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UNIVARIATE RATIONAL SUMS OF SQUARES

TERESA KRICK, BERNARD MOURRAIN, AND AGNES SZANTO

To the memory of our beloved friend Agnes

Abstract. Given rational univariate polynomials f and g such
that gcd(f, g) and f/ gcd(f, g) are relatively prime, we show that
g is non-negative at all the real roots of f if and only if g is a
sum of squares of rational polynomials modulo f . We complete
our study by exhibiting an algorithm that produces a certificate
that a polynomial g is non-negative at the real roots of a non-zero
polynomial f , when the above assumption is satisfied.

Keywords. Positive polynomials; Sum of Squares; Semi-Definite Matrix; Convex

cone; Real roots; Exact computation; Certificate;

1. Introduction

It is a classical result that a real univariate polynomial is non-
negative on all R if and only if it is a sum of squares of real polynomials
(and in fact, 2 polynomials are enough). It was then proved by Landau
in 1905, see [6], that every univariate polynomial with rational coeffi-
cients which is non-negative on all R is a sum of 8 squares of rational
polynomials (this result was improved in [14], lowering the bound of 8
to the optimal value of 5).

We call this the global case, when we consider non-negativity on
all R. The local case is when we consider analogous questions for a
polynomial which is non-negative at the real roots of another non-zero
polynomial. More explicitly, the corresponding statement is: Given a
non-zero polynomial f ∈ R[x], is it true that a polynomial g ∈ R[x]
is non-negative at all the real roots of f if and only if it is congruent
modulo f to a sum of squares of polynomials in R[x]? That is, if there
exist polynomials hi ∈ R[x], 1 ≤ i ≤ N for some N ∈ N, such that

h :=
N∑
i=1

h2i satisfies h ≡ g mod f.

The research of Teresa Krick was partly supported by CONICET PIP-
11220130100073CO and BID-PICT 2018-02315. The work of Bernard Mourrain
was partly supported by the European Unions Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie Actions, grant agreement
813211 (POEMA). The research of Agnes Szanto was partly supported by NSF
grant CCF-1813340.
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In [12], P. Parrilo gives a very simple construction that shows that
this is indeed the case in a zero-dimensional radical setting of multi-
variate polynomials. In our specific setting his result shows that every
g ∈ R[x] which is non-negative at all the real roots of a squarefree
polynomial f ∈ R[x] is congruent modulo f to a sum of squares of
real polynomials. In this paper, we consider the corresponding rational
question: Given polynomials f, g ∈ Q[x] such that g is non-negative at
all the real roots of f , is it true that g is congruent modulo f to a sum
of squares of polynomials hi ∈ Q[x]? Note that this is equivalent to
say that g is congruent modulo f to a rational positive weighted sum
of squares of polynomials in Q[x], that is, that there exist ωi ∈ Q+ and
hi ∈ Q[x], 1 ≤ i ≤ N , such that

(1) h :=
N∑
i=1

ωi h
2
i satisfies h ≡ g mod f,

since for ωi = m/n ∈ Q with m,n ∈ N, ωih
2
i = mn(hi/n)2.

The positive weighted sum of squares h is commonly called a sum of
squares (SOS) decomposition of g modulo f , and such a decomposition,
together with the polynomial q ∈ Q[x] such that g = h + q f is a
certificate of the non-negativity of g at the real roots of f .

The existence and computation of rational SOS decompositions of
positive polynomials has been investigated in the univariate global case
for instance in [2], [10], or in the multivariate case in [13], [4]. A
counter-example in [16] shows that, in the multivariate case, a rational
polynomial which is a sum of squares of real polynomials cannot always
be decomposed as a rational sum of squares. In [5], [3], rational Artin’s
type certificates of positivity, that is, fractions of two rational weighted
sums of squares polynomials are considered. In [9], algorithms to com-
pute positivity certificates and bounds on their bit complexity and the
size of their output are presented, including Artin’s type certificates and
rational weighted sums of squares certificates for positive polynomials
on compact basic semi-algebraic sets. The algorithms work under some
strictly positivity assumptions. They involve numeric-symbolic tools
such as the perturbation algorithm of [2], the rounding-projection algo-
rithm of [13] or Semi-Definite Programming solvers. More recently, [11]
provides a numeric-symbolic algorithm based on rounding-projection
techniques for computing exact representations of polynomials lying in
the interior of the cone of nonnegative circuits (SONC) or of the cone
of arithmetic-geometric-exponentials (SAGE). In [8], an algorithm is
proposed to compute the representation of a non-negative polynomial
f as a rational sum of squares and an element in the gradient ideal
of f with rational coefficients, under the hypothesis that the gradient
ideal is zero-dimensional and radical, reducing to the univariate case
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by elimination techniques. Numeric-symbolic approaches similar to [9]
are applied to trigonometric polynomials in [7].

In this paper, we first show, by a direct method, that a rational
univariate polynomial g strictly positive at the real roots of a rational
squarefree polynomial f always admits a rational SOS decomposition
modulo f . This can be seen as a very very special case of Putinar’s
Theorem [15] over rational numbers. We then extend the result to
rational univariate polynomials g that are non-negative at the real roots
of f , under an assumption specified in our main result:

Theorem. Let f ∈ Q[x] be a non-zero polynomial of degree n and
g ∈ Q[x] be such that gcd(f, g) and f/ gcd(f, g) are relatively prime.
Assume that g is non-negative at all the real roots of f . Then there exist
rational positive weights ωi ∈ Q+ and rational polynomials hi ∈ Q[x]
of degree < n, 1 ≤ i ≤ N for some N ∈ N, such that

h :=
N∑
i=1

ωi h
2
i satisfies h ≡ g mod f.

Note that when f is squarefree, our assumption on gcd(f, g) and
f/ gcd(f, g) being relatively prime is automatically satisfied. Further-
more, this assumption seems to be optimal in order for such an SOS
decomposition to exist, as the following example demonstrates [12, Re-
mark 1]: For f = x2 and g = x, g is non-negative on all the (real)
roots of f but there is no such SOS decomposition. Note that in this
case gcd(f, g) = x = f/ gcd(f, g) and the polynomials f and g do not
satisfy the assumption of our theorem.

Certifying the non-negativity of a polynomial g at the real roots of
another polynomial f is a problem of particular importance in Com-
puter Algebra, for instance, for the localisation of real roots [1], or in
Automatic Theorem Proving for the certification of sign conditions over
the real numbers. It is also useful for checking the sign of polynomials
in Rn or more generally in Polynomial Optimization Problems, since
one can generically add polynomial constraints like the gradient equa-
tions and reduce to a univariate polynomial sign certification problem
by elimination of variables (see e.g. [8]).

