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UNIVARIATE RATIONAL SUMS OF SQUARES

TERESA KRICK, BERNARD MOURRAIN, AND AGNES SZANTO

Abstract. Given rational univariate polynomials f and g such that gcd(f, g) and f/ gcd(f, g)
are relatively prime, we show that g is non-negative on all the real roots of f if and only if g
is a sum of squares of rational polynomials modulo f . We complete our study by exhibiting an
algorithm that produces a certificate that a polynomial g is non-negative on the real roots of a
non-zero polynomial f , when the above assumption is satisfied.

Keywords. Positive polynomials; Sum of Squares; Semi-Definite Matrix; Convex cone; Real roots; Exact compu-

tation; Certificate;

1. Introduction

It is a classical result that a real univariate polynomial is non-negative on all R if and only if it
is a sum of squares of real polynomials (and in fact, 2 polynomials are enough). It was then proved
by Landau in 1905, see [6], that every univariate polynomial with rational coefficients which is
non-negative on all R is a sum of 8 squares of rational polynomials (this result was improved in
[11], lowering the bound of 8 to the optimal value of 5).

We call this the global case, when we consider non-negativity on all R. The local case is
when we consider analogous questions for a polynomial which is non-negative on the real roots of
another non-zero polynomial. More explicitly, the corresponding statement is: Given a non-zero
polynomial f ∈ R[x], is it true that a polynomial g ∈ R[x] is non-negative on all the real roots of
f if and only if it is congruent modulo f to a sum of squares of polynomials in R[x]? That is, if
there exist polynomials hi ∈ R[x], 1 ≤ i ≤ N for some N ∈ N, such that

h :=

N∑

i=1

h2
i satisfies h ≡ g mod f.

In [9], P. Parrilo gives a very simple construction that shows that this is indeed the case in
a zero-dimensional radical setting of multivariate polynomials. In our specific setting his result
shows that every g ∈ R[x] which is non-negative on all the real roots of a squarefree polynomial
f ∈ R[x] is congruent modulo f to a sum of squares of real polynomials. In this paper, we consider
the corresponding rational question: Given polynomials f, g ∈ Q[x] such that g is non-negative on
all the real roots of f , is it true that g is congruent modulo f to a sum of squares of polynomials
hi ∈ Q[x]? Note that this is equivalent to say that g is congruent modulo f to a rational positive
weighted sum of squares of polynomials in Q[x], that is, that there exist ωi ∈ Q+ and hi ∈ Q[x],
1 ≤ i ≤ N , such that

(1) h :=

N∑

i=1

ωi h
2
i satisfies h ≡ g mod f,

since for ωi = m/n ∈ Q with m,n ∈ N, ωih
2
i = mn(hi/n)

2.
The positive weighted sum of squares h is commonly called a sum of squares (SOS) decompo-

sition of g modulo f , and such a decomposition, together with the polynomial q ∈ Q[x] such that
g = h+ q f is a certificate of the non-negativity of g on the real roots of f .
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The existence and computation of rational SOS decompositions of positive polynomials has
been investigated in the univariate case for instance in [2], [8], or in the multivariate case in [10],
[4]. A counter-example in [13] shows that, in the multivariate case, a rational polynomial which is
a sum of squares of real polynomials cannot always be decomposed as a rational sum of squares.
In [5], [3], rational Artin’s type certificates of positivity, that is, fractions of two rational weighted
sums of squares polynomials are considered.

In [7], algorithms to compute positivity certificates and bounds on their bit complexity and
the size of their output are presented, including Artin’s type certificates and rational weighted
sums of squares certificates for positive polynomials on compact basic semi-algebraic sets. The
algorithms work under some strictly positivity assumptions. They involve numeric-symbolic tools
such as the perturbation algorithm of [2], the rounding-projection algorithm of [10] or Semi-
Definite Programming solvers.

In this paper, we first show, by a direct method, that a rational univariate polynomial g,
strictly positive on the real roots of a rational squarefree polynomial f , admits a rational SOS
decomposition modulo f . This can be seen as a very very special case of Putinar’s Theorem
[12] over rational numbers. We extend the result to rational univariate polynomials g that are
non-negative at the roots of f , under an assumption specified in our main result:

Theorem. Let f ∈ Q[x] be a non-zero polynomial of degree n and g ∈ Q[x] be such that gcd(f, g)
and f/ gcd(f, g) are relatively prime. Assume that g is non-negative on all the real roots of f .
Then there exist rational positive weights ωi ∈ Q+ and rational polynomials hi ∈ Q[x] of degree
< n, 1 ≤ i ≤ N for some N ∈ N, such that

h :=

N∑

i=1

ωi h
2
i satisfies h ≡ g mod f.

Note that when f is squarefree, our assumption on gcd(f, g) and f/ gcd(f, g) being relatively
prime is automatically satisfied. Furthermore, this assumption seems to be optimal in order for
such an SOS decomposition to exist, as the following example demonstrates [9, Remark 1]: For
f = x2 and g = x, g is non-negative on all the (real) roots of f but there is no such SOS
decomposition. Note that in this case gcd(f, g) = x = f/ gcd(f, g) and the polynomials f and g
do not satisfy the assumption of our theorem.

The proof of our theorem is developed in Section 2. It proceeds by first tackling in Subsection 2.1
the case when g is strictly positive on all the real roots of a squarefree polynomial f of degree n:
by modifying the construction in [9], we first show there always exists a real SOS decomposition
h of g modulo f ,

h = [1, x, . . . , xn−1]Q [1, x, . . . , xn−1]T

with Q ∈ Rn×n symmetric and positive definite. This enables us to perturb the real coefficients
in matrix Q in order to turn them rational, while keeping the condition of remaining an SOS
decomposition for g modulo f , as done in [10] for the global case (with the difference that here we
know there always exists such a positive definite real matrix). In a second step, Subsection 2.2 deals
with the case of a non squarefree polynomial f , applying Hensel lifting and Chinese Remainder
Theorem recombination. We finally relax the strictly positive condition to non-negative under our
assumption.

In this paper, we also address the following algorithmic question: Can we produce an algorithm
that computes a rational SOS certificate, which size is related to the geometry of the input
polynomials?

Several algorithms can be used to certify that a polynomial g is non-negative at the roots of f .
We refer to [1] for a general presentation of these algorithms, based for instance on Sturm-Habicth
sequences or isolation of real roots.

