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We first explain how we deduce from Loewenberg’s publications the parameters describing the
force on cylinders with large aspect ratios. We give the parameters necessary to calculate the motion
of the two pendulums used in our experiments. We calculate the connection between the damping

time constant and the friction force constant K
′
, taking into account that the pendulum motion is a

rotation around a point and not a translation. We collect the measured values of the damping time
constant as a function of the air pressure in the vacuum vessel. The damping time constant has been
measured at a very low pressure for both pendulums and we explain why these measurements give
an accurate value of the non-hydrodynamic damping time constant. Finally, we reanalyze a series of
published measurements of the friction force on cylinders in unsteady motion and we extract from
these measurements the (apparent) validity domain of Stokes’s result in the plane of Stokes and
Reynolds numbers.

Values of Loewenberg parameters for finite cylinders
with a large aspect ratio

In order to calculate the friction force on a cylinder
oscillating perpendicularly to its symmetry axis, we need
the steady drag coefficient R0

⊥ (φ), from which is deduced

the unsteady drag coefficient B0
⊥ =

(
R0
⊥ (φ)

)2
/ (6π), and

the Basset coefficient B∞⊥ (φ) as functions of the aspect
ratio φ = L/ (2R), where L is the cylinder length and R
its radius. We use the results published in two papers
by Loewenberg for long cylinders: in a first paper [1],
numerical results are plotted in figure 1 and asymptotic
expressions, valid in the limit φ→∞, are given in table
I while numerical values for φ = 1, 2, 5, 10 are given in
table I of the second paper [2]. In our experiments, the
aspect ratio of the two cylinders are φ = 13.3 and 52. so
that we need expressions for R0

⊥ (φ) and B∞⊥ (φ) in the
range φ = 10− 60.

Panel (f) of figure 1 of reference [1] presents a plot of
R0
⊥ (φ) /φ. The axis legend is φR0

⊥ (φ) but this is an error
as verified by the value for φ = 10 given in reference [2].
We have measured the values of R0

⊥ (φ) /φ for φ = 10−60
on an expanded image of panel (f). In this range, we have
found that R0

⊥ (φ) = (1.039± 0.010) × R0,asy
⊥ (φ) where

R0,asy
⊥ is its asymptotic expression given by

R0,asy
⊥ (φ)

4πφ
=

2 + 0.614/ ln (2φ)
1
2 + ln (2φ)

+
0.238

(ln (2φ))
3 (1)

The ratio R0
⊥ (φ) /R0,asy

⊥ (φ) decreases slowly when φ in-
creases but, as the variation, of the order of ±1%, is

comparable to the accuracy of Loewenberg’s calculations
and to the error done in our measurements on his figure
1, we have not taken it into account.

Panel (h) of this figure 1 presents a plot of B∞⊥ (φ) /φ2

which decreases rapidly when φ is large: in the range
φ = 10 − 60, it is impossible to extract from this plot
the value of this quantity with an accuracy better than
±10%. We have used as a starting point the asymptotic
expression B∞⊥ (φ) / (4πφ) = 2 when φ → ∞, given in
table I of Loewenberg’s first paper [1]. We have then
used the numerical values for φ = 2, 5 and 10 given
in Loewenberg’s second paper [2] to fit the ratio of the
published values divided by this asymptotic expression.
A reasonably good fit is given by

B∞⊥ (φ)

4πφ
= 2 +

0.371

φ3/2
(2)

We have collected in table I the values of r0⊥ =

R0
⊥/ (4πφ), b0⊥ = (2φ/3)

(
r0⊥ (φ)

)2
and b∞⊥ =

B∞⊥ (φ) / (4πφ) for the two pendulums.

TABLE I. Values of r0⊥ , b0⊥ and b∞⊥ deduced from Loewen-
berg’s data for cylindrical rods.

