Teresa Krick 
  
AND Bernard Mourrain 
email: bernard.mourrain@inria.fr
  
Agnes Szanto 
email: aszanto@ncsu.edu
  
Aromath 
  
  
  
  
Univariate Rational Sums of Squares

Keywords: Positive polynomials, Sum of Squares, Semi-Definite Matrix, Convex cone, Real roots, Exact computation, Certificate

come   L'archive ouverte pluridisciplinaire

Introduction

It is a classical result that a real univariate polynomial is nonnegative on all R if and only if it is a sum of squares of real polynomials (and in fact, 2 polynomials are enough). It was then proved by Landau in 1905, see [START_REF] Landau | Über die Darstellung definiter Funktionen durch Quadrate[END_REF], that every univariate polynomial with rational coefficients which is non-negative on all R is a sum of 8 squares of rational polynomials (this result was improved in [START_REF] Pourchet | Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques[END_REF], lowering the bound of 8 to the optimal value of 5).

We call this the global case, when we consider non-negativity on all R. The local case is when we consider analogous questions for a polynomial which is non-negative at the real roots of another non-zero polynomial. More explicitly, the corresponding statement is: Given a non-zero polynomial f ∈ R[x], is it true that a polynomial g ∈ R[x] is non-negative at all the real roots of f if and only if it is congruent modulo f to a sum of squares of polynomials in R[x]? That is, if there exist polynomials

h i ∈ R[x], 1 ≤ i ≤ N for some N ∈ N, such that h := N i=1 h 2 i satisfies h ≡ g mod f.
In [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF], P. Parrilo gives a very simple construction that shows that this is indeed the case in a zero-dimensional radical setting of multivariate polynomials. In our specific setting his result shows that every g ∈ R[x] which is non-negative at all the real roots of a squarefree polynomial f ∈ R[x] is congruent modulo f to a sum of squares of real polynomials. In this paper, we consider the corresponding rational question: Given polynomials f, g ∈ Q[x] such that g is non-negative at all the real roots of f , is it true that g is congruent modulo f to a sum of squares of polynomials h i ∈ Q[x]? Note that this is equivalent to say that g is congruent modulo f to a rational positive weighted sum of squares of polynomials in Q[x], that is, that there exist ω i ∈ Q + and

h i ∈ Q[x], 1 ≤ i ≤ N , such that (1) h := N i=1 ω i h 2 i satisfies h ≡ g mod f,
since for ω i = m/n ∈ Q with m, n ∈ N, ω i h 2 i = mn(h i /n) 2 . The positive weighted sum of squares h is commonly called a sum of squares (SOS) decomposition of g modulo f , and such a decomposition, together with the polynomial q ∈ Q[x] such that g = h + q f is a certificate of the non-negativity of g at the real roots of f . The existence and computation of rational SOS decompositions of positive polynomials has been investigated in the univariate global case for instance in [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF], [START_REF] Victor Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF], or in the multivariate case in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF], [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-ofsquares with floating point scalars[END_REF]. A counter-example in [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF] shows that, in the multivariate case, a rational polynomial which is a sum of squares of real polynomials cannot always be decomposed as a rational sum of squares. In [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF], [START_REF] Guo | Certificates of impossibility of hilbert-artin representations of a given degree for definite polynomials and functions[END_REF], rational Artin's type certificates of positivity, that is, fractions of two rational weighted sums of squares polynomials are considered. In [START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF], algorithms to compute positivity certificates and bounds on their bit complexity and the size of their output are presented, including Artin's type certificates and rational weighted sums of squares certificates for positive polynomials on compact basic semi-algebraic sets. The algorithms work under some strictly positivity assumptions. They involve numeric-symbolic tools such as the perturbation algorithm of [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF], the rounding-projection algorithm of [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] or Semi-Definite Programming solvers. More recently, [START_REF] Victor Magron | Exact Optimization via Sums of Nonnegative Circuits and Arithmetic-geometric-mean-exponentials[END_REF] provides a numeric-symbolic algorithm based on rounding-projection techniques for computing exact representations of polynomials lying in the interior of the cone of nonnegative circuits (SONC) or of the cone of arithmetic-geometric-exponentials (SAGE). In [START_REF] Victor Magron | Sum of Squares Decompositions of Polynomials over their Gradient Ideals with Rational Coefficients[END_REF], an algorithm is proposed to compute the representation of a non-negative polynomial f as a rational sum of squares and an element in the gradient ideal of f with rational coefficients, under the hypothesis that the gradient ideal is zero-dimensional and radical, reducing to the univariate case by elimination techniques. Numeric-symbolic approaches similar to [START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF] are applied to trigonometric polynomials in [START_REF] Victor Magron | Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients[END_REF].

In this paper, we first show, by a direct method, that a rational univariate polynomial g strictly positive at the real roots of a rational squarefree polynomial f always admits a rational SOS decomposition modulo f . This can be seen as a very very special case of Putinar's Theorem [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] over rational numbers. We then extend the result to rational univariate polynomials g that are non-negative at the real roots of f , under an assumption specified in our main result:

Theorem. Let f ∈ Q[x]
be a non-zero polynomial of degree n and g ∈ Q[x] be such that gcd(f, g) and f / gcd(f, g) are relatively prime. Assume that g is non-negative at all the real roots of f . Then there exist rational positive weights ω i ∈ Q + and rational polynomials

h i ∈ Q[x] of degree < n, 1 ≤ i ≤ N for some N ∈ N, such that h := N i=1 ω i h 2 i satisfies h ≡ g mod f.
Note that when f is squarefree, our assumption on gcd(f, g) and f / gcd(f, g) being relatively prime is automatically satisfied. Furthermore, this assumption seems to be optimal in order for such an SOS decomposition to exist, as the following example demonstrates [12, Remark 1]: For f = x 2 and g = x, g is non-negative on all the (real) roots of f but there is no such SOS decomposition. Note that in this case gcd(f, g) = x = f / gcd(f, g) and the polynomials f and g do not satisfy the assumption of our theorem.

