
HAL Id: hal-03442282
https://hal.science/hal-03442282v1

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damping of a pendulum: An experimental test of the
Stokesian unsteady friction force on a cylinder

Gilles Dolfo, Jacques Vigué, Daniel Lhuillier

To cite this version:
Gilles Dolfo, Jacques Vigué, Daniel Lhuillier. Damping of a pendulum: An experimental test of the
Stokesian unsteady friction force on a cylinder. Physical Review Fluids, 2021, 6 (10), pp.104101.
�10.1103/PhysRevFluids.6.104101�. �hal-03442282�

https://hal.science/hal-03442282v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW FLUIDS 6, 104101 (2021)

Damping of a pendulum: An experimental test of the Stokesian unsteady
friction force on a cylinder

G. Dolfo* and J. Vigué
Laboratoire Collisions Agrégats Réactivité–FERMI

Université de Toulouse–UPS and CNRS UMR 5589, 31062 Toulouse, France

D. Lhuillier
Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert,
4 place Jussieu, Boite 162, 75252 PARIS CEDEX 05, France

(Received 6 November 2020; accepted 5 October 2021; published 28 October 2021)

In 1851, Stokes calculated the force exerted by a viscous fluid on an infinite cylinder in
oscillating motion. Although the calculation was restricted to vanishingly small Reynolds
numbers Re, most of the experimental tests performed up to now have been made with
Re > 1. Here we present a series of experiments involving a cylindrical pendulum os-
cillating in air at different pressures and with Re < 1. We deduce the unsteady friction
force from the measurement of the damping time of the oscillations. We compare our
experimental results for the unsteady force (a) to Stokes’ predictions for an infinite cylinder
and (b) to predictions for finite-length cylinders, using an expression of the unsteady force
derived from the works of Lawrence and Weinbaum and Loewenberg. The agreement is
quite satisfactory and proves that macroscopic objects like a pendulum can be used as
probes of the Stokesian flow regime.

DOI: 10.1103/PhysRevFluids.6.104101

I. INTRODUCTION

In 1851 Stokes [1] calculated the force exerted by a viscous fluid on a sphere and on an infinite
cylinder, in steady as well as in oscillating motion. Concerning the sphere, his calculations were
successful for both kinds of motion. For the steady motion of the cylinder, however, Stokes faced a
difficulty which is now coined as the “Stokes paradox.” Despite that failure for steady flows, Stokes
succeeded in obtaining the unsteady force acting on an oscillating infinite cylinder. More recently,
a new branch of fluid dynamics has arisen—the study of suspensions of particles at low Reynolds
numbers. One of the challenges has been to model the force on oscillating particles. Lawrence
and Weinbaum (L&W) [2] proposed an expression of the unsteady force acting on spheroids while
Loewenberg [3,4] adapted the L&W expression to finite-length cylinders. A last question remains,
however: Can the unsteady force on an infinite cylinder be obtained from the unsteady force acting
on finite cylinders with higher and higher aspect ratios?

Several types of experiments have been used to measure the unsteady force on an oscillating
cylinder. Here are the papers we are aware of, without any claim for exhaustivity:

(1) Experiments with a torsion pendulum carrying two cylindrical rods immersed in a liquid. The
first experiments of this type were done in 1800 by Coulomb [5] and similar experiments were done
in 1886 by Tomlinson [6] and in 1972 by Williams and Hussey [7,8].
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TABLE I. This table synthesizes information concerning the experiments of Martin [12], of Stuart and
Woodgate [10], and of Williams and Hussey [7,8]. For each experiment, we give the fluid used, the cylinder
radius R in millimeters, the aspect ratio φ = L/(2R) (where L is the cylinder length), the oscillation frequency
ω/(2π ) in hertz, the values of the Stokes number defined by St ≡ 4R2/δ2, of the Reynolds number defined by
Re ≡ 2RρU0/η = 4x0R/δ2, and of the ratios x0/R and x0/δ [where δ is the viscous penetration depth defined
after Eq. (1)]. In the case of Martin’s experiments, we give only the values corresponding to the largest studied
frequency, the lowest frequency being 250 Hz

Author Martin Stuart Williams and Hussey

Fluid Water Air Various liquids
R 0.15 0.255 0.405 25.4 1.59–6.35
φ ∼830 ∼500 ∼310 24 ∼8 to ∼31
ω/(2π ) 1600 0.690 0.06–0.2
St 424 1259 3113 384 0.24–49.0
Re 152 262 414 68 0.17–39.0
x0/R 0.36 0.21 0.13 0.18 0.4–2.5
x0/δ 3.7 1.7 0.15–2.79

(2) Experiments with a gravity pendulum oscillating in air by Baily [9] in 1832 and by Stuart and
Woodgate [10] in 1955; the experiment described in the present paper belongs to this type.