Cylinder radius R ≈ 19 mm R ≈ 5 mm

Aspect ratio φ 13.3 52.

r0⊥ 0.609 0.433

b0⊥ 3.27 6.51

b∞⊥ 2.008 2.001



2

Description of the pendulums and calculation of
their dynamical parameters

The pendulum bodies are made of an aluminium alloy
2017A, with a mass per unit volume ρp ≈ 2790 kg/m3.
For pendulum 1, the body is a hollow cylinder with an
internal radius Rint ≈ 16 mm and plugs at both ends
while, for pendulum 2, the body is a massive cylinder
with no holes.

Because of the presence of plugs at both ends, pendu-
lum 1 cannot be simply considered as a hollow cylinder.
The top plug is a 16mm-radius 11mm-long cylinder ex-
actly inserted in the main cylinder with a 5mm-radius
10mm-long cylinder protruding at the top and serving to
clamp the spring. The top plug is treated as two objects
in the following calculation, object 1 for the 5mm-radius
10mm-long cylinder and object 2 for the 16mm-radius
11mm-long cylinder. The main cylinder (length 503.6
mm, Rint ≈ 16 mm and R = 19.0±0.05 mm) is object 3.
The bottom plug is a 16 mm-radius 12mm-long cylinder
with a ≈ 4 mm-diameter hole is object 4 and the Nd-
FeB magnet (a 2 × 3 × 10mm3 parallelepiped) which is
inserted in the ≈ 4mm-diameter hole is object 5. Table
II collects the distances zGi− zD of the center of mass of
each object and its mass.

TABLE II. For each object making the body of pendulum 1,
we give the zGi − zD in mm and its mass mi in g.

Object zGi − zD mi

1 5.0 2.20

2 15.5 22.3

3 261.9 464.4

4 507.6 26.9

5 507.6 0.45

Pendulum 2 is almost exactly cylindrical but we have
taken into account the small differences with respect to
a cylinder in order to verify that these differences have a
negligible effect. We treat as object 1 the 10 mm long top
part of the cylinder split in two parts along a diameter
connected by a 3 mm diameter screw. The rest of the
cylinder is treated as object 2. The NdFeB magnet (a
2 × 3 × 10mm3 parallelepiped) inserted in a ≈ 4mm-
diameter hole at the bottom of the cylinder is object 3.
Table III collects the distances zGi − zD of the center of
mass of each object and its mass.

TABLE III. For each object part of the body of pendulum 2,
we give the distance zGi − zD in mm and its mass mi in g.

Object i zGi − zD mi

1 5.0 2.40

2 266.0 112.0

3 517.0 0.45
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FIG. 1. Schematic drawing of the pendulum (not to scale).
The spring and the cylindrical body are represented in two
positions. The rest position, θ = 0, is used to calculate the
moment of inertia for rotation around C and the position
with θ 6= 0 exhibits the shape of the spring and the center
of rotation C of the pendulum body. O is the upper end of
the spring where it is clamped in the support and D its lower
end, where it is clamped in the pendulum body, while G is
the center of mass of the pendulum body. The x-axis, the
z-axis and the oscillation angle θ are represented. The angle
θ has been grossly exaggerated.

Using these values, we deduce the distance DG of the
center of mass of the pendulum body to point D, the
moment of inertia IG for rotation around G. We need
the values of these parameters to apply the theory of
a spring suspended pendulum [4] and we also need the
value of the product EIs of the suspension spring (E is
the Young’s modulus of the spring material and Is is the
second moment of the area of its cross section). The two
pendulums are suspended by the same spring, a 100 mm-
long brass foil with a thickness c = 0.100±0.01 mm and a
width d = 10.0 mm. This foil is clamped at both ends, at
its top O in a supporting piece bolted in the top flange of
the vacuum vessel and at its bottom D in the pendulum
body. The foil free length is 80 mm. We have measured
the product EIs for the foil by measuring its flexion when
a force is applied at its end and we have found EIs =
(4.0± 0.5) × 10−5 N.m2. Then using the theory of a
spring suspended pendulum [4], we calculate the distance
L1 = CD from the rotation center C to D (see figure 1)
and finally the moment of inertia IC for rotation around
C. We have verified that the uncertainty on EIs has a
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negligible effect on the value of L1 = CD (modification
smaller than 0.1 mm). We also calculate the pendulum
oscillation frequency ωth/(2π) which is compared to its
measured value ωexp/(2π). All the parameters describing
the two pendulums are listed in table IV.