Certifying the non-negativity of a polynomial g at the real roots of another polynomial f is a problem of particular importance in Computer Algebra, for instance, for the localisation of real roots [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF], or in Automatic Theorem Proving for the certification of sign conditions over the real numbers. It is also useful for checking the sign of polynomials in R n or more generally in Polynomial Optimization Problems, since one can generically add polynomial constraints like the gradient equations and reduce to a univariate polynomial sign certification problem by elimination of variables (see e.g. [START_REF] Victor Magron | Sum of Squares Decompositions of Polynomials over their Gradient Ideals with Rational Coefficients[END_REF]).

The proof of our theorem is developed in Section 2. It proceeds by first tackling in Subsection 2.1 the case when g is strictly positive at all the real roots of a squarefree polynomial f of degree n: by modifying the construction in [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF], we first show there always exists a real SOS decomposition h of g modulo f ,

h = [1, x, . . . , x n-1 ] Q [1, x, . . . , x n-1 ] T
with Q ∈ R n×n symmetric and positive definite. This enables us to perturb the real coefficients in matrix Q in order to turn them rational, while keeping the condition of remaining an SOS decomposition for g modulo f , as done in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] for the global case (with the difference that here we know there always exists such a positive definite real matrix). In a second step, Subsection 2.2 deals with the case of a non squarefree polynomial f , by applying Hensel lifting and Chinese Remainder Theorem recombination. We finally relax the strictly positive condition to non-negative under our assumption.

In this paper, we also address the following algorithmic question: Can we produce an algorithm that computes a rational SOS certificate, which size is related to the geometry of the input polynomials?

Several algorithms can be used to certify that a polynomial g is nonnegative at the real roots of f . We refer to [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF] for a general presentation of these algorithms, based for instance on Sturm-Habicth sequences or isolation of real roots. The algorithm that we describe in Section 3 does not require to isolate or approximate the real roots of f . It computes a certificate of non-negativity by computing an SOS decomposition of g modulo f using two main ingredients. The first ingredient is an adaptation of the rounding-projection algorithm of [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] to the case of a rational polynomial g strictly positive at the real roots of a squarefree polynomial f , following the proof of Proposition 2.8. The second ingredient is a reduction of the general case when gcd(f, g) and f / gcd(f, g) are relatively prime, to the strictly positive case, then lifting the rational SOS decompositions via Hensel lifting and Chinese Remainder Theorem, following the proof of our main theorem.

Acknowledgment. This collaboration and research project started because Agnes contacted the two other authors after an invitation by the organizers of the MCA 2021 session "Symbolic computation: theory, algorithms and applications", Alicia Dickenstein, Alexey Ovchinnikov and Veronika Pillwein, to submit a publication related to her talk to the Revista de la Unión Matemática Argentina. We all worked together during 2021 and, as usual when working with her, Agnes' input was crucial to produce the output. Agnes sadly passed away on March 21, 2022. We miss her dearly.

Existence of a rational SOS decomposition

2.1. The squarefree and strictly positive case. In this section we assume that f ∈ R[x] is a squarefree polynomial and that g ∈ R[x] is strictly positive at the real roots of f . We fix the following notation. Notation 2.1. We denote

f = n i=0 f i x i = f n (x -ξ 1 ) • • • (x -ξ n ) with ξ i = ξ j ∈ C for i = j,
where ξ 1 , . . . , ξ k are the real roots of f (for some 0 ≤ k ≤ n) while the complex non-real roots are labeled as

ξ k+2i-1 , ξ k+2i with ξ k+2i-1 = ξ k+2i for 1 ≤ i ≤ n-k 2 .
The Lagrange basis for ξ 1 , . . . , ξ n is denoted by u 1 , ..., u n ∈ C[x], i.e.

(2)

u i = j =i x -ξ j ξ i -ξ j = f f (ξ i )(x -ξ i ) for 1 ≤ i ≤ n.
It satisfies that for any polynomial p ∈ C[x] one has

(3) p(x) ≡ n i=1 p(ξ i ) u i (x) mod f.
The basis u 1 , . . . , u n is also defined by the conditions deg [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF] the following real polynomial

(u i ) ≤ n -1, 1 ≤ i ≤ n and u i (ξ j ) = δ i,j for 1 ≤ i, j ≤ n. This implies by (3) that (4) u 2 i ≡ u i mod f for 1 ≤ i ≤ n and u i u j ≡ 0 mod f for i = j. Given g ∈ R[x], Parrilo constructed in
k i=1 g(ξ i ) u 2 i + (n-k)/2 i=1 g(ξ k+2i )u k+2i + g(ξ k+2i )u k+2i 2 (5) = n i=1 g(ξ i ) u 2 i + 2 (n-k)/2 i=1 |g(ξ k+2i )| u k+2i-1 u k+2i ,
where the identity follows from the fact that the interpolation polynomials associated to the complex non-real roots of f are pairwise conjugate, i.e. u k+2i = u k+2i-1 . This polynomial is a sum of squares in R[x] whenever g is nonnegative at the real roots of f , as shown by identity (5), since for

1 ≤ i ≤ n-k 2 , g(ξ k+2i )u k+2i + g(ξ k+2i )u k+2i = 2 ( g(ξ k+2i )u k+2i ),
where denotes the real part. Furthermore, it is congruent to g modulo f since by ( 4) and (3) we have

n i=1 g(ξ i ) u 2 i +2 (n-k)/2 i=1 |g(ξ k+2i )| u k+2i-1 u k+2i ≡ n i=1 g(ξ i ) u i ≡ g mod f.
Inspired by this construction, we define for fixed

λ i ∈ R, 1 ≤ i ≤ n-k 2 , the polynomial (6) h = n i=1 g(ξ i ) u 2 i + 2 (n-k)/2 i=1 λ i u k+2i-1 u k+2i
which is also congruent to g modulo f for any choice of

λ i , 1 ≤ i ≤ n-k 2 .
Next proposition shows that for a range of values of λ i , this polynomial h is a sum of n linearly independent squares.