The proof of our theorem is developed in Section 2. It proceeds by
first tackling in Subsection 2.1 the case when g is strictly positive at all
the real roots of a squarefree polynomial f of degree n: by modifying
the construction in [12], we first show there always exists a real SOS
decomposition h of g modulo f ,

h = [1, x, . . . , xn−1]Q [1, x, . . . , xn−1]T

with Q ∈ Rn×n symmetric and positive definite. This enables us to per-
turb the real coefficients in matrix Q in order to turn them rational,
while keeping the condition of remaining an SOS decomposition for g
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modulo f , as done in [13] for the global case (with the difference that
here we know there always exists such a positive definite real matrix).
In a second step, Subsection 2.2 deals with the case of a non squarefree
polynomial f , by applying Hensel lifting and Chinese Remainder The-
orem recombination. We finally relax the strictly positive condition to
non-negative under our assumption.

In this paper, we also address the following algorithmic question:
Can we produce an algorithm that computes a rational SOS certificate,
which size is related to the geometry of the input polynomials?

Several algorithms can be used to certify that a polynomial g is non-
negative at the real roots of f . We refer to [1] for a general presentation
of these algorithms, based for instance on Sturm-Habicth sequences or
isolation of real roots. The algorithm that we describe in Section 3 does
not require to isolate or approximate the real roots of f . It computes
a certificate of non-negativity by computing an SOS decomposition of
g modulo f using two main ingredients. The first ingredient is an
adaptation of the rounding-projection algorithm of [13] to the case of a
rational polynomial g strictly positive at the real roots of a squarefree
polynomial f , following the proof of Proposition 2.8. The second ingre-
dient is a reduction of the general case when gcd(f, g) and f/ gcd(f, g)
are relatively prime, to the strictly positive case, then lifting the ra-
tional SOS decompositions via Hensel lifting and Chinese Remainder
Theorem, following the proof of our main theorem.

Acknowledgment. This collaboration and research project started
because Agnes contacted the two other authors after an invitation by
the organizers of the MCA 2021 session “Symbolic computation: the-
ory, algorithms and applications”, Alicia Dickenstein, Alexey Ovchin-
nikov and Veronika Pillwein, to submit a publication related to her talk
to the Revista de la Unión Matemática Argentina. We all worked to-
gether during 2021 and, as usual when working with her, Agnes’ input
was crucial to produce the output. Agnes sadly passed away on March
21, 2022. We miss her dearly.

2. Existence of a rational SOS decomposition

2.1. The squarefree and strictly positive case. In this section we
assume that f ∈ R[x] is a squarefree polynomial and that g ∈ R[x] is
strictly positive at the real roots of f . We fix the following notation.

Notation 2.1. We denote

f =
n∑
i=0

fi x
i = fn(x− ξ1) · · · (x− ξn) with ξi 6= ξj ∈ C for i 6= j,

where ξ1, . . . , ξk are the real roots of f (for some 0 ≤ k ≤ n) while the
complex non-real roots are labeled as ξk+2i−1, ξk+2i with ξk+2i−1 = ξk+2i

for 1 ≤ i ≤ n−k
2

.
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The Lagrange basis for ξ1, . . . , ξn is denoted by u1, ..., un ∈ C[x], i.e.

(2) ui =
∏
j 6=i

x− ξj
ξi − ξj

=
f

f ′(ξi)(x− ξi)
for 1 ≤ i ≤ n.

It satisfies that for any polynomial p ∈ C[x] one has

(3) p(x) ≡
n∑
i=1

p(ξi)ui(x) mod f.

The basis u1, . . . , un is also defined by the conditions deg(ui) ≤ n− 1,
1 ≤ i ≤ n and ui(ξj) = δi,j for 1 ≤ i, j ≤ n. This implies by (3) that

(4) u2i ≡ ui mod f for 1 ≤ i ≤ n and uiuj ≡ 0 mod f for i 6= j.

Given g ∈ R[x], Parrilo constructed in [12] the following real poly-
nomial

k∑
i=1

g(ξi)u
2
i +

(n−k)/2∑
i=1

(√
g(ξk+2i)uk+2i +

√
g(ξk+2i)uk+2i

)2
(5)

=
n∑
i=1

g(ξi)u
2
i + 2

(n−k)/2∑
i=1

|g(ξk+2i)|uk+2i−1uk+2i,

where the identity follows from the fact that the interpolation poly-
nomials associated to the complex non-real roots of f are pairwise
conjugate, i.e. uk+2i = uk+2i−1.

This polynomial is a sum of squares in R[x] whenever g is non-
negative at the real roots of f , as shown by identity (5), since for
1 ≤ i ≤ n−k

2
,√

g(ξk+2i)uk+2i +

√
g(ξk+2i)uk+2i = 2<(

√
g(ξk+2i)uk+2i),

where < denotes the real part. Furthermore, it is congruent to g modulo
f since by (4) and (3) we have

n∑
i=1

g(ξi)u
2
i +2

(n−k)/2∑
i=1

|g(ξk+2i)|uk+2i−1uk+2i ≡
n∑
i=1

g(ξi)ui ≡ g mod f.

Inspired by this construction, we define for fixed λi ∈ R, 1 ≤ i ≤ n−k
2

,
the polynomial

(6) h =
n∑
i=1

g(ξi)u
2
i + 2

(n−k)/2∑
i=1

λi uk+2i−1uk+2i

which is also congruent to g modulo f for any choice of λi, 1 ≤ i ≤ n−k
2

.

Next proposition shows that for a range of values of λi, this polyno-
mial h is a sum of n linearly independent squares.
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Proposition 2.2. Let f ∈ R[x] be a squarefree polynomial as in Nota-
tion 2.1 and let g ∈ R[x] be such that g(ξi) > 0 for 1 ≤ i ≤ k.
Fix λi > |g(ξk+2i)|, 1 ≤ i ≤ n−k

2
, and let

h =
n∑
i=1

g(ξi)u
2
i + 2

(n−k)/2∑
i=1

λi uk+2i−1uk+2i

be the polynomial h defined in (6), which is congruent to g modulo f .
Then h is a positive weighted sum of n squares of linearly independent
real polynomials of degree strictly bounded by n. More precisely,

h =
n∑
i=1

ωi h
2
i(7)

where

• hi = ui and ωi = g(ξi) for 1 ≤ i ≤ k,

• hk+2i−1 = <(uk+2i)−
=(g(ξk+2i))

λi + <(g(ξk+2i))
=(uk+2i),

hk+2i =

√
λ2i − |g(ξk+2i)|2

λi + <(g(ξk+2i))
=(uk+2i),

and ωk+2i−1 = ωk+2i = 2 (λi + <(g(ξk+2i))) for 1 ≤ i ≤ n−k
2

.
(Here < and = denote real and imaginary part respectively.)