(3) Experiments with vibrating strings by Laird [11] in 1898 and by Martin [12] in 1925.
(4) Berg et al. [13] have studied the friction force on an oscillating cylinder and its variations

with the oscillation amplitude, using experiments and numerical calculations.
We give more details on these experiments in the Supplemental Material [14]. Almost all of the

quoted experiments were operated with rather large values of the Reynolds number Re (cf. Table I)
and moderate to large values of the cylinder aspect ratio. Despite this, most of the authors claimed
a rather good agreement with Stokes predictions which were obtained for a vanishing Reynolds
number and an infinite cylinder. If one can admit that a very long cylinder behaves approximately
like an infinite one, the true role of the Reynolds number is more puzzling and this is the reason
why we strived to build an experiment operating with the smallest possible Re.

Our paper is organized as follows. At first we recall the results obtained by Stokes for an infinite
cylinder and, extending results by Lawrence and Weinbaum [2], we propose an expression of the
unsteady force acting on cylinders of high aspect ratios. Then we present our experiment and the
way we relate the damping time of a pendulum to the unsteady force exerted on it. We then present
the experimental results and compare them to the predictions for infinite and finite-length cylinders.
Finally, with consideration of the magnitude of the Stokes number, we will (tentatively) explain why
experimental results obtained with finite Reynolds numbers can agree with theoretical predictions
for vanishing Re.

II. THE UNSTEADY FORCE ON CYLINDERS AT Re = 0

In this section, we recall the result obtained by Stokes [1] for an infinite cylinder and the result
obtained by Lawrence and Weinbaum [2] and Loewenberg [3,4] for spheroids and finite cylinders.
Finally we propose for the unsteady force an expression that interpolates between finite and infinite
cylinders.

A. Transverse periodic motion of an infinite cylinder

An infinite cylinder of radius R oscillates in a fluid with a displacement x(t ) = x0 sin(ωt )
perpendicular to the cylinder axis. The force per unit length exerted by the fluid on the cylinder
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is given by [1]

dF Stokes

dl
= −2πη [K ′ U0 cos(ωt ) − KU0 sin(ωt )], (1)

where η is the fluid viscosity and U0 = ωx0. The two components of the force are of different
natures. The term in K , proportional to the acceleration, describes an increase of the cylinder inertia
due to the interaction with the fluid and it is called the added mass effect. In the case of a pendulum,
its consequence is a modification of its period but this term does not induce any damping effect. The
term in K ′ is proportional to the velocity and it describes the friction force which produces damping
of the pendulum oscillation. For an infinite cylinder both coefficients K and K ′ are functions of one
single variable which is the ratio R/δ where δ = √

2η/ρω is the viscous penetration depth and ρ

is the mass per unit volume of the fluid. Stokes obtained K and K ′ in the form of a development
in series for the two limiting cases of low frequencies (R/δ � 1) and high frequencies (R/δ � 1).
The first terms of these series are

K = π/2

[ln(R/δ)]2 + · · · , K ′ = − 2

ln(R/δ)
+ · · ·

if R/δ � 1, (2)

K =
(R

δ

)2

+ 2
R

δ
+ · · · , K ′ = 2

R

δ
+ 1 + · · · ,

if R/δ � 1. (3)

The complete (and compact) expressions for K and K ′ were obtained more than a century later
[15,16], in a complex-valued form

K − iK ′ =
(R

δ

)2

+ 2λ
K1(iλ)

K0(iλ)
, (4)

where λ = (1 − i)R/δ and Kn is the modified Bessel function of order n.
The (unexpected) logarithmic collapse (2) of the coefficients K and K ′ for very low frequencies

is presumably related to the so-called Stokes paradox observed for the steady motion of the infinite
cylinder. While these low-frequency results are questionable, the high-frequency limit (3) stands on
much firmer ground and is the starting point for expressions of K and K ′ which hold in a much
broader range of R/δ. For example, one can write for R/δ > 0.2

K ≈
(R

δ

)2

+ 2
R

δ
+ R/δ

8[(R/δ) + 0.340]2
,

K ′ ≈ 2
R

δ
+ 1 − R/δ

8[(R/δ) + 0.107]2
, (5)

with deviations less than 1% from the general result (4).

B. Transverse periodic motion of a finite cylinder

For prolate spheroids in transverse periodic motion Lawrence and Weinbaum [2] proposed a
general expression of the force, supposed to hold for all frequencies:

F

ηRU0
= −

[
R0

⊥ + B∞
⊥

R

δ
+ (B0

⊥ − B∞
⊥ )H

(R

δ

)]
cos(ωt )

+
[

2MA
⊥

R2

δ2
+ B∞

⊥
R

δ
+ (B0

⊥ − B∞
⊥ )G

(R

δ

)]
sin(ωt ). (6)
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The coefficients R0
⊥, B∞

⊥ , and MA
⊥ depict the steady drag, Basset and added-mass forces while B0

⊥ =
(R0

⊥)2/6π depicts the unsteady drag force at low frequency. These four coefficients are functions of
the aspect ratio of the spheroid, and the two interpolating functions H and G are defined as

H (x) = 2x2 + x

2x2 + 2x + 1
, G(x) = x

2x2 + 2x + 1
. (7)

The same general expression of the unsteady force was also adopted by Loewenberg [3,4] for
cylinders of finite length. It appeared that the L&W force gives satisfactory predictions for prolate
spheroids and cylinders of moderate aspect ratio (1 < φ < 10) but not for larger ones. The reason
is clearly the very large values of the unsteady drag coefficient B0