Proposition 2.2. Let f ∈ R[x] be a squarefree polynomial as in Nota- tion 2.1 and let g ∈ R[x] be such that g(ξ i ) > 0 for 1 ≤ i ≤ k. Fix λ i > |g(ξ k+2i )|, 1 ≤ i ≤ n-k
2 , and let

h = n i=1 g(ξ i ) u 2 i + 2 (n-k)/2 i=1 λ i u k+2i-1 u k+2i
be the polynomial h defined in [START_REF] Landau | Über die Darstellung definiter Funktionen durch Quadrate[END_REF], which is congruent to g modulo f . Then h is a positive weighted sum of n squares of linearly independent real polynomials of degree strictly bounded by n. More precisely,

h = n i=1 ω i h 2 i ( 7 
)
where

• h i = u i and ω i = g(ξ i ) for 1 ≤ i ≤ k, • h k+2i-1 = (u k+2i ) - (g(ξ k+2i )) λ i + (g(ξ k+2i )) (u k+2i ), h k+2i = λ 2 i -|g(ξ k+2i )| 2 λ i + (g(ξ k+2i )) (u k+2i ),
and

ω k+2i-1 = ω k+2i = 2 (λ i + (g(ξ k+2i ))) for 1 ≤ i ≤ n-k 2 .
(Here and denote real and imaginary part respectively.) Proof. We first show that the expressions in ( 6) and (7) coincide.

Set

γ i := g(ξ k+2i ) for 1 ≤ i ≤ n-k 2 . Applying the identity (a + i b)(u + i v) 2 + (a -i b)(u -i v) 2 + 2 λ|u + i v| 2 = 2 (λ + a) u 2 -2 b u v + (λ -a) v 2 = 2(λ + a) (u - b λ + a v) 2 + (λ 2 -a 2 -b 2 ) ( v λ + a ) 2
for λ + a = 0, we get from Identity (6):

h = k i=1 g(ξ i ) u 2 i + (n-k)/2 i=1 γ i u 2 k+2i + γ i u k+2i 2 + 2 λ i |u k+2i | 2 = k i=1 g(ξ i ) u 2 i + (n-k)/2 i=1 2 (λ i + (γ i )) (u k+2i ) - (γ i ) λ i + (γ i ) (u k+2i ) 2 + (n-k)/2 i=1 2 (λ i + (γ i )) λ 2 i -|γ i | 2 λ i + (γ i ) (u k+2i ) 2 since λ i > |γ i | implies λ i + (γ i ) = 0 and λ 2 i -|γ i | 2 > 0. Now, observe that ω i > 0 since for 1 ≤ i ≤ k, ω i := g(ξ i ) > 0 by assumption, and for 1 ≤ i ≤ n-k 2 , ω k+2i-1 = ω k+2i := 2(λ i + (γ i )) > 0.
Therefore h is a positive weighted sum of n squares of polynomials of degree < n with real coefficients.

Finally, as the polynomials u i are linearly independent over C and u k+2i-1 = u k+2i , the real polynomials u 1 , . . . , u k , (u k+2 ), (u k+2 ), . . . , (u n ), (u n ) are also linearly independent. This implies that the real polynomials h 1 , . . . , h n are also linearly independent over R (and in particular nonzero).

We fix the following notation for the rest of the paper: Notation 2.3. We set S n (R) for the set of symmetric matrices in R n×n and S n + (R) for its cone of symmetric positive semidefinite matrices. We equip S n (R) with the Frobenius inner product A, B = trace(A B), ∀A, B ∈ S n (R), which induces the Frobenius norm • . The 2-norm on the coefficients of polynomials in R[x] is also denoted by • . For m ∈ N 0 we set R[x] m for the set of polynomials of degree bounded by m. Finally, x = [1, x, . . . , x n-1 ] T is the column vector of monomials of degree < n.

Note that for any polynomial p = d i=0 p i x i , one has

p f ≤ d i=0 p i x i f ≤ d i=0 |p i | x i f (8) ≤ d i=0 p f ≤ (d + 1) p f .
As a first corollary of Proposition 2.2, we have:

Corollary 2.4. Let f, g ∈ R[x]
with f of degree n with simple roots ξ i , 1 ≤ i ≤ n, and g of degree < n that is strictly positive at the real roots ξ 1 , . . . , ξ k of f . Then, there exists a pair

(Q, q) ∈ S n (R) × R[x] n-2 with Q positive definite such that g = x T Qx + q f . In particular Q ∈ Int(S n + (R))
, where Int denotes interior. Proof. For fixed

λ i > |g(ξ i )|, 1 ≤ i ≤ n-k
2 , let H be the coefficient matrix of the polynomials h 1 , . . . , h n of Proposition 2.2 in the monomial basis 1, x, . . . , x n-1 , so that [START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF] [h 1 , . . . , h n ] = x T H.

The matrix H is invertible since h 1 , . . . , h n are linearly independent. Let ∆ be the diagonal matrix

(10) ∆ = diag(ω 1 , . . . , ω n ).
Then [START_REF] Victor Magron | Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients[END_REF] rewrites as

(11) h = x T H∆H T x = x T Q x
where Q := H∆H T is positive definite since H is invertible and ω i > 0 for 1 ≤ i ≤ n. Also, as h ≡ g mod f and deg(h) ≤ 2n -2, there exists

q ∈ R[x] n-2 such that g = h + q f . Finally Q ∈ Int(S n + (R)) since det(Q) > 0. Remark 2.5. The passage from h = n i=1 ω i h 2 i with ω i ∈ R >0 , 1 ≤ i ≤ n, to h = x T Qx where Q ∈ S n
+ (R) is a positive definite matrix, and vice-versa, is quite standard:

As shown in the proof of Corollary 2.4, Q = H∆H T where H and ∆ are defined in ( 9) and [START_REF] Victor Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF].

Conversely, an exact square-root-free Cholesky decomposition of a positive definite matrix

Q ∈ S n + (R) yields Q = LDL T ,
where L is a lower unitriangular matrix and D is a diagonal matrix with positive entries. For instance, this decomposition can be computed exactly over Q through LU decomposition via Gaussian elimination of matrix Q.