TABLE IV. For the two pendulums, this table gives the mea-
sured values of the diameter 2R, the length L of the pendulum
cylindrical body, the aspect ratio φ = L/(2R), the distance
DG from the clamping point D of the spring at the top of the
pendulum body to its center of mass G, the mass m, the cal-
culated moment of inertia IG for rotation around the center
of mass G of the pendulum body, the calculated moment of
inertia IC for rotation around the rotation center, the calcu-
lated value of the length L1 = CD, the measured pendulum
frequency ωexp/(2π) and its calculated value ωth/(2π), finally
the pendulum period T .

Quantity pendulum 1 pendulum 2

2R (mm) 38.0± 0.1 9.97± 0.01

L (mm) 514.0 522.0

φ = L/(2R) 13.3 52.

DG (mm) 263.1 260.4

M (g) 516.25 114.85

103IG (kg.m2) 13.04 2.659

103IC (kg.m2) 66.95 14.37

L1 = CD (mm) 60.4 58.9

ωexp/(2π) (Hz) 0.768 0.786

ωth/(2π) (Hz) 0.770 0.782

T (s) 1.302 1.272

Connection between the damping time constant and

the friction force constant K
′

In the main text, we have described the pendulum mo-
tion by a mass-spring-damper system, because of its sim-
plicity. The exact description takes into account the fact
that the pendulum motion is not a translation but a ro-
tation around point C (see figure 1) with an angular am-
plitude θ(t) following the differential equation

IC
d2θ

dt2
= −kθ + Γh + Γnh. (3)

IC is the moment of inertia of the pendulum calculated
for a rotation around C. −kθ is the torque due to the
gravity and to the spring. Γh and Γnh are the torques of
the hydrodynamic and non-hydrodynamic forces.

If we assume that the pendulum body is a cylin-
der of internal radius Rint and external radius R, of
length L with a mass per unit volume ρp, its mass is
M = πρp

(
R2 −R2

int

)
L and its moment of inertia IC

is given by the following integral written in cylindrical
coordinates r, ϕ, z

IC =

∫ L2

L1

dz

∫ R

Rint

rdr

∫ 2π

0

dϕρp
(
z2 + r2 cos2 ϕ

)
, (4)

where, in order to simplify the results, we have noted
L2 = L1 + L the distance from C to the bottom of the
cylinder

IC = πρp

[(
R2 −R2

int

) L3
2 − L3

1

3
+
R4 −R4

int

4
(L)

]
= M

[
L3
2 − L3

1

3L
+
R2 +R2

int

4

]
≈ML3

2 − L3
1

3L
. (5)

In the approximate result, the neglected term is a frac-
tion of the order of (R/L)2 of the main term and this
approximation is excellent for both pendulums.

The torques Γh and Γnh are given by

Γh =

∫ L2

L1

dfh

dz
zdz (6)

Γnh =

∫ L2

L1

dfnh

dz
zdz (7)

where dfh/dz is equal to

dfh

dz
=
fh

L
= −2πη

[
K ′

dx

dt
+
K

ω

d2x

dt2

]
. (8)

The non-hydrodynamic force dfnh/dz is taken equal to

dfnh

dz
=
fnh

L
≡ −ηnh dx

dt
, (9)

which defines the parameter ηnh. The local velocity and
acceleration are expressed as a function of the first and
second derivatives of θ by dx/dt = zdθ/dt and d2x/dt2 =
zd2θ/dt2

Γh = −2πη

[
K

′ dθ

dt
+
K

ω

d2θ

dt2

] ∫ L2

L1

z2dz (10)

Γnh = −ηnh dθ
dt

∫ L2

L1

z2dz (11)

