center with a direction perpendicular to those marks. Along this line, the
energy in Fourier spectrum will be high. By reducing the energy along that line and converting
filtered spectrum back to spatial domain, sawing marks can be removed or at least reduced (see
Figure 4f).

We first compute a Fast Fourier Transform (FFT). In order to reduce noise due to background,
we filter the Fourier spectrum with a band-pass filter and remove both horizontal and vertical lines
which often are regions with a high energy due to shifting (see Figure 4b and 4c).

We then threshold the filtered Fourier spectrum keeping only values above λ times the maximum
value (see Figure 4d). The DC component (the (0,0) Fourier coefficient) is excluded from this
maximum. This gives a point cloud on which we apply principal component analysis (PCA) to
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(a) Grayscale image (b) FFT (c) Filtered FFT

(d) FFT after thresholding (e) Detected line (f) Preprocessed image

Figure 4: Preprocessing steps: (a) Grayscale image, (b) FFT, (c) Filtered FFT, (d) FFT after thresholding, (e) Detected
line, (f) Resulting image. The lighter the pixel, the larger its value.

estimate two orthogonal directions. With λ, we can control the sawing marks removal. Pronounced
sawing marks give high value in Fourier domain, then λ will have a high value. Once the main
eigenvector is retrieved, we create a filter defined by a line along the estimated direction and passing
through the Fourier spectrum center. The line is convolved with a Gaussian filter of standard
deviation σ (see Figure 4e). Sawing marks are not strictly parallel lines, that’s why we introduce σ
as a margin of error in sawing marks. It thickens the line to remove in Fourier domain.

Finally, the line filter is pixelwise multiplied by the original Fourier spectrum. The result is
transformed back into a spatial image using the inverse FFT (see Figure 4f).

Sometimes the main directions in the point cloud are not orthogonal. This leads PCA to mis-
estimate the wanted directions since the method looks for orthogonal directions. Figures 5a and 5b
illustrate this problem. Red arrows indicate the desired directions, and blue arrows indicate those
estimated by PCA. This is the reason why we only apply sawing removal if

ν1 − ν2
ν1

> 0.66

where ν1 is the eigenvalue of the principal component and ν2 the eigenvalue of the second component.
If the value is below that threshold it may have another direction. As we cannot know which one
to remove, we will not apply sawing removal. It may also indicate that sawing marks are not very
pronounced, then they will not disturb the pith estimation. The value of 0.66 has been chosen
empirically.
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2.2 Local Orientation

Actually, tree rings can be described by concentric circles with the pith at the center. The key point
of the algorithm is to accumulate normals to tree ring tangents in a robust way. That is the reason
why, after removing sawing marks, we need to determine local orientation at each pixel. For this,
Norell and Borgefors [16] used quadrature filters and linear symmetry for estimating local orientation.
Schraml and Uhl [17] estimated it by FFT analysis, and Kurdthongmee et al. [12] retrieved it by
using histograms of oriented gradients (HoGs) [3].

In this paper, we use a smooth gradient based method. The orientation is computed in a local
window with Gaussian filters as an approximation of the gradient. Then, another smoothing is
applied. It prevents from abruptly changing orientations. It was used by Hong et al. [9] for assessing
the local orientation of pixels in fingerprints images which are close to tree ring images (light and
dark area alternating).

The first step of this method is to compute the gradient (∂x(I), ∂y(I)) of the image I. We choose to
compute the gradient with a Sobel operator associated with a Gaussian filter F of standard deviation
σg and a size of 6σg + 1. Then the orientation Iθ is given by Iθ = arctan(∂x(I), ∂y(I)). However, the
solution has some drawbacks. Firstly, it is non-linear and presents discontinuity. Secondly, in spite
of the Gaussian filtering this method is sensitive to noise. And, since in our case the orientation
is circular, the average orientation between two angles like 175◦ and 5◦ should be not 90◦ as an
arithmetic average would suggest but 0◦.