Then ω 1 , . . . , ω n are the diagonal entries of D and

[h 1 , . . . , h n ] := x T L.
Note that when λ i = |g(ξ k+2i )|, which is the case in Parrilo's polynomial [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF], h k+2i = 0 and therefore these polynomials h i , 1 ≤ i ≤ n, are not linearly independent. This means that Parrilo's polynomial [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF] lies in the border of the cone S n + (R). What we were able to do in Proposition 2.2 is to modify Parrilo's construction in order to obtain a polynomial h in the interior of this cone. This gives room to perturb it a little in order to get a rational polynomial with the same characteristics, and yields the particular version of our main theorem when g is strictly positive at all the real roots of a squarefree polynomial f . To describe this construction, we introduce the following ingredients.

Notation 2.6. Let p = p 0 + p 1 x + • • • + p 2n-2 x 2n-2 ∈ R[x].
We define the affine space

Q p = {Q ∈ S n (R) : x T Q x = p},
and the symmetric matrix ( 12) . . . . . .

Q p =        p 0 p 1 2 . . . p n-2 n-1 p n-1 n p 1 2 . . . . . .
p 2n-3 2 p n-1 n pn n-1 . . . p 2n-3 2 p 2n-2        , which satisfies (13) x T Q p x = 2n-2 k=0 p k x k = p,
and therefore

Q p ∈ Q p .
We note for further use that we have ( 14)

Q p = 2n-2 k=0 s k p k s k 2 1/2 ≤ 2n-2 k=0 p 2 k 1/2 = p , where (15) 
s k = s 2n-2-k = k + 1, 0 ≤ k ≤ n -1,
denotes the number of entries in each of the 2n -1 antidiagonals of Q p . We now describe the orthogonal projection from S n (R) on Q p for the Frobenius norm, in a more convenient matrix formulation for the univariate case than in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF]Prop.7], and prove it for sake of completeness.

Lemma 2.7. The map

π p : S n (R) -→ Q p , Q -→ Q -Q x T Qx-p
is the orthogonal projection onto the affine space Q p for the norm • .

Proof. Let Q ∈ S n (R). By (13), we have:

x T π p (Q) x = x T Qx -(x T Qx -p) = p,
and thus π p (Q) ∈ Q p . To prove that π p (Q) is the orthogonal projection of Q on Q p , we show that Q -π p (Q) is orthogonal to Q p :
We first observe that for any Q ∈ S n (R),

x T Qx = 2n-2 k=0 i+j=k+2 Q i,j x k = 2n-2 k=0 Q, H k x k , where for 0 ≤ k ≤ 2n -2, H k ∈ S n (R) is the Hankel matrix such that (H k ) i,j = 1 if i + j = k + 2 and 0 otherwise, 1 ≤ i, j ≤ n.
This shows that the affine space Q p is defined by the equations

Q, H k -p k = 0, k = 0, . . . , 2n -2,
which implies that the vector space

Q ⊥ p orthogonal to Q p is spanned by (H k ) 0≤k≤2n-2 .
On another hand we can easily verify from its definition that

Q p = 2n-2 k=0 p k s k H k ,
where s k is defined in [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]. Therefore,

Q -π p (Q) = Q x T Qx-p = 2n-2 k=0 Q, H k - p k s k H k , which shows that Q -π p (Q) is a linear combination of (H k ) 0≤k≤2n-2 ,
and thus orthogonal to Q p .

We are going to use this projection to compute a rational sum of squares modulo f for a polynomial g strictly positive at the real roots of f . Proposition 2.8. Let f ∈ Q[x] be a non-zero squarefree polynomial and g ∈ Q[x] be such that g is strictly positive at all the real roots of f . Then there exist polynomials h i ∈ Q[x] of degree < n and positive weights

ω i ∈ Q + , 1 ≤ i ≤ n, such that h := n i=1 ω i h 2 i satisfies h ≡ g mod f.
Proof. There is a natural proof of this proposition which makes use of the fact that the set

{(A, b) ∈ S n (R) × R[x] n-2 : g = x T Ax + b f }
is a real affine space which in the case that f, g ∈ Q[x] is defined by a rational basis and a rational particular point. This approach follows the proof of the analogous result for the global case mentioned as image representation in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF]Section 3.2].

Here, we give the proof that uses the orthogonal projection π p defined in Definition 2.6, as done for the global case in the kernel representation in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF]Section 3.1].

Without loss of generality we can assume that deg(g) < n by replacing it by its remainder modulo f . Let (Q * , q * ) be given by Corollary 2.4, i.e. g = x T Q * x + q * f and

Q * ∈ Int(S n + (R))
, and let σ > 0 be the smallest eigenvalue of Q * , which is the distance of Q * to the set of singular matrices, so that the open ball centered at Q * and of radius σ is contained in

S n + (R). Take a rational approximation (Q, q) ∈ S n (Q) × Q[x] n-2 such that Q -Q * < σ 2 and q -q * < σ 2(n -1) f . ( 16 
)
The problem is that most surely, x T Qx + q f = g. Let e := x T Qx + qf -g be the error polynomial, and define

Q := π g-qf (Q) = Q -Q e ∈ S n (Q), which is the orthogonal projection of Q on Q g-qf according to Lemma 2.7. Then Q ∈ Q g-qf , i.e. x T Qx + qf = g. Next we prove that Q ∈ Int(S + (Q)) by proving that Q -Q * < σ. We have Q -Q * ≤ π g-q f (Q) -π g-q f (Q * ) + π g-q f (Q * ) -Q * ≤ π g-q f (Q) -π g-q f (Q * ) + π g-q f (Q * ) -π g-q * f (Q * ) ≤ Q -Q * + Q * -Q x T Q * x-(g-q f ) -Q * -Q x T Q * x-(g-q * f ) ≤ Q -Q * + Q (q * -q) f , since x T Q * x + q * g = g implies Q * = π g-q * f (Q * ).
By ( 14) and ( 8) we have

Q (q * -q) f ≤ (q * -q) f ≤ (n -1) q * -q f
since deg(q * -q) ≤ 2n -2. Finally, by ( 16), we conclude

Q -Q * < σ 2 + (n -1) σ 2(n -1) f f = σ.
This implies that Q ∈ Int(S n + (R)), i.e. h = x T Q x is a rational positive weighted sum of squares.