As
∫ L2

L1
z2dz =

(
L3
2 − L3

1

)
/3, eq. (3) becomes

(
IC + IhC

) d2θ
dt2

+ (2πηK ′ + ηnh)
L3
2 − L3

1

3

dθ

dt
+ kθ = 0 ,

IC = M
L3
2 − L3

1

3L
,

IhC = πρR2L

[
2mA
⊥ + b∞⊥

δ

R

]
L3
2 − L3

1

3
(12)

Because the air mass per unit volume ρ is in factor, the
moment of inertia IhC decreases when the air pressure
decreases (δ increases but only like 1/

√
ρ). For the largest

pressure used in our experiments P ≈ 1000 mbar, δ < R
and IhC is dominated by the term proportional to mA

⊥. As
mA
⊥ ≈ 0.5, the ratio IhC/IC is approximately equal to

IhC
IC
≈ ρ

ρp
× R2

R2 −R2
int

=
Mh

M
(13)
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where Mh = πρR2L is the added mass. At the pressure
P ≈ 1000 mbar, this ratio is equal to Mh/M ≈ 1.2×10−3

for the R ≈ 19 mm-pendulum (for which Rint ≈ 16 mm)
and Mh/M ≈ 0.5 × 10−3 for the R ≈ 5 mm-pendulum
(which is a solid cylinder i.e. Rint = 0 mm). From now
on, we will neglect IhC . The solution of equation (12) is

θ(t) = θmax(t) sin (ωt)

with θmax(t) = θmax(0) exp (−t/τ) , (14)

with ω ≈
√
k/IC . The damping time constant τ is given

by

1

τ
=

1

τh
+

1

τnh
(15)

1

τh
=
πηK ′

IC

L3
2 − L3

1

3
(16)

1

τnh
=
ηnh

2IC

L3
2 − L3

1

3
(17)

We explain below how we measure the non-hydrodynamic
damping time constant τnh. If we replace IC by its value
(5, the relation between τh and ηK ′ can be simplified

1

τh
=

ηK ′

ρp (R2 −R2
int)

. (18)

Then, using eq. (15), we relate ηK ′ to the measured
value τexp of the damping time constant τ

ηK ′ = ρp
(
R2 −R2

int

)( 1

τexp
− 1

τnh

)
=
M

πL

(
1

τexp
− 1

τnh

)
(19)

which is the result given in our paper (equation 26). In
the case of pendulum 1, which is a hollow cylinder with
two plugs, the value of IC given by eq. (5) is not very
accurate. We rather use eq. (16) with the moment of
inertia IC calculated by summing the contributions of
the various parts of the pendulum body. The relation
between ηK ′ and the measured damping time constant
τexp then becomes

ηK ′ =
3IC

π (L3
2 − L3

1)
×
(

1

τexp
− 1

τnh

)
(20)

which is the result given in our paper (equation 28).

Measurement of the non-hydrodynamic damping
time constant

In order to measure the non-hydrodynamic damping
time constant, we measure the damping time constant at
a very low pressure. Here, we prove that with a pressure
P < 10−5 mbar, the damping effect due to the gas is
negligible with respect to the non-hydrodynamic damp-
ing effects.

Cagnoli et al. [3] give an equation relating the resid-
ual value of the damping time constant τh to the gas
pressure P , in the so-called molecular regime, when the
mean free path of the gas molecule is larger than the size
of the vacuum tank. Although this equation has been
calculated for a pendulum shape different from the one
of our pendulums, we may use it to get a estimate of τh
in the molecular reqime. Expressed with our notations,
this equation is

τh =
8M

2RLP

√
πkBT

8mmol
(21)

where the square root is the mean velocity of the gas
molecule, kB being the Boltzmann constant and mmol

the molecular mass. This velocity is ≈ 180 m/s for air
at the set-up temperature T ≈ 295K. With R, L and m
given in table IV and a pressure P = 10−5 mbar = 10−3

Pa, we find τh ≈ 4×107 s for pendulum 1 and τh ≈ 3×107

s for pendulum 2.
The damping time constant measured with a pressure

smaller than 10−5 mbar is τexp = (1.99± 0.1) × 105 s
for the pendulum 1 and τexp = (2.01± 0.08) × 105 s for
pendulum 2. As our estimated value τh is more than 100-
times larger than τexp in these very low pressure experi-
ments, these experiments give an accurate measurement
of τnh ≈ (2± 0.1) × 105 s for both pendulums. We use
this value to extract τh from the values of τexp listed in
tables V and VI. As τnh is larger than ∼ 40 τexp in all
our experiments, the difference between τexp and τh is
very small, at most 2.5% and the 5% uncertainty on τnh
has a negligible effect on the uncertainty on τh.

