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Abstract This article describes how much the computed absolute permeability is impacted by the slip effect at the
fluid/solid interface, in the context of single-phase pore-scale flow. While this effect is well quantified in microchannels
or simple geometries, the present study focuses on its average effect in real rock matrix geometries, by means of high-
resolution X-ray microtomography. Due to the inherently finite resolution of the technique, an uncertainty exists on the
true position of the fluid/solid interface and its morphological features below the image resolution (unseen roughness).
We demonstrate that both these uncertainties can be interpreted as a slip condition, and consequently we focus on
how a slip length can impact the computed absolute permeability, after having provided an estimation of a meaningful
bound on the slip coefficient. To that extent, two strategies are employed: the global deviation of permeability, and the
theoretically established linear deviation. Three high-definition 3D geometries are used as practical examples of our
methodology. Results are discussed in terms of relative deviation versus specific surface area, and lead to quantities of
interest involving the linear deviation of permeability.
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1 Introduction

According to Encyclopædia Britannica, permeability is ”the capacity of a porous material for transmitting fluid; it is
expressed as the velocity with which a fluid of specified viscosity, under the influence of a given pressure, passes through
a sample having a certain cross section and thickness” [1]. This deceivingly simple definition hides a complex reality
at pore scale, even when only a single-phase fluid is involved, in particular because of the complex 3D morphology of
real porous media.

The advent of X-ray micro tomography (X-ray µCT) makes it possible to non-destructively determine such mor-
phology of real, opaque, porous media. An X-ray scan provides a 3D data volume composed of elementary cubes,
called voxels. Each voxel is characterized by a level of grey that is proportional to the local X-ray attenuation of the
material. As the attenuation is material-dependent, the pore space can easily be separated from the surrounding matrix.
The resulting dataset can be combined naturally with pore-scale numerical models [2, 3]. Pore-scale models of flow
and transport roughly fall into one of two broad categories: (a) direct numerical simulators (DNS) and (b) pore-network
models (PNM) [4]. At low Reynolds number, both solve the same fundamental governing equations, but in the former
case the true geometry is employed, whereas in PNM the porous medium is regarded as a number of pores, interlinked
by flow channels. Consequently, DNS based on Stokes and Navier-Stokes equations promises to be more precise, at
the cost of being computationally more expensive. On the other hand, PNM models based on Hagen-Poiseuille formula
are highly efficient, and their way of conceptualizing the true geometry offers a mental framework for transposing the
conclusions of fundamental research on idealised flow channels, into real rock geometries.

However, limitations exist in the X-ray µCT imaging process that may affect the medium effective properties
computation with such numerical methods. Actually, as shown in Figure 1 the interfaces do not occur as intensity steps
in µCT-datasets, but rather as a gradual intensity gradient spanning several voxels. This is due to a combination of
mainly two factors.

Firstly, due to the imaging resolution the interface generally does not coincide with a voxel boundary. That is, it
separates the voxel in two distinct parts, and the gray level of the voxel is intermediate to the gray levels on either side
of the interface. This is the so-called partial volume effect leading to unresolved morphological features including the
roughness of the pore space walls.
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Fig. 1 High resolution X-ray scans of two samples. Data are numerically magnified up to voxel scale using interpolated zoom up to the final
zoom on the right, at the physical size of the pixel (voxel sizes are respectively 1.5µm and 1µm for the sandpack and the limestone). This
illustrates the presence of a gray-scale gradient instead of a sharp interface. The sandpack is the geometry used in section 4.4.

Secondly, the finite resolution of the imaging pipeline thus blurs the material interfaces over a width of multiple
voxels [5]. In the presence of sharp density transitions, the different refraction index on either side of the interface
leads to so-called edge enhancement which manifests itself as an over- and undershoot of the gray level immediately
next to the interface [6]. It means that beside the approximation based on the roughness of the pore space walls, X-ray
tomography also approximates the position of those pore walls. Consequently, the ”true” morphology of the pore space
is unknown, and the calculation of effective properties is prone to uncertainty [7]. While these effects can be minimized,
they cannot be eliminated from the imaging process. A model that directly uses the blurred interface as input therefore
has a more practical interest than geometry-conforming models with an approximate pore-space morphology.

The present article addresses the question of the reliability of the permeability value induced by the uncertainties
introduced in the two last paragraphs, both mathematically translating into models of slip flows. The unseen roughness
of a channel wall and the exact position of that wall -and hence the channel dimensions- will generally be visible only
in an approximate sense on an X-ray µCT scan of a representative volume of material. This is not to say that sufficient
resolution cannot be obtained, but rather that real pore media covering a wide range of pore scales generally requires a
compromise between the volume being investigated and the scan resolution. The former has to be large enough to be
representative, whereas the latter has to be small enough to observe enough details.

The present study thus focuses on quantifying the uncertainty on the computed permeability by providing a range
of possible values instead of a single value, and accounting for the deviation between the true morphology of the pore
space and the assumed one. We focus on the absolute permeability, which means that we consider the single-phase flow
of a Newtonian fluid through the pore space in an impermeable rock matrix. We will employ a slip length formalism
and use the variation in slip length as a way to represent the uncertainty on the geometry. While the slip formalism
has been intensively studied and developed for porous media [8, 9], we focus on its practical aspects and use for real
three-dimensional rock geometries.

This article starts with a Material and Method section 2 that begins to introduce the well-known slip formalism
and the two methods considered to get the ranges of permeability values, namely the full permeability deviation and
the linear permeability deviation. The governing equations, here the stationary 3D Stokes equation in the pore space
involving the slip condition, are defined in section 2.2, along with the construction of the tangent and normal fields
on the fluid/solid interface. The numerical schemes and their related numerical analysis, used for solving efficiently
the Stokes system with slip, are detailed in the appendices A and B. Finally, the selected datasets to illustrate different
features of the proposed computational method are briefly presented in section 2.3.

In section 3, the focus is given on establishing the linear momentum L0 by means of the asymptotic development
detailed in appendix C, and on the choice of a representative value of the slip length β based mainly on the voxel size
and adjusted when possible with the slip due to the pore roughness.

The section 4 finally investigates several types of real porous rock with very different pore structures, in order to put
in practice this methodology. It begins with a validation of the numerical method (developed for this specific analysis)
on a cylindrical synthetic geometry, including a convergence study and an analysis of the absolute permeability. The
samples considered for this study are an unconsolidated sand pack, and two types of sandstone: a Bentheimer sand-
stone and Castlegate outcrop sandstone. Their voxel sizes h range from 1.5µm for the sandpack and 2.2µm for the
Bentheimer sandstone to 5.6µm for the Castlegate sandstone. A discussion on the relative deviation for representative
samples, and non-dimensional quantities of interest, conclude the section and our analysis.



Deviation of computed permeability induced by morphological uncertainties 3

2 Material and methods

2.1 Slip modeling

In an isolated flow channel, fluid flow encounters a resistance caused by viscous shear stresses which are dependent,
among many things, on the roughness of the channel material. The permeability of the channel wall itself also plays
a role [10, 11, 12], with more permeable walls increasing the slip velocity on the porous wall. Furthermore, chemical
effects and hydrophobic properties may also cause slip [13, 14], as well as trapped gas or liquid along the pore walls
[15], clearly quantified for fully wetting films [16].

Although these situations involve slip conditions illustrating physical processes, the idea of using a slip length
formalism to describe flow over a rough surface is not new. Historically the relation between roughness and slip length
had been proposed by Navier as early as 1823 [17] and established by computation in [18]. Nowadays, for an ideal
impermeable rock matrix whose pore space is filled with a Newtonian fluid, the linear formulation of the slip, based
on the Stokes equations with no-slip-through u · n = 0 at the solid boundary, is quite conventional [19, 13, 20] and its
tangential components are inherited from the relation

u− βD(u)n = 0 (1)

where D(u) = (∇u+∇uT )/2 is the shear-rate tensor, that is to say the symmetric part of the velocity gradient, n is
the unit vector field normal to the fluid/solid interface and directed toward the fluid region, and β is the slip length.

Since Navier, many researchers have attempted to elucidate the precise relationship between permeability and
roughness. Numerical studies have focused on various, mostly periodic, roughness patterns such as trenches (ridges,
transverse or not) [19, 21, 22], pillars [23, 24] or holes [25]. These and other studies showed that for a given kind of
pattern the pitch and the liquid-solid contact area are the two most important parameters for determining the slip length,
i.e. the extrapolated distance relative to the surface where the tangential velocity component vanishes [26]. Degruyter
et al. [27] showed that the permeability of laminar and turbulent gas escape during the ascent of rhyolitic magma in
volcanic conduits depends on the -unresolved- surface roughness. Similarly, Noiriel et al. [28] found that permeability
changes are linked to changes in pore surface roughness, induced by calcite precipitation. The hydrophobic and/or slip
length reported in literature ranges typically from 200nm [29] to 700nm for multi-phase flows [15] and even 950nm
[23]. Slip lengths in the range 500− 860nm have been observed on a mica/water interface with a roughness of 15nm
[13].