Proof. We first show that the expressions in (6) and (7) coincide.
Set γi := g(ξk+2i) for 1 ≤ i ≤ n−k

2
. Applying the identity

(a+ i b)(u+ i v)2 + (a− i b)(u− i v)2 + 2λ|u+ i v|2

= 2
(
(λ+ a)u2 − 2 b u v + (λ− a) v2

)
= 2(λ+ a)

(
(u− b

λ+ a
v)2 + (λ2 − a2 − b2) (

v

λ+ a
)2
)

for λ+ a 6= 0, we get from Identity (6):

h =
k∑
i=1

g(ξi)u
2
i +

(n−k)/2∑
i=1

(
γi u

2
k+2i + γi uk+2i

2 + 2λi |uk+2i|2
)

=
k∑
i=1

g(ξi)u
2
i

+

(n−k)/2∑
i=1

2 (λi + <(γi))
(
<(uk+2i)−

=(γi)

λi + <(γi)
=(uk+2i)

)2
+

(n−k)/2∑
i=1

2 (λi + <(γi))
(√λ2i − |γi|2
λi + <(γi)

=(uk+2i)
)2

since λi > |γi| implies λi + <(γi) 6= 0 and λ2i − |γi|2 > 0.
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Now, observe that ωi > 0 since for 1 ≤ i ≤ k, ωi := g(ξi) > 0 by
assumption, and for 1 ≤ i ≤ n−k

2
, ωk+2i−1 = ωk+2i := 2(λi+<(γi)) > 0.

Therefore h is a positive weighted sum of n squares of polynomials of
degree < n with real coefficients.

Finally, as the polynomials ui are linearly independent over C and
uk+2i−1 = uk+2i, the real polynomials

u1, . . . , uk,<(uk+2),=(uk+2), . . . ,<(un),=(un)

are also linearly independent. This implies that the real polynomials
h1, . . . , hn are also linearly independent over R (and in particular non-
zero). �

We fix the following notation for the rest of the paper:

Notation 2.3. We set Sn(R) for the set of symmetric matrices in Rn×n

and Sn+(R) for its cone of symmetric positive semidefinite matrices. We
equip Sn(R) with the Frobenius inner product 〈A,B〉 = trace(AB),
∀A,B ∈ Sn(R), which induces the Frobenius norm ‖ · ‖. The 2-norm
on the coefficients of polynomials in R[x] is also denoted by ‖ · ‖. For
m ∈ N0 we set R[x]m for the set of polynomials of degree bounded by
m. Finally, x = [1, x, . . . , xn−1]T is the column vector of monomials of
degree < n.

Note that for any polynomial p =
∑d

i=0 pix
i, one has

‖p f‖ ≤
d∑
i=0

‖pixif‖ ≤
d∑
i=0

|pi| ‖xif‖(8)

≤
d∑
i=0

‖p‖ ‖f‖ ≤ (d+ 1)‖p‖ ‖f‖.

As a first corollary of Proposition 2.2, we have:

Corollary 2.4. Let f, g ∈ R[x] with f of degree n with simple roots
ξi, 1 ≤ i ≤ n, and g of degree < n that is strictly positive at the real
roots ξ1, . . . , ξk of f . Then, there exists a pair (Q, q) ∈ Sn(R)×R[x]n−2
with Q positive definite such that g = xTQx + q f .
In particular Q ∈ Int(Sn+(R)), where Int denotes interior.

Proof. For fixed λi > |g(ξi)|, 1 ≤ i ≤ n−k
2

, let H be the coefficient
matrix of the polynomials h1, . . . , hn of Proposition 2.2 in the monomial
basis 1, x, . . . , xn−1, so that

(9) [h1, . . . , hn] = xT H.

The matrix H is invertible since h1, . . . , hn are linearly independent.
Let ∆ be the diagonal matrix

(10) ∆ = diag(ω1, . . . , ωn).
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Then (7) rewrites as

(11) h = xTH∆HTx = xTQx

where Q := H∆HT is positive definite since H is invertible and ωi > 0
for 1 ≤ i ≤ n. Also, as h ≡ g mod f and deg(h) ≤ 2n−2, there exists
q ∈ R[x]n−2 such that g = h+ q f .
Finally Q ∈ Int(Sn+(R)) since det(Q) > 0. �

Remark 2.5. The passage from h =
∑n

i=1 ωih
2
i with ωi ∈ R>0, 1 ≤

i ≤ n, to h = xTQx where Q ∈ Sn+(R) is a positive definite matrix,
and vice-versa, is quite standard:

As shown in the proof of Corollary 2.4, Q = H∆HT where H and ∆
are defined in (9) and (10).

Conversely, an exact square-root-free Cholesky decomposition of a
positive definite matrix Q ∈ Sn+(R) yields

Q = LDLT ,

where L is a lower unitriangular matrix and D is a diagonal matrix with
positive entries. For instance, this decomposition can be computed
exactly over Q through LU decomposition via Gaussian elimination of
matrix Q.

Then ω1, . . . , ωn are the diagonal entries of D and

[h1, . . . , hn] := xTL.

�

Note that when λi = |g(ξk+2i)|, which is the case in Parrilo’s poly-
nomial (5), hk+2i = 0 and therefore these polynomials hi, 1 ≤ i ≤ n,
are not linearly independent. This means that Parrilo’s polynomial (5)
lies in the border of the cone Sn+(R). What we were able to do in
Proposition 2.2 is to modify Parrilo’s construction in order to obtain a
polynomial h in the interior of this cone. This gives room to perturb it
a little in order to get a rational polynomial with the same character-
istics, and yields the particular version of our main theorem when g is
strictly positive at all the real roots of a squarefree polynomial f . To
describe this construction, we introduce the following ingredients.

Notation 2.6. Let p = p0 + p1x+ · · ·+ p2n−2x
2n−2 ∈ R[x]. We define

the affine space

Qp = {Q ∈ Sn(R) : xTQx = p},
and the symmetric matrix

(12) Qp =


p0

p1
2

. . . pn−2

n−1
pn−1

n
p1
2

. . . . . . pn
n−1

... . . . . . . . . .
...

pn−2

n+1
. . . . . . p2n−3

2
pn−1

n
pn
n−1 . . . p2n−3

2
p2n−2

 ,
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which satisfies

(13) xTQpx =
2n−2∑
k=0

pkx
k = p,

and therefore Qp ∈ Qp.

We note for further use that we have

(14) ‖Qp‖ =
( 2n−2∑
k=0

sk

(pk
sk

)2)1/2 ≤ ( 2n−2∑
k=0

p2k
)1/2

= ‖p‖,

where

(15) sk = s2n−2−k = k + 1, 0 ≤ k ≤ n− 1,

denotes the number of entries in each of the 2n−1 antidiagonals of Qp.