The algorithm that we describe in Section 3 does not require to isolate or approximate the
roots of f . It computes a certificate of non-negativity by computing an SOS decomposition of
g modulo f using two main ingredients. The first ingredient is an adaptation of the rounding-
projection algorithm of [10] to the case of a rational polynomial g strictly positive on the real
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roots of a squarefree polynomial f , following the proof of Proposition 2.8. The second ingredient
is a reduction of the general case when gcd(f, g) and f/ gcd(f, g) are relatively prime, to the
strictly positive case, then lifting the rational SOS decompositions via Hensel lifting and Chinese
Remainder Theorem, following the proof of our main theorem.

Acknowledgment. We thank the organizers of the MCA 2021 session “Symbolic computation:
theory, algorithms and applications”, Alicia Dickenstein, Alexey Ovchinnikov and Veronika Pill-
wein, who invited Agnes Szanto to submit a publication related to her talk to the Revista de la
Unión Matemática Argentina, that started this collaboration and research project.

2. Existence of a rational SOS decomposition

2.1. The squarefree and strictly positive case. In this section we assume that f ∈ R[x] is
a squarefree polynomial and that g ∈ R[x] is strictly positive on the real roots of f . We fix the
following notation.

Notation 2.1. We denote

f =

n∑

i=0

fi x
i = fn(x− ξ1) · · · (x− ξn) with ξi 6= ξj ∈ C for i 6= j,

where ξ1, . . . , ξk are the real roots of f (for some 0 ≤ k ≤ n) while the complex non-real roots are
labeled as ξk+2i−1, ξk+2i with ξk+2i−1 = ξk+2i for 1 ≤ i ≤ n−k

2
.

The Lagrange basis for ξ1, . . . , ξn is denoted by u1, ..., un ∈ C[x], i.e.

(2) ui =
∏

j 6=i

x− ξj
ξi − ξj

=
f

f ′(ξi)(x− ξi)
for 1 ≤ i ≤ n.

It satisfies that for any polynomial p ∈ C[x] one has

(3) p(x) ≡
n∑

i=1

p(ξi) ui(x) mod f.

The basis u1, . . . , un is also defined by the conditions deg(ui) ≤ n− 1, 1 ≤ i ≤ n and ui(ξj) = δi,j
for 1 ≤ i, j ≤ n. This implies by (3) that

(4) u2
i ≡ ui mod f for 1 ≤ i ≤ n and uiuj ≡ 0 mod f for i 6= j.

Given g ∈ R[x], Parrilo constructed in [9] the following real polynomial

k∑

i=1

g(ξi) u
2
i +

(n−k)/2
∑

i=1

(√

g(ξk+2i)uk+2i +

√

g(ξk+2i)uk+2i

)2
(5)

=

n∑

i=1

g(ξi) u
2
i + 2

(n−k)/2
∑

i=1

|g(ξk+2i)| uk+2i−1uk+2i,

where the identity follows from the fact that the interpolation polynomials associated to the
complex non-real roots of f are pairwise conjugate, i.e. uk+2i = uk+2i−1.

This polynomial is a sum of squares in R[x] whenever g is non-negative on the real roots of f ,
as shown by identity (5), since for 1 ≤ i ≤ n−k

2
,

√

g(ξk+2i)uk+2i +

√

g(ξk+2i)uk+2i = 2ℜ(
√

g(ξk+2i)uk+2i),

where ℜ denotes the real part. Furthermore, it is congruent to g modulo f since by (4) and (3)
we have

n∑

i=1

g(ξi) u
2
i + 2

(n−k)/2
∑

i=1

|g(ξk+2i)| uk+2i−1uk+2i ≡
n∑

i=1

g(ξi) ui ≡ g mod f.
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Inspired by this construction, we define for fixed λi ∈ R, 1 ≤ i ≤ n−k
2
, the polynomial

(6) h =

n∑

i=1

g(ξi) u
2
i + 2

(n−k)/2
∑

i=1

λi uk+2i−1uk+2i

which is also congruent to g modulo f for any choice of λi, 1 ≤ i ≤ n−k
2
.

Next proposition shows that for a range of values of λi, this polynomial h is a sum of n linearly
independent squares.

Proposition 2.2. Let f ∈ R[x] be a squarefree polynomial as in Notation 2.1 and let g ∈ R[x] be
such that g(ξi) > 0 for 1 ≤ i ≤ k.
Fix λi > |g(ξk+2i)|, 1 ≤ i ≤ n−k

2
, and let

h =

n∑

i=1

g(ξi) u
2
i + 2

(n−k)/2
∑

i=1

λi uk+2i−1uk+2i

be the polynomial h defined in (6), which is congruent to g modulo f . Then h is a positive weighted
sum of n squares of linearly independent real polynomials of degree strictly bounded by n. More
precisely,

h =

n∑

i=1

ωi h
2
i(7)

where

• hi = ui and ωi = g(ξi) for 1 ≤ i ≤ k,

• hk+2i−1 = ℜ(uk+2i)−
ℑ(g(ξk+2i))

λi + ℜ(g(ξk+2i))
ℑ(uk+2i),

hk+2i =

√

λ2
i − |g(ξk+2i)|2

λi + ℜ(g(ξk+2i))
ℑ(uk+2i),

and ωk+2i−1 = ωk+2i = 2 (λi + ℜ(g(ξk+2i))) for 1 ≤ i ≤ n−k
2
.

(Here ℜ and ℑ denote real and imaginary part respectively.)

Proof. We first show that the expressions in (6) and (7) coincide.
Set γi := g(ξk+2i) for 1 ≤ i ≤ n−k

2
. Applying the identity

(a+ i b)(u+ i v)2 + (a− i b)(u− i v)2 + 2 λ|u+ i v|2

= 2
(
(λ+ a) u2 − 2 b u v + (λ− a) v2

)

= 2(λ+ a)
(
(u− b

λ+ a
v)2 + (λ2 − a2 − b2) (

v

λ+ a
)2
)

for λ+ a 6= 0, we get from Identity (6):

h =
k∑

i=1

g(ξi) u
2
i +

(n−k)/2
∑

i=1

(

γi u
2
k+2i + γi uk+2i

2 + 2 λi |uk+2i|2
)

=

k∑

i=1

g(ξi) u
2
i

+

(n−k)/2
∑

i=1

2 (λi + ℜ(γi))
(
ℜ(uk+2i)−

ℑ(γi)
λi + ℜ(γi)

ℑ(uk+2i)
)2

+

(n−k)/2
∑

i=1

2 (λi + ℜ(γi))
(
√

λ2
i − |γi|2

λi + ℜ(γi)
ℑ(uk+2i)

)2
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since λi > |γi| implies λi + ℜ(γi) 6= 0 and λ2
i − |γi|2 > 0.