In brief, the uncertainties on the geometrical features of a pore space obtained through X-ray tomography, whether it
is unresolved roughness or an approximate pore wall position, can be modelled by a slip length. When both uncertainties
occur simultaneously, as is generally the case, Daly and Roose [30] showed by means of homogenization that the
surface roughness is the key property of the microscale geometry which determines the hydraulic conductivity at the
macro-scale.

Consequently, the method considered to bring a range of permeability values dealing with these uncertainties relies
on the following formalism. First, it is to estimate a bulk absolute permeability K0 thanks to solving numerically the
Stokes system (3) introduced in the next section 2.2 with adherent boundary conditions, and then estimate a permeability
Kβ using the slip condition (1) with a meaningful slip length. Such a choice of a value for a maximum slip length is
developed in section 3.2, and leads to the interval [K0,Kβ ] for the computed permeability, which can be called naturally
the raw permeability deviation or the full permeability deviation.

Furthermore, an other method to evaluate such interval is to consider and use the linear momentum L0 of Kβ from
a given material of bulk permeability K0, introduced in the linear expansion of the permeability Kβ written as

Kβ = K0 + βL0 +O(β2). (2)

The range of permeability is then given by [K0,K0 + βL0], which can be called the linear permeability deviation,
which is especially convenient when the user needs to change the value of β or apply a different coefficient of security
on it. Moreover, it could also be possible to estimate L0 numerically by its approximation (Kβ − K0)/β but this
method is unreliable due to the strong noise of Kβ with respect to β (see Figure 10 for the Castlegate sandstone for
example). The latter approach be clarified by considering Poisson’s equation on the 1D domain [0, l] of length l with
a constant driving force f , an adherent condition in l and a slip condition u − βu′ = 0 in 0. In this toy example, we
easily find K0 = l2/12, its linear deviation L0 = l/4, and a remainder scaling as β2.

More generally, our aim is to provide from a representative slip value β, a range of values [K0,Kβ ] or [K0,K0 +
βL0] for the absolute permeability, instead of a single value of K0 whose confidence level is often questionable [31].
Each of our practical study cases is performed with a single meaningful slip length value β, since any other deviation
induced by a different slip length can be resolved by linear extrapolation due to this linear feature. The method to
establish the problem to solve in order to get the value of L0 is developed in section 3.1 and detailed in appendix C.

2.2 Governing equations

We introduce a computational domain Ω divided into a solid part ΩS , representing the solid matrix of the porous
medium, and a fluid partΩF = Ω\ΩS , corresponding to the pore space (Figure 2). The latter is assumed to be a smooth
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Fig. 2 General schematic of the computational domain Ω. The
geometry is laterally constrained by a solid layer and the top and
bottom surfaces by a fluid layer to so as to be able to impose pe-
riodic boundary conditions on ∂Ω = ΓS ∪ ΓF in the three spa-
tial directions. The image shows some apparently unconnected
pores. This is because it presents a 2D slice through the 3D con-
nected pore network. The calculations are performed on the full
3D geometry.

connected open set. In practice, real rock geometries can present unconnected pores, so they do not contribute to the
flow. The preceding hypothesis therefore remains valid and avoids computing a (zero) velocity field in the unconnected
pores. We denote the computational domain boundary by ∂Ω, and use ΓF = ∂Ω ∩ ΩF and ΓS = ∂Ω ∩ ΩS to refer
to the fluid and solid parts of the computational domain boundary, respectively, such that ∂Ω = ΓF ∪ ΓS . The internal
fluid/solid continuous interface is defined by Σ = ∂ΩF \ΓF . The inward normal vector n at each point of the pore
interface is oriented towards the fluid part of the sample, and is well-defined assuming there is sufficient regularity on
ΩF . This condition is met provided the voxel sizes are sufficiently small compared to the pore dimensions.

In this article we focus on the reliable numerical simulation of microfluidic flows in three-dimensional porous rocks.
For typical fluids and given the small dimensions of pore throats (micrometer scale or less), we are dealing with very
low Reynolds number flows. In this flow regime, the dynamic momentum conservation law for the fluid phase, known
as the Navier-Stokes equation, simplifies to the quasi-stationary Stokes equation. On the other hand, the fluid/solid
interface featuring unresolved surface roughness can be elegantly modelled by a smooth interface with a slip boundary
condition [20].

We therefore consider the three-dimensional incompressible Stokes equation, subjected to a downward pointing
force field f , with a slip boundary condition at the interface Σ:

−µ∆u+∇p = f, in ΩF

div u = 0, in ΩF

u− βTD(u)n = 0, on Σ

u and p periodic on ΓF

(3)

with u the fluid velocity, p the pressure, D(u) = (∇u+∇uT )/2 the shear-rate tensor, T = I − n⊗ n the projection
operator on the tangential components, µ the dynamic viscosity assumed to be constant, and β > 0 the slip coefficient.
We impose three-dimensional periodic boundary conditions on ∂Ω since rock samples are typically constrained in
a solid casing with a fluid layer on top and bottom when permeability tests are conducted (Figure 2). Provided the
considered volume is sufficiently large to be representative, the lateral solid boundaries do not impact the results.

The boundary conditions at the pore interface Σ are split according to the normal and tangential parts of the
velocity and ensure, respectively, the impermeability of the interface and the slip along the tangential directions. In
literature, two formulations can be found for the slip condition on the tangential velocity components: using either the
velocity gradient whose formalism was detailed in [18] and [32], or the Navier condition involving the shear tensor, as
considered in (3).

After segmentation of the µCT data, a binary dataset is obtained, with 1 for the solid phase and 0 for the liquid
phase, that can mathematically be described by the function χS . From this characteristic function of the solid phase
χS , the normal field n oriented toward the fluid domain ΩF has to be built in order to express the slip in equation (3).

In fact, the normal vector computation at the interface relies on the convolution principle with a Gaussian kernel
chosen as

Gσ(X) = e−(X·X)/2σ2

(4)

with (X · X) the usual scalar product on R3 and a standard deviation σ = h or 2h. An approximation of the inward
unit normal n (directed toward the fluid domain) is then given by

n|Σ ≃ − ∇(χs ∗ Gσ)

||∇(χs ∗ Gσ)||
. (5)

with ∇(χs ∗ Gσ) = χs ∗ ∇Gσ . Assuming that Ωs bounded, we then have χs ∈ L1(R3) and on the other hand,
Gσ ∈ C∞(R3) with all its partial derivatives of order one, which are bounded, to compute the gradient. Theoretically,
χs ∗ ∇Gσ is C1(R3) and the normal vector is well-defined at each point of the interface Σ. We also introduce τk, k ∈
{1, 2} the tangential vectors to set the Robin boundary condition on the tangential velocity components. These vectors
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Fig. 3 Probability density function of the level of gray in the raw microCT
image, providing a segmentation threshold between fluid and solid. The
signal is normalized so that the image sensor values range from 0 to 1 for
the maximum measurable intensity.

are computed such that (n, τ1, τ2) is a direct orthonormal basis locally on the interface, meaning that if n × ek ̸= 0
with ek ∈ (e⃗x, e⃗y, e⃗z) a generator, we get:

τ1 =
ek × n

||ek × n|| and τ2 = n× τ1, (6)

where (e⃗x, e⃗y, e⃗z) are the R3 usual canonical basis vectors. These normal and tangential fields are used to define the
projector in the system (3) by

T = I − n⊗ n

which is equivalent to Tu = −n× n× u with n variable in space along the fluid/solid interface.
It is noticeable that the slip condition u− βTD(u)n = 0 in the system (3) expresses the tangential slip

u · τk = β(D(u)n) · τk

on the two tangential directions of the fluid/solid interface Σ (for k = 1, 2), and at the same time one obtains the
no-slip-through condition

u · n− β(TD(u)n) · n = u · n = 0

on the normal direction.
Moreover, we can consider a dimensionless formulation of (3) using the non-dimensional space variables X∗ =

X/L referred to as relative coordinates, where X = (x, y, z) are the absolute coordinates and L is the characteristic
length, linked to the physical scale of the problem. The dimensionless Stokes problem is written −∆u∗+∇p∗ = f∗ in
ΩF and u∗ −β∗TD(u∗)n = 0 on Σ where u∗ = u/U depends on the characteristic velocity U , p∗ = Lp/µU , f∗ =
fL2/µU and β∗ = β/L. The other equations remain of the same type using star variables. The permeability tensor
K is determined from the pore-scale simulation by homogenization. In this study, we focus solely on the permeability
estimate in the main flow direction so we end up with a scalar permeability defined by

K = ϕµ < u >ΩF
/ < f >ΩF

(7)

where < . >ΩF
represents the average in the fluid domain, ϕ the sample porosity and ϕ < u >ΩF

the so-called
superficial velocity [33]. Equation (7) assumes that we can neglect the non-diagonal terms of the permeability tensor
with respect to the diagonal terms. The porosity is numerically computed by taking NF /NV with NF the number of
grid points such that χs = 0 in the reference computational domain Ω and NV the total number of mesh points in the
sample, excluding the casing. In this work the permeability estimation is obtained using the dimensionless formulation,
yielding K∗, and the absolute permeability is then computed based on the dimensional relation K = L2K∗. From this
point forward on, we will work on the non-dimensional problem but the star notation will be omitted for the sake of
readability.