Kass and Witkin [10] proposed a way to solve this last problem. The idea is to double the angles
and encode the orientation in a vector

d = [r sin(2Iθ), r cos(2Iθ)]

where r is proportional to the strength of the orientation estimate (i.e. the squared norm of the
gradient: ∂x(I)2 + ∂y(I)2). An average is done in a local window to obtain a more robust estimate of
d. For that, a second Gaussian filter G of standard deviation σb and a size of 6σb+1 is applied. Using
trigonometric formulae and Iθ = arctan(∂x(I), ∂y(I)), the orientation vector d can be simplified.
From that, Hong et al. [9] derived the above idea for computing image orientation. They computed
several gradient estimates to retrieve the dominant orientation

Iθ =
1

2
arctan(2Z,X − Y ) +

π

2
,

Z = ∂x(I)∂y(I) ∗G,
X = ∂x(I)2 ∗G,
Y = ∂y(I)2 ∗G.

These three quantities are normalized before applying the arctan. Furthermore, since we want the
tangent to the orientation, the additional value π

2
is omitted.

Figure 5c shows the preprocessed image and local orientation estimated by this method. Because
of sawing marks removal, a few tree ring local orientations are disturbed. Even so, it will not prevent
ACO from determining the pith position.

2.3 Ant Colony Optimization

Once local tree ring orientations have been estimated, we need to accumulate normals. Near the
pith, tree rings can be described by concentric circles with the pith at the center. Thus, normals
should accumulate in a way that the pith is at the position with the most accumulations. Instead
of designing a heuristic to accumulate normals in a robust way (i.e. rejecting normals with wrong
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(a) Grayscale image (b) Point cloud (c) Orientation estimation

Figure 5: Input image (left) and its corresponding point cloud (middle) where the two main directions (red arrows) in
Fourier Domain are non-orthogonal. PCA cannot estimate these directions. Result of local orientation of tree rings (red
lines) (right). Some orientations are disturbed due to sawing marks removal.

orientation), we rely on ant colony optimization algorithms (ACO) [4, 18]. In the proposed method,
an ant has a position in the image from which normals will be accumulated. Each ant performs
two actions: moving according to a pheromone map τ and depositing pheromone, which increases
thevalue in this pheromone map τ . This map will be our accumulation space. Then, ants will move
more often to areas near the pith (i.e. areas with a high quantity of pheromones) and accumulate
normals near the pith. And ants will move less often to areas away from the pith (i.e. areas with low
quantity of pheromones) and accumulate less often normals away from the pith. Let us now describe
how ACO works.

Let K2 be the number of ants and τ (t) the pheromone map at time t. The two main questions
in the ACO algorithm are how to establish the probabilistic transition matrix, denoted by p(t), and
how to update the pheromone map τ (t). Our choices for each question are presented in detail below.

2.3.1 Initialization Process

K2 ants are placed in a uniform grid on the preprocessed image. Each ant can move freely on the
pheromone map. At the beginning, the initial value of each element of the pheromone map τ (0) is
set to a random number between 0 and 1 by a normal distribution. A normal distribution seems to
accelerate the convergence of the algorithm. An element in matrix τ (t) stands for m×m pixels in the
preprocessed image. In other words, if the preprocessed image I is of size H ×W then τ (t) has H

m
by

W
m

elements. In the following, matrix τ (t) is considered to be in (u, v) coordinate and the image is in
(x, y) coordinate. The relation between a pixel (x, y) and an element (u, v) is: (u, v) = (

⌊
x
m

⌋
,
⌊
y
m

⌋
). A

high value form reduces both computational time and accuracy. A low value increases computational
time but it increases accuracy.

2.3.2 Constructing the Probabilistic Transition Matrix

An ant moves randomly with a certain probability. The probability pu,v for an ant to move to the
element (u, v) is defined by

pu,v =
(τu,v)

α(ηu,v)
β∑

i,j(τi,j)
α(ηi,j)β

, (1)
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Figure 6: Example of probabilistic transition matrix computation. The red square is the current ant’s position. After
computation, the ant has a probability of 36.2% to move to the element with the most pheromones (green squares). The
result is obtained with α = 2 and β = 1.

where τu,v is the amount of pheromone at element (u, v), ηu,v is the desirability of element (u, v), α
and β are respectively parameters to control the influence of τu,v and ηu,v. The desirability at an
element (u, v) is equal to the inverse distance between this element and the element (a, b) where the
ant is. So, the desirability is equal to

ηu,v(a, b) =
1√

(u− a)2 + (v − b)2 + 1
.