Now, observe that ωi > 0 since for 1 ≤ i ≤ k, ωi := g(ξi) > 0 by assumption, and for
1 ≤ i ≤ n−k

2
, ωk+2i−1 = ωk+2i := 2(λi + ℜ(γi)) > 0. Therefore h is a positive weighted sum of n

squares of polynomials of degree < n with real coefficients.
Finally, as the polynomials ui are linearly independent over C and uk+2i−1 = uk+2i, the real

polynomials

u1, . . . , uk,ℜ(uk+2),ℑ(uk+2), . . . ,ℜ(un),ℑ(un)

are also linearly independent. This implies that the real polynomials h1, . . . , hn are also linearly
independent over R (and in particular non-zero). �

We fix the following notation for the rest of the paper:

Notation 2.3. We set Sn(R) for the set of symmetric matrices in Rn×n and Sn
+(R) for its cone

of symmetric positive semidefinite matrices. We equip Sn(R) with the Frobenius inner product
〈A,B〉 = trace(AB), ∀A,B ∈ Sn(R), which induces the Frobenius norm ‖ · ‖. The 2-norm on
the coefficients of polynomials in R[x] is also denoted by ‖ · ‖. For m ∈ N0 we set R[x]m for the
set of polynomials of degree bounded by m. Finally, x = [1, x, . . . , xn−1]T is the column vector of
monomials of degree < n.

Note that for any polynomial p =
∑d

i=0 pix
i, one has

‖p f‖ ≤
d∑

i=0

‖pixif‖ ≤
d∑

i=0

|pi| ‖xif‖(8)

≤
d∑

i=0

‖p‖ ‖f‖ ≤ (d+ 1)‖p‖ ‖f‖.

As a first corollary of Proposition 2.2, we have:

Corollary 2.4. Let f, g ∈ R[x] with f of degree n with simple roots ξi, 1 ≤ i ≤ n, and g of
degree < n that is strictly positive on the real roots ξ1, . . . , ξk of f . Then, there exists a pair
(Q, q) ∈ Sn(R)× R[x]n−2 with Q positive definite such that g = xTQx + q f .
In particular Q ∈ Int(Sn

+(R)), where Int denotes interior.

Proof. For fixed λi > |g(ξi)|, 1 ≤ i ≤ n−k
2
, let H be the coefficient matrix of the polynomials

h1, . . . , hn of Proposition 2.2 in the monomial basis 1, x, . . . , xn−1, so that

(9) [h1, . . . , hn] = xT H.

The matrix H is invertible since h1, . . . , hn are linearly independent. Let ∆ be the diagonal matrix

(10) ∆ = diag(ω1, . . . , ωn).

Then (7) rewrites as

(11) h = xTH∆HTx = xTQx

where Q := H∆HT is positive definite since H is invertible and ωi > 0 for 1 ≤ i ≤ n. Also, as
h ≡ g mod f and deg(h) ≤ 2n− 2, there exists q ∈ R[x]n−2 such that g = h + q f .
Finally Q ∈ Int(Sn

+(R)) since det(Q) > 0. �

Remark 2.5. The passage from h =
∑n

i=1 ωih
2
i with ωi ∈ R>0, 1 ≤ i ≤ n, to h = xTQx where

Q ∈ Sn
+(R) is a positive definite matrix, and vice-versa, is quite standard:

As shown in the proof of Corollary 2.4, Q = H∆HT where H and ∆ are defined in (9) and (10).
Conversely, an exact square-root-free Cholesky decomposition of a positive definite matrix Q ∈

Sn
+(R) yields

Q = LDLT ,
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where L is a lower unitriangular matrix and D is a diagonal matrix with positive entries. For
instance, this decomposition can be computed exactly over Q through LU decomposition via
Gaussian elimination of matrix Q.

Then ω1, . . . , ωn are the diagonal entries of D and

[h1, . . . , hn] := xTL.

Note that when λi = |g(ξk+2i)|, which is the case in Parrilo’s polynomial (5), hk+2i = 0 and
therefore these polynomials hi, 1 ≤ i ≤ n, are not linearly independent. This means that Parrilo’s
polynomial (5) lies in the border of the cone Sn

+(R). What we were able to do in Proposition 2.2 is
to modify Parrilo’s construction in order to obtain a polynomial h in the interior of this cone. This
gives room to perturb it a little in order to get a rational polynomial with the same characteristics,
and yields the particular version of our main theorem when g is strictly positive on all the real
roots of a squarefree polynomial f .

To describe this construction, we introduce the following ingredients.

Notation 2.6. Let p = p0 + p1x+ · · ·+ p2n−2x
2n−2 ∈ R[x]. We define the affine space

Qp = {Q ∈ Sn(R) : xTQx = p},
and the symmetric matrix

(12) Qp =












p0
p1
2

p2
3

. . . pn−2

n−1
pn−1

n
p1
2

p2
3

. .
. pn−1

n
pn
n−1

p2
3

. .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

. .
. p2n−4

3
pn−2

n+1
pn−1

n
. .
. p2n−4

3
p2n−3

2
pn−1

n
pn
n−1

. . . p2n−4

3
p2n−3

2
p2n−2












,

which satisfies

(13) xTQpx =
2n−2∑

k=0

pkx
k = p,

and therefore Qp ∈ Qp.

We note for further use that we have

(14) ‖Qp‖ =
(
2n−2∑

k=0

sk

(pk
sk

)2)1/2 ≤
(
2n−2∑

k=0

p2k
)1/2

= ‖p‖,

where

(15) sk = s2n−2−k = k + 1, 0 ≤ k ≤ n− 1,

denotes the number of entries in each of the 2n− 1 antidiagonals of Qp.

We now describe the orthogonal projection from Sn(R) on Qp for the Frobenius norm, in a
more convenient matrix formulation for the univariate case than in [10, Prop.7], and prove it for
sake of completeness.