2.3 Test cases for model validation

In section 4, our method that quantifies uncertainties is evaluated by means of four test cases, each having their own
objectives. First, a perfect cylinder is studied. As an analytical solution exists for this particular test case, this offers
a good opportunity for validation of the numerical method (section 4.1). Next, three real geometries are considered:
a Bentheimer sandstone (section 4.2), a Castlegate sandstone (section 4.3) and a sand pack (section 4.4). All three
datasets are obtained by X-ray tomography and are of comparable quality. Two of them were acquired at the DMEX
Center for X-ray Imaging in France (Bentheimer, sand pack), while the other one (Castlegate) is freely available in the
Digital Rocks data portal [34].

The primary objective of these test cases is to illustrate the model performance on a range of real samples featuring
different morphological characteristics. The key difference between both sandstone samples is the average pore size,
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which is much larger for Bentheimer than for Castlegate. The sand pack has the advantage to present a pore space that
is topologically very different from both sandstones, as well as a much higher porosity.

In addition to this primary objective, we also aim to consider whether the analysed sample volume must have
a representative size. To that extent, the considered volume of the Bentheimer sandstone (a cube having 28 cells of
2.2µm in each direction) was intentionally selected smaller than the REV (a factor two in each direction), while both
other material geometries were representative: 29 cells in each direction, of 5.6µm for Castlegate and 1.5µm for the
sand pack.

X-ray tomography is a technique that enables to non-destructively characterise the morphology of a sample in
three-dimensions at the micron-scale. The technique relies on the material-specific attenuation of an x-ray beam when
traversing a sample. By probing a sample from different angles and each time recording the intensity of the transferred
beam, one can spatially reconstruct the regions with higher and lower attenuation. This result is represented under the
form of a three dimensional tensor containing the local attenuation coefficients, whereby each tensor entry corresponds
to a voxel, i.e. a three-dimensional pixel, having a given lateral dimension. At the DMEX center for X-ray imaging,
we dispose of two tomographs, a Bruker Skyscan 1172 and a Zeiss Xradia Versa 510, respectively used to obtain the
Bentheimer and the sandpack dataset.

The datasets used in this paper where filtered and segmented prior to be used as an input for the model. The
filtration was done with an edge preserving 3x3 median filter and aims to reduce the image noise while avoiding to
smooth the interfaces. The segmentation into phases was based on thresholding, where the threshold corresponds to
the local minimum of the (normalised) histogram of the dataset, as illustrated for the sand pack example in Figure 3.
More sophisticated image processing techniques certainly exist, but in the scope of this paper we favored a minimalist
approach on data processing to demonstrate that this is sufficient for the proposed model.

3 Linear deviation of permeability and slip dimensioning

3.1 Asymptotic expansion of the Stokes equation with slip

The first approach to quantify the uncertainty on the permeability is (i) to estimate the permeability to no-slip flow K0,
and then (ii) to impose a small slip length β (compared to the domain size) and estimate the resulting permeability Kβ .
[K0,Kβ ] can be used directly as a type of confidence interval if the value taken as the slip length is considered realistic.
The linear deviation can be approximated as L0 ≃ (Kβ −K0)/β, provided that the slip length is sufficiently small in
order to avoid the noise in the evaluation of Kβ .

The aim of this section is to show that linear deviation can also be computed precisely in a straightforward fashion by
solving a Stokes equation with non-homogeneous Dirichlet boundary conditions. To do so, we focus on the asymptotic
development of the solution to the Stokes equation subject to a Navier boundary condition, with β a small parameter
compared to the image size, so as to obtain

Kβ = K0 + βL0 + β2R(β) (8)

with a bounded remainder R(β). This results in an estimation of the uncertainty interval [K0,K0 + βL0] for the
absolute permeability subject to a possible slip length β.

To simplify the readability of the remainder, we will set the problem in the fluid part ΩF with the no-slip-through
condition on its boundary Σ and slip one on the tangential components which gives the following equations:

−∆uβ +∇pβ = f, in ΩF (9a)

div uβ = 0, in ΩF (9b)

Tuβ − βTD(uβ) · n = 0, on Σ (9c)

uβ · n = 0, on Σ. (9d)

The goal of asymptotic expansion is to provide a formal development of uβ and pβ with respect to the slip length
β. So, we need to consider a second order asymptotic expansion given by

uβ = U0 + βU1 + β2rβ

for the velocity and
pβ = P 0 + βP 1 + β2qβ

for the pressure, where the profiles U j and P j are obtained from (10) and (11), rβ , qβ designating the respective
remainders. The profiles U j and P j are characterized by the result in appendix C: from equations (37), (41), (43), we
can see that the functions (U0, P 0) satisfy the no-slip Stokes problem (45) written as follows

−∆U0 +∇P 0 = f, in ΩF

divU0 = 0, in ΩF

U0 = 0, on Σ

(10)
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(a) Averaged velocity profile (b) Slip length induced by a 2D sinus roughness pattern

Fig. 4 To the left: Average velocity profile with respect to the z-axis for a roughness (13) with γ/h = 0.5, L/h = 1/6 and δ/h = 0.5
in non-dimensional coordinates. The slip coefficient is about β/h = 0.306 in this case, when using a definition based on the box boundary
velocity, and β/h = 0.046 when based on the roughness head velocity. To the right: Evaluation of the slip coefficient with respect to the
roughness amplitude and pitch for an X-ray absorption level of one quarter, in comparison to the flat case (no roughness). The slip coefficient
estimation ranges from β/h = 0.617 to β/h = 0.766.

Furthermore, taking k = 1 in equations (39), (41) and (44), developed in appendix C, we also obtain (U1, P 1)
profiles that satisfy the following Stokes problem (46), which is written

−∆U1 +∇P 1 = 0, in ΩF

divU1 = 0, in ΩF

T U1 = T D(U0) · n, on Σ

U1 · n = 0, on Σ.

(11)

Finally, we obtain the absolute permeability and its linear deviation by the first order Taylor development (8) of (7),
i.e. K0 = ϕµ < U0 >ΩF

/ < f >ΩF
and

L0 = ϕµ < U1 >ΩF
/ < f >ΩF

(12)

where U1 is the solution of (11) involving non-homogeneous Dirichlet boundary conditions, i.e. a prescribed slip
velocity. Similarly, we easily obtain R(β) ∝<rβ>ΩF

.

3.2 Slip value and its link to multi-scale modeling

In this section, we focus on estimating the values of the slip length which appropriately represent the uncertainties
associated with the CT scan. In order to carry out possible slip length values and exhibit the bounds, we consider, in a
computational box of size h3, the periodic sinusoidal geometry at a mean height δ with an amplitude γ and a pitch L:

φ(x, y) = δ +
γ

2
sin(2πx/L) sin(2πy/L) (13)

defining the solid as the domain below the graph of this function (that is to say the point (x, y, z) such that z < φ(x, y)),
and the fluid domain above its graph.