Measured values of the damping time constants τexp

and of τh.

The damping time constant τexp of the two pendulums
have been measured as a function of the pressure P in
mbar. Their values are collected in tables V and VI which
also give the the hydrodynamic damping time constant
τh given by

1

τh
=

1

τexp
− 1

τnh
(22)

deduced from eq. (26) of our main text and using τnh =
2× 105 s.

Values of the measured values K′exp and comparison
to the theoretical values

In this section we give the measured values of K ′exp

deduced from the hydrodynamic damping time constant
τh and we compare these measurements to Stokes’ K ′

value and to the finite cylinder K ′ value given by eq.
(12) of our paper. The uncertainty on the measured value
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TABLE V. For the experiments with the R ≈ 19 mm pen-
dulum, this table collects the values of the pressure P , of the
damping time constant τexp and of the hydrodynamic damp-
ing time constant τh.

P (mbar) τexp (s) τh (s)

1036.8 1129± 23 1136± 23

843.5 1234± 25 1242± 25

664.9 1332± 27 1341± 27

506.1 1649± 33 1663± 34

371.9 1822± 36 1839± 37

258.1 1996± 40 2017± 41

166.2 2426± 49 2457± 50

111.6 2908± 58 2953± 59

52.3 3977± 80 4062± 82

25.7 5124± 103 5266± 105

TABLE VI. For the experiments with the R ≈ 5 mm pendu-
lum, this table collects the values of the pressure P , of the
damping time constant τexp and of the hydrodynamic damp-
ing time constant τh.

P (mbar) τexp (s) τh (s)

1033.4 775± 16 778± 16

641.1 942± 19 947± 19

338.0 1199± 24 1206± 24

131.0 1661± 33 1675± 35

20.2 3007± 60 3053± 61

9.75 3485± 70 3546± 71

K ′exp is estimated near 3%, 2% due to the uncertainty
on the measurement of τh and 1% due to uncertainty on
the value of the viscosity η (see the main paper).

TABLE VII. For the R ≈ 19 mm pendulum, this table collects
the values of the pressure P , of viscous penetration depth δ,
of the measured value K′exp and compares it to Stokes’ K′

value and to the finite cylinder K′ value.

P (mbar) δ (mm) K′exp Stokes K′ finite cylinder K′

1036.8 2.512 17.25 16.11 16.74

843.5 2.785 15.76 14.62 15.25

664.9 3.137 14.58 13.09 13.70

506.1 3.597 11.75 11.54 12.15

371.9 4.194 10.63 10.03 10.62

258.1 5.035 9.68 8.52 9.08

166.2 6.27 7.95 7.02 7.56

111.6 7.66 6.61 5.92 6.44

52.3 11.19 4.80 4.33 4.80

25.7 15.96 3.71 3.29 3.71

TABLE VIII. For the R ≈ 5 mm pendulum, this table collects
the values of the pressure P , of viscous penetration depth δ,
of the measured value K′exp and compares it to the measured
value K′exp and compares it to Stokes’ K′ value and to the
finite cylinder K′ value.

P (mbar) δ (mm) K′exp Stokes K′ finite cylinder K′

1033.4 2.49 4.88 4.95 5.39

641.1 3.16 4.01 4.09 4.52

338.0 4.35 3.15 3.20 3.63

131.0 6.99 2.27 2.29 2.71

20.2 17.8 1.24 1.33 1.66

9.75 25.6 1.07 1.12 1.39

Discussion of previous experiments

The experiments discussed here have been chosen be-
cause they give information on the validity domain of
Stokes’ results for cylinders as a function of the Reynolds
and Stokes numbers.