Example 2.9. We now consider a toy example to illustrate our construction. This is a toy example because in this case we know the roots of f and use that knowledge, as in the proof or our existential theorem. Let f = x 3 -2 = (x -2 1/3 )(x -2 1/3 ω)(x -2 1/3 ω), where ω = e 2πi /3 , and g = x, which is strictly positive at 2 1/3 . Set ξ 1 = 2 1/3 , ξ 2 = 2 1/3 ω and ξ 3 = ξ 2 .

Parrilo's construction [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF] gives in this case the following real polynomial, which is congruent to g modulo f and a sum of 2 squares:

g(ξ 1 )u 1 (x) ∈R[x] 2 + g(ξ 2 )u 2 (x) + g(ξ 3 )u 3 (x) ∈R[x] 2 = x T Q * x
where

Q * =     2 3 √ 2 9 2 9 - 3 √ 4 18 2 9 3 √ 4 18 - 3 √ 2 18 - 3 √ 4 18 - 3 √ 2 18 5 18     .
Note that Q * is a rank 2 positive semidefinite matrix, which therefore lies in the border of the cone of positive semidefinite matrices. Now, if we take λ := 2|g(ξ 2 )| = 2 • 2 1/3 in our construction (6), we get h * = x T Q * x where

Q * =     4 3 √ 2 9 1 9 - 3 √ 4 9 1 9 2 3 √ 4 9 - 3 √ 2 9 - 3 √ 4 9 - 3 √ 2 9 7 18    
is a (rank 3) definite positive matrix with smallest eigenvalue σ ∼ 0.2239, and

g = x T Q * x + q * f for q * = - 7 18 x + 2 3 √ 2 9
.

Here, if we take the following rational approximations of Q * and q * (rounding to two significant digits)

Q =   0.6 0.1 -0.2 0.1 0.4 -0.1 -0.2 -0.1 0.4   and q = -0.4x + 0.3
we get that Q * -Q ∼ = 0.0923 and q * -q ∼ = 0.0229. Thus, we have

Q * -Q < σ 2 ∼ = 0.112 and q * -q < σ 2(n-1) f ∼ = 0.025 respectively,
satisfying both of the bounds given in ( 16) required in the proof of Proposition 2.8. We have x T Q x + q f = 0.1x 3 + x = g, with error e = x T Q x + q f -g = 0.1x 3 .

Compute the orthogonal projection of

Q on Q g-qf : Q = π g-qf (Q) = Q -Q e =   0.6 0.1 -0.2 0.1 0.4 -0.15 -0.2 -0.15 0.4   so that x Q x -x T Q x = e and Q is still a definite positive matrix. Then matrix Q ∈ S 3 (Q) satisfies h := x T Q x = x T Q x -e = g -q f ≡ g mod f,
and h is a sum of squares of rational polynomials, which we can obtain applying the square-root-free Cholesky decomposition of Q (Remark 2.5) as follows:

h = 3 5 1 + 1 6 x - 1 3 x 2 2 + 23 60 x - 7 23 x 2 2 + 137 460 x 4 .

The general case.

In this subsection we generalize the results of the previous section to the case when f is non-necessarily squarefree and g is non-negative at all the real roots of f (but might vanish on some of them), as long as gcd(f, g) and f / gcd(f, g) are relatively prime, in order to obtain our main theorem. We will need the following auxiliary results, namely Hensel lemma and Chinese remainder theorem.

Lemma 2.10. Let p, g ∈ Q[x] with p irreducible in Q[x] which does not divide g. Assume that there exists h 1 , . . . , h N ∈ Q[x] and ω 1 . . . , ω N ∈ Q + for some N ∈ N with deg(h i ) < deg(p) such that g ≡ N i=1 ω i h 2 i mod p.
Then for any fixed e ∈ N, e ≥ 1, there exist h

1 , . . . , h N ∈ Q[x] with deg(h i ) < e • deg(p) such that g ≡ N i=1 ω i h 2 i mod p e .
Proof. We show that it suffices to perform Hensel lifting on one of the polynomials h i . Since p ∈ Q[x] is irreducible and does not divide g, one of the h i at least is not divisible by p, and w.l.o.g. we assume that it is h 1 . Define

g = g ω 1 for N = 1 and g := g - i=2 ω i h 2 i ω 1 ∈ Q[x] for N > 1.
Then g ≡ h 2 1 mod p, and we define the following Newton iteration starting from h (0)

1 := h 1 : (17) h (k+1) 1 ≡ 1 2 h (k) 1 + g h (k) 1 ≡ 1 2 h (k) 1 + s (k) 1 g mod p 2 k+1 for k ≥ 0,
where s

(k) 1 ∈ Q[x] is defined by s (k) 1 h (k) 1 ≡ 1 mod p 2 k+1 . First note that this sequence is well defined in Q[x] since by induc- tion, h (k) 1 ≡ 1 2 h (0) 1 + h (0) 1 2 h (0) 1 ≡ h (0) 1 mod p,
and therefore h

(k)
1 is prime to the irreducible polynomial p since h (0)

1 is, and hence invertible modulo p 2 k+1 .

We now prove by induction that h (k) 1 ) 2 ≡ g mod p 2 k : First, from [START_REF] Von | Modern computer algebra[END_REF] we derive ( 18)

h (k) 1 h (k+1) 1 ≡ 1 2 h (k) 1 ) 2 + g mod p 2 k+1 .
Now, by the inductive hypothesis, h

(k) 1 2 ≡ g mod p 2 k implies that h (k+1) 1 ≡ 1 2 h (k) 1 + s (k) 1 h (k) 1 2 mod p 2 k ≡ 1 2 h (k) 1 + h (k) 1 ≡ h (k) 1 mod p 2 k . Therefore, h (k) 1 = h (k+1) 1 + t p 2 k for some t ∈ Q[x]
and from (18),

h (k+1) 1 + t p 2 k h (k+1) 1 ≡ 1 2 h (k+1) 1 + t p 2 k 2 + g mod p 2 k+1 ≡ 1 2 h (k+1) 1 2 + 2t p 2 k h (k+1) 1 + g mod p 2 k+1
and we can cancel t p 2 k h (k+1) 1 from both sides. We conclude

h (k+1) 1 ) 2 ≡ 1 2 h (k+1) 1 2 + g mod p 2 k+1
which implies

h (k+1) 1 2 ≡ g mod p 2 k+1 .
Going back to the definition of g,

g = ω 1 g + N i=2 ω i h 2 i ≡ ω 1 h (k) 1 2 + N i=2 ω i h 2 i mod p 2 k .
Finally, if we choose k such that 2 k-1 < e ≤ 2 k and define

h 1 := h (k) 1
mod p e , h i := h i for 2 ≤ i ≤ N and ω 1 , . . . , ω N unchanged then we get the sum of squares decomposition of g modulo p e with the desired degree bounds.