The usual approach when modeling a roughness or its homogenization, is to set a Navier/Robin boundary condition
that quantifies the slip at a given height relative to the top, mean line or bottom of the roughness pattern [32]. This leads
to the relation (1) on the tangential velocity introduced previously:

u− βD(u)n = 0 on Γ (14)

where Γ is the smooth – or flat – reference surface on which a model of roughness effect is used or an homogenization
of the roughness pattern (small scales of the surface Σ) is performed. In 1D, after averaging along the crosswise
directions, the above equation is written u(ζ) − βu′(ζ) = 0 and we obtain Figure 4a: we can see that the reference
height ζ (or equivalently the position of the surface Γ ) can be chosen very closely to the effective surface (at the head of
the roughness pattern, usually considered in nano-fluidics experiments describing this effective surface) or, in our case,
at the edge of the voxel to be used as a meaningful boundary condition for the neighboring voxel. Despite a difference
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(a) Error on velocity (b) Error on permeability

Fig. 5 Mesh convergence analysis in a cylindrical geometry for β = 0.1: (a) Velocity errorL2-norm with respect to the grid size for 25 to 29

cells in the lateral directions. (b) Absolute permeability error with respect to the grid size given the theoretical permeability (17).

in use between a slip at the roughness head, intrinsic to the surface, and a slip at the voxel edge, pertinent in image
processing but linked to the voxel size, there is only one concept and definition of the slip condition and slip length.

However, whatever the choice of the reference velocity on this surface, as long as it is chosen above the solid,
we can see in Figure 4a that the velocity gradient remains constant in the fluid part, which is quite a conventional
result [16]. Consequently, the slip velocity based on the pixel size is proportional to the slip based on the head of
the roughness pattern, obtained by microscopy or nano/micro-fluidics experiments. Such experiments can evaluate slip
lengths depending on the typology of the roughness pattern. Moreover, according to different studies involving ridges
or trenches [19, 22], pillars [24] and holes [25], or carbon nanotube coatings [23], for a given kind of pattern, the pitch
and the solid fraction are the two most important parameters for determining slip lengths [26].

A direct consequence of the proportionality of the slip velocity is a shift in the slip length: an intrinsic slip length
βexp at the top of the rough surface evaluated at 50% of the voxel width (at position h/2), results in an effective slip at
the voxel boundary equal to

β ≃ βexp + h/2 (15)

since u(h) = βu′(h) = u(h/2) + hu′(h/2)/2 = βexpu
′(h/2) + hu′(h/2)/2 ≃ βu′(h/2) due to u′(h) ≃ u′(h/2)

(e.g. see Figure 4a).
At a quantification level, Figure 4b presents the slip lengths for a range of roughness amplitudes 0.1 ≤ γ/h ≤ 0.4

and a range of pitches 1/6 ≤ L/h ≤ 1. The mean solid position is set at δ/h = 0.25, corresponding to a ”light
gray” voxel due to its low absorption. Numerically, we used a GMRES method, detailed in appendix A, with a Krylov
subspace size m = 20, a given tolerance of ε = 10−4 and a grid resolution of 26 cells in each direction, leading to
a residual error of 5×10−5. In such a situation, the maximum value tends to β/h = 0.75, but in most cases the slip
length belongs to the range β/h ≃ 0.6− 0.7.

Beyond these estimations based on a case study of roughness, the hydrophobic and/or slip length reported in litera-
ture for multi-phase flows conventionally ranges from 200nm [29] to 700nm and even 950nm [23]. For an mica/water
interface with a roughness of 15nm, slip lengths in the range of 500 − 860nm have been observed [13]. Moreover,
Yao et al. [35] report roughness heights up to 400nm, for quartz sand, observed using optical interferometry. We note
that Krinsley [36] reports different roughness patterns for quartz grains, depending on its depositional environment
(aqueous, high energy beach, desert, hill, fjord). The resolution h of the samples considered in the present study range
from 1.5µm for the sandpack and 2.2µm for the Bentheimer sandstone to 5.6µm for the Castlegate sandstone. For fine
resolutions, choosing a slip length of β/h in the range 0.5− 0.8 is then coherent for both the under-resolved roughness
and the blur of fluid/solid interface, especially when the blur is limited to 1 voxel. Of course it is possible to consider
larger slip length to quantify the uncertainty induced by wider blurred layers. To conclude, in the following sections,
we consider slip lengths at β/h = 0.5 and 0.76.

4 Absolute permeability deviation analysis on real geometries of porous rocks

4.1 Flow in a cylindrical domain

We first perform convergence analysis by studying the Stokes flow in a vertical cylinder of radiusRwith a slip boundary
condition along the lateral boundary. The goal is to validate the numerical method presented in this work and detailed in
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Fig. 6 Permeability deviation in relative coordinates (non-
dimensional) with respect to β on a grid of 26 cells in each direction
and using the permeability with adherent pore interface, denoted
K0, as a reference. A slope of R/2 is expected for the permeability
deviation.

appendix A, and at the same time to exhibit the features of a pore with a simple geometry, whose flow has an analytical
solution.

The exact solution, dependent on β is given, in cylindrical coordinates, by

u(r, θ, z) =
(R2 − r2)

4µ
f + β

fR

2µ
. (16)

with f = −e⃗z . The analytical expression for the dimensionless permeability as a function of β reads:

Kβ =
R2

8
+ β

R

2
. (17)

In this case, the linear deviation is exact and the development of Kβ contains no remainder after the first order
term. The total permeability deviation Kβ corresponds to K0 + βL0, with L0 = R/2, and hence provides a single
confidence interval.

The analytical permeability is computed by taking the cylinder as the whole porous domain, meaning we assume
here that ϕ = 1. The computational box is the unit box [−1, 1]3 and the cylindrical geometry on the grid is defined by
all the grid points whose distance from the vertical axis is smaller than 0.9, which statistically corresponds to a cylinder
of radius R=0.922 (the solid being strictly outside, this gives an effective radius larger than 0.9). In the present work,
we are dealing with two different diagnostics: on the one hand, with β = 0.1, mesh convergence curves for the velocity
error L2-norm and the permeability estimate are presented. On the other hand, we monitor the permeability deviation
with respect to β for a given mesh resolution. The convergence diagnostics in Figure 5 are performed with a Krylov
space size set to m = 50, a given tolerance of ε = 10−6 and up to a resolution of 29 cells, except in the main flow
direction where we set 25 cells. In fact, since both the analytic and numerical solutions are invariant with respect to the
vertical axis, we consider only a thin layer for the validation study (without loss of generality) and thereby we limit the
memory requirements to below 8GB of RAM.

We observe a convergence of the order of O(h1.2) for the velocity, which is slightly weaker than in the case of
an adherent pore interface, since slip boundary conditions tend to disrupt the GMRES convergence. Moreover, this
convergence order is lower than the order two finite difference schemes used in the numerical method, mainly because
of the cramming effect on this cylindrical case. Concerning the permeability estimate, we get an order one convergence
with respect to the mesh resolution with an error on the permeability of 1.9% for the coarsest resolution grid and 0.09%
for the finest one. We made sure that the permeability deviation due to the slip boundary condition is not encompassed
in the numerical error. When we represent the permeability evolution as a function of β, with the slip coefficient taking
values between 0 and 0.1, we recover the theoretical slope of L0 = R/2 confirming the precision of the derivation and
implementation (Figure 6).

Another meaningful investigation that was performed on this validation case is the monitoring of the boundary con-
dition at the approximate interface: it is satisfied with an error of 10−3 even for the coarsest considered grid (25) which
means that the slip boundary condition is properly controlled with the proposed method. This observation highlights
the ability of this direct approach to deal with slip flows.

4.2 Flow inside a Bentheimer sample

This section is dedicated to an initial application on a real porous rock: the Bentheimer sandstone sampled at a resolution
of 2563, corresponding to a physical size of L = 0.56mm with 2.2µm wide voxels.

We are first interested in analysing the memory storage requirements in order to identify the Krylov subspace size
we can afford in practice, using the numerical method detailed in appendix A. The memory cost mainly depends both
on the grid resolution and the Krylov subspace size, so we will present it as a function of the total number of mesh
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Fig. 7 Permeability deviation, on the Bentheimer
geometry, computed by (7) with respect to the slip
coefficients: for β/h = 0.5, the permeability devia-
tion is about 8.56%.

Fig. 8 Bentheimer geometry with a slip coefficient of β/h = 0.5: Relative velocities in the fluid domain (to the left) and at the fluid/solid
interface (to the right). Resolution of 28 cells per direction. The gray part represents the solid matrix constrained in an impermeable solid
casing.

points N and the Krylov size m. Five tables, mainly, are used to call the Fortran GMRES(m) subroutine: X to store
the unknowns, Y for the result of the matrix-vector product function, B for the right-hand-side, all of size 4N , and
additionally a vector V of size 4N(m + 1) to store the orthonormal basis {v1, ..., vk+1} of the Krylov subspace
obtained by Arnoldi’s process and finally one table of size N to characterize each mesh point with respect to its solid,
fluid or first layer of identified solid. Then, the GMRES algorithm itself requires the storage of the Hessenberg matrix
of size (m+1)m (defined in appendix A) and four additional tables (three of sizem and one of sizem+1) for solving
the least squares problem (23). This leads to a total storage space of 14N + 4N(m+ 1) + (m+ 1)2 + 3m.