The experiments of Martin [5]

Martin [5] has studied the damping of various strings
oscillating in water as well in other liquids. We use here
only the results of his figure 18 which presents the inverse
of the logarithmic decrement noted ϑ as a function of the
square root of the oscillation frequency. The experiments
were made with three steel strings oscillating in pure wa-
ter at 18◦C. With our notations, ϑ = 2π/ (ωτ) where
ω is the oscillation angular frequency and τ the damp-
ing time constant. Using Stokes’ result, the logarithmic
decrement is given by

ϑ =
2πη

ρstringR2ω
×K ′, (23)

where ρstring is the density of the string material. Be-
cause the string radius R � δ, we keep only the leading
term of the expression K ′ given by eq. (3) of our paper

ϑ ≈ 4πη

ρstringRδω
=

2π

ρstringR

√
2ηρfluid

ω
. (24)

where δ has been replaced by its value in the last form.
The two predictions of this equation were verified by Mar-
tin, namely that 1/ϑ = C

√
ω and that C ∝ 1/R.

Table IX collects the information on these experiments.
Martin has measured the logarithmic decrement for var-
ious frequencies in the range 250-1600 Hz. Using the
values η = 1.061× 10−3 Pa.s and ρfluid = 998 kg/m3 for
pure water at 18◦C, we have verified his results are in
very good agreement with Stokes’ theory. The values of
δ are δ = 3.67×10−2 mm for a frequency equal to 250 Hz
and δ = 1.45 × 10−2 mm for a frequency equal to 1600
Hz. Following figure 5 of Martin’s paper, the maximum
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oscillation amplitude (corresponding to the middle of the
string assuming that the string oscillation corresponds to
its lowest resonance) is 0.054 mm and we use this ampli-
tude to calculate the Reynolds number Re. As Re in-
creases proportionally to the frequency, we evaluate St
and Re for the 1600 Hz frequency. Martin’s experiments
are in the validity range of Stokes’ result but possibly
not at its upper limit: we conclude that the boundary of
the validity domain is for a Reynolds number verifying
Remax > 7.4

√
St for 400 < St < 3100.

TABLE IX. Experiments of Martin: for each string oscillating
at a 1600 Hz frequency, we give its radius R, an approximate
value of the aspect ratio φ = L/(2R) (the exact value of the
length L is not given in Martin’s paper but a table indicates
that this length is between 12.5 and 40 cm; here we use L = 25
cm), the ratio R/δ, the Stokes number St = 4 (R/δ)2, the
Reynolds number Re, the values of the ratio x0/R = Re/St

and x0/δ = Re/
√

St.

R (mm) φ R/δ St Re x0/R x0/δ

0.15 830 10.3 424 152 0.36 7.4

0.255 500 17.6 1239 262 0.21 7.4

0.405 125 27.9 3113 414 0.13 7.4

The experiment of Williams and Hussey [6, 7]

In his thesis [6], Williams presents the results of 28
experiments corresponding to different values of the ratio
δ/R. A selection of 13 experiments has been published
[7]. For each of the selected experiments, the publication
gives the maximum oscillation amplitude for which the
force is a linear function of the amplitude. We discuss
here only the 13 selected experiments. The friction force
and the added inertia were measured and they were found
in good agreement with Stokes’ results. Various cylinders
were used with radii in the 1.59 − 6.35 mm range and
the length immersed in the fluid was varied from ∼ 20
to ∼ 100 mm, in order to correct for the end effects by
extrapolation. The aspect ratio φ was in the range 8−31.

Table X collects the values of R/δ, of the maximum
Reynolds number Remax, of the Stokes number St, from
which we have deduced x0max/R and x0max/δ. The
uncertainty on Remax is large, roughly ±25%, and the
fluctuations between experiments with similar values of
R/δ are considerable and irregular. The corresponding
points in the St-Re plane are near a line of slope 1,
Remax ≈ 0.75 St with 0.2 < St < 50.