Lemma 2.11. Let f 1 , . . . , f r ∈ Q[x] with gcd(f i , f j ) = 1 for 1 ≤ i < j ≤ r. Assume that g ∈ Q[x] satisfies g ≡ N i j=1 ω i,j h 2 i,j mod f i , 1 ≤ i ≤ r, for some N i ∈ N, h i,j ∈ Q[x] with deg(h i,j ) < deg f i and ω i,j ∈ Q + , for 1 ≤ j ≤ N i . Then there exist N ∈ N, h 1 , . . . , h N ∈ Q[x] and ω 1 , . . . , ω N ∈ Q + such that g ≡ N i=1 ω i h 2 i mod r i=1 f i . Furthermore, deg(h i ) < r i=1 deg(f i ) for 1 ≤ i ≤ N . Proof.
The usual Chinese remainder theorem for a system

g ≡ g i mod f i , 1 ≤ i ≤ r, admits the solution (c.f. [17, Algorithm 5.4]) g ≡ s 1 f (1) g 1 + • • • + s r f (r) g r mod f where f := r i=1 f i , f (i) := j =i f j and s i is defined by s i f (i) + t i f i = 1 for 1 ≤ i ≤ r.
On another side, notice that

s i f (i) ≡ (s i f (i) ) 2 mod f, 1 ≤ i ≤ r, since s i f (i) ≡ 1 mod f i and s i f (i) ≡ 0 mod f j for j = i. Then g ≡ (s 1 f (1) ) 2 g 1 + • • • + (s r f (r) ) 2 g r mod f.
In our setting, since g i := N i j=1 ω i,j h 2 i,j we get

g ≡ r i=1 (s i f (i) ) 2 N i j=1 ω i,j h 2 i,j mod f ≡ r i=1 N i j=1 ω i,j (s i f (i) h i,j ) 2 mod f.
We get N := r i=1 N i and reduce s i f (i) h i,j modulo f to achieve the desired degree bounds in the SOS decomposition.

We are now able to prove the full version of our theorem. We repeat the statement here for the reader's convenience. Theorem. Let f ∈ Q[x] be a non-zero polynomial of degree n and g ∈ Q[x] be such that gcd(f, g) and f / gcd(f, g) are relatively prime. Assume that g is non-negative at all the real roots of f . Then there exist polynomials h i ∈ Q[x] of degree < n and positive weights

ω i ∈ Q + , 1 ≤ i ≤ N for some N ∈ N, such that h := N i=1 ω i h 2 i satisfies h ≡ g mod f.
Proof. First assume that gcd(f, g) = 1. Note that therefore, the assumption that g is non-negative at the real roots of f implies that g is strictly positive at the real roots of f . W.l.o.g. we can assume that f is monic. Suppose f has the following decomposition over Q into powers of irreducible factors in Q

[x] f = p e 1 1 • • • p er r
where p i are distinct monic irreducible polynomials in Q[x], e i ∈ N for 1 ≤ i ≤ r, and r i=1 e i deg(p i ) = n. Fix i ∈ {1, . . . , r}. Since g is strictly positive at the real roots of the irreducible polynomial p i , we can apply Proposition 2.8 to p i and g, which shows the existence of

h i,j ∈ Q[x] of degree < N i := deg(p i ) and ω i,j ∈ Q + for 1 ≤ i ≤ N i , such that g ≡ N i j=1 ω i,j h 2 i,j mod p i .
Next we apply Lemma 2.10 with p = p i and e = e i to show the existence of

h i,j ∈ Q[x] of degree < e i deg(p i ), 1 ≤ i ≤ N i , such that (19) g ≡ N i j=1 ω i,j h 2 i,j
mod p e i i .

Finally we apply Lemma 2.11 with f i = p e i i for 1 ≤ i ≤ r to combine the congruences in (19) and obtain

N ∈ N, h, h 1 , . . . , h N ∈ Q[x] and ω 1 , . . . , ω N ∈ Q + such that h := N i=1 ω i h 2 i satisfies h ≡ g mod f. Furthermore, deg(h i ) < r i=1 e i deg(p i ) = n for 1 ≤ i ≤ N .
This proves the claim for an arbitrary polynomial f with gcd(f, g) = 1.

Assume now that d := gcd(f, g) = 1. We show that under our assumption gcd(f /d, d) = 1, there is a polynomial b ∈ Q[x] relatively prime to f /d which satisfies that b d 2 ≡ g mod f and therefore b is strictly positive at the real roots of f /d:

The assumption implies that gcd(f /d, g) = 1, and therefore g is strictly positive at the real roots of f /d. Since gcd(f /d, d 2 ) = 1 as well, there exist s, t

∈ Q[x] s.t. 1 = s • f d + t • d 2 .
This implies in particular gcd(f /d, t) = 1 and that

(20) g = s • g d • f + (tg) • d 2 .
We We then apply our previous construction to b and f /d: There exist

h i ∈ Q[x] of degree < n -deg(d) and ω i ∈ Q + , 1 ≤ i ≤ N , such that h := N i=1 ω i h 2 i satisfies h ≡ b mod f d .
Therefore,

d 2 h = N i=1 ω i (d h i ) 2 and d 2 h ≡ b d 2 mod f. Since b d 2 ≡ g mod f we conclude that d 2 h ≡ g mod f.
We note that deg(d h i ) < n, thus h := d 2 h, h i := d h i and ω i , 1 ≤ i ≤ N , satisfy the claim of the theorem.

Example 2.12. Let us again consider a toy example to show how it works when gcd(f, g) = 1 and f is not squarefree.

