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Abstract

In non-smooth stochastic optimization, we establish the non-convergence of the stochas-
tic subgradient descent (SGD) to the critical points recently called active strict saddles
by Davis and Drusvyatskiy. Such points lie on a manifold M where the function f has a
direction of second-order negative curvature. Off this manifold, the norm of the Clarke
subdifferential of f is lower-bounded. We require two conditions on f. The first assump-
tion is a Verdier stratification condition, which is a refinement of the popular Whitney
stratification. It allows us to establish a reinforced version of the projection formula
of Bolte et.al. for Whitney stratifiable functions, and which is of independent interest.
The second assumption, termed the angle condition, allows to control the distance of the
iterates to M. When f is weakly convex, our assumptions are generic. Consequently,
generically in the class of