⊥(φ) for large aspect ratios which,
when using the L&W expression, leads to an overestimate of the force acting on elongated particles
at high frequencies. We would like to modify the L&W expression so as to obtain a force which
would hold for all aspect ratios and we focus on the case of cylinders of aspect ratio φ = L/(2R).
When this aspect ratio is very large, we notice that dF Stokes/dl = F/L = F/(2Rφ) so that one is
led to rewrite the Stokesian force (1) in a form similar to the L&W force (6)

F

ηRU0
= −4πφ[K ′ cos(ωt ) − K sin(ωt )] (8)

with K and K ′ now depending not only on (R/δ) but also on the aspect ratio φ. And to agree with
Stokes’ main result, we require that K and K ′ must tend to the nondiverging limit values (5) when
the aspect ratio increases to infinity. Is there a possible interpolation between the Stokesian unsteady
force for infinite aspect ratio and high frequencies and the L&W force which is known to hold for
small aspect ratios and all frequencies? We could obtain a satisfactory interpolation when writing

4πφK = 2MA
⊥

R2

δ2
+ B∞

⊥
R

δ
+ 4πφG

[
B0

⊥ − B∞
⊥

4πφ

R

δ

]
,

(9)

4πφK ′ = R0
⊥ + B∞

⊥
R

δ
+ 4πφH

[
B0

⊥ − B∞
⊥

4πφ

R

δ

]
, (10)

where G(x) and H (x) are the L&W interpolating functions defined in (7). The main difference is
that (B0

⊥ − B∞
⊥ )(R/δ) replaces (R/δ) as the argument of these interpolating functions. The main

consequence is that the force acting on elongated cylinders at high frequency has now the correct
order of magnitude and the Stokesian force will be obtained for an infinite aspect ratio. Since the
factor 4πφ is present everywhere, in what follows we rewrite the above expressions for K and K ′ as

K = 2mA
⊥

R2

δ2
+ b∞

⊥
R

δ
+ G

[
(b0

⊥ − b∞
⊥ )

R

δ

]
, (11)

K ′ = r0
⊥ + b∞

⊥
R

δ
+ H

[
(b0

⊥ − b∞
⊥ )

R

δ

]
, (12)

where (r0
⊥, b0

⊥, b∞
⊥ , mA

⊥) = (R0
⊥, B0

⊥, B∞
⊥ , MA

⊥)/(4πφ). Useful information concerning the depen-
dence of these coefficients on aspect ratio was obtained by Loewenberg [3,4]. For aspect ratios
φ > 10 (as in our experiments) the coefficients b∞

⊥ and mA
⊥ do not vary much as compared to their

value for an infinite cylinder [b∞
⊥ (∞) = 2 and mA

⊥(∞) = 0.5] since for φ > 10

2 < b∞
⊥ (φ) < 2.013, 0.468 < mA

⊥(φ) < 0.5 (13)

while the steady and unsteady drag coefficients for φ > 10 are [3,4]

r0
⊥(φ) = 2 + 0.614/ ln (2φ)

1
2 + ln (2φ)

+ 0.238

[ln (2φ)]3 , (14)
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FIG. 1. Schematic drawing of our setup, with the R ≈ 19 mm cylinder. The spring thickness, the oscillation
amplitude, and the size of the laser beam of the shadow detector have been grossly exaggerated in order to be
visible. The double arrow gives the length scale.

b0
⊥(φ) = 2φ

3
(r0

⊥)2. (15)

Note that the steady drag coefficient r0
⊥ slowly decreases to zero (like 1/ ln φ) when the aspect ratio

increases to infinity while the unsteady drag coefficient b0
⊥ increases to infinity like φ/(ln φ)2.

The results of our experiments will concern the high-frequency limit [now defined as (R/δ) �
1/(b0

⊥ − b∞
⊥ )] and, for future use, we write below the high-frequency asymptotic forms for K and

K ′:

K = 2mA
⊥(φ)

R2

δ2
+ b∞

⊥ (φ)
R

δ
, (16)

K ′ = r0
⊥(φ) + b∞

⊥ (φ)
R

δ
+ 1. (17)

Consequently for an infinite cylinder and high frequencies, K = (R/δ)2 + 2R/δ and K ′ = 2R/δ + 1
in conformity with (3). Note, however, that a difference exists with the more complete Stokesian
result (5). The last term of (5) is certainly a small correction in the high-frequency domain. However,
we could not find a plausible φ dependence for it and we will limit to (16) and (17) the comparison
between theory and experiment.

III. OUR EXPERIMENTS

A. Experimental setup

Our setup is very similar to the one devised by Stuart and Woodgate [10]: a pendulum made of
a long cylinder oscillates in a pressurized vessel and we measure the damping of its oscillations for
various air pressures. The decrease of the oscillation amplitude is measured by a shadow detector
with a submicrometer sensitivity. Figure 1 presents a schematic drawing of our setup. We have
used two pendulums, both being made of an aluminum alloy (2017A), with a length ∼500 mm. The
larger cylinder is hollow, with an external radius R ≈ 19 mm and an internal radius Rint ≈ 16 mm.
The smaller mass of a hollow rod reduces the damping time and the duration of an experiment. The
thinner cylinder is a rod of radius R ≈ 5 mm. These pendulums are suspended by a spring made of
a rectangular thin sheet of brass clamped, at its upper end, on the top flange of the pressurized tank
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and, at its lower end, on the pendulum. The dimensions, masses, and other parameters of the two
pendulums are collected in the Supplemental Material [14].