The simulations are performed using 16GB of RAM, such that the Krylov space is set tom = 20. However, it must
be noted that the Krylov subspace size has an effect on the convergence rate. This highlights the difficulty in choosing
an appropriate value of m, especially when the system size grows. Therefore, in the next section we propose a strategy
for improving convergence in high resolution simulations.

As the physical parameters, the dynamic viscosity is set to µ = 10−3 Nm−2s and the driving force to f =
5000Nm−3. To study the impact of the under-resolved roughness on the permeability, the slip coefficient range is
taken between 0 and h with a particular interest in β/h = 0.5 which helps provide an upper bound for the permeability
deviation when the X-ray absorption level is estimated to one half. The permeability deviation with respect to the slip
coefficients are presented in Figure 6.
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Fig. 9 Relative velocities in the main flow direction and on a sectional profile (taken at y = 0 and z = −0.5 in relative coordinates) on the
Bentheimer geometry: comparison between the adherent and slip boundary conditions for β/h = 0.5. The z = −0.5 slice for a slip length
of β/h = 0.5 is displayed on the left image, the white and magenta lines respectively show the cut for the unzoomed and zoomed curves to
the right.

The permeability with an adherent pore interface, denoted K0, is taken as reference for the computation of the
relative deviation of absolute permeability, given by

|Kβ −K0|
K0

(18)

where Kβ is the permeability with slip boundary condition on the pore interface. In the adherent case, after 100 it-
erations we obtained a dimensional permeability of 2.87 × 10−11m2, noticing that the usual values obtained from
experimental measurements are around 10−12m2, and this actual Bentheimer sample at a representative scale has been
measured at 2-3µm2 [37]. The difference is not necessarily significant, as the numerical porosity of the sample consid-
ered is about ϕ = 28.75%, while typical values for the Bentheimer sandstone are rather around 24% [38]. Finally, the
pore interface represents about 7.18% of the sample geometry, excluding the solid casing. In order to provide a physical
characterization of the pore interface, we introduce the specific area of the porous medium defined as the ratio of the
pore interfacial surface area per unit volume, expressed in m−1. This quantity is numerically estimated and provides a
specific area of about As = 25027m−1.

The relative residual norms quantifying the convergence of the numerical method, and the permeability changes
with respect to the iterations are displayed in Figures 15a and 15b, on which we compare β/h = 0 for β/h =
0.5. For the latter, the relative residual norm and the permeability estimation scale respectively around 10−2 and
3.11×10−11m2 which represents a permeability deviation of 8.56% for such a slip coefficient. This deviation increases
to about 12%, as illustrated in Figure 7 by the full permeability deviation analysis performed with slip coefficients
between 0 and h. Both the 3D sample geometry and the final relative velocity field with slip pore interface, in the
β/h = 0.5 case, are shown in Figure 8.

This example highlights that even a small slip coefficient induces a significant permeability deviation since the pore
boundary condition induced by an invisible roughness leads to a different evaluation of the flow rate, as illustrated in
Figure 9. Actually, we present here a sectional profile of the relative velocities in the main flow direction for adherent
and slip boundary conditions for β/h = 0.5. The related 2D pore slice and the exact 1D segments for the main profile
and its zoomed version are also displayed on the left. It remains that one should carefully consider this uncertainty on
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Fig. 10 Permeability deviation with respect to
the slip coefficients on a Castlegate sandstone
sample for a 28 resolution per direction. The
reference permeability K0 is given by 2.09 ×
10−11m2 in this case.

the permeability estimate to provide, instead, a permeability range thanks to tomographic dataset, especially when the
absorption level does not enable us to precisely grasp the pore interface roughness.

4.3 High resolution flow inside a Castlegate sample

The second real geometry considered in this study is a highly porous Castlegate rock whose numerical porosity is about
ϕ = 25.10%. This sandstone outcrop was sampled in southeastern Utah, USA [34]. The numerical sample is extracted
from the experimental X-ray dataset using a physical voxel size of 5.6µm and has a physical size of L = 2.8mm. This
Castlegate sandstone is segmented on a 5123 grid, between fluid and solid points: the pore interface, characterized by the
grid points among the solid ones but in contact to fluid, denoted Σs, represents about 12.63% of the sample geometry
without a casing. Finally, in this sample, the specific area is numerically estimated and we get about As = 15678m−1.

In such high resolution simulations, the Krylov subspace size is clearly limited regarding memory storage and
consequently, the convergence slows down in comparison with a lower resolution grid. We thus use preconditioning,
developed in appendix B, to obtain convergence results that are reasonable for well-resolved real geometries. The
process consists in computing the velocity and pressure fields on a coarser grid, with a Krylov size that gives good
convergence results for the residual norm: around 10−4 after 100 iterations for a 56GB RAM simulation with a Krylov
size of m = 100, which speeds up dramatically the global simulation.

For the physical parameters, we take µ = 10−3 Nm−2s for the dynamic viscosity and f = 2000Nm−3 for
the driving force. The full permeability deviation analysis, displayed in Figure 10, with a slip coefficient between 0
and h, is performed with the 28 resolution per direction. For high resolution simulations, we only consider two main
slip coefficient values: β/h = 0.5 and β/h = 0.76 previously justified. The reference permeability on the adherent
pore interface, obtained using the preconditioning process detailed before, is about K0 = 1.59 × 10−11m2 after 200
iterations. The Krylov subspace size is set tom = 50 on the thinner grid such that this permeability estimate is provided
with a relative residual norm of less than 10−6. In this case, both the evolution of the relative residual norms and the
permeability changes with respect to the number of iterations are presented in Figures 15c and 15d respectively, on
which we compare the adherent case with slip pore boundary by taking β/h = 0.5. Figure 11 also shows the final
relative velocity field at the full resolution, obtained in a slip pore boundary case.

By considering a slip coefficient of β/h = 0.5, after the preconditioning process we reach a final relative residual
norm of around 10−5, which is larger than for the adherent case. This can be explained by the fact that slip boundary
conditions tend to disrupt the convergence since the slip often leads to a lack of coercivity in the variational formulation.
The permeability evolution scales at about 2.57 × 10−11m2 which represents a permeability deviation of 61.63%
compared to the adherent case. Finally, a slip coefficient of β/h = 0.76, corresponding to light gray voxels, provides
a permeability of 3.05 × 10−11 with a final relative residual norm of 10−5. It represents a permeability deviation of
91.82% which means that Kβ is nearly twice the reference permeability K0 for such a slip coefficient. We note that
we get substantially higher permeability deviations on the Castlegate sandstone sample compared to the Bentheimer
sample. This can be explained by a higher proportional pore interface (the pore interface represents 7.18% on the
Bentheimer and 12.63% on the Castlegate). In fact, since the Castlegate geometry presents a large variety of small pores,
the slip boundary conditions on the pore interface more significantly impact the velocity and thereby the permeability.In
that regard, Figure 12 shows the relative velocities, for β/h = 0 and 0.5, on a sectional profile as well as the related
2D pore slice and the exact 1D segment where the graph and its zoomed version are taken.
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a) Rock matrix and in-pore velocity, no-slip (β/h = 0)

b) Rock matrix and in-pore velocity, slip length β/h = 0.76 c) Interpolated slip at interface, slip length β/h = 0.76

Fig. 11 Flow in the Castlegate geometry (5123) with adherent boundary condition (top image), and with slip coefficient β/h = 0.76 (”light-
gray” case in the bottom left image). Bottom right image: interpolated slip at fluid/solid interface. Flow pictures are colored by the norm of
relative velocity with the same scale (0-0.8), with respect to relative coordinates (from -1 to 1).

4.4 High resolution flow inside a sand-pack sample

The numerical study of the sand pack considered in this last case involve a grid resolution of 29 cells in each direction
so that the numerical sample extracted from the X-ray dataset has a physical length of L = 0.768mm with 1.5µm
wide voxels. Porosity and specific area are computed, respectively, at ϕ = 45.43% and As = 93174m−1. In this case,
the pore interface represents about 20.04% of the grid points that model the sample geometry.

As described before, preconditioning starts on a twice coarser grid with a Krylov space size of m = 100, followed
by M ′

4 interpolation and computations on the more refined grid with m = 50. The physical parameters involving the
dynamic viscosity and the driving force are taken as described in the previous section.