We now describe the orthogonal projection from Sn(R) on Qp for
the Frobenius norm, in a more convenient matrix formulation for the
univariate case than in [13, Prop.7], and prove it for sake of complete-
ness.

Lemma 2.7. The map

πp : Sn(R) −→ Qp , Q 7−→ Q−QxTQx−p

is the orthogonal projection onto the affine space Qp for the norm ‖ · ‖.

Proof. Let Q ∈ Sn(R). By (13), we have:

xTπp(Q) x = xTQx− (xTQx− p) = p,

and thus πp(Q) ∈ Qp.

To prove that πp(Q) is the orthogonal projection of Q on Qp, we
show that Q− πp(Q) is orthogonal to Qp:
We first observe that for any Q ∈ Sn(R),

xTQx =
2n−2∑
k=0

( ∑
i+j=k+2

Qi,j

)
xk =

2n−2∑
k=0

〈Q,Hk〉xk,

where for 0 ≤ k ≤ 2n− 2, Hk ∈ Sn(R) is the Hankel matrix such that
(Hk)i,j = 1 if i + j = k + 2 and 0 otherwise, 1 ≤ i, j ≤ n. This shows
that the affine space Qp is defined by the equations

〈Q,Hk〉 − pk = 0, k = 0, . . . , 2n− 2,

which implies that the vector space Q⊥p orthogonal to Qp is spanned
by (Hk)0≤k≤2n−2.
On another hand we can easily verify from its definition that

Qp =
2n−2∑
k=0

pk
sk
Hk,



10 TERESA KRICK, BERNARD MOURRAIN, AND AGNES SZANTO

where sk is defined in (15). Therefore,

Q− πp(Q) = QxTQx−p =
2n−2∑
k=0

(
〈Q,Hk〉 −

pk
sk

)
Hk,

which shows that Q − πp(Q) is a linear combination of (Hk)0≤k≤2n−2,
and thus orthogonal to Qp. �

We are going to use this projection to compute a rational sum of
squares modulo f for a polynomial g strictly positive at the real roots
of f .

Proposition 2.8. Let f ∈ Q[x] be a non-zero squarefree polynomial
and g ∈ Q[x] be such that g is strictly positive at all the real roots of
f . Then there exist polynomials hi ∈ Q[x] of degree < n and positive
weights ωi ∈ Q+, 1 ≤ i ≤ n, such that

h :=
n∑
i=1

ωi h
2
i satisfies h ≡ g mod f.

Proof. There is a natural proof of this proposition which makes use of
the fact that the set

{(A, b) ∈ Sn(R)× R[x]n−2 : g = xTAx + b f}

is a real affine space which in the case that f, g ∈ Q[x] is defined by
a rational basis and a rational particular point. This approach follows
the proof of the analogous result for the global case mentioned as image
representation in [13, Section 3.2].

Here, we give the proof that uses the orthogonal projection πp defined
in Definition 2.6, as done for the global case in the kernel representation
in [13, Section 3.1].

Without loss of generality we can assume that deg(g) < n by replac-
ing it by its remainder modulo f .

Let (Q∗, q∗) be given by Corollary 2.4, i.e. g = xTQ∗ x + q∗f and
Q∗ ∈ Int(Sn+(R)), and let σ > 0 be the smallest eigenvalue of Q∗, which
is the distance of Q∗ to the set of singular matrices, so that the open
ball centered at Q∗ and of radius σ is contained in Sn+(R).

Take a rational approximation (Q, q) ∈ Sn(Q)×Q[x]n−2 such that

‖Q−Q∗‖ < σ

2
and ‖q − q∗‖ < σ

2(n− 1)‖f‖
.(16)

The problem is that most surely, xTQx + q f 6= g.
Let e := xTQx + qf − g be the error polynomial, and define

Q := πg−qf (Q) = Q−Qe ∈ Sn(Q),

which is the orthogonal projection ofQ onQg−qf according to Lemma 2.7.
Then Q ∈ Qg−qf , i.e. xTQx + qf = g.
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Next we prove that Q ∈ Int(S+(Q)) by proving that ‖Q−Q∗‖ < σ.
We have

‖Q−Q∗‖ ≤ ‖πg−q f (Q)− πg−q f (Q∗)‖+ ‖πg−q f (Q∗)−Q∗‖
≤ ‖πg−q f (Q)− πg−q f (Q∗)‖+ ‖πg−q f (Q∗)− πg−q∗ f (Q∗)‖
≤ ‖Q−Q∗‖+ ‖Q∗ −QxTQ∗x−(g−q f) −

(
Q∗ −QxTQ∗x−(g−q∗ f)‖

≤ ‖Q−Q∗‖+ ‖Q(q∗−q) f‖,

since xTQ∗x + q∗g = g implies Q∗ = πg−q∗f (Q
∗).

By (14) and (8) we have

‖Q(q∗−q) f‖ ≤ ‖(q∗ − q) f‖ ≤ (n− 1)‖q∗ − q‖ ‖f‖

since deg(q∗ − q) ≤ 2n− 2. Finally, by (16), we conclude

‖Q−Q∗‖ < σ

2
+ (n− 1)

σ

2(n− 1)‖f‖
‖f‖ = σ.

This implies that Q ∈ Int(Sn+(R)), i.e. h = xTQx is a rational positive
weighted sum of squares. �

Example 2.9. We now consider a toy example to illustrate our con-
struction. This is a toy example because in this case we know the roots
of f and use that knowledge, as in the proof or our existential theorem.

Let f = x3 − 2 = (x − 21/3)(x − 21/3ω)(x − 21/3ω), where ω = e2πi /3,
and g = x, which is strictly positive at 21/3. Set ξ1 = 21/3, ξ2 = 21/3ω
and ξ3 = ξ2.

Parrilo’s construction (5) gives in this case the following real poly-
nomial, which is congruent to g modulo f and a sum of 2 squares:

g(ξ1)u1(x)︸ ︷︷ ︸
∈R[x]

2 +
(√

g(ξ2)u2(x) +
√
g(ξ3)u3(x)

)
︸ ︷︷ ︸

∈R[x]

2

= xTQ∗ x

where

Q∗ =


2 3√2
9

2
9

−
3√4
18

2
9

3√4
18

−
3√2
18

−
3√4
18
−

3√2
18

5
18

.
Note that Q∗ is a rank 2 positive semidefinite matrix, which therefore
lies in the border of the cone of positive semidefinite matrices.