The pressurized vessel is a cylinder with a 125 mm internal radius and an 800 mm height. It is
fixed on a heavy optical table and connected by a flexible pipe to an Edwards T85 pumping station,
made of a dry primary pump and a turbo pump. The residual pressure P achieved after 24 h of
pumping is P < 10−5 mbar, measured by a Bayard-Alpert gauge. For the experiments, the pressure,
always larger than 9 mbar, is measured by a diaphragm gauge (Leybold Ceravac), with a ±0.2 mbar
uncertainty mainly due to a slow drift of the gauge zero.

The shadow detector has been previously described [17,18]: its deviation from linearity is smaller
than a few percent for a pendulum displacement x0 < 0.5 mm. The scale factor is ∼103 V/m and
the noise level ∼3 × 10−4 V/

√
Hz at the pendulum frequency, corresponding to a sensitivity limit

∼3 × 10−7 m/
√

Hz.

B. Data recording

In a first step we measure the pendulum resonant frequency, near 0.8 Hz, with a 1 mHz accuracy
using the Fourier transform function of a digital oscilloscope with a 200-s-long record. Then, at the
beginning of each measurement, the pendulum oscillation is excited by the force due to a magnetic
field gradient acting on a NdFeB magnet of dimensions 2 × 3 × 10 mm3 fixed at the bottom of the
pendulum. The field is produced by a coil located outside the nonmagnetic stainless-steel vessel
and the voltage applied to the coil oscillates at the measured resonant frequency. The amplitude
of the excitation voltage and the duration of the excitation are chosen to produce an oscillation
amplitude ≈0.5 mm. When this amplitude is reached, the voltage applied to the coil is suppressed
and the pendulum oscillates freely. For the experiments with the R ≈ 19 mm pendulum at a pressure
P > 600 mbar, the achieved oscillation amplitude was only 0.3–0.4 mm limited by the larger friction
force but, for all experiments, we use x0 = 0.5 mm to calculate the Reynolds number Re, and the
ratios x0/R and x0/δ.

We now describe our protocol for a series of experiments. We first pump down the pressurized
vessel to a pressure P < 10−5 mbar. Then, we let some air enter and we make a series of measure-
ments of the damping time at some controlled pressure. We then let some more air enter and we start
a new series of measurements at a different pressure, and so on. As the oscillation amplitude is very
small, it is perturbed if somebody touches the optical table. In order to avoid such perturbations,
all the experiments are done with nobody in the room. Immediately after the end of the excitation
period, the data recording starts. The shadow detector measures the pendulum position x(t ). Its
signal and the Ceravac gauge signal are digitized at 40 Hz by a PXI 16-bit digitizer. The process
then starts again until we get five to ten records for the same pressure.

IV. RELATION BETWEEN THE FRICTION FORCE AND THE DAMPING TIME CONSTANT

The pendulum motion

A pendulum suspended by a spring [19] has two modes of oscillation, which can be described as
harmonic oscillators in the limit of small amplitudes: a long-period mode, corresponding approx-
imately to the usual pendular motion and a short-period mode, corresponding approximately to a
rotation of the pendulum body around its center of mass. The present experiments are all made with
the long-period mode which can be described by a mass-spring system with a displacement x(t )
obeying the differential equation

M
d2x

dt2
+ ksx = f h(t ) + f nh(t ). (18)

M is the mass of the cylinder. For a hollow cylinder of internal radius Rint, of external radius R, and
length L, M = ρpπ (R2 − R2

int )L, where ρp is the mass per unit volume, and ks is the effective spring
constant, which is the sum of the contributions due to gravity and to the suspending spring itself. f h
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is the hydrodynamic force exerted by the ambient air on the cylinder of length L:

f h = −2πηL

[
K ′ dx

dt
+ K

ω

d2x

dt2

]
, (19)

while f nh collects all damping forces of nonhydrodynamic origin. Among the physical phenomena
that can contribute to f nh are (i) the anelastic effect in the suspension spring (this is a thermal effect
explained theoretically by Zener [20,21]); (ii) the recoil losses due to a deformation of the pendulum
support not in phase with the force exerted by the pendulum [22]; and (iii) the eddy currents induced
by the magnet carried by the pendulum in the conducting materials of the pressurized tank. We
assume that all these different phenomena can be described by a damping force proportional to the
velocity

f nh = −ζ nh dx

dt
. (20)

The resulting equation of motion is

(M + Mh)
d2x

dt2
+ (ζ h + ζ nh)

dx

dt
+ ksx = 0, (21)

Mh = ρ(πR2L)

(
K

δ2

R2

)
, ζ h = 2πηLK ′. (22)

Note that the relative importance of the added mass can be estimated by the ratio