Lemma 2.7. The map

πp : S
n(R) −→ Qp , Q 7−→ Q−QxTQx−p

is the orthogonal projection onto the affine space Qp for the norm ‖ · ‖.
Proof. Let Q ∈ Sn(R). By (13), we have:

xTπp(Q)x = xTQx− (xTQx− p) = p,

and thus πp(Q) ∈ Qp.
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To prove that πp(Q) is the orthogonal projection of Q on Qp, we show that Q − πp(Q) is
orthogonal to Qp:
We first observe that for any Q ∈ Sn(R),

xTQx =

2n−2∑

k=0

( ∑

i+j=k+2

Qi,j

)

xk =

2n−2∑

k=0

〈Q,Hk〉xk,

where for 0 ≤ k ≤ 2n− 2, Hk ∈ Sn(R) is the Hankel matrix such that (Hk)i,j = 1 if i+ j = k + 2
and 0 otherwise, 1 ≤ i, j ≤ n. This shows that the affine space Qp is defined by the equations

〈Q,Hk〉 − pk = 0, k = 0, . . . , 2n− 2,

which implies that the vector space Q⊥
p orthogonal to Qp is spanned by (Hk)0≤k≤2n−2.

On another hand we can easily verify from its definition that

Qp =

2n−2∑

k=0

pk
sk
Hk,

where sk is defined in (15). Therefore,

Q− πp(Q) = QxTQx−p =

2n−2∑

k=0

(
〈Q,Hk〉 −

pk
sk

)
Hk,

which shows that Q − πp(Q) is a linear combination of (Hk)0≤k≤2n−2, and thus orthogonal to
Qp. �

We are going to use this projection to compute a rational sum of squares modulo f for a
polynomial g strictly positive at the real roots of f .

Proposition 2.8. Let f ∈ Q[x] be a non-zero squarefree polynomial and g ∈ Q[x] be such that g
is strictly positive on all the real roots of f . Then there exist polynomials hi ∈ Q[x] of degree < n
and positive weights ωi ∈ Q+, 1 ≤ i ≤ n, such that

h :=

n∑

i=1

ωi h
2
i satisfies h ≡ g mod f.

Proof. There is a natural proof of this proposition which makes use of the fact that the set

{(A, b) ∈ Sn(R)× R[x]n−2 : g = xTAx+ b f}
is a real affine space which in the case that f, g ∈ Q[x] is defined by a rational basis and a
rational particular point. This approach follows the proof of the analogous result for the global
case mentioned as image representation in [10, Section 3.2].

Here, we give the proof that uses the orthogonal projection πp defined in Definition 2.6, as done
for the global case in the kernel representation in [10, Section 3.1].

Without loss of generality we can assume that deg(g) < n by replacing it by its remainder
modulo f .

Let (Q∗, q∗) be given by Corollary 2.4, i.e. g = xTQ∗ x + q∗f and Q∗ ∈ Int(Sn
+(R)), and let

σ > 0 be the smallest eigenvalue of Q∗, which is the distance of Q∗ to the set of singular matrices,
so that the open ball centered at Q∗ and of radius σ is contained in Sn

+(R).

Take a rational approximation (Q, q) ∈ Sn(Q)×Q[x]n−2 such that

‖Q−Q∗‖ < σ

2
and ‖q − q∗‖ < σ

2(n− 1)‖f‖ .(16)

The problem is that most surely, xTQx+ q f 6= g.
Let e := xTQx+ qf − g be the error polynomial, and define

Q := πg−qf (Q) = Q−Qe ∈ Sn(Q),

which is the orthogonal projection of Q on Qg−qf according to Lemma 2.7. Then Q ∈ Qg−qf , i.e.
xTQx+ qf = g.
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Next we prove that Q ∈ Int(S+(Q)) by proving that ‖Q−Q∗‖ < σ. We have

‖Q−Q∗‖ ≤ ‖πg−q f (Q)− πg−q f(Q
∗)‖+ ‖πg−q f(Q

∗)−Q∗‖
≤ ‖πg−q f (Q)− πg−q f(Q

∗)‖+ ‖πg−q f(Q
∗)− πg−q∗ f(Q

∗)‖
≤ ‖Q−Q∗‖+ ‖Q∗ −QxTQ∗x−(g−q f) −

(
Q∗ −QxTQ∗x−(g−q∗ f)‖

≤ ‖Q−Q∗‖+ ‖Q(q∗−q) f‖,
since xTQ∗x + q∗g = g implies Q∗ = πg−q∗f (Q

∗).
By (14) and (8) we have

‖Q(q∗−q) f‖ ≤ ‖(q∗ − q) f‖ ≤ (n− 1)‖q∗ − q‖ ‖f‖
since deg(q∗ − q) ≤ 2n− 2. Finally, by (16), we conclude

‖Q−Q∗‖ < σ

2
+ (n− 1)

σ

2(n− 1)‖f‖ ‖f‖ = σ.

This implies that Q ∈ Int(Sn
+(R)), i.e. h = xTQx is a rational positive weighted sum of squares.

�

Example 2.9. We now consider a toy example to illustrate our construction. This is a toy
example because in this case we know the roots of f and use that knowledge, as in the proof or
our existential theorem.

Let f = x3 − 2 = (x− 21/3)(x− 21/3ω)(x− 21/3ω), where ω = e2πi /3, and g = x, which is strictly
positive on 21/3. Set ξ1 = 21/3, ξ2 = 21/3ω and ξ3 = ξ2.

Parrilo’s construction (5) gives in this case the following real polynomial, which is congruent to
g modulo f and a sum of 2 squares:

g(ξ1)u1(x)
︸ ︷︷ ︸

∈R[x]

2 +
(√

g(ξ2)u2(x) +
√

g(ξ3)u3(x)
)

︸ ︷︷ ︸

∈R[x]

2

= xTQ∗ x

where

Q∗ =






2 3
√
2

9
2
9

− 3
√
4

18
2
9

3
√
4

18
− 3

√
2

18

− 3
√
4

18
− 3

√
2

18
5
18




.

Note that Q∗ is a rank 2 positive semidefinite matrix, which therefore lies in the border of the
cone of positive semidefinite matrices.

Now, if we take λ := 2|g(ξ2)| = 2 · 21/3 in our construction (6), we get h∗ = xTQ∗ x where

Q∗ =






4 3
√
2

9
1
9

− 3
√
4

9
1
9

2 3
√
4

9
− 3

√
2

9

− 3
√
4

9
− 3

√
2

9
7
18






is a (rank 3) definite positive matrix with smallest eigenvalue σ ∼ 0.2239, and

g = xTQ∗ x + q∗ f for q∗ = − 7

18
x+

2 3
√
2

9
.