Now, if we take λ := 2|g(ξ2)| = 2 · 21/3 in our construction (6), we
get h∗ = xTQ∗ x where

Q∗ =


4 3√2
9

1
9

−
3√4
9

1
9

2 3√4
9

−
3√2
9

−
3√4
9
−

3√2
9

7
18
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is a (rank 3) definite positive matrix with smallest eigenvalue σ ∼
0.2239, and

g = xTQ∗ x + q∗ f for q∗ = − 7

18
x+

2 3
√

2

9
.

Here, if we take the following rational approximations of Q∗ and q∗

(rounding to two significant digits)

Q =

 0.6 0.1 −0.2
0.1 0.4 −0.1
−0.2 −0.1 0.4

 and q = −0.4x+ 0.3

we get that ‖Q∗ −Q‖ ∼= 0.0923 and ‖q∗ − q‖ ∼= 0.0229. Thus, we have
‖Q∗ − Q‖ < σ

2
∼= 0.112 and ‖q∗ − q‖ < σ

2(n−1)‖f‖
∼= 0.025 respectively,

satisfying both of the bounds given in (16) required in the proof of
Proposition 2.8. We have xTQx + q f = 0.1x3 + x 6= g, with error

e = xTQx + q f − g = 0.1x3.

Compute the orthogonal projection of Q on Qg−qf :

Q = πg−qf (Q) = Q−Qe =

 0.6 0.1 −0.2
0.1 0.4 −0.15
−0.2 −0.15 0.4


so that xTQx − xTQx = e and Q is still a definite positive matrix.
Then matrix Q ∈ S3(Q) satisfies

h := xTQx = xTQx− e = g − q f ≡ g mod f,

and h is a sum of squares of rational polynomials, which we can ob-
tain applying the square-root-free Cholesky decomposition of Q (Re-
mark 2.5) as follows:

h =
3

5

(
1 +

1

6
x− 1

3
x2
)2

+
23

60

(
x− 7

23
x2
)2

+
137

460
x4.

2.2. The general case. In this subsection we generalize the results of
the previous section to the case when f is non-necessarily squarefree
and g is non-negative at all the real roots of f (but might vanish on
some of them), as long as gcd(f, g) and f/ gcd(f, g) are relatively prime,
in order to obtain our main theorem.

We will need the following auxiliary results, namely Hensel lemma
and Chinese remainder theorem.

Lemma 2.10. Let p, g ∈ Q[x] with p irreducible in Q[x] which does not
divide g. Assume that there exists h1, . . . , hN ∈ Q[x] and ω1 . . . , ωN ∈
Q+ for some N ∈ N with deg(hi) < deg(p) such that

g ≡
N∑
i=1

ωih
2

i mod p.
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Then for any fixed e ∈ N, e ≥ 1, there exist h1, . . . , hN ∈ Q[x] with
deg(hi) < e · deg(p) such that

g ≡
N∑
i=1

ωih
2
i mod pe.

Proof. We show that it suffices to perform Hensel lifting on one of the
polynomials hi. Since p ∈ Q[x] is irreducible and does not divide g,
one of the hi at least is not divisible by p, and w.l.o.g. we assume that
it is h1.

Define

g =
g

ω1

for N = 1 and g :=
g −

∑N
i=2 ωih

2

i

ω1

∈ Q[x] for N > 1.

Then g ≡ h
2

1 mod p, and we define the following Newton iteration

starting from h
(0)
1 := h1:

(17)

h
(k+1)
1 ≡ 1

2

(
h
(k)
1 +

g

h
(k)
1

)
≡ 1

2

(
h
(k)
1 + s

(k)
1 g

)
mod p2

k+1

for k ≥ 0,

where s
(k)
1 ∈ Q[x] is defined by s

(k)
1 h

(k)
1 ≡ 1 mod p2

k+1
.

First note that this sequence is well defined in Q[x] since by induc-
tion,

h
(k)
1 ≡

1

2

(
h
(0)
1 +

(
h
(0)
1

)2
h
(0)
1

)
≡ h

(0)
1 mod p,

and therefore h
(k)
1 is prime to the irreducible polynomial p since h

(0)
1 is,

and hence invertible modulo p2
k+1

.

We now prove by induction that
(
h
(k)
1 )2 ≡ g mod p2

k
:

First, from (17) we derive

(18) h
(k)
1 h

(k+1)
1 ≡ 1

2

((
h
(k)
1 )2 + g

)
mod p2

k+1

.

Now, by the inductive hypothesis,
(
h
(k)
1

)2 ≡ g mod p2
k

implies that

h
(k+1)
1 ≡ 1

2

(
h
(k)
1 + s

(k)
1

(
h
(k)
1

)2)
mod p2

k

≡ 1

2

(
h
(k)
1 + h

(k)
1

)
≡ h

(k)
1 mod p2

k

.

Therefore, h
(k)
1 = h

(k+1)
1 + t p2

k
for some t ∈ Q[x] and from (18),(

h
(k+1)
1 + t p2

k)
h
(k+1)
1 ≡ 1

2

((
h
(k+1)
1 + t p2

k)2
+ g
)

mod p2
k+1

≡ 1

2

((
h
(k+1)
1

)2
+ 2t p2

k

h
(k+1)
1 + g

)
mod p2

k+1



14 TERESA KRICK, BERNARD MOURRAIN, AND AGNES SZANTO

and we can cancel t p2
k
h
(k+1)
1 from both sides. We conclude(

h
(k+1)
1 )2 ≡ 1

2

((
h
(k+1)
1

)2
+ g
)

mod p2
k+1

which implies (
h
(k+1)
1

)2 ≡ g mod p2
k+1

.

Going back to the definition of g,

g = ω1g +
N∑
i=2

ωih
2

i ≡ ω1

(
h
(k)
1

)2
+

N∑
i=2

ωih
2

i mod p2
k

.

Finally, if we choose k such that 2k−1 < e ≤ 2k and define h1 := h
(k)
1

mod pe, hi := hi for 2 ≤ i ≤ N and ω1, . . . , ωN unchanged then we
get the sum of squares decomposition of g modulo pe with the desired
degree bounds. �

Lemma 2.11. Let f1, . . . , fr ∈ Q[x] with gcd(fi, fj) = 1 for 1 ≤ i <
j ≤ r. Assume that g ∈ Q[x] satisfies

g ≡
Ni∑
j=1

ωi,jh
2
i,j mod fi, 1 ≤ i ≤ r,

for some Ni ∈ N, hi,j ∈ Q[x] with deg(hi,j) < deg fi and ωi,j ∈ Q+,
for 1 ≤ j ≤ Ni. Then there exist N ∈ N, h1, . . . , hN ∈ Q[x] and
ω1, . . . , ωN ∈ Q+ such that

g ≡
N∑
i=1

ωih
2
i mod

( r∏
i=1

fi

)
.