The desirability can be seen as a weighting of the pheromone map. It aims to ensure ants having
a higher probability to move toward local maxima and not toward a global one which could be a
wrong pith estimation. The ratio α

β
makes it possible to modify the behavior of ants. A high value

leads ants to move more quickly to the pheromone peaks. A low value leads ants to continue to
explore areas in the image.

2.3.3 Pheromone Map Update

The pheromone map is updated as follows

τ (t+1) = (1− γ)τ (t) +
∑

k∈{0,...,K2−1}

ρ
(t)
k , (2)

where ρ(t)k is the matrix of deposited pheromones by the kth ant for the current iteration t and γ is
the rate of pheromone evaporation. The evaporation rate eliminates wrong accumulations over time.
It aims at removing local peaks in pheromones. The higher γ, the faster pheromones are removed.
The update only occurs once all ants have moved.

Figure 6 shows how to compute p for an ant according to τ (pheromone map) and η (desirability
matrix).

2.3.4 Pheromone Deposit

Let us now describe how an ant deposits pheromones. For each ant k we estimate ρ(t)k before moving
it. But, it is only added to the pheromones matrix τ (t) after moving all the ants. We compute ρ(t)k
as follows.

Each ant is the center of an image block cluster. The cluster consists of n × n blocks and each
block has a size of ω×ω pixels. Parameter ω acts as a smoothing because the local orientation could
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Figure 7: On the left, image coordinates with the ants in yellow crosses, the pith estimation in red, a cluster of 3 blocks of
size 8 as the red grid (n = 3 and ω = 8) and normals (according to the cluster) in green lines. The top right is a zoom on
the red grid and current pith estimation. On the right, same objects in pheromones coordinates. One pixel in pheromones
coordinates is equal to 5 pixels in image coordinates (m = 5).

have been miscalculated. A small value is tantamount to consider that the orientation has been
correctly calculated. Indeed, for each block of a cluster, the median value of the local orientation
(see Section 2.2) is taken as the block orientation. These steps are all performed in preprocessed
image coordinates. The position (x, y) of the block center is converted into the closest element (u, v).
As a reminder, the relation between pixels and elements is: (u, v) = (

⌊
x
m

⌋
,
⌊
y
m

⌋
), where m is the

factor between τ and the preprocessed image. Then a line is drawn according to the orientation and
passing through (u, v). All elements of ρ(t)k on the line are incremented by 1.

Figure 7 shows, on the left, an ant (yellow cross) with its cluster of blocks (red grid). For each
block of the cluster, a line is drawn in green according to its orientation. The current pith estimation
is in the red circle. On the right, same objects (with same color) are represented in (u, v) coordinates.
The pith estimation is the red circle. The background is the pheromones matrix τ .

2.3.5 Extraction of the Pith Position

To extract from the matrix τ the pith position, we take the barycenter of all the pixels above
κ ∗ max(τ). Taking the maximum is less robust than the barycenter of the highest values. The
higher κ, the more sensitive to small variations the pith estimation.

We introduce an early stopping criterion. At each iteration, we compute the distance between
the current and the last pith estimation. The algorithm stops as soon as the average of the last five
distances falls below a threshold ε. The algorithm stops after a maximum of N iterations.

3 Algorithm

Hereafter, we detail the different algorithms for the steps described previously. A complexity analysis
of the proposed method is given at the end of the section.
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3.1 Preprocessing and Local Orientation Algorithms

The first algorithm (Algorithm 1) is the preprocessing for sawing marks removal (see Section 2.1).
The second algorithm (Algorithm 2) presents the computation of local orientations (see Section 2.2).