The reference permeability on the adherent pore interface is about K0 = 1.02 × 10−11m2 after 200 iterations,
obtained with a relative residual norm around 10−6. In Figures 15e and 15f we compare both the evolution along the
preconditioning process of the relative residual norm and the permeability for β/h = 0, 0.5 and 0.76. The permeability
reaches 2.48×10−11 and 2.98×10−11m2, respectively, for these two slip coefficient values. This means that on such
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Fig. 12 Relative velocities in the main flow direction and on a sectional profile (taken as z = 0 and y = −0.5 in relative coordinates)
on the Castlegate geometry: comparison between adherent and slip boundary conditions for β/h = 0.5. The slice z = 0 for a slip length
β/h = 0.5 is displayed on the left-hand image, the white and magenta lines show the respective locations of the cuts of the unzoomed and
zoomed curves to the right.

a) Rock matrix and poral velocity, b) Rock matrix and poral velocity, c) Interpolated slip at interface,
no-slip case (β = 0) slip length β/h = 0.76 slip length β/h = 0.76

Fig. 13 Flow in the compact sand pack geometry (5123) with adherent boundary condition (left picture), with slip β/h = 0.76 (middle
picture), and slip at pore boundaries (right picture). Same color legend as for Figure 11.
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Fig. 14 Relative velocities in the main flow direction and through a sectional profile (taken at z = −0.75 and y = 0 in relative coordinates)
on the sand geometry: comparison between the adherent and slip boundary conditions for β/h = 0.5. The slice z = −0.75 for a slip length
β/h = 0.5 is displayed on the left-hand image, the white and magenta lines show the location,respectively, of the cuts of the unzoomed and
zoomed curves to the right.

geometries the permeability deviations are even greater than in the previous applications and scale at about 143% and
192%.

As for the previous samples, Figure 13 shows the 3D geometry at full resolution with the final velocity fields
obtained in the adherent and a slip pore boundary cases. Moreover, a 2D pore slice (taken in the main flow direction) is
also illustrated on the left-hand side of Figure 14 to characterize the sectional profiles presented on the right. It shows
the impact of the slip boundary condition (in this case β/h = 0.5) on the flow rate.

Furthermore, we verify in this case that the permeability variation does not reflect the residual errors of the nu-
merical scheme: the bottom images of Figure 15, show that the relative residual is the same for the two slip lengths
β/h = 0.5 and 0.76.

4.5 Results summary

Table 1 summarizes the results obtained for both the raw deviations and the linear deviations for all considered samples.
The permeability ranges account for the sample resolution, its bulk permeability and its geometry at pore scale.

We observe that the permeability deviations using the raw values (the full deviation) and the values based on the
linear momentum are consistent, despite a small non-linear effect (as expected and shown in Figure 6).

Furthermore, for the different samples, a dimensionless ratio is computed from the relative deviation and the specific
area which have the same units m−1. This ratio is displayed in table 2. It is theoretically equal to 2 for a cylindrical
pore. It appears that the Bentheimer sandstone, of size 2563 and too coarse to be a representative sample, has a ratio
L0/AsK0 which is close to that of the cylindrical case.

Oppositely, the samples representative of their media, namely the Castlegate sandstone and the sand pack, have
ratios in the range 12-17. We note that their porosity values are quite different. Future work will investigate whether or
not sandstones with porosities in the range of 20-25% correlate with a universal dimensionless ratio (around 12).
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No-slip Full deviation Linear deviation
Sample Slip-length permeability Relative deviation Range Relative deviation Range

β K0 K′/K0 [K0,Kβ ] L0/K0 [K0,K0 + βL0]

Unit µm µm2 m−1 µm2 m−1 µm2

Cylinder — R2/8 4/R [K0,K0 + βR/2] 4/R [K0,K0 + βR/2]

Bentheimer 1.1 28.7 77 818 [28.7, 31.1] 63 727 [28.7, 30.7]

Castlegate 4.26 15.9 215 540 [15.9, 30.5] 185 956 [15.9, 28.5]

Sandpack 1.14 10.2 1 684 211 [10.2, 29.8] 1 561 404 [10.2, 28.4]

Table 1 Summary of absolute permeability ranges obtained for the three samples and the ideal cylindrical pore, in both the full deviation and
the linear deviation models. We use the notation K′=(Kβ −K0)/β.

Computed Specific Relative Relative
Sample porosity area deviation Ratio linear deviation Ratio

ϕ As K′/K0 K′/K0As L0/K0 L0/K0As

Unit — mm−1 mm−1 — mm−1 —
Cylinder 100 % 2/R 4/R 2 4/R 2

Bentheimer 28.75% 25 78 3.1 63.7 2.5
Castlegate 25.1% 15.7 215.5 13.7 186 11.9
Sandpack 45.4% 93 1 684 18.1 1 561 16.8

Table 2 Comparison of relative
deviations (rounded) with re-
spect to specific areas for the
different samples, using the val-
ues of K′ from table 1.

Computed Grain Charact. Sample Sample Sample
Sample porosity ϕ size length

√
K0 width resolution volume

Unit — µm mm µm — mm3

Bentheimer 28.75% 200-330 5.3 563 2563 0.131
Castlegate 25.1% ≃150 4.0 2867 5123 17.30
Sandpack 45.4% ≃50 3.2 768 5123 0.332

Table 3 Rock and numerical sample fea-
tures. Orders of magnitude of grain size
are taken from [39, 37] and [40]. The sam-
ple volume excludes the digital cell sur-
rounding the rock matrix.

In any case, this tends to show that providing values of permeability by direct numerical simulation is hazardous
if the specific area is not correctly estimated. When the interface area is properly computed, the interval of uncertainty
becomes reliable as a range of permeability values.

5 Conclusion

Numerical modeling of flow in porous media at pore scale can be based on datasets obtained by X-ray micro-tomography.
However, the finite resolution of these tomographic scans leads to an uncertainty on the position and morphology of the
pore walls, which in turn impacts the effective properties of the porous medium. The current paper attempts to assess
this impact on the computed bulk permeability of the medium.

We used a slip length formalism based on [19] and [32] to replace the actual rough surface by a smooth one,
and/or the wall position subject to uncertainty due to image artefacts, supplemented with slip boundary conditions. The
Stokes problem is then solved using a re-initiated GMRES method to ensure precise monitoring of the velocity at the
pore interface, after which the permeability tensor is obtained using homogenization. Two approaches are proposed
to calculate a range of values for the absolute permeability, namely full deviation and linear deviation. Bounds on the
values are obtained by modeling Stokes flow with a no-slip boundary condition and a well-chosen slip condition.

Some non-linear effects appear as soon as β nears the voxel size. At this point the permeability deviation and its
estimation based on the linear deviation begin to differ. Nevertheless, within the range β/h < 1, both the full deviation
and the linear deviation have given comparable results. A formal derived problem is also provided to estimate the linear
permeability deviation. Counter-intuitively, this problem does not involve a Navier boundary condition, but a prescribed
slip (non-homogeneous Dirichlet condition).

The absolute permeability analysis on real porous rock applications have highlighted that a geometrical uncertainty
may induce a significant deviation that can result in twice the reference permeability. It must be noted that the per-
meability deviation is sensitive to the structure of the pore space and its effect increases for geometries with a large
proportion of small pores. Consequently, we must be careful with the permeability estimation in which the geometrical
uncertainty should be rendered by a range of permeability from tomographic datasets.

The resulting permeability ranges for our different samples are summarized in table 1. Representative samples
have been shown to exhibit similar dimensionless L0/AsK0 ratios in the range 12-17. This ratio quantifies the relative
permeability deviation versus the specific area. It has also been observed to be close to the theoretical value of 2 for a
non-representative single cylindrical pore. This result was obtained for a few samples and will be investigated in future
work. Another prospect could be to extend the approach developed in this paper to multi-phase flows at low Reynolds
regime, in order to monitor the relative permeability to each phase.
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A Numerical method

Many numerical methods exist to solve the Stokes equation in a domain with complex morphology. We distinguish
mesh-based methods from grid-based methods. Mesh-based methods include finite elements (FEM, [41, 42]), finite
volumes (FV, [43, 44, 45]), Lattice Boltzmann (LBM, [12]), ALE [46] or Boundary Element methods [47, 48, 49].
Grid-based methods involve discrete operators on structured grids such as finite differences, staggered [50] or not
[40], spectral methods [51], or FV [52] and LBM [53] on structured meshes. For successive evaluations of differential
operators (typically gradient and divergence), grid-based methods can either use a collocation formulation or staggered
grids. While the latter allow a gain in accuracy, the use of collocated grids easily aligns the computational points to the
experimental datasets. Optimized grid-based methods may be coupled to other methods dedicated to the flow features to
be investigated: transport based on particle methods [54, 55], anisotropic diffusion for space-variable medium [56, 57],
phase-field description of multi-phase flows [58, 59] and its upscaling [8, 60], complex fluid and rheology [61, 57],
etc...