Mh

M
= ρR2

ρp
(
R2 − R2

int

)
[

2mA
⊥(φ) + b∞

⊥ (φ)
δ

R

]
, (23)

where expression (16) for K was taken into account. For each of the two cylinders the right-hand
side is a function of the gas pressure (which acts on both ρ and δ) and for the domain of pressure that
we investigated, we checked that Mh/M < 1.2 × 10−3 for the R = 19 mm pendulum and Mh/M <

0.5 × 10−3 for the R = 5 mm one. The contribution of the added mass is thus negligible and Mh

will be neglected in what follows.
Our experiments give direct access to the amplitude a(t ) of the oscillating motion x(t ) =

a(t ) sin(ωt ). According to the above mass-spring equation, the amplitude decreases exponentially

a(t ) = a(0) exp(−t/τ ) (24)

with the damping time τ defined as

1

τ
= (ζ h + ζ nh)

2M
= 1

τ h
+ 1

τ nh
. (25)

Experiments at very low pressures P < 10−5 mbar have been made to measure the nonhydrody-
namic damping time. This is possible because these nonhydrodynamic effects are independent of
the gas density. For such low pressures, the mean free path is larger than the size of the pressurized
tank and, according to formulas found in Cagnoli et al. [22], the collision-induced damping time
is inversely proportional to the pressure. This damping time is of the order of τ h ≈ 3 × 107 s for
P = 10−5 mbar. This rarefied gas damping time is considerably larger than the experimental value
τ expt ≈ 2 × 105 s measured for P < 10−5 mbar. More details can be found in the Supplemental
Material [14]. As a consequence, we will assume that the nonhydrodynamic damping time is
τ nh = 2 × 105 s and we can calculate τ h by the following equation:

1

τ h
= 1

τ expt
− 1

τ nh
. (26)
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FIG. 2. Schematic drawing of the pendulum (not to scale). The spring and the cylindrical body are
represented in two positions. The rest position, θ = 0, is used to calculate the moment of inertia for rotation
around C and the position with θ �= 0 exhibits the shape of the spring and the center of rotation C of the
pendulum body. O is the upper end of the spring where it is clamped in the support and D its lower end, where
it is clamped in the pendulum body, while G is the center of mass of the pendulum body. The length L1 is
equal to CD. The x axis, the z axis, and the oscillation angle θ are represented. The angle θ has been grossly
exaggerated as, in our experiments, it never exceeds 1 mrad.

The product ηK ′ is then given as

ηK ′ = M

πL

1

τ h
, (27)

where M = ρpπ (R2 − R2
int )L.

It is clear that the true pendular motion is an angular oscillation around some center of rotation C
(see Fig. 2 ) and not a uniform oscillatory motion as described in (21). In the Supplemental Material
[14], we obtain the equation for the angular oscillation. The only new parameter is the distance L1

between the rotation center C and the top of the cylinder D and we find that K ′ is related to the
hydrodynamic damping time given by Eq. (26) by

ηK ′ = 3IC
π

[
(L + L1)3 − L3

1

] 1

τ h
, (28)

where IC is the moment of inertia of the pendulum, relative to the center of rotation C. The main
issue is the calculation of IC . When ρp is homogeneously distributed over the whole length of the
pendulum (this is the case of a solid or hollow cylinder), we find

3IC
(L + L1)3 − L3

1

= M

L

[
1 + 3

4

(
R2 + R2

int

)
L

(L + L1)3 − L3
1

]
,

which means that (27) and (28) differ only by a term less than 3R2/(2L2), hence less than 2 × 10−3

for the R ≈ 19 mm pendulum and less than 1.5 × 10−4 for the R ≈ 5 mm pendulum.
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TABLE II. For both pendulums, this table collects the values of the main parameters (mass M, cylinder
length L, distance L1 = CD, and moment of inertia IC) and of the quantity relating ηK ′ to 1/τ h, following
either Eq. (27) or Eq. (28).

Pendulum 1 2

M (g) 516.25 114.85
L (mm) 514.0 522.0
L1 (mm) 60.4 58.9
103IC (kg m2) 66.95 14.37
M/πL (kg/m) 0.3197 0.0700

3IC
π [(L+L1 )3−L3

1 ]
(kg/m) 0.3377 0.0701

A last difficulty subsists, however: the R ≈ 19 mm pendulum is not a simple hollow cylinder
because two small plugs, of external radius equal to the cylinder internal radius Rint ≈ 16 mm, are
corking the two extremities. Those cylindrical plugs are necessary for attaching the spring at the
top and the small magnet at the bottom. While it is easy to include their mass in M, it is harder to
calculate their influence on IC . This we do in the Supplemental Material [14], and Table II gives
the values of the quantity relating ηK ′ to 1/τ h: the value of this quantity deduced from Eq. (28) is
5.6% larger than the value given by Eq. (27). We have made a similar calculation for the R ≈ 5 mm
pendulum which deviates slightly from a perfect cylinder and the effect is very small: the ratio of
ηK ′ to 1/τ h increases by less than 0.2% when the deviations from a perfect cylinder are taken into
account (see Table II).