Algorithm 1: Sawing marks removal algorithm (see Section 2.1.2)
Input: Input image I

The threshold for Fourier spectrum λ
Standard deviation for a Gaussian smoothing σ

Output: Preprocessed image J
Variables: g is a Gaussian kernel of size 2 d2σe+ 1 and standard deviation σ

(xc, yc) the position of the center
1 F ← FFT(I) // include shift the zero-frequency component to the center
2 G← F
3 Remove both centered horizontal and vertical lines in G
4 Apply a low-pass filter to G
5 µ← max(G)
6 G← G ≥ λ× µ // Pixel-wise comparison
7 Let P be the positions of the threshold pixels
8 ν1, ν2 ← eigenvalues(PCA(P )) // Eigenvalues of PCA(P )
9 (Vx, Vy)← eigenvector(PCA(P )) // The main eigenvector of PCA(P )

10 ζ ← ν1−ν2
ν1

// The certainty
11 if ζ > 0.66 then
12 D ← Accumulate({(xc, yc, atan2(Vy

Vx
))}) // See Algorithm 5

13 D ← D ∗ g // ∗ denotes the convolution product
14 F ← F ×D // Pixel-wise multiplication

15 J ← IFFT(F ) // The inverse FFT

3.2 Ant Colony Optimization Algorithm

The main idea of our ACO algorithm is provided in Algorithm 3. The reader may refer to [4] for a
detailed description of the ACO algorithm. Algorithm 4 details the ants’ moves and the computation
of the pheromones deposit map (see Section 2.3.4).

Then, Algorithm 5 describes how to accumulate lines in a map (or an image) given a set of points
and orientations in order to obtain a map accumulation. The accumulation is done as follows. For
each couple of point and orientation, we first compute the coefficients (a,b) of the line. Then, we
compute the intersection between the line and the map, which is a rectangle h×w. Thus, we intersect
the line with lines y = 0, y = h − 1, x = 0 and x = w − 1. We keep the two points that are at the
edge of the map. Finally, we calculate the Bresenham line passing through these two points and we
increment by one the value of the map along the Bresenham’s line.

Finally, Algorithm 6 presents the pith extraction from the pheromone map (see Section 2.3.5).
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Algorithm 2: Local Orientation Algorithm (see Section 2.2)
Input: Input image I

Standard deviation for gradient smoothing σg
Standard deviation for co-variance smoothing σb
Standard deviation for output smoothing σs

Output: Local orientation image Iθ
Variables: F is a Gaussian kernel of size 6σg + 1 and standard deviation σg

G is a Gaussian kernel of size 6σb + 1 and standard deviation σb
H is a Gaussian kernel of size 6σs + 1 and standard deviation σs
Sx Sobel kernel for x-derivative
Sy Sobel kernel for y-derivative

1 fx ← F ∗ Sx and fy ← F ∗ Sy // ∗ denotes the convolution product
2 ∂x ← I ∗ fx and ∂y ← I ∗ fy
3 X ← ∂2x ∗G, Y ← ∂2y ∗G, Z ← 2(∂x∂y ∗G) // Pixel-wise multiplication
4 Θx ← Z√

Z2+(X−Y )2

5 Θy ← X−Y√
Z2+(X−Y )2

// Pixel-wise operations

6 Θx ← Θx ∗H
7 Θy ← Θy ∗H
8 Iθ ← 1

2
arctan(Θx,Θy) // Pixel-wise operations

3.2.1 Complexity Analysis

The ACO algorithm complexity is dominated by two factors: the number of ants and the size of the
image. As a reminder, the number of ants is K2 and the size of the pheromones is

⌊
H
m

⌋
,
⌊
W
m

⌋
. As we

focus on complexity, we omit the factor m. First, each ant can deposit up to
√
H2 +W 2 pheromones.

Then, the pheromones map, which is of size H×W , has to be updated for each ant. Finally, each ant
moves to its new position in O(1). This yields a time complexity of O(K2

[√
H2 +W 2 +HW + 1

]
).

An easy way to decrease the ACO computation time is to parallelize the computation of one ant
update. Indeed, ants move and update the pheromones map independently of each other.
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Algorithm 3: Ant colony optimization for normal accumulation
Input: The number of ants K ×K

The maximum number of iterations N
The number of block clusters around an ant n× n
The size of each block cluster ω × ω pixels

Output: Pith estimation ξ(t) at iteration t
Variables: τ t: The pheromone map at iteration t

ρtk: The deposited pheromone map of the kth ant at iteration t
1 Pre-process image I // See Section 2.1 and Algorithm 1
2 Compute the local orientations Iθ // See Section 2.2 and Algorithm 2
3 δy ← height(I)