The experiment of Stuart and Woodgate [8]

Stuart and Woodgate [8] describe an experiment mea-
suring the damping of the oscillation of a pendulum by
air friction force. The cylinder radius is 25.4 mm and its

TABLE X. Experiments of Williams and Hussey: for each
experiment, we give the ratio R/δ, the Stokes number St,
the critical Reynolds number Remax, the ratio x0max/R =
Remax/St and x0max/δ.

R/δ St Remax x0max/R x0max/δ

0.243 0.237 0.59± 0.10 2.52± 0.43 0.60

0.252 0.255 0.24± 0.06 0.99± 0.26 0.24

0.282 0.319 0.18± 0.04 0.58± 0.12 0.16

0.291 0.338 0.17± 0.04 0.54± 0.11 0.15

0.368 0.541 0.43± 0.11 0.79± 0.20 0.29

0.373 0.557 0.39± 0.08 0.70± 0.15 0.26

0.417 0.694 0.50± 0.10 0.70± 0.14 0.30

0.518 1.07 1.2± 0.4 1.09± 0.40 0.58

0.562 1.26 1.2± 0.3 0.97± 0.25 0.53

0.571 1.31 1.2± 0.2 0.95± 0.11 0.52

1.117 4.99 2.6± 0.7 0.54± 0.15 0.58

1.155 5.33 1.9± 0.8 0.37± 0.15 0.41

3.497 48.9 39± 6 0.73± 0.12 2.79

length L = 1219 mm, corresponding to an aspect ratio
φ = 24. The friction force is found to be independent
of the oscillation amplitude up to a 4 mrad amplitude
and the measured value, when the air pressure is close
to 1000 mbar, is in good agreement with Stokes theo-
retical result. Using the parameters of this experiment,
we have calculated the Stokes number St = 384 and the
maximum Reynolds number Remax = 68.5 correspond-
ing to the bottom of the pendulum. We deduce from
these values x0max/R = 0.18 and x0max/δ = 1.7.

The experiment of Berg et al. [9]

Berg et al. [9] have studied, by experiments and by
numerical calculations, the force exerted on a cylinder
as a function of x0/δ in the case R � δ. The experi-
ments were made with a viscosity meter made of an os-
cillating grid made of roughly cylindrical wires of radius
R ≈ 13.4 µm separated by a distance L = 847 µm, cor-
responding to an aspect ratio φ ≈ 32. The calculations
were done with infinite cylinders. The excellent sensitiv-
ity of this viscosity meter enables the comparison of the
force as a function of the amplitude x0 and of the oscilla-
tion frequency which means as a function of the viscous
penetration depth. This experiment gives a very precise
measurement of the dependence of the force with the os-
cillation amplitude x0 i.e. with the Reynolds number
Re = 4x0R/δ

2.

Figure 3 of this paper proves the measured force for a
very small oscillation amplitude x0 is in good agreement
with Stokes’s result, a 6% difference being attributed to
the imperfect knowledge of the wire linear mass density.
When x0 increases, the force is not a linear function of
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the amplitude x0 and these authors then define a complex
function C(x0/δ,R/δ) which measures the deviation from
linearity of the dependence of the force with x0. All the
results are expressed by the magnitude and the phase of
the function C(x0/δ,R/δ).

Figure 4 (its horizontal axis is mislabeled and its la-
bel should be x0/δ) shows the variations of the function
C(x0/δ,R/δ) with x0/δ: this variation is almost indepen-
dent of R/δ which decreases from δ = 171 µm for a 0.5
Hz oscillation frequency down to δ = 35 µm for a 12 Hz
oscillation frequency. Then figure 13 of this paper shows
the variations of C(x0/δ, 0), with experimental and nu-
merical results in excellent agreement. From this figure,
we deduce that the deviation from linearity is below 1%
if x0/δ < 0.6 (and below 10% if x0/δ < 2.24). This re-
sult is true over the studied range of R/δ value namely
0.08 < R/δ < 0.38 corresponding to the range of Stokes
number 0.024 < St < 0.58. In this range, the above dis-
cussion means that Stokes’ result is valid within 1% if
x0/δ < 0.6 i.e. if Re < Remax ≈ 1.2

√
St.
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