V. THE EXPERIMENTAL RESULTS AND THEIR ANALYSIS

A. Data treatment

The shadow detector signal V (t ) ∝ x(t ) is filtered by a sliding fast Fourier transform over 2048
data points corresponding to ≈51 s and we get the amplitude a(t ) as a function of the time t (Fig. 3).
It is easy to prove [18] that, in the case of an exponential decay, this filter does not modify the
damping time constant. However, the set-up residual vibrations excite the pendulum [23] so that, at
the end of the decay, a(t ) does not tend toward 0, as predicted by Eq. (24), but fluctuates with values
≈1 μm. The decay is exponential with a good accuracy from the initial amplitude a(0) ≈ 0.5 mm
down to a a(t ) ≈ 5 μm. We fit the logarithm of a(t ), using Eq. (24): this choice enhances the weight
of the data at large t but we must limit the t range so that the vibration-induced fluctuations of a(t )
do not increase the damping time. For each record, the statistical uncertainty on the fitted τ value
is of the order of 1 s but the dispersion over a set of similar records is larger: we use the average
of these individual measurements as the experimental value noted τ expt and, from the dispersion of
these individual measurements, we estimate that its uncertainty is equal to 2%. These values and
their uncertainties are collected in the Supplemental Material [14]: they cover the 800–3500 s range
for the R ≈ 5 mm pendulum and the 1100–5100 s range for the R ≈ 19 mm pendulum.

B. Uncertainty of the measurements of K ′

According to (28), to obtain the measured value K ′expt from τ expt we must know the air viscosity
η and to present K ′expt in the form K ′expt = a + b(R/δ) [as suggested by (3), (5), and (17)] we must
know the air mass per unit volume ρ because of its role in the viscous penetration depth. Both ρ and
η are functions of the pressure, temperature, and the water molar fraction xH2O. While we control
the pressure inside the pressurized tank, we have almost no control on the room temperature near
295 K and no control on the humidity of the ambient air. We just can say that a ±2 K temperature
variation (the maximum we observed during a series of experiments) leads to a ∓0.68% variation of
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FIG. 3. Semilogarithmic plot of the amplitude a(t ) in millimeters as a function of t in seconds: measure-
ments (solid red line) and their best fit (solid blue line). As shown by the good agreement of the fit with the
measured data, the amplitude is well an exponential function of time up to t ≈ 6.5 × 103 s, i.e., for about
5τ expt where the measured value of the damping time constant is τ expt ≈ 1334 s. Cylinder radius R ≈ 19 mm;
pressure P ≈ 665 mbar.

ρ and a ±0.53% variation of η [24]. And when xH2O increases from 0 to 0.033 (the saturation limit
at 298 K and P = 1000 mbar), η decreases by 0.4% [25] while ρ decreases by 1.3%. Given those
values, we estimate to about 1% the additional uncertainty on K ′ and we add this uncertainty to the
2% statistical uncertainty on τ expt. The relative uncertainty on δ is estimated to about 1% which is
smaller than the symbols used in Fig. 4.

VI. COMPARISON OF OUR EXPERIMENTAL RESULTS WITH THEORY

Figure 4 presents a plot of the measured K ′ as a function of R/δ for each of the two pendulums.
A large fraction of the domain of R/δ we have explored belongs to the high-frequency limit for
which prediction (17) holds. We used Loewenberg’s numerical data [3,4] for our two pendulums
and complete them with the Stokes result to give the expected values

K ′ = 2.008
R

δ
+ 1.609, φ = 13.3, (29)

K ′ = 2.001
R

δ
+ 1.433, φ = 52.0, (30)

K ′ = 2
R

δ
+ 1, φ = ∞ (Stokes).

Considering Fig. 4, it is clear that the φ = 13.3 (R ≈ 19 mm) pendulum gives results in agreement
with (29) but the φ = 52.0 (R ≈ 5 mm) pendulum gives results which are much closer to Stokes’
prediction than to (30).

It is possible that the steady drag coefficient r0
⊥(φ) decreases with the aspect ratio a little bit

faster than the logarithmic decrease suggested by Loewenberg in (14). And we remark that the more
precise Stokes prediction, as given in (5), predicts for φ = ∞ a coefficient K ′ a little bit smaller than
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FIG. 4. Plot of K ′ as a function of the ratio R/δ. The measured values K ′expt are represented by red squares.
The dashed blue curve is Stokes’ value given by Eq. (5) while the solid black curve represents the finite-cylinder
value given by Eq. (12) (these three values are listed in Tables VII and VIII of the Supplemental Material
[14]). Upper panel: data of the R ≈ 5 mm, φ = 52 pendulum; lower panel: data of the R ≈ 19 mm, φ = 13.3
pendulum.

1 + 2R/δ in the high-frequency limit. But we must say we could not find a crystal-clear explanation
for why the results for the φ = 52 pendulum are so close to what is expected for φ = ∞.