In the present work, we consider a grid-based approximation of the stationary Stokes problem, with the velocity and
pressure field as unknowns, using the restarted Generalized Minimal Residual Method (GMRES) the solve the linear
system inherited from the centered and one-sided finite difference schemes. In this formalism, detailed hereafter, we
encode and satisfy the Navier or Dirichlet boundary condition at the fluid/solid interface, the Stokes equation in the
fluid region and a trivial identity inside the solid region, since these points are not connected to the fluid plus interface
set of grid points.

We introduce a uniform Cartesian grid, with a mesh step of h, and Nx, Ny and Nz points in each direction.We
also use a renumbering index to convert from 3D numbering, with respect to the indices i, j and k representing the grid
points, to 1D numbering l = i + Nx(j + Nyk). As stated before, such raw datasets can be segmented to obtain the
characteristic function χS on the Cartesian grid points.

Next, we construct a discrete version of the continuous solid/liquid interface. To do so, we identify the mesh points
Xijk = (xi, yj , zk) which lie in the solid matrix and have at least one neighbour in the pore domain. We call this set
Σs and choose to impose the pore interface boundary conditions on this interface layer.

Let us define the unknowns vector x ∈ R4N , with N = NxNyNz the total number of mesh points, such that
x = (ux, uy, uz, p)

T . Then, depending on the mesh point identification, we define the numerical product function Ax,
from R4N to R4N , representing the discretization of equation (3) extended by 0 for both the velocity and the pressure
inside the solid domain, as follows:

Ax(Xijk) =



−∆hu(Xijk) +∇hp(Xijk), if χs(Xijk) = 0,
divh u(Xijk), ( ⇐⇒ Xijk ∈ ΩF )

u(Xijk) · τk(Xijk)− βDh(u)n(Xijk) · τk(Xijk), if Xijk ∈ Σs

u(Xijk) · n(Xijk),
divh u(Xijk),

u(Xijk), otherwise.
p(Xijk),

(19)

where the index h denotes the usual discrete operators defined above.
The evaluation of the differential operators, including Laplacian, divergence and gradient, is performed using

straightforward finite difference schemes of order two. The formalism used in this study is based on the fact that
the solid and fluid domains are disconnected and can be considered as two independent parts in the linear system. We
are therefore interested in decoupling the problem between the solid on the one hand, and the fluid+interface parts on
the other hand, such that the computational size of the problem could be reduced to just the latter. Consequently, we
use centered schemes in the whole fluid part, even for the interface neighbors, and non-centered schemes in the normal
direction, towards the fluid, on the first solid layer Σs.
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(a) Relative residual norm, Bentheimer sandstone (b) Permeability evolution, Bentheimer sandstone

(c) Relative residual norm, Castlegate sandstone (d) Permeability evolution, Castlegate sandstone

(e) Relative residual norm, sandpack (f) Permeability evolution, sandpack

Fig. 15 Relative residual norm (left pictures) quantifying the convergence of the numerical method, and the evolution of the permeability
estimation with respect to the iterations of the numerical method (right pictures), for the different samples: the Bentheimer geometry for
β/h = 0 and 0.5 to the top, the Castlegate sandstone sample using preconditioning with 28 grid size until the 100th iteration for β/h = 0
and 0.5 at the middle, and the Sand pack sample also using preconditioning, for β/h = 0, 0.5 and 0.76.

Concerning the right-hand-side of the problem, denoted by (fx, fy, fz) ∈ R3N the components of the driving force
f , we have the following expressions for b:

b(Xijk) =

{
(fx, fy, fz, 0), if χs(Xijk) = 0,
(0, 0, 0, 0), otherwise

(20)

noting that the last components of the vector b ensure the incompressibility condition, on the fluid and first solid layer
parts. On the solid part, it also imposes a value of zero for both the velocity field and the pressure. Moreover, this
method presents the advantage that it algebraically ensures the divergence-free condition.
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We use the GMRES method to solve the linear system Ax = b introduced above. It was originally developed in
1986 by Saad and Schultz [62] and we go over the general principles hereafter. GMRES is an iterative method that aims
at solving a non-symmetric system of linear equations, with A ∈ RN×N a non-symmetric square matrix and b ∈ RN .

The method approximates the solution by a vector in a Krylov subspace with a minimal residual. We define the
Krylov subspace of order m related to this problem with respect to the initial residual r0 by

Km(A, r0) = Span
{
r0, Ar0, ..., A

m−1r0
}

where r0 = b−Ax0 and x0 ∈ RN is the initial iterate.
The GMRES algorithm provides an approximate solution that minimizes, at every time step, the Euclidean norm

denoted by ||.|| of the residual vector. The next iterate xk is sought in the form xk = x0 + zk where zk ∈ Kk(A, r0)
is the solution of the least squares problem:

min
z∈Kk(A,r0)

||b−A(x0 + z)|| = min
z∈Kk(A,r0)

||r0 −Az||. (21)

First, the modified Gram-Schmidt Arnoldi algorithm is applied to build an orthonormal basis {v1, ..., vk} for the Krylov
subspace Kk(A, r0). It provides the following relationship:

AVk = Vk+1H̄k, (22)

where H̄k ∈ R(k+1)×k is an upper Hessenberg matrix whose only non-zero entries are the hij elements generated
by the Arnoldi process, and Vk+1 ∈ RN×(k+1) is an orthogonal matrix whose columns are the orthonormal basis
{v1, ..., vk+1}. Using this relation, it has been shown in [62] that by setting z = Vky the solution of the problem (21)
is xk = x0 + Vkyk, with yk the solution of

min
y∈Rk

||βe1 − H̄ky||, (23)

where β = ||ro|| and e1 is the first canonical vector of Rk+1. The above problem is generally solved (Givens) using a
QR decomposition of the Hessenberg matrix.

Among the main convergence results of the GMRES method, we reiterate the following proposition from [62]:

Property 1 Let A be diagonalizable such that A = XDX−1 and we denote Pm the space of all polynomials of degree
≤ m and σ the spectrum of A. Then, the residual norm provided at the mth step of GMRES satisfies

||rm+1|| ≤ ||X||||X−1||ε(m)||r0||, (24)

with ε(m) = min
p∈Pm,p(0)=1

max
λi∈σ

|p(λi)|.

The convergence of the restarted GMRES(m) algorithm is also proven when A is a positive real with an error bound
derived from the above proposition. However, this result is not consistent when A is not positive real, in which case the
following theorem has been proven:

Property 2 Assuming that there are ν eigenvalues λ1, λ2, ..., λν of A with non-positive real parts. Let the other eigen-
values be enclosed in a circle centered on C with C > 0 and with a radius R where C > R. Then,

ε(m) ≤
(
R

C

)m−ν

max
j=ν+1,N

ν∏
i=1

|λi − λj |
|λi|

≤
(
D

d

)ν (
R

C

)m−ν

(25)

with D = max
i=1,ν; j=ν+1,N

|λi − λj | and d = min
i=1,ν

|λi|.

In any case, the convergence is closely linked to the condition number ofX and the eigenvalue distribution: in particular,
extremely small eigenvalues slow down the convergence.

In this study, the stop criteria for the convergence is given with respect to the relative residual norm at the iterate
xk such that

||rk|| =
||b−Axk||
||b−Ax0||

< ε (26)

for a given tolerance ε, but it also includes a maximum number of iterations for the restarted algorithm.
Regarding memory requirements, the cost of the method rises as the Krylov subspace grows so in practice restarted

methods are used to reduce the storage and orthogonalization costs. This means that the algorithm is restarted every m
steps, with m a fixed integer that sets the Krylov subspace size, and the initial guess chosen for the restart is the final
previous one, obtained by minimizing the residual norm. Furthermore, we do not use an assembly procedure for the
matrix A but rather focus on the implementation of a matrix-vector product function. From a numerical point of view,
we use a Fortran subroutine for the GMRES restarted method and a C implementation of the main program including
the definition of the matrix-vector product function computing Ax, with A the matrix representing the Stokes problem
and x the main unknowns vector, which contains the velocity and pressure fields.

The relative residual errors and convergence of the permeability values are displayed in Figure 15 for the three
different samples analyzed in section 4.
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B Preconditioning and interpolation method

Regarding a sample geometry which contains various small pores, we consider the preconditioning on a grid twice as
coarse, for example a grid size of 29 cells per direction inherited from a 28 one.