Here, if we take the following rational approximations of Q∗ and q∗ (rounding to two significant
digits)

Q =





0.6 0.1 −0.2
0.1 0.4 −0.1
−0.2 −0.1 0.4



 and q = −0.4x+ 0.3

we get that ‖Q∗−Q‖ ∼= 0.0923 and ‖q∗− q‖ ∼= 0.0229. Thus, we have ‖Q∗−Q‖ < σ
2
∼= 0.112 and

‖q∗ − q‖ < σ
2(n−1)‖f‖

∼= 0.025 respectively, satisfying both of the bounds given in (16) required in

the proof of Proposition 2.8. We have xTQx+ q f = 0.1x3 + x 6= g, with error

e = xTQx+ q f − g = 0.1x3.
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Compute the orthogonal projection of Q on Qg−qf :

Q = πg−qf(Q) = Q−Qe =





0.6 0.1 −0.2
0.1 0.4 −0.15
−0.2 −0.15 0.4





so that xTQx − xTQx = e and Q is still a definite positive matrix. Then matrix Q ∈ S3(Q)
satisfies

h := xTQx = xTQx− e = g − q f ≡ g mod f,

and h is a sum of squares of rational polynomials, which we can obtain applying the square-root-
free Cholesky decomposition of Q (Remark 2.5) as follows:

h =
3

5

(

1 +
1

6
x− 1

3
x2

)2

+
23

60

(

x− 7

23
x2

)2

+
137

460
x4.

2.2. The general case. In this subsection we generalize the results of the previous section to
the case when f is non-necessarily squarefree and g is non-negative on all the real roots of f (but
might vanish on some of them), as long as gcd(f, g) and f/ gcd(f, g) are relatively prime, in order
to obtain our main theorem.

We will need the following auxiliary results, namely Hensel lemma and Chinese remainder
theorem.

Lemma 2.10. Let p, g ∈ Q[x] with p irreducible in Q[x] which does not divide g. Assume that
there exists h1, . . . , hN ∈ Q[x] and ω1 . . . , ωN ∈ Q+ for some N ∈ N with deg(hi) < deg(p) such
that

g ≡
N∑

i=1

ωih
2

i mod p.

Then for any fixed e ∈ N, e ≥ 1, there exist h1, . . . , hN ∈ Q[x] with deg(hi) < e · deg(p) such that

g ≡
N∑

i=1

ωih
2
i mod pe.

Proof. We show that it suffices to perform Hensel lifting on one of the polynomials hi. Since
p ∈ Q[x] is irreducible and does not divide g, one of the hi at least is not divisible by p, and
w.l.o.g. we assume that it is h1.

Define

g =
g

ω1

for N = 1 and g :=
g −∑N

i=2 ωih
2

i

ω1

∈ Q[x] for N > 1.

Then g ≡ h
2

1 mod p, and we define the following Newton iteration starting from h
(0)
1 := h1:

(17) h
(k+1)
1 ≡ 1

2

(

h
(k)
1 +

g

h
(k)
1

)

≡ 1

2

(

h
(k)
1 + s

(k)
1 g

)

mod p2
k+1

for k ≥ 0,

where s
(k)
1 ∈ Q[x] is defined by s

(k)
1 h

(k)
1 ≡ 1 mod p2

k+1

.
First note that this sequence is well defined in Q[x] since by induction,

h
(k)
1 ≡

1

2

(

h
(0)
1 +

(
h
(0)
1

)2

h
(0)
1

)

≡ h
(0)
1 mod p,

and therefore h
(k)
1 is prime to the irreducible polynomial p since h

(0)
1 is, and hence invertible modulo

p2
k+1

.

We now prove by induction that
(
h
(k)
1 )2 ≡ g mod p2

k

:
First, from (17) we derive

(18) h
(k)
1 h

(k+1)
1 ≡ 1

2

((
h
(k)
1 )2 + g

)

mod p2
k+1

.
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Now, by the inductive hypothesis,
(
h
(k)
1

)2 ≡ g mod p2
k

implies that

h
(k+1)
1 ≡ 1

2

(

h
(k)
1 + s

(k)
1

(
h
(k)
1

)2
)

mod p2
k

≡ 1

2

(

h
(k)
1 + h

(k)
1

)

≡ h
(k)
1 mod p2

k

.

Therefore, h
(k)
1 = h

(k+1)
1 + t p2

k

for some t ∈ Q[x] and from (18),

(
h
(k+1)
1 + t p2

k)
h
(k+1)
1 ≡ 1

2

((
h
(k+1)
1 + t p2

k)2
+ g

)

mod p2
k+1

≡ 1

2

((
h
(k+1)
1

)2
+ 2t p2

k

h
(k+1)
1 + g

)

mod p2
k+1

and we can cancel t p2
k

h
(k+1)
1 from both sides. We conclude

(
h
(k+1)
1 )2 ≡ 1

2

((
h
(k+1)
1

)2
+ g

)

mod p2
k+1

which implies
(
h
(k+1)
1

)2 ≡ g mod p2
k+1

.

Going back to the definition of g,

g = ω1g +
N∑

i=2

ωih
2

i ≡ ω1

(
h
(k)
1

)2
+

N∑

i=2

ωih
2

i mod p2
k

.

Finally, if we choose k such that 2k−1 < e ≤ 2k and define h1 := h
(k)
1 mod pe, hi := hi for

2 ≤ i ≤ N and ω1, . . . , ωN unchanged then we get the sum of squares decomposition of g modulo
pe with the desired degree bounds.

�

Lemma 2.11. Let f1, . . . , fr ∈ Q[x] with gcd(fi, fj) = 1 for 1 ≤ i < j ≤ r. Assume that g ∈ Q[x]
satisfies

g ≡
Ni∑

j=1

ωi,jh
2
i,j mod fi, 1 ≤ i ≤ r,

for some Ni ∈ N, hi,j ∈ Q[x] with deg(hi,j) < deg fi and ωi,j ∈ Q+, for 1 ≤ j ≤ Ni. Then there
exist N ∈ N, h1, . . . , hN ∈ Q[x] and ω1, . . . , ωN ∈ Q+ such that

g ≡
N∑

i=1

ωih
2
i mod

( r∏

i=1

fi

)

.

Furthermore, deg(hi) <
∑r

i=1 deg(fi) for 1 ≤ i ≤ N .

Proof. The usual Chinese remainder theorem for a system

g ≡ gi mod fi, 1 ≤ i ≤ r,

admits the solution (c.f. [14, Algorithm 5.4])

g ≡ s1f
(1)g1 + · · ·+ srf

(r)gr mod f

where f :=
∏r

i=1 fi, f
(i) :=

∏

j 6=i fj and si is defined by sif
(i) + tifi = 1 for 1 ≤ i ≤ r.