VII. CAN EXPERIMENTS AT FINITE Re AGREE WITH THEORY AT Re = 0?

Many experimental tests have concluded that the force exerted by the fluid on cylinders in
oscillating motion [7,8,10,12,13] is in agreement with Stokes’ prediction [with a relative uncertainty
of order ±(10 − 20)%, however] and this agreement extends up to Re ≈ 400. Since Stokes’ force
on an infinite oscillating cylinder was obtained for Re = 0, the experimental agreement is rather
puzzling and needs some comments. A first remark concerns the aspect ratio: it is clear that when
φ > 10, as was the case of all previous experiments, the predictions for finite-length cylinders
are close to those for an infinite cylinder [cf. Eq. (17) and the numerical values (29) and (30)]
above all when R/δ > 2. The second remark concerns the Reynolds number: the nondimensional
(incompressible) Navier-Stokes equation writes

St
∂u
∂t

+ Re(u · ∇)u = −∇p + ∇2u.
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FIG. 5. Position of our experiments as well as previous ones in the Re-St plane (the upper scale gives R/δ):
(i) the violet solid line represents the results of Berg et al. [13] as discussed in the Supplemental Material [14];
(ii) the red bullets represent the results of Williams and Hussey [8]; and (iii) the green + signs represent the
results of Martin [12] and the blue X represents the result of Stuart and Woodgate [10]. The green bullets,
connected by green lines, represent the initial and final values of the Reynolds number during our experiments.
Finally, the dashed gray line Re = St suggests that most of the previous experiments agreeing with the Stokes
predictions are far from satisfying condition (31).

One can expect the nonlinear force to have a negligible role as compared to the unsteady force when

Re � St. (31)

In other words, when an experiment satisfies the above condition, it can possibly check theoretical
predictions obtained for Re = 0. For an oscillating cylinder the most widely accepted nondimen-
sional numbers are

St ∝ ρωu

μu/R2
∝ R2

δ2
, Re ∝ ρu2/R

μu/R2
∝ R2

δ2

x0

R

so that condition (31) on the Reynolds number is transformed into a condition on the oscillation
amplitude

x0 � R. (32)

Some investigators [13] used the above definition of the Stokes number, yet with a different
definition of the Reynolds number. They assumed that the characteristic length of the inertial force
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was δ and not R. As a consequence Re ≈ St(x0/δ) and condition (31) implies

x0 � δ. (33)

Whatever is the correct condition on the oscillation amplitude, it remains that (31) must be fulfilled.
For that reason we localize ours as well as previous experiments in a (Re, St) frame represented in
Fig. 5 while the related x0/R or x0/δ values can be found in Table I. As a mere guide for the eye, we
also plotted in Fig. 5 the line Re = St. That all previous experiments could claim an agreement with
the Stokesian prediction suggests that Re < St can be used instead of the more stringent condition
(31). But it is also clear from Fig. 5 that our experiments are definitely those which were operated
with the smallest Re/St ratio, namely, Re/St < 0.1.

VIII. CONCLUSION

While many of the experiments on the unsteady forces in the Stokes regime were performed with
micrometer particles in a liquid [26,27], the present experiments suggest it is also possible to check
those forces with a macroscopic object, like a pendulum moving in a gas. Our experiments cover
wide ranges of the Reynolds and Stokes numbers, with 0.2 < St < 230.0 and Re/St < 0.1. The
main difficulty concerns the amplitude of the oscillations which must be very small as compared to
the pendulum radius. Thanks to the submicrometer sensitivity of the shadow detector used to record
the pendulum oscillation, our measurements prove that the damping is exponential and from the
damping relaxation time we have deduced the unsteady drag coefficient K ′. Our measurements with
the R ≈ 19 mm pendulum (aspect ratio φ = 13.3) are in agreement with the finite-length cylinder
theory for K ′ while our measurements with the R ≈ 5 mm pendulum (aspect ratio φ = 52.0) are
much closer to Stokes’ theory (φ = ∞) than to the finite-length cylinder theory. We could not find
any explanation for that unexpected behavior.

ACKNOWLEDGMENTS

We want to thank D. Castex, E. Panader, S. Faure, L. Polizzi, and W. Volondat for their
contributions to the experiment. We have benefited from very helpful discussions with P. Ern, M.
Nicolas, and R. F. Berg. We also thank our anonymous referees for their numerous questions and
suggestions which have helped us improve our paper. Financial support from CNRS INP, CNRS
MI DEFI, and Université P. Sabatier is gratefully acknowledged.

[1] G. G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions
of the Cambridge Philosophical Society Vol. IX, Part II, 8-106 (Cambridge University Press, Cambridge,
UK, 1851).

[2] C. J. Lawrence and S. Weinbaum, The unsteady force on a body at low Reynolds number; the axisym-
metric motion of a spheroid, J. Fluid Mech. 189, 463 (1988).

[3] M. Loewenberg, Stokes resistance, added mass, and Basset force for arbitrarily oriented, finite-length
cylinders, Phys. Fluids A 5, 765 (1993).

[4] M. Loewenberg, The unsteady Stokes resistance of arbitrarily oriented, finite-length cylinders, Phys.
Fluids A 5, 3004 (1993)

[5] C. A. Coulomb, Expériences destinées à déterminer la cohérence des fluides et les lois de leur résistance
dans les mouvements très lents, Mém. l’Inst. Natl. Sci. Arts 3, 246 (1800).