K

4 δx ← width(I)
K

5 for i = 0 . . . K − 1 do
6 for j = 0 . . . K − 1 do
7 a← jδx + b δx

2
c

8 b← iδy + b δy
2
c

9 Add an ant at position (a, b)

10 Initialize the pheromone map τ 1
11 for t = 1 . . . N do
12 for k = 1 . . . K2 do
13 Let (a, b) be the position of the kth ant
14 ρ

(t)
k ← Move(a,b,Iθ, τ t, n, ω) // See Section 2.3.2 and Algorithm 4

15 τ (t+1) ← (1− γ)τ (t) +
∑K

k=1 ρ
(t)
k // Update the pheromone map, see Section 2.3.3

16 ξ(t+1) ← estimate_pith(τ (t+1)) // Compute the new pith position,
see Section 2.3.5 and Algorithm 6

18 dt+1 ←
∥∥ξ(t+1) − ξ(t)

∥∥
2

// Distance between the current and the last pith position
19 if t ≥ 5 then
20 at ← 1

5

∑t+1
k=t−3 dk // Compute the average of the last five distances

21 if (at < ε) then
22 Break // Early-stopping criteria

23 Return ξ(t)

569



Rémi Decelle, Phuc Ngo, Isabelle Debled-Rennesson, Frédéric Mothe, Fleur Longuetaud

Algorithm 4: Move and compute deposited pheromone map
Input: (a, b) the position of the kth ant

Estimated local orientations Iθ
The pheromone map τ (t) at iteration t
The number of block clusters around an ant n× n
The size of each block cluster ω × ω pixels

Output: The deposited pheromone map ρ(t)k of the kth ant at iteration t
Variables: Height H of the pheromone map τ (t)

Width W of the pheromone map τ (t)
B the list of the n× n block clusters of size ω × ω centered at (u, v) in Iθ

1 L← {}
2 foreach h ∈ B do
3 θ ← median(h) // Median value of h
4 (u, v)← Center of h
5 L← L ∪ {(u, v, θ)}

6 ρ
(t)
k ← Accumulate(L,H,W ) // See Algorithm 5

7 foreach (u, v) ∈ τ tk do
8 ηu,v ← 1√

(u−a)2+(v−b)2+1
// Compute the desirability matrix η of the ant, see Section 2.3.2

9 foreach (u, v) ∈ τ tk do
10 pu,v ←

(τ tu,v)
α(ηu,v)β∑

i,j(τ
t
i,j)

α(ηi,j)β
// Compute the probabilistic transition matrix p of the ant

11 pu ←
∑

j pu,j
12 x← random(pu) // Select a random index with probability pu
13 pv ← px,v // Probabilities of the column x of pu,v
14 y ← random(pv) // Select a random index with probability pv
15 Move the ant to the position (x, y)

16 Return ρ(t)k
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Algorithm 5: Draw an accumulation of a set of lines
Input: A set of lines L

The dimension of the map (h,w)
Output: A the accumulation map

1 A← 0 // Initialize to zero-matrix
2 foreach (i, j, o) ∈ L do
3 a← tan(o) // Compute the line L : y = ax+b
4 b← j − ai
5 V ← (−1,−1), W ← (−1,−1), G← (−1,−1) and H ← (−1,−1)
6 if |a| > 1e−12 then
7 V ← (− b

a
, 0) // Intersection between L and y=0

8 W ← (h−1−b
a

, h− 1) // Intersection between L and y=h-1

9 if |a| < 1e12 then
10 H ← (0, b) // Intersection between L and x=0
11 G← (w − 1, a(w − 1) + b) // Intersection between L and x=w-1

12 Let (P0, P1) be the points that are at the edge of the map (among V,W,H,G)
13 S ← P0P1 // Segment P0P1 using Bresenham algorithm
14 for x ∈ S do
15 A(x)← A(x) + 1

16 Return A

Algorithm 6: Estimate pith position
Input: Pheromone map τ t at iteration t

Threshold for the barycenter κ (0 ≤ κ ≤ 1)
Output: Pith estimation ξ(t) at iteration t

1 m← max(τ t)
2 X ← τ t ≥ κ×m // Pixel-wise comparison
3 M00 ←

∑
i,j Xij, M10 ←

∑
i,j(iXij) and M01 ←

∑
i,j(jXij) // Mij are moments of X

4 ξ(t) ← (M10

M00
, M01

M00
)

5 Return ξ(t)
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4 Implementation

The proposed method has been implemented in C++. The implementation is available at

http://www.ipol.im/pub/art/2022/338/

An online IPOL demo is also available for testing without any installation.