Consider f = x(x 3 -2) 2 and g = x 3 . Here d = gcd(f, g) = x and f /d = (x 3 -2) 2 are relatively prime, so we are in the assumptions of our theorem.

In this case, as g/d 2 = x is already a polynomial, we can take tg = g/d 2 = x.

(1) Find rational SOS for g/d 2 = x modulo (x 3 -2) (see Example 2.9):

x ≡ 3 5 1 + 1 6 x - 1 3 x 2 2 + 23 60 x - 7 23 x 2 2 + 137 460 x 4 mod (x 3 -2).
(2) Apply Hensel lifting to find rational SOS for g/d 2 = x modulo (x 3 -2) 2 (note that we lift only the last term): i.e. x ≡ ω 1 h

x ≡ 3 5 1 + 1 6 x - 1 
2 1 + ω 2 h 2 2 + ω 3 h 2 3 mod f /d = (x 3 -2) 2 . (3) Multiply both sides by d 2 = x 2 : g ≡ ω 1 (xh 1 ) 2 + ω 2 (xh 2 ) 2 + ω 3 (xh 3 ) 2 mod f = x(x 3 -2) 2 .

The algorithm

In this section, we describe the algorithm announced in the introduction, that computes a certificate of non-negativity of a polynomial g ∈ Q[x] at the real roots of another polynomial f ∈ Q[x].

3.1.

Certificate for a strictly positive polynomial. Here we assume that f ∈ Q[x] is a squarefree polynomial of degree n, and that g is strictly positive at all the real roots of f . We consider the following optimization problem

(21) max λ s.t. Q -λ I 0 q ∈ R[x] n-2 g = x T Q x + q f
where x = [1, . . . , x n-1 ] T is the vector of monomials of degree < n and Q ∈ S n (R). (Here 0 denotes positive semidefinite.) It is finding the maximal λ, which is bounded from above by all the eigenvalues of symmetric matrices Q satisfying g = x T Q x + q f . The set

C = {(Q, q) ∈ S n (R) × R[x] n-2 : Q 0, g = x T Q x + q f }
is convex, as the intersection of the linear space

{(Q, q) ∈ S n (R) × R[x] n-2 , g -x T Q x -q f = 0} with the convex cone S n + (R) × R[x] n-2 .
If the optimal value λ * of (21) is strictly positive, then the relative interior of C is non-empty.

By solving the convex optimization problem (21) using a numerical interior point solver, working at a given precision µ, we obtain an approximation of an interior point of C where the objective function reaches its maximum λ * > 0. This yields a rational approximation of an interior point (Q * , q * ) of the convex set C. That is, the numerical solver computes a (rational) approximate solution (Q * , q * ) of the optimization problem (21), where if the precision µ is good enough and λ * > 0, Q * ∈ S n + (Q) is a positive definite matrix but there will be an error polynomial x T Q * x + q * f -g = 0, although close to 0.

Since (Q * , q * ) may have a lot of decimals, in order to obtain a rational decomposition of g modulo f of small size, we start by rounding, at a convenient precision δ > 0, Q * ∈ S n + (R) to a nearby Q ∈ S n (Q) and q * ∈ R[x] ≤n-2 to a nearby rational polynomial q ∈ Q[x] ≤n-2 . We then compute the projection Q := π g-q f (Q) ∈ Q g-q f which satisfies g = x T Q x + q f . As in the proof of Proposition 2.8, if Q -Q * is smaller than the smallest eigenvalue σ of Q * , then Q ∈ S n + (Q) is a rational positive definite matrix and g = x T Qx + qf gives a rational SOS decomposition of g modulo f , that is (x T Qx, q) is a rational certificate of positivity of g at the real roots of f . Given the approximate solution (Q * , q * ) output by the numerical solver, we detail in the following proposition a bound on the rounding precision δ chosen to define (Q, q) needed to guarantee that Q = π g-qf (Q) is a positive definite matrix. We assume here that the matrix Q * output by the solver is positive definite. Proposition 3.1. Let σ > 0 be the smallest eigenvalue of Q * and assume that ρ :

= x T Q * x + q * f -g < σ. Set 0 < δ < 1 n + (n -1) √ n f (σ -ρ).
Then, for any rational approximations

(Q, q) ∈ S n (Q) × Q[x] n-2 of (Q * , q * ) such that |Q i,j -Q * i,j | ≤ δ, 1 ≤ i, j ≤ n and |q i -q * i | ≤ δ, 0 ≤ i ≤ n -2, the symmetric matrix Q = π g-qf (Q) ∈ S n (Q), which satisfies g = x T Q x + q f , is positive definite. Proof. We have Q -Q * ≤ n δ and q -q * ≤ √ n δ.
Then, the distance between Q = π g-q f (Q) and Q * can be bounded, as in the proof of Proposition 2.8 but with the difference that Q * = π g-q * f (Q * ), as follows:

Q -Q * ≤ π g-q f (Q) -π g-q f (Q * ) + π g-q f (Q * ) -π g-q * f (Q * ) + π g-q * f (Q * ) -Q * ≤ Q -Q * + Q * -Q x T Q * x-(g-qf ) -(Q * -Q x T Q * x-(g-q * f ) + Q x T Q * x-(g-q * f ) ≤ Q -Q * + Q (q * -q)f + Q x T Q * x-(g-q * f ) .
Using ( 14) and ( 8), as in the proof of Proposition 2.8 we have

Q (q * -q) f ≤ (n -1) q * -q f ≤ (n -1) √ n δ f and Q x T Q * x-(g-q * f ) ≤ x T Q * x + q * f -g = ρ. As Q -Q * ≤ n δ, we deduce that Q -Q * ≤ (n + (n -1) √ n f ) δ + ρ < (σ -ρ) + ρ = σ Therefore Q is positive definite.
The approximation of σ and the norm ρ of the error polynomial x T Q * x + q * f -g, which is approximately 0, depend on the precision µ of the solver. If ρ > σ, we need to increase the precision µ of the numerical solver and compute a new solution (Q * , q * ).

We can now summarize the certification algorithm for a strictly positive polynomial, in Algorithm 3.1, which is implemented in the function exact decompose of Julia package MomentTools.jl 1 .