[6] H. Tomlinson, The coefficient of viscosity of air, Philos. Trans. 177, 767 (1886).
[7] R. E. Williams, Oscillating cylinders and the Stokes paradox, Ph.D., Louisiana State University, LSU

Historical Dissertations and Theses, 1972.
[8] R. E. Williams and R. G. Hussey, Oscillating cylinders and the Stokes paradox, Phys. Fluids 15, 2083

(1972); Erratum: Oscillating cylinders and the Stokes’ paradox, 19, 1652 (1976).

104101-13

https://doi.org/10.1017/S0022112088001107
https://doi.org/10.1063/1.858660
https://doi.org/10.1063/1.858707
https://doi.org/10.1098/rstl.1886.0020
https://doi.org/10.1063/1.1693839
https://doi.org/10.1063/1.861664


G. DOLFO, J. VIGUÉ, AND D. LHUILLIER

[9] F. Baily, On the correction of a pendulum for the reduction to a vacuum: Together with remarks on some
anomalies observed in pendulum experiments, Philos. Trans. R. Soc. London 122, 399 (1832).

[10] J. T. Stuart and L. Woodgate, Experimental determination of the aerodynamic damping on a vibrating
circular cylinder, Philos. Mag. 46, 40 (1955).

[11] L. R. Laird, On the period of a wire vibrating in a liquid, Phys. Rev (Ser. I) 7, 102 (1898).
[12] H. Martin, Uber tonhöhe und dämpfung der schwingungen von saiten in verschiedenen flüssigkeiten, Ann.

Phys. (Leipzig, Ger.) 4, 627 (1925).
[13] R. F. Berg, M. Yao, and C. H. Panzarella, Hydrodynamic force on a cylinder oscillating at low frequency,

Report No. NASA/CR 2007-215050.
[14] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.6.104101 for the

values of Loewenberg parameters for finite cylinders with a large aspect ratio, for the description of the
pendulums and the calculation of their dynamical parameters, for the connection between the damping
time constant and the friction force constant, for the measured values of these quantities, and for a
discussion of previous experiments.

[15] J. T. Stuart, in Laminar Boundary Layers, edited by L. Rosenhead (Oxford University Press, New York,
1963), Chap. VII, pp. 347–408.

[16] R. G. Hussey and P. Vujacic, Damping correction for oscillating cylinder and sphere, Phys. Fluids 10, 96
(1967).

[17] G. Dolfo, D. Castex, and J. Vigué, Damping mechanisms of a pendulum, Eur. J. Phys. 37, 065004 (2016).
[18] G. Dolfo, J. Vigué, and D. Lhuillier, Experimental test of unsteady Stokes’ drag force on a sphere, Exp.

Fluids 61, 97 (2020).
[19] G. Dolfo and J. Vigué, A more accurate theory of a flexible-beam pendulum, Am. J. Phys. 83, 525 (2015).
[20] C. Zener, Internal Friction in Solids. I. Theory of Internal Friction in Reeds, Phys. Rev. 52, 230 (1937).
[21] C. Zener, Internal Friction in Solids. II. General Theory of Thermoelastic Internal Friction, Phys. Rev. 53,

90 (1938).
[22] G. Cagnoli, L. Gammaitoni, J. Hough, J. Kovalik, S. McIntosh, M. Punturo, and S. Rowan, Very High

Q Measurements on a Fused Silica Monolithic Pendulum for Use in Enhanced Gravity Wave Detectors,
Phys. Rev. Lett. 85, 2442 (2000).

[23] D. Paget, J. Winterflood, Li Ju, and D. Blair, Improved technique for measuring high pendulum Q-factors,
Meas. Sci. Technol. 13, 218 (2002).

[24] E. W. Lemmon and R. T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen,
argon, and air, Int. J. Thermophys. 25, 21 (2004) and NIST software RefProp 9.0 (2010).

[25] J. Kestin and J. H. Whitelaw, The viscosity of dry and humid air, Int. J. Heat Mass Transfer 7, 1245
(1964).

[26] J. R. Allegra and S. A. Hawley, Attenuation of sound in suspensions and emulsions: Theory and
experiments, J. Acoust. Soc. Am. 51, 1545 (1971).

[27] R. W. O’Brien, The electroacoustic equations for a colloidal suspension, J. Fluid Mech. 212, 81 (1990).

104101-14

https://doi.org/10.1098/rstl.1832.0020
https://doi.org/10.1080/14786440108561191
https://doi.org/10.1103/PhysRevSeriesI.7.102
http://link.aps.org/supplemental/10.1103/PhysRevFluids.6.104101
https://doi.org/10.1063/1.1762002
https://doi.org/10.1088/0143-0807/37/6/065004
https://doi.org/10.1007/s00348-020-2936-6
https://doi.org/10.1119/1.4906791
https://doi.org/10.1103/PhysRev.52.230
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRevLett.85.2442
https://doi.org/10.1088/0957-0233/13/2/312
https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
https://doi.org/10.1016/0017-9310(64)90066-3
https://doi.org/10.1121/1.1912999
https://doi.org/10.1017/S0022112090001872