On another side, notice that

sif
(i) ≡ (sif

(i))2 mod f, 1 ≤ i ≤ r,

since sif
(i) ≡ 1 mod fi and sif

(i) ≡ 0 mod fj for j 6= i. Then

g ≡ (s1f
(1))2g1 + · · ·+ (srf

(r))2gr mod f.
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In our setting, since gi :=
∑Ni

j=1 ωi,jh
2
i,j we get

g ≡
r∑

i=1

(sif
(i))2

( Ni∑

j=1

ωi,jh
2
i,j

)
mod f

≡
r∑

i=1

Ni∑

j=1

ωi,j(sif
(i)hi,j)

2 mod f.

We get N :=
∑r

i=1Ni and reduce sif
(i)hi,j modulo f to achieve the desired degree bounds in the

SOS decomposition. �

We are now able to prove the full version of our theorem. We repeat the statement here for the
reader’s convenience.

Theorem. Let f ∈ Q[x] be a non-zero polynomial of degree n and g ∈ Q[x] be such that gcd(f, g)
and f/ gcd(f, g) are relatively prime. Assume that g is non-negative on all the real roots of f .
Then there exist polynomials hi ∈ Q[x] of degree < n and positive weights ωi ∈ Q+, 1 ≤ i ≤ N for
some N ∈ N, such that

h :=

N∑

i=1

ωi h
2
i satisfies h ≡ g mod f.

Proof. First assume that gcd(f, g) = 1. Note that therefore, the assumption that g is non-negative
on the real roots of f implies that g is strictly positive on the real roots of f .

W.l.o.g. we can assume that f is monic. Suppose f has the following decomposition over Q

into powers of irreducible factors in Q[x]

f = pe11 · · · perr
where pi are distinct monic irreducible polynomials inQ[x], ei ∈ N for 1 ≤ i ≤ r, and

∑r
i=1 ei deg(pi) =

n.
Fix i ∈ {1, . . . , r}. Since g is strictly positive on the real roots of the irreducible polynomial

pi, we can apply Proposition 2.8 to pi and g, which shows the existence of hi,j ∈ Q[x] of degree
< Ni := deg(pi) and ωi,j ∈ Q+ for 1 ≤ i ≤ Ni, such that

g ≡
Ni∑

j=1

ωi,j h
2

i,j mod pi.

Next we apply Lemma 2.10 with p = pi and e = ei to show the existence of hi,j ∈ Q[x] of degree
< ei deg(pi), 1 ≤ i ≤ Ni, such that

(19) g ≡
Ni∑

j=1

ωi,j h
2
i,j mod peii .

Finally we apply Lemma 2.11 with fi = peii for 1 ≤ i ≤ r to combine the congruences in (19) and
obtain N ∈ N, h, h1, . . . , hN ∈ Q[x] and ω1, . . . , ωN ∈ Q+ such that

h :=
N∑

i=1

ωi h
2
i satisfies h ≡ g mod f.

Furthermore, deg(hi) <
∑r

i=1 ei deg(pi) = n for 1 ≤ i ≤ N . This proves the claim for an arbitrary
polynomial f with gcd(f, g) = 1.

Assume now that d := gcd(f, g) 6= 1. We show that under our assumption gcd(f/d, d) = 1,
there is a polynomial b ∈ Q[x] relatively prime to f/d which satisfies that b d2 ≡ g mod f and
therefore b is strictly positive on the roots of f/d:
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The assumption implies that gcd(f/d, g) = 1, and therefore g is strictly positive on all the real
roots of f/d. Since gcd(f/d, d2) = 1 as well, there exist s, t ∈ Q[x] s.t.

1 = s · f
d
+ t · d2.

This implies in particular gcd(f/d, t) = 1 and that

(20) g = s · g
d
· f + (tg) · d2.

We set b := tg. Then b and f/d are relatively prime since t and f/d, and g and f/d are. Therefore
b is striclty positive on all the real roots of f/d because for any such root ξ, d(ξ) 6= 0, b(ξ) 6= 0
and b(ξ)d2(ξ) = g(ξ) ≥ 0.

Finally, (20) implies that b d2 ≡ g mod f .
We then apply our previous construction to b and f/d: There exist hi ∈ Q[x] of degree <

n− deg(d) and ωi ∈ Q+, 1 ≤ i ≤ N , such that

h :=

N∑

i=1

ωih
2

i satisfies h ≡ b mod
f

d
.

Therefore,

d2 h =

N∑

i=1

ωi (d hi)
2 and d2h ≡ b d2 mod f.

Since b d2 ≡ g mod f we conclude that

d2h ≡ g mod f.

We note that deg(d hi) < n, thus h := d2h, hi := d hi and ωi, 1 ≤ i ≤ N , satisfy the claim of the
theorem. �

Example 2.12. Let us again consider a toy example to show how it works when gcd(f, g) 6= 1
and f is not squarefree.

Consider f = x(x3 − 2)2 and g = x3. Here d = gcd(f, g) = x and f/d = (x3 − 2)2 are relatively
prime, so we are in the assumptions of our theorem.

In this case, as g/d2 = x is already a polynomial, we can take tg = g/d2 = x.

(1) Find rational SOS for g/d2 = x modulo (x3 − 2) (see Example 2.9):

x ≡ 3

5

(

1 +
1

6
x− 1

3
x2

)2

+
23

60

(

x− 7

23
x2

)2

+
137

460
x4 mod (x3 − 2).

(2) Apply Hensel lifting to find rational SOS for g/d2 = x modulo (x3 − 2)2 (note that we lift
only the last term):

x ≡ 3

5

(

1 +
1

6
x− 1

3
x2

)2

+
23

60

(

x− 7

23
x2

)2

+
137

460

(−46

137
x5 +

69

274
x4 +

229

137
x2 − 69

137
x

)2

mod (x3 − 2)2,

i.e. x ≡ ω1h
2

1 + ω2h
2

2 + ω3h
2

3 mod f/d = (x3 − 2)2.
(3) Multiply both sides by d2 = x2:

g ≡ ω1(xh1)
2 + ω2(xh2)

2 + ω3(xh3)
2 mod f = x(x3 − 2)2.

3. Algorithm

In this section, we describe the algorithm announced in the introduction, that computes a
certificate of non-negativity of a polynomial g ∈ Q[x] on the real roots of another polynomial
f ∈ Q[x], addressing the algorithmic question in the introduction.
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3.1. Certificate for a strictly positive polynomial. Here we assume that f ∈ Q[x] is a
squarefree polynomial of degree n, and that g is strictly positive on all the real roots of f .