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=338

Hereafter, we explain how to compile and use the C++ implementation.

4.1 Requirements

Our C++ implementation only relies on the open source library OpenCV 3 (OPEN Computer Vision).
We provide in addition a CMakeList to compile the code. It requires at least cmake 3.44.

4.2 Input and Output

The input of the method is an image. The following file formats are supported: jpg, bmp, png, tiff
and pgm. There are two outputs. The first one is the input image on which the pith position is
marked with a red cross. The second one is a CSV file with the pith position, time computation and
the seed used for the random generator (required for ants movement).

4.3 Setting the Parameters

The proposed method for pith estimation requires the following parameters:

• δ the reduction factor of the image (see Section 2.1.1);

• K the number of ants in a row;

• α the control of the pheromone influence in Equation (1);

• β the control of the heuristic influence in Equation (1);

• γ the evaporation rate in Equation (2);

• m how many pixels an element in the matrix τ stands for;

• n the size of the blocks cluster (see Section 2.3.4);

• ω the size in pixels of a block (see Section 2.3.4);

• κ threshold for the barycenter (see Section 2.3.5);

• ε threshold to early stop the algorithm;

• N the maximum number of iterations.
3https://opencv.org/
4https://cmake.org/download/
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4.4 Compilation and Use

To compile the code with cmake:

• Create a build directory: mkdir build

• Move to the directory: cd build

• Precompile the project: cmake ..

• Then compile the project: make

This procedure is also detailed in the provided README.md. The compilation creates an executable
called AntColonyPith which can be used as follows:

./AntColonyPith --input=path_to_image [list_of_parameters]

./AntColonyPith --input=path_to_image --parameters=path_to_parameters.json

Some images are provided in the directory samples. Hereafter, several usage examples:
To run the program on harvest.jpeg with default parameters.

./AntColonyPith --input ../src/samples/harvest.jpeg

To run the program on harvest.jpeg with 10× 10 ants, α = 1.0 and without animation.

./AntColonyPith --input ../src/samples/harvest.jpeg --ant=10 --alpha=1.0 --animated=false

More details about the options are given in the command line helper.

./AntColonyPith --help

5 Experiments and Results

5.1 Dataset

We evaluated our method with two different imagesets of Douglas Fir (see Figure 1). The first one
(Besle) consists of 65 (4320× 3240 pixels) log end images of Douglas fir. The images were captured
just after harvesting in forest with a digital camera (Panasonic Model DMC-FZ45). The second one
(BBF) consists of 40 (4608× 3456 pixels) log end images of Douglas fir. The images were captured
with a smartphone (Huawei Model ANE-LX1). Both datasets concern the same log ends. As we were
interested in ambient light variations, dirt or sawing marks, we captured images as raw as possible.
There are 11 logs, but each log has been taken several times (from 3 to 5 times) by slightly rotating
or moving the camera between each view. In average, a pixel stands for 0.191 mm, with a minimum
at 0.111mm and a maximum at 0.1982 mm. In our study, we considered that pith position is a
unique pixel even if from a biological point of view it may occupy a larger area. Ground truths, i.e.
the pith center position, have been manually assessed for the evaluation.
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5.2 Experiments

In our experiments, the ACO algorithm (Section 2) was processed twice. The first run was to coarsely
estimate the pith while the second run was for a precise pith estimation. For the preprocessing, we
split the image into 4× 4 sub-images and preprocessed (see Section 2.1) each sub-image. Then, the
pith detection is performed on the concatenation of these sub-images. We decided to proceed that
way because sawing marks may not have the same orientation on the whole log end. And they may
be less or more visible on some parts of the log end.

After retrieving the first pith estimation, the image was converted back to coordinates of the
original image. We selected a sub-image centered on it and we run again the algorithm (including
the preprocessing step but without subdivision). In practice, the sub-image for the second run was
of size 512× 512. Experiments were performed on an Intel Core i7 with 2,5 GHz and 16GB RAM.