We perform an interpolation of these fields to obtain their approximation on the finer final grid using an interpolation
kernel and then the interpolated pressure and velocity fields are taken as initial data for the computation on the whole
grid. In the remainder, we use tilde notations when dealing with the refined grid variables and fields, so we denote the
interpolated velocity and pressure by ũ and p̃, respectively. We also respectively introduce x̃q and xp in R3 as the space
variables on the refined and coarse grids. Afterwards, the interpolated velocity is computed using the convolution:

ũ(x̃q) = (u ∗M ′ε
4 )(x̃q) =

∫
R3

u(x)M ′ε
4 (x̃q − x)dx =

∑
p∈S

upM
′ε
4 (x̃q − xp)vp

where S = {p s.t x̃q − xp ∈ supp(M ′ε
4 )} and vp the volume element of the coarse grid. Moreover, M ′ε

4 is defined
with respect to the classical 1D interpolation kernel M ′

4

M ′
4(x) =


(3x3 − 5x2 + 2)/2 if 0 ≤ x ≤ 1
(2− x)2(1− x)/2 if 1 ≤ x ≤ 2

0 if x ≥ 2
(27)

and is written as the following tensor product, with ε the coarse grid mesh step:

M ′ε
4 (x) =

1

ε3
M ′⊗3

4

(x
ε

)
. (28)

C Asymptotic expansion of the Stokes equation with slip

We denote byφ : ΩF → R+ the euclidean distance to the boundaryφ(x) = dist(x,Σ). Assuming sufficient regularity
on ΩF , typically a smooth bounded open set, φ is smooth in the neighborhood ω ⊂ ΩF of Σ. In addition, it can be
shown using differential geometry tools that ∀x ∈ ω, ||∇φ|| = 1 and ∀x ∈ Σ, ∇φ(x) = n(x), where we recall
that n is the inward unit normal at the interface, oriented towards the fluid region. We can also extend n by setting
n(x) = ∇φ(x). As a formal step, we look for the velocity and the pressure in the usual asymptotic expansion form:

uβ(x) ≃
∑
j≥0

βjU j

(
x,
φ(x)

β

)
, with U j(x, z) = U

j
(x) + Ũ j(x, z) (29a)

pβ(x) ≃
∑
j≥0

βjP j

(
x,
φ(x)

β

)
, with P j(x, z) = P

j
(x) + P̃ j(x, z) (29b)

where the boundary layer terms Ũ j and P̃ j and their derivatives must tend to 0 when z → +∞ and the interior terms
U

j and P j depend only on x, that is at the limit of U j and P j when z → +∞. We plug the asymptotic expansions
(29a) and (29b) in the equations above and formally assume that x and z are independent to identify the powers of β to
thereafter characterize the profiles U j and P j , for j = 0 and 1.

In order to differentiate the main operators involved, we introduce a generic function ψ, whose values belong to R3

and R for the velocity and pressure profiles respectively, defined by ψ(x) = Ψ
(
x, φ(x)

β

)
. Simple calculations of the

first derivatives provide for x ∈ R3:

∂ψ

∂xj
(x) =

∂Ψ

∂xj

(
x,
φ(x)

β

)
+

1

β

∂Ψ

∂z

(
x,
φ(x)

β

)
∂φ

∂xj
(x) (30)

which can be written using standard notations as

∇ψ = β−1∇φ ∂zΨ +∇Ψ. (31)

In the same way, we can obtain the other operators as follows:

∆ψ = β−2||∇φ||2 ∂zzΨ + β−1 (2∇φ · ∇∂zΨ +∆φ ∂zΨ) +∆Ψ (32)

divψ = β−1∇φ · ∂zΨ + divΨ (33)

D(ψ) · n = β−1 1

2
(∂zΨ + (∂zΨ · n)n) +D(Ψ) · n, on Σ. (34)

The terms with the same power in β are identified for each equation of (9). We first consider (9a).
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At order β−2, it holds that −∂zzU0(x, z) = −∂zzŨ0(x, z) = 0 with the assumption that Ũ0(x, z) → 0 when
z → +∞. Thus we get Ũ0 = 0 in ΩF × R+ and

U0(x, z) = U
0
(x). (35)

At order β−1 and considering directly that Ũ0 = 0, we infer that

−∂zzU1(x, z) +∇φ ∂zP 0(x, z) = 0. (36)

At order β0, we find that −∆U0 − 2∇φ · ∇∂zU1 −∆φ ∂zU
1 − ∂zzU

2 +∇P 0 +∇φ ∂zP 1 = f , hence taking
the limit z → +∞ and based on the assumption that tilda terms and all their derivatives tend to 0 when z tends to +∞,
we find again the Stokes equation

−∆U0 +∇P 0 = f, in ΩF (37)
and by taking the difference with the previous, we also have

−∂zzU2 − 2∇φ · ∇∂zU1 −∆φ ∂zU
1 +∇φ ∂zP 1 = 0, in ΩF × R+. (38)

The latter can be generalized at any order k ≥ 1 given the following set of equations

−∆Uk +∇P k = 0, (39)

−∂zzUk+2 − 2∇φ · ∇∂zUk+1 −∆φ ∂zU
k+1 +∇φ ∂zP k+1 = 0. (40)

For equation (9b) at order β0, we get divU0 + ∇φ · ∂zU1 = 0, noting that the term in β−1 involving only Ũ0

vanishes with (35). Taking the limit z tends to +∞, we infer the two relations: divU0 = 0 in ΩF first and then,
∇φ · ∂zU1 = 0. For the latter, we take ∇φ = n and assume that Ũ1(x, z) → 0 when z → +∞ to obtain Ũ1 · n = 0
in ΩF × R+. We can easily generalize and thus the divergence-free condition provides the following set of equations
for k ≥ 0:

divUk = 0, in ΩF (41)
Ũk+1 · n = 0. (42)

For equation (9d), we directly obtainUk·n = 0 onΣ for k ≥ 0 and (9c) at order β0 providesU0+1
2

(
∂zU

0 + (∂zU
0 · n)n

)
=

0 which according to (35) reduces to

U0(x, 0) = U
0
(x) = 0, for x ∈ Σ. (43)

Finally, at any order k ≥ 1 we can obtain:

Uk(x, 0) +
1

2

(
∂zU

k(x, 0) + (∂zU
k(x, 0) · n)n

)
= D(Uk−1) · n, for x ∈ Σ. (44)

At this step, we are able to characterize the profiles U j and P j . We have already obtained from equations (37),
(41), (43) that (U0, P 0) satisfy a no-slip Stokes problem with U0(x, z) = U

0
(x) and P 0(x, z) = P

0
(x) for any z.

Consequently the functions (U0, P 0) are reduced to one space variable and satisfy the no-slip Stokes problem
−∆U0 +∇P 0 = f, in ΩF

divU0 = 0, in ΩF

U0 = 0, on Σ

(45)

Then, the tangential component of (36) reduces to −∂zzT (U1) = 0 (as a reminder T is the projection operator
on the tangential components as defined in section 2.1). Hence, in the same way as before, we obtain T (Ũ1) = 0.
Combined with (42) for k = 0 we have Ũ1 = 0 in ΩF × R+ (since the tangential and normal parts are both equal
to 0). On the normal part of (36), there remains ∇φ∂zP 0 = 0 which gives, since P̃ 0(x, z) = 0 for any z, P̃ 0 = 0

and thus P 0(x, z) = P
0
(x), as announced in the definition of the problem (10). Furthermore, equation (38) can now

reduce to −∂zzU2 +∇φ ∂zP 1 = 0 which resembles equation (36), so we can check in the same way that P̃ 1 = 0.
Taking k = 1 in equations (39), (41) and (44), we obtain profiles (U1, P 1) that satisfy the following Stokes problem

with slip: there are functions U1 and P 1 such as U1(x, z) = U
1
(x) and P 1(x, z) = P

1
(x) such that the functions

(U1, P 1) are reduced to one variable of space and satisfy
−∆U1 +∇P 1 = 0, in ΩF

divU1 = 0, in ΩF

T U1 = T D(U0) · n, on Σ

U1 · n = 0, on Σ.

(46)

Assuming sufficient regularity on ΩF , supposed to be simply connected, and regularity of the source function f ,
then problems (45) and (11) (from the main text) admit unique weak solutions, up to additive constants for P 0 and P 1,
and satisfy regularity results, not developed here. We refer to the De Rahm theorem and to the elliptic regularity results
for the existence, uniqueness and regularity demonstrations of such variational problems. Finally, one would also have
to characterize the remainder and provide its second order estimation, so that the first order asymptotic expansion can
be strictly justified.
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