We consider the following optimization problem

(21)

inf 1
s.t. Q < 0

q ∈ R[x]n−2

g = xTQx+ q f

where x = [1, . . . , xn−1]T is the vector of monomials of degree < n and Q ∈ Sn(R). The feasibility
set

C = {(Q, q) ∈ Sn(R)× R[x]n−2 : Q < 0, g = xTQx+ q f}

is convex, as the intersection of the linear space

{(Q, q) ∈ Sn(R)× R[x]n−2, g − xTQx− q f = 0}

with the convex cone Sn
+(R)× R[x]n−2.

We solve this convex optimization problem by using a numerical interior point solver, working
at a given precision µ. Since the solution returned by such a solver is (an approximation of) an
interior point of the face where the objective function reaches its minimum and since the objective
function is 1, this yields (a rational approximation of) an interior point (Q∗, q∗) of the convex
set C. That is, the numerical solver computes a (rational) approximate solution (Q∗, q∗) of the
optimization problem (21), where if the precision µ is good enough, Q∗ ∈ Sn

+(Q) is a positive
definite matrix but there will be an error polynomial xTQ∗x + q∗f − g 6= 0, although close to 0.

Since (Q∗, q∗) may have a lot of decimals, in order to obtain a rational decomposition of g
modulo f of small size, we start by rounding, at a convenient precision δ > 0, Q∗ ∈ Sn

+(R) to a

nearby Q ∈ Sn(Q) and q∗ ∈ R[x]≤n−2 to a nearby rational polynomial q ∈ Q[x]≤n−2. We then
compute the projection Q := πg−q f(Q) ∈ Qg−q f which satisfies g = xTQx+ q f . As in the proof
of Proposition 2.8, if ‖Q− Q∗‖ is smaller than the smallest eigenvalue σ of Q∗, then Q ∈ Sn

+(Q)
is a rational positive definite matrix and g = xTQx+ qf gives a rational SOS decomposition of g
modulo f , that is (xTQx, q) is a rational certificate of positivity of g at the real roots of f .

Given the approximate solution (Q∗, q∗) output by the numerical solver, we detail in the follow-
ing proposition a bound on the rounding precision δ chosen to define (Q, q) needed to guarantee
that Q = πg−qf(Q) is a positive definite matrix. We assume here that the matrix Q∗ output by
the solver is positive definite.

Proposition 3.1. Let σ > 0 be the smallest eigenvalue of Q∗ and assume that ρ := ‖xTQ∗x+ q∗ f − g‖ <
σ. Set

0 < δ <
1

n+ (n− 1)
√
n ‖f‖(σ − ρ).

Then, for any rational approximations (Q, q) ∈ Sn(Q)×Q[x]n−2 of (Q∗, q∗) such that

|Qi,j −Q∗
i,j | ≤ δ, 1 ≤ i, j ≤ n and |qi − q∗i | ≤ δ, 0 ≤ i ≤ n− 2,

the symmetric matrix Q = πg−qf(Q) ∈ Sn(Q), which satisfies g = xTQx+ q f , is positive definite.

Proof. We have

‖Q−Q∗‖ ≤ n δ and ‖q − q∗‖ ≤
√
n δ.
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Then, the distance between Q = πg−q f(Q) and Q∗ can be bounded, as in the proof of Proposi-
tion 2.8 but with the difference that Q∗ 6= πg−q∗f(Q

∗), as follows:

‖Q−Q∗‖ ≤ ‖πg−q f(Q)− πg−q f(Q
∗)‖+ ‖πg−q f (Q

∗)− πg−q∗ f(Q
∗)‖

+ ‖πg−q∗ f(Q
∗)−Q∗‖

≤ ‖Q−Q∗‖
+ ‖Q∗ −QxTQ∗x−(g−qf) − (Q∗ −QxTQ∗x−(g−q∗f)‖
+ ‖QxTQ∗x−(g−q∗ f)‖
≤ ‖Q−Q∗‖+ ‖Q(q∗−q)f‖+ ‖QxTQ∗x−(g−q∗ f)‖.

Using (14) and (8), as in the proof of Proposition 2.8 we have

‖Q(q∗−q) f‖ ≤ (n− 1)‖q∗ − q‖ ‖f‖ ≤ (n− 1)
√
n δ ‖f‖

and
‖QxTQ∗x−(g−q∗ f)‖ ≤ ‖xTQ∗x+ q∗ f − g‖ = ρ.

As ‖Q−Q∗‖ ≤ n δ, we deduce that

‖Q−Q∗‖ ≤ (n + (n− 1)
√
n ‖f‖) δ + ρ < (σ − ρ) + ρ = σ

Therefore Q is positive definite. �

The approximation of σ and the norm ρ of the error polynomial xTQ∗x + q∗f − g, which is
approximately 0, depend on the precision µ of the solver. If ρ > σ, we need to increase the
precision µ of the numerical solver and compute a new solution (Q∗, q∗).

We can now summarize the certification algorithm for a strictly positive polynomial, in Algo-
rithm 3.1.

Algorithm 3.1: Rational SOS certificate modulo a squarefree polynomial for a strictly
positive polynomial

Input: f ∈ Q[x]n squarefree, g ∈ Q[x]n−1 such that g > 0 at the real roots of f .

(1) µ← µ0 default precision of the interior point solver.
(2) (Q∗, q∗)← solution of the SDP problem (21) by the numerical interior point solver

working at precision µ;
(3) σ ← smallest eigenvalue of Q∗;
(4) ρ← ‖xTQ∗x+ q∗ f − g‖ the 2-norm of the error polynomial;
(5) δ ← 0.99

n+
√
n(n−1) ‖f‖(σ − ρ); If δ < 0 then increase precision µ← 2µ and repeat from step

(1);
(6) Q← round Q∗ to rational coefficients, with ⌈log10(δ−1)⌉ exact digits after decimal point;
(7) q ← round q∗ to rational coefficients, with ⌈log10(δ−1)⌉ exact digits after decimal point;
(8) Q← πg−q f(Q);

Output: (Q, q) ∈ Sn
+(Q)×Q[x]n−2 such that

• g = xTQx + q f ,
• Q definite positive.

3.2. Certificate for a non-negative polynomial. We consider now the case where f arbitrary
and g non-negative on the real roots of f satisfy the assumption that gcd(f, g) and f/ gcd(f, g)
are relatively prime. We set d := gcd(f, g).