To determine the best parameters’ values, we minimized over the whole BBF dataset the sum of
distances between ground truths and results. Then, we validated those values on the Besle dataset.
Table 1 shows the best parameters obtained for the preprocessing.

λ δ σ Band-pass
For both runs 0.875 0.4 6 H

3
< f < H

64

Table 1: Preprocessing parameters. H is the height of the Fourier spectrum.

Parameters for the ACO-based algorithms are shown in Table 1 and Table 2 (the values is the
same for both runs unless otherwise indicated).

Parameter K α β γ m n ω κ ε N

Values 4 2.0 1.0 0.07 5 (then 2) 3 8 0.8 2 (then 0.5) 50

Table 2: ACO parameter values for experiments.

One of the most important parameters is δ, the reduction factor of the image. It should be
mentioned that the proposed method relies on tree rings analysis, and the information between
tree rings is less important for the detection. Due to the high resolution of both imagesets, this
resizing step allows to reduce information between tree rings (without removing them) and also the
computation time. We found that a value of 0.4 is right for our two imagesets.

The number of ants K2 is crucial. It is a double-edged parameter, a large number of ants
could increase the algorithm convergence and precision but it will increase computation time (see
Section 3.2.1). Too few ants may lead to a wrong pith estimation. For images where the log end is
large or the tree rings are clearly visible we may choose a lower number. But an image where the log
end is small or the tree rings less visible would require a higher number of ants.

Two other parameters have been introduced to address our problem. The parameter m helps to
reduce the computation time. We set a higher value of m for the first run as we wanted to have a fast
and coarsely pith estimation and a lower value for the second run to improve accuracy. The other
parameter is n. A low value of n would lead to fewer deposited pheromones and thus convergence
would require more iterations. One would have to drastically increase the number of ants to make
up for the lower value of n.

Tables 3 and 4 illustrate the method on a given image with the log end located far from the image
center, in the top left quadrant of the image. For the first run, the algorithms early stopped at the
30th iteration and few iterations were enough to have a good estimation. Around the 20th, a region
where the pith could be located can be observed. The second run takes 10 to 20 iterations to give
stable results. The algorithms reached the maximum number of iterations.
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Iterations Ants positions Pheromone matrix τ

1

2

10

20

30

Table 3: ACO algorithm for pith estimation. Results obtained at several iterations during the first run. In green cross ants
positions, in red circle pith according to τ (t). On the right column the pheromone matrix τ .
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Iterations Ants positions Pheromone matrix τ

1

2

10

50

Table 4: ACO algorithm for pith estimation. Results obtained at several iterations during the second run. In green cross
ants positions, in red circle pith according to τ (t). On the right column the pheromone matrix τ .
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5.3 Results

Although no method in the literature has been designed to operate in the experimental conditions
described in the previous section, we have compared our results with [12],[17] and [11] on our datasets.

Kurdthongmee et al.,[12] divide the image into blocks and use Histogram of oriented Gradient
(HoG) for the orientation estimate. Then, for each block, they accumulate a line according to the
orientation with highest count of the histogram. Once the accumulation is finished, the pith is
assumed to be the point with the highest accumulation.

However, depending on where the block is located in the image certain orientations cannot be
selected. For instance, if the block is in the upper left, then orientations π

4
, 5π

3
cannot be accumulated.

We implemented the algorithm of Kurdthongmee et al.,[12] and computed optimized parameters
with a subregion of size 24× 24 pixels and a quantization factor of 12.

We also compared with Schraml and Uhl algorithm [17] using optimized parameters for our
datasets. The method consists in dividing the image into blocks (which may overlap) and using
Fourier analysis for the orientation estimate. Then it accumulates for each block a line according to
the orientation estimate.

For the comparison with the DNN [11], we have performed a twofold cross-validation. For each
imageset, half of the images have been used for the training and the other half for the validation. Two
models were trained for each imageset by inverting the training and the validation sets. Ground truths
consisted of a square of 300×300 pixels with the pith position at the center. As we have few images,
data augmentation has been applied on-the-flight (i.e. each time each image was transformed before
passing through the DNN). The transformations related to data augmentation are shift (vertical and
horizontal), shear and zoom. The DNN hyperparameters are the same as in [11], only the input size
has been modified, being 576× 432 for both imagesets. The ratio is kept for each imageset and the
ground truth is also resized according to that. The DNN returns a box with a probability of finding a
pith on it. The predicted pith is the center of the box with the highest probability. To compare each
method, we have aggregated all the predictions from the trained models (which gives us predictions
for all images) and we have computed scores on this aggregation.