Furthermore, deg(hi) <
∑r

i=1 deg(fi) for 1 ≤ i ≤ N .

Proof. The usual Chinese remainder theorem for a system

g ≡ gi mod fi, 1 ≤ i ≤ r,

admits the solution (c.f. [17, Algorithm 5.4])

g ≡ s1f
(1)g1 + · · ·+ srf

(r)gr mod f

where f :=
∏r

i=1 fi, f
(i) :=

∏
j 6=i fj and si is defined by sif

(i) + tifi = 1
for 1 ≤ i ≤ r.

On another side, notice that

sif
(i) ≡ (sif

(i))2 mod f, 1 ≤ i ≤ r,

since sif
(i) ≡ 1 mod fi and sif

(i) ≡ 0 mod fj for j 6= i. Then

g ≡ (s1f
(1))2g1 + · · ·+ (srf

(r))2gr mod f.
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In our setting, since gi :=
∑Ni

j=1 ωi,jh
2
i,j we get

g ≡
r∑
i=1

(sif
(i))2

( Ni∑
j=1

ωi,jh
2
i,j

)
mod f

≡
r∑
i=1

Ni∑
j=1

ωi,j(sif
(i)hi,j)

2 mod f.

We get N :=
∑r

i=1Ni and reduce sif
(i)hi,j modulo f to achieve the

desired degree bounds in the SOS decomposition. �

We are now able to prove the full version of our theorem. We repeat
the statement here for the reader’s convenience.

Theorem. Let f ∈ Q[x] be a non-zero polynomial of degree n and
g ∈ Q[x] be such that gcd(f, g) and f/ gcd(f, g) are relatively prime.
Assume that g is non-negative at all the real roots of f . Then there
exist polynomials hi ∈ Q[x] of degree < n and positive weights ωi ∈ Q+,
1 ≤ i ≤ N for some N ∈ N, such that

h :=
N∑
i=1

ωi h
2
i satisfies h ≡ g mod f.

Proof. First assume that gcd(f, g) = 1. Note that therefore, the as-
sumption that g is non-negative at the real roots of f implies that g is
strictly positive at the real roots of f .

W.l.o.g. we can assume that f is monic. Suppose f has the following
decomposition over Q into powers of irreducible factors in Q[x]

f = pe11 · · · perr
where pi are distinct monic irreducible polynomials in Q[x], ei ∈ N for
1 ≤ i ≤ r, and

∑r
i=1 ei deg(pi) = n.

Fix i ∈ {1, . . . , r}. Since g is strictly positive at the real roots of the
irreducible polynomial pi, we can apply Proposition 2.8 to pi and g,
which shows the existence of hi,j ∈ Q[x] of degree < Ni := deg(pi) and
ωi,j ∈ Q+ for 1 ≤ i ≤ Ni, such that

g ≡
Ni∑
j=1

ωi,j h
2

i,j mod pi.

Next we apply Lemma 2.10 with p = pi and e = ei to show the existence
of hi,j ∈ Q[x] of degree < ei deg(pi), 1 ≤ i ≤ Ni, such that

(19) g ≡
Ni∑
j=1

ωi,j h
2
i,j mod peii .
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Finally we apply Lemma 2.11 with fi = peii for 1 ≤ i ≤ r to combine
the congruences in (19) and obtain N ∈ N, h, h1, . . . , hN ∈ Q[x] and
ω1, . . . , ωN ∈ Q+ such that

h :=
N∑
i=1

ωi h
2
i satisfies h ≡ g mod f.

Furthermore, deg(hi) <
∑r

i=1 ei deg(pi) = n for 1 ≤ i ≤ N . This
proves the claim for an arbitrary polynomial f with gcd(f, g) = 1.

Assume now that d := gcd(f, g) 6= 1. We show that under our
assumption gcd(f/d, d) = 1, there is a polynomial b ∈ Q[x] relatively
prime to f/d which satisfies that b d2 ≡ g mod f and therefore b is
strictly positive at the real roots of f/d:

The assumption implies that gcd(f/d, g) = 1, and therefore g is
strictly positive at the real roots of f/d. Since gcd(f/d, d2) = 1 as
well, there exist s, t ∈ Q[x] s.t.

1 = s · f
d

+ t · d2.

This implies in particular gcd(f/d, t) = 1 and that

(20) g = s · g
d
· f + (tg) · d2.

We set b := tg. Then b and f/d are relatively prime since t and
f/d, and g and f/d are. Therefore b is striclty positive at the real
roots of f/d because for any such root ξ, d(ξ) 6= 0, b(ξ) 6= 0 and
b(ξ)d2(ξ) = g(ξ) ≥ 0.

Finally, (20) implies that b d2 ≡ g mod f .
We then apply our previous construction to b and f/d: There exist

hi ∈ Q[x] of degree < n− deg(d) and ωi ∈ Q+, 1 ≤ i ≤ N , such that

h :=
N∑
i=1

ωih
2

i satisfies h ≡ b mod
f

d
.

Therefore,

d2 h =
N∑
i=1

ωi (d hi)
2 and d2h ≡ b d2 mod f.

Since b d2 ≡ g mod f we conclude that

d2h ≡ g mod f.

We note that deg(d hi) < n, thus h := d2h, hi := d hi and ωi, 1 ≤ i ≤
N , satisfy the claim of the theorem. �

Example 2.12. Let us again consider a toy example to show how it
works when gcd(f, g) 6= 1 and f is not squarefree.
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Consider f = x(x3 − 2)2 and g = x3. Here d = gcd(f, g) = x and
f/d = (x3 − 2)2 are relatively prime, so we are in the assumptions of
our theorem.

In this case, as g/d2 = x is already a polynomial, we can take tg =
g/d2 = x.

(1) Find rational SOS for g/d2 = x modulo (x3 − 2) (see Example
2.9):

x ≡ 3

5

(
1 +

1

6
x− 1

3
x2
)2

+
23

60

(
x− 7

23
x2
)2

+
137

460
x4 mod (x3 − 2).

(2) Apply Hensel lifting to find rational SOS for g/d2 = x modulo
(x3 − 2)2 (note that we lift only the last term):

x ≡ 3

5

(
1 +

1

6
x− 1

3
x2
)2

+
23

60

(
x− 7

23
x2
)2

+
137

460

(
−46

137
x5 +

69

274
x4 +

229

137
x2 − 69

137
x

)2

mod (x3 − 2)2,

i.e. x ≡ ω1h
2

1 + ω2h
2

2 + ω3h
2

3 mod f/d = (x3 − 2)2.
(3) Multiply both sides by d2 = x2:

g ≡ ω1(xh1)
2 + ω2(xh2)

2 + ω3(xh3)
2 mod f = x(x3 − 2)2.