We closely follow the proof of our main Theorem in Section 2. We first compute b ∈ Q[x]
relatively prime to f/d such that b is strictly positive on all the real roots of f/d and b d2 ≡ g
mod f .

We then compute the irreducible factorization of f/d =
∏r

i=1 p
ei
i where the polynomials pi ∈

Q[x] are irreducible, thus with simple roots, and pairwise relatively prime.
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We observe that b and pi are relatively prime, and that b is strictly positive on the real roots of
pi, 1 ≤ i ≤ r.

We set bi to be the remainder of b modulo pi, 1 ≤ i ≤ r, and we apply Algorithm 3.1 to pi and
bi. We get the rational SOS certificate

bi = xTQix + qi pi

where, setting ni := deg(pi), Qi ∈ Sni

+ (Q) is positive definite and qi ∈ Q[x]ni−2. We deduce from
the square-root-free Cholesky factorisation of Qi (cf. Remark 2.5) an SOS decomposition

bi ≡
ni∑

j=1

ωi,jh
2

i,j mod pi,

where ωi,j ∈ Q+, hi,j ∈ Q[x].
Therefore

b ≡
ni∑

j=1

ωi,jh
2

i,j mod pi, 1 ≤ i ≤ r.

By Hensel lifting (Lemma 2.10), we deduce an SOS decomposition of b modulo peii , and by the
Chinese Remainder Theorem (Lemma 2.11), we deduce an SOS decomposition of b modulo f/d:

b ≡
N∑

i=1

ωih
2

i mod f/d

with ωi ∈ Q+, hi ∈ Q[x]. Using that b d2 ≡ g mod f , this gives the following SOS decomposition
of g modulo f :

g ≡
N∑

i=1

ωi(dhi)
2 mod f

and we finally compute q ∈ Q[x] s.t.

g =

N∑

i=1

ωi(dhi)
2 + q f.

This computation is summarized in Algorithm 3.2.

3.3. Example. We now revisit Example 2.9 to illustrate the symbolic-numeric approach based
on Semi-Definite-Programming.

Example 3.2. Let f = x3 − 2 = (x− 21/3)(x− 21/3ω)(x− 21/3ω), where ω = e2πi /3, and g = x.
By an interior point method for solving the convex optimization program:

inf 1
s.t. Q ∈ S3(R), Q < 0

q ∈ R[x]1
g = xtQx + qf

we obtain the matrix Q∗ of maximal rank and the polynomial q∗:

Q∗ ≈





0.6176533241 −0.0017575733 −0.2261937667
−0.0017575733 0.4523875415 −0.154413329
−0.2261937667 −0.154413329 0.5017575773



 ,

q∗ ≈ −0.5017575692 x+ 0.308826658.

The eigenvalues of Q∗ are approximately:

0.246491, 0.506204, 0.819104.

The norm of the error polynomial is ρ ≈ 1.6024e−8 so that δ ≈ 0.0227 and rounding with t = 2
decimal digits yields a positivity certificate. In fact, in this case, rounding with one decimal digit
is enough:
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Algorithm 3.2: Rational SOS certificate for a non-negative polynomial

Input: f ∈ Q[x]n, g ∈ Q[x] such that g ≥ 0 on the real roots of f and gcd(f, g) and
f/ gcd(f, g) are relatively prime.

(1) d← gcd(f, g);
(2) Compute b ∈ Q[x] s.t. b is prime to f/d, strictly positive on the real roots of f/d and

b d2 ≡ g mod f .
(3) Compute the factorization f/d =

∏r
i=1 p

ei
i into irreducible factors in Q[x];

(4) For each irreducible factor pi,
bi ← the remainder of b modulo pi;
(Q′

i, q
′
i)← output of Algorithm 3.1 applied to bi and pi;

Compute ωi,j ∈ Q+, hi,j ∈ Q[x] such that

bi ≡
∑

j

ωi,jh
2

i,j mod pi,

see Remark 2.5.
Compute hi,j ∈ Q[x] such that

bi ≡
∑

j

ωi,jh
2
i,j mod peii

using Hensel lifting in Lemma 2.10;
(5) Compute ωi ∈ Q+, hi ∈ Q[x] such that

b ≡
∑

i

ωih
2

i mod f/d

using Chinese Remainder construction in Lemma 2.11;
(6) hi ← d hi;
(7) Compute q ∈ Q[x] s.t. g =

∑

i ωih
2
i + q f ;

Output: ωi ∈ Q+, hi ∈ Q[x], q ∈ Q[x] satisfying

g =
∑

i

ωih
2
i + q f.

Q =





0.6 0 −0.2
0 0.5 −0.2
−0.2 −0.2 0.5



 and q = −0.5 x+ 0.3,

with error e = xTQx+ q f − g = −0.1x3 + 0.1x2 yield

Q = πg−qf(Q) = Q−Qe =





3
5

0 −7
30

0 7
15

−3
20−7

30
−3
20

1
2



 .

It is a positive definite matrix (its eigenvalues are approximately 0.24507, 0.505399, 0.816198)
which induces a rational SOS decomposition of g modulo f .

4. Conclusion

In this work,

(1) we showed that a univariate rational polynomial g is strictly positive on all the real roots of
a univariate rational squarefree polynomial f if and only if it is a sum of squares of rational
univariate polynomials modulo f . To our knowledge, this fact was known for univariate
polynomials in the global setting but not in the local setting;

(2) we showed that the usual assumption of g being strictly positive on the real roots of
a squarefree polynomial f can be relaxed to gcd(f, g) and f/ gcd(f, g) relatively prime,
which we believe is the best assumption one can obtain;
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(3) we produced an algorithm for the local setting, which is the counterpart of known algo-
rithms for the global setting in the strictly positive case, and involves Hensel lifting and
Chinese Remainder Theorem in the non squarefree and non-negative case.

Our project is to try to extend our results to the multivariate local setting of polynomials being
non-negative on the real zero set of a zero-dimensional ideal. Some of them can be extended
mutatis-mutandis but there is still work to be done on the relaxation of the assumptions.
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nombres algébriques. Acta Arith., 19:89–104, 1971.

[12] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal,
42(3):969–984, 1993.

[13] Claus Scheiderer. Sums of squares of polynomials with rational coefficients. J. Eur. Math. Soc. (JEMS),
18(7):1495–1513, 2016.

[14] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge University Press, Cam-
bridge, third edition, 2013.
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