Table 5 presents a statistical analysis of the three algorithms on our datasets. The deep learning
method is the fastest. The drawbacks are the learning time and the need to create huge datasets
with ground truths. Our method is on average 5 times faster than [17] and can be easily parallelized.
We can observe that both our method and [17] are more accurate than [11, 12]. The results from [11]
are worse on the BBF imageset, this may be due to the small number of images in it.

Besle Mean StDev Min Max Time (ms)

Schraml and Uhl [17] 2.29 0.98 0.39 4.96 8344
Kurdthongmee et al., [12] 25.06 21.23 2.15 92.44 667
YOLOv3 [11] 2.88 1.67 0.87 7.68 138
Our method 2.34 1.02 0.46 5.04 910

BBF Mean StDev Min Max Time (ms)

Schraml and Uhl [17] 2.39 1.48 0.49 7.59 8660
Kurdthongmee et al., [12] 38.38 38.91 3.14 232.74 721
YOLOv3 [11] 12.69 53.55 0.50 341.92 186
Our method 2.26 1.32 0.44 4.63 1055

Table 5: Average, standard deviation, minimum and maximum between ground truths and estimated piths by our method
and methods [17, 12, 11] (in mm) and average time to process one image (in ms).

Figure 8 presents boxplots for our method, [17] and [11] to better illustrate the differences between
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(a) Boxplot for Besle dataset (b) Boxplot for BBF dataset

Figure 8: Boxplots of distance between ground truths and pith estimation (in mm) for Schraml and Uhl [17], the DNN
(YoloV3) [11] and our method.

them. We excluded [12] since their results are less accurate than the three others. For the Besle
imageset, our method is a little less accurate than [17].The DNN [11] is even a little less accurate and
presents one outlier (7.61 mm). The first quartile and third quartile are higher than for our method
and [17]. For the BBF imageset, [17] has one outlier (7.60 mm) and [11] has four outliers above 10
mm. But apart from them, DNN is close to both our results and the results of [17].

In Figure 9, two images of cross-sections are shown. The image on the left is the one where our
method produces the highest error (5.04 mm). For this image the error of [11] is 7.16 mm and the
error of [17] is 4.25 mm. The result of our method is acceptable even if it finds the pith slightly
outside the first tree ring. The example on the right illustrates a mistaken detection by the DNN.
This is due to the fact that the DNN may detect different piths on the image, and the final position
reported could be on the wrong section. The error of [17] is 5.50 mm and our error is 4.21 mm. The
parameter γ can help to remove pith estimations for small log ends. Indeed, small log ends would
have less pheromones, then a higher value for γ will easily remove these unwanted pheromones.

In addition, we applied our algorithm on other images. Figure 10 shows these images and esti-
mated piths. The method may fail if the tree rings are less visible (Figure 10a). We can observe
that brightness does not modify pith estimations (Figure 10b–10c). Finally, our method works well
on CT-images (Figure 10d).

6 Conclusion

In this paper, we proposed a method to estimate pith location on RGB images based on an ACO
algorithm. The raw images were processed directly with no prior segmentation nor cropping. To the
best of our knowledge, no method has been developed in such conditions. Despite this, we compared
our method with other algorithms. Experiments were performed on two datasets of log end images
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Figure 9: Two examples where the methods failed to be below 5mm from the ground truth. The ground truth is the white
cross, results obtained by DNN [11] is the green one, Schraml and Uhl [17] is the blue one, and our method is the red one.

(a) (b) (c) (d)

Figure 10: Examples of wood cross-section. Pith estimations by our method are indicated by red crosses.

of Douglas fir. The results showed a very accurate estimation. Our method is as accurate as other
methods although we did not make any assumptions on the image. Furthermore, results showed a
computational time low enough to be used in sawmill environment or in forest (with smartphones).

Processing other wood species in which tree rings are less visible is under investigation. For
reducing computation time of the algorithm, parallelism should be considered in future work.
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