3. The algorithm

In this section, we describe the algorithm announced in the intro-
duction, that computes a certificate of non-negativity of a polynomial
g ∈ Q[x] at the real roots of another polynomial f ∈ Q[x].

3.1. Certificate for a strictly positive polynomial. Here we as-
sume that f ∈ Q[x] is a squarefree polynomial of degree n, and that g
is strictly positive at all the real roots of f .

We consider the following optimization problem

(21)

max λ
s.t. Q− λ I < 0

q ∈ R[x]n−2
g = xTQx + q f

where x = [1, . . . , xn−1]T is the vector of monomials of degree < n and
Q ∈ Sn(R). (Here < 0 denotes positive semidefinite.) It is finding
the maximal λ, which is bounded from above by all the eigenvalues of
symmetric matrices Q satisfying g = xTQx + q f . The set

C = {(Q, q) ∈ Sn(R)× R[x]n−2 : Q < 0, g = xTQx + q f}
is convex, as the intersection of the linear space

{(Q, q) ∈ Sn(R)× R[x]n−2, g − xTQx− q f = 0}
with the convex cone Sn+(R)×R[x]n−2. If the optimal value λ∗ of (21)
is strictly positive, then the relative interior of C is non-empty.



18 TERESA KRICK, BERNARD MOURRAIN, AND AGNES SZANTO

By solving the convex optimization problem (21) using a numerical
interior point solver, working at a given precision µ, we obtain an
approximation of an interior point of C where the objective function
reaches its maximum λ∗ > 0. This yields a rational approximation of an
interior point (Q∗, q∗) of the convex set C. That is, the numerical solver
computes a (rational) approximate solution (Q∗, q∗) of the optimization
problem (21), where if the precision µ is good enough and λ∗ > 0,
Q∗ ∈ Sn+(Q) is a positive definite matrix but there will be an error
polynomial xTQ∗x + q∗f − g 6= 0, although close to 0.

Since (Q∗, q∗) may have a lot of decimals, in order to obtain a ratio-
nal decomposition of g modulo f of small size, we start by rounding,
at a convenient precision δ > 0, Q∗ ∈ Sn+(R) to a nearby Q ∈ Sn(Q)
and q∗ ∈ R[x]≤n−2 to a nearby rational polynomial q ∈ Q[x]≤n−2. We
then compute the projection Q := πg−q f (Q) ∈ Qg−q f which satisfies
g = xTQx + q f . As in the proof of Proposition 2.8, if ‖Q − Q∗‖ is
smaller than the smallest eigenvalue σ of Q∗, then Q ∈ Sn+(Q) is a ra-
tional positive definite matrix and g = xTQx+qf gives a rational SOS
decomposition of g modulo f , that is (xTQx, q) is a rational certificate
of positivity of g at the real roots of f .

Given the approximate solution (Q∗, q∗) output by the numerical
solver, we detail in the following proposition a bound on the round-
ing precision δ chosen to define (Q, q) needed to guarantee that Q =
πg−qf (Q) is a positive definite matrix. We assume here that the matrix
Q∗ output by the solver is positive definite.

Proposition 3.1. Let σ > 0 be the smallest eigenvalue of Q∗ and
assume that ρ := ‖xTQ∗x + q∗ f − g‖ < σ. Set

0 < δ <
1

n+ (n− 1)
√
n ‖f‖

(σ − ρ).

Then, for any rational approximations (Q, q) ∈ Sn(Q) × Q[x]n−2 of
(Q∗, q∗) such that

|Qi,j −Q∗i,j| ≤ δ, 1 ≤ i, j ≤ n and |qi − q∗i | ≤ δ, 0 ≤ i ≤ n− 2,

the symmetric matrix Q = πg−qf (Q) ∈ Sn(Q), which satisfies g =
xTQx + q f , is positive definite.

Proof. We have

‖Q−Q∗‖ ≤ n δ and ‖q − q∗‖ ≤
√
n δ.

Then, the distance between Q = πg−q f (Q) and Q∗ can be bounded,
as in the proof of Proposition 2.8 but with the difference that Q∗ 6=
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πg−q∗f (Q
∗), as follows:

‖Q−Q∗‖ ≤ ‖πg−q f (Q)− πg−q f (Q∗)‖+ ‖πg−q f (Q∗)− πg−q∗ f (Q∗)‖
+ ‖πg−q∗ f (Q∗)−Q∗‖
≤ ‖Q−Q∗‖

+ ‖Q∗ −QxTQ∗x−(g−qf) − (Q∗ −QxTQ∗x−(g−q∗f)‖
+ ‖QxTQ∗x−(g−q∗ f)‖
≤ ‖Q−Q∗‖+ ‖Q(q∗−q)f‖+ ‖QxTQ∗x−(g−q∗ f)‖.

Using (14) and (8), as in the proof of Proposition 2.8 we have

‖Q(q∗−q) f‖ ≤ (n− 1)‖q∗ − q‖ ‖f‖ ≤ (n− 1)
√
n δ ‖f‖

and

‖QxTQ∗x−(g−q∗ f)‖ ≤ ‖xTQ∗x + q∗ f − g‖ = ρ.

As ‖Q−Q∗‖ ≤ n δ, we deduce that

‖Q−Q∗‖ ≤ (n+ (n− 1)
√
n ‖f‖) δ + ρ < (σ − ρ) + ρ = σ

Therefore Q is positive definite. �

The approximation of σ and the norm ρ of the error polynomial
xTQ∗x + q∗f − g, which is approximately 0, depend on the precision
µ of the solver. If ρ > σ, we need to increase the precision µ of the
numerical solver and compute a new solution (Q∗, q∗).

We can now summarize the certification algorithm for a strictly posi-
tive polynomial, in Algorithm 3.1, which is implemented in the function
exact decompose of Julia package MomentTools.jl1.

3.2. Certificate for a non-negative polynomial. We consider now
the case where f arbitrary and g non-negative at the real roots of f
satisfy the assumption that gcd(f, g) and f/ gcd(f, g) are relatively
prime. We set d := gcd(f, g).

We closely follow the proof of our main Theorem in Section 2. We
first compute b ∈ Q[x] relatively prime to f/d such that b is strictly
positive at the real roots of f/d and b d2 ≡ g mod f .

We then compute the irreducible factorization of f/d =
∏r

i=1 p
ei
i

where the polynomials pi ∈ Q[x] are irreducible, thus with simple roots,
and pairwise relatively prime.

We observe that b and pi are relatively prime, and that b is strictly
positive on the real roots of pi, 1 ≤ i ≤ r.

We set bi to be the remainder of b modulo pi, 1 ≤ i ≤ r, and we
apply Algorithm 3.1 to pi and bi. We get the rational SOS certificate

bi = xTQix + qi pi

1https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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Algorithm 3.1: Rational SOS certificate modulo a squarefree poly-
nomial for a strictly positive polynomial

Input: f ∈ Q[x]n squarefree, g ∈ Q[x]n−1 such that g > 0 at the
real roots of f .

(1) µ← µ0 default precision of the interior point solver.
(2) (Q∗, q∗)← solution of the SDP problem (21) by the numerical

interior point solver working at precision µ;
(3) σ ← smallest eigenvalue of Q∗;
(4) ρ← ‖xTQ∗x + q∗ f − g‖ the 2-norm of the error polynomial;
(5) δ ← 0.99

n+
√
n(n−1) ‖f‖(σ − ρ); If δ < 0 then increase precision

µ← 2µ and repeat from step (1);
(6) Q← round Q∗ to rational coefficients, with dlog10(δ

−1)e exact
digits after decimal point;

(7) q ← round q∗ to rational coefficients, with dlog10(δ
−1)e exact

digits after decimal point;
(8) Q← πg−q f (Q);

Output: (Q, q) ∈ Sn+(Q)×Q[x]n−2 such that

• g = xTQx + q f ,
• Q definite positive.

where, setting ni := deg(pi), Qi ∈ Sni
+ (Q) is positive definite and qi ∈

Q[x]ni−2. We deduce from the square-root-free Cholesky factorisation
of Qi (cf. Remark 2.5) an SOS decomposition

bi ≡
ni∑
j=1

ωi,jh
2

i,j mod pi,

where ωi,j ∈ Q+, hi,j ∈ Q[x].
Therefore

b ≡
ni∑
j=1

ωi,jh
2

i,j mod pi, 1 ≤ i ≤ r.

By Hensel lifting (Lemma 2.10), we deduce an SOS decomposition of
b modulo peii , and by the Chinese Remainder Theorem (Lemma 2.11),
we deduce an SOS decomposition of b modulo f/d:

b ≡
N∑
i=1

ωih
2

i mod f/d

with ωi ∈ Q+, hi ∈ Q[x]. Using that b d2 ≡ g mod f , this gives the
following SOS decomposition of g modulo f :

g ≡
N∑
i=1

ωi(dhi)
2 mod f
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and we finally compute q ∈ Q[x] s.t.

g =
N∑
i=1

ωi(dhi)
2 + q f.

This computation is summarized in Algorithm 3.2.

Algorithm 3.2: Rational SOS certificate for a non-negative poly-
nomial
Input: f ∈ Q[x]n, g ∈ Q[x] such that g ≥ 0 at the real roots of f
and gcd(f, g) and f/ gcd(f, g) are relatively prime.

(1) d← gcd(f, g);
(2) Compute b ∈ Q[x] s.t. b is prime to f/d, strictly positive at

the real roots of f/d and b d2 ≡ g mod f .
(3) Compute the factorization f/d =

∏r
i=1 p

ei
i into irreducible

factors in Q[x];
(4) For each irreducible factor pi,

bi ← the remainder of b modulo pi;
(Q′i, q

′
i)← output of Algorithm 3.1 applied to bi and pi;

Compute ωi,j ∈ Q+, hi,j ∈ Q[x] such that

bi ≡
∑
j

ωi,jh
2

i,j mod pi;

Compute hi,j ∈ Q[x] such that

bi ≡
∑
j

ωi,jh
2
i,j mod peii

using Hensel lifting in Lemma 2.10;
(5) Compute ωi ∈ Q+, hi ∈ Q[x] such that

b ≡
∑
i

ωih
2

i mod f/d

using Chinese Remainder construction in Lemma 2.11;
(6) hi ← d hi;
(7) Compute q ∈ Q[x] s.t. g =

∑
i ωih

2
i + q f ;

Output: ωi ∈ Q+, hi ∈ Q[x], q ∈ Q[x] satisfying

g =
∑
i

ωih
2
i + q f.

3.3. Example. We now revisit Example 2.9 to illustrate the symbolic-
numeric approach based on Semi-Definite-Programming.

Example 3.2. Let f = x3−2 = (x−21/3)(x−21/3ω)(x−21/3ω), where
ω = e2πi /3, and g = x.
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Solving the convex optimization program:

max λ
s.t. Q ∈ S3(R), Q− λ I < 0

q ∈ R[x]1
g = xtQx + qf

we obtain the matrix Q∗ of maximal rank and the polynomial q∗:

Q∗ ≈

 0.6322063 −0.0167531 −0.2295612
−0.0167531 0.4591225 −0.1580516
−0.2295612 −0.1580516 0.5167531

 ,
q∗ ≈ −0.5167531x+ 0.3161031.

The eigenvalues of Q∗ are approximately:

0.246693, 0.5292293, 0.8321596.

The norm of the error polynomial is ρ ≈ 1.16e−15 so that δ ≈ 0.0227
and rounding with t = 2 decimal digits yields a positivity certificate.
In fact, in this case, rounding with one decimal digit is enough:

Q =

 0.6 0 −0.2
0 0.5 −0.2
−0.2 −0.2 0.5

 and q = −0.5x+ 0.3,

with error e = xTQx + q f − g = −0.1x3 + 0.1x2 yield

Q = πg−qf (Q) = Q−Qe =

 3
5

0 −7
30

0 7
15

−3
20

−7
30

−3
20

1
2

 .
It is a positive definite matrix (its eigenvalues are approximately 0.24507,
0.505399, 0.816198) which induces a rational SOS decomposition of g
modulo f .

4. Conclusion

In this work,

(1) we showed that a univariate rational polynomial g is strictly
positive at all the real roots of a univariate rational squarefree
polynomial f if and only if it is a sum of squares of rational
univariate polynomials modulo f . To our knowledge, this fact
was known for univariate polynomials in the global setting but
not in the local setting;

(2) we showed that the usual assumption of g being strictly positive
at the real roots of a squarefree polynomial f can be relaxed to
non-negative when gcd(f, g) and f/ gcd(f, g) relatively prime,
which we believe is the best assumption one can obtain;
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(3) we produced an algorithm for the local setting, which is the
counterpart of known algorithms for the global setting in the
strictly positive case, and involves Hensel lifting and Chinese
Remainder Theorem in the non squarefree and non-negative
case.

Our projects are to derive bit complexity estimates for the proposed
algorithms and also to try to extend our results to the multivariate local
setting of polynomials being non-negative at the real zero set of a zero-
dimensional ideal. Some of them can be extended mutatis-mutandis
but there is still work to be done on the relaxation of the assumptions.
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