3.2.

Certificate for a non-negative polynomial. We consider now the case where f arbitrary and g non-negative at the real roots of f satisfy the assumption that gcd(f, g) and f / gcd(f, g) are relatively prime. We set d := gcd(f, g).

We closely follow the proof of our main Theorem in Section 2. We first compute b ∈ Q[x] relatively prime to f /d such that b is strictly positive at the real roots of f /d and b d 2 ≡ g mod f .

We then compute the irreducible factorization of f /d = r i=1 p e i i where the polynomials p i ∈ Q[x] are irreducible, thus with simple roots, and pairwise relatively prime. We observe that b and p i are relatively prime, and that b is strictly positive on the real roots of p i , 1 ≤ i ≤ r.

We set b i to be the remainder of b modulo p i , 1 ≤ i ≤ r, and we apply Algorithm 3.1 to p i and b i . We get the rational SOS certificate b i = x T Q i x + q i p i 1 https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl and we finally compute q

∈ Q[x] s.t. g = N i=1 ω i (dh i ) 2 + q f.
This computation is summarized in Algorithm 3.2. Algorithm 3.2: Rational SOS certificate for a non-negative polynomial

Input: f ∈ Q[x] n , g ∈ Q[x]
such that g ≥ 0 at the real roots of f and gcd(f, g) and f / gcd(f, g) are relatively prime.

( 

h i ← d h i ; (7) Compute q ∈ Q[x] s.t. g = i ω i h 2 i + q f ; Output: ω i ∈ Q + , h i ∈ Q[x], q ∈ Q[x] satisfying g = i ω i h 2 i + q f.

3.3.

Example. We now revisit Example 2.9 to illustrate the symbolicnumeric approach based on Semi-Definite-Programming. The norm of the error polynomial is ρ ≈ 1.16e -15 so that δ ≈ 0.0227 and rounding with t = 2 decimal digits yields a positivity certificate.

In fact, in this case, rounding with one decimal digit is enough: It is a positive definite matrix (its eigenvalues are approximately 0.24507, 0.505399, 0.816198) which induces a rational SOS decomposition of g modulo f .

Q =   0.

Conclusion

In this work,

(1) we showed that a univariate rational polynomial g is strictly positive at all the real roots of a univariate rational squarefree polynomial f if and only if it is a sum of squares of rational univariate polynomials modulo f . To our knowledge, this fact was known for univariate polynomials in the global setting but not in the local setting; (2) we showed that the usual assumption of g being strictly positive at the real roots of a squarefree polynomial f can be relaxed to non-negative when gcd(f, g) and f / gcd(f, g) relatively prime, which we believe is the best assumption one can obtain;

(3) we produced an algorithm for the local setting, which is the counterpart of known algorithms for the global setting in the strictly positive case, and involves Hensel lifting and Chinese Remainder Theorem in the non squarefree and non-negative case. Our projects are to derive bit complexity estimates for the proposed algorithms and also to try to extend our results to the multivariate local setting of polynomials being non-negative at the real zero set of a zerodimensional ideal. Some of them can be extended mutatis-mutandis but there is still work to be done on the relaxation of the assumptions.

  . . . . . . . . . . . . p n-2 n+1

  set b := tg. Then b and f /d are relatively prime since t and f /d, and g and f /d are. Therefore b is striclty positive at the real roots of f /d because for any such root ξ, d(ξ) = 0, b(ξ) = 0 and b(ξ)d 2 (ξ) = g(ξ) ≥ 0.Finally, (20) implies that b d 2 ≡ g mod f .

Example 3 . 2 .

 32 Let f = x 3 -2 = (x-2 1/3 )(x-2 1/3 ω)(x-2 1/3 ω), where ω = e 2πi /3 , and g = x.Solving the convex optimization program:max λ s.t. Q ∈ S 3 (R), Q -λ I 0 q ∈ R[x] 1 g = x t Qx + qfwe obtain the matrix Q * of maximal rank and the polynomial q * : -0.5167531 x + 0.3161031.The eigenvalues of Q * are approximately: 0.246693, 0.5292293, 0.8321596.

5 

 5 and q = -0.5 x + 0.3, with error e = x T Qx + q f -g = -0.1x 3 + 0.1x 2 yieldQ = π g-qf (Q) = Q -Q e =

  1) d ← gcd(f, g); (2) Compute b ∈ Q[x] s.t. b is prime to f /d, strictly positive at the real roots of f /d and b d 2 ≡ g mod f . (3) Compute the factorization f /d = r i=1 p e i i into irreducible factors in Q[x]; (4) For each irreducible factor p i , b i ← the remainder of b modulo pi ; (Q i , q i ) ← output of Algorithm 3.1 applied to b i and p i ; Compute ω i,j ∈ Q + , h i,j ∈ Q[x] such that Compute ω i ∈ Q + , h i ∈ Q[x] such that

	b i ≡		
		i,j	mod p e i i
	using Hensel lifting in Lemma 2.10;
	(5) b ≡	ω i h 2 i	mod f /d
	i		
	using Chinese Remainder construction in Lemma 2.11;
	(6)		

j ω i,j h 2 i,j mod p i ; Compute h i,j ∈ Q[x] such that b i ≡ j ω i,j h 2
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Algorithm 3.1: Rational SOS certificate modulo a squarefree polynomial for a strictly positive polynomial

n-1 such that g > 0 at the real roots of f .

(1) µ ← µ 0 default precision of the interior point solver.

(2) (Q * , q * ) ← solution of the SDP problem (21) by the numerical interior point solver working at precision µ;

rational coefficients, with log 10 (δ -1 ) exact digits after decimal point; (7) q ← round q * to rational coefficients, with log 10 (δ -1 ) exact digits after decimal point;

where, setting

We deduce from the square-root-free Cholesky factorisation of Q i (cf. Remark 2.5) an SOS decomposition

By Hensel lifting (Lemma 2.10), we deduce an SOS decomposition of b modulo p e i i , and by the Chinese Remainder Theorem (Lemma 2.11), we deduce an SOS decomposition of b modulo f /d: b

Using that b d 2 ≡ g mod f , this gives the following SOS decomposition of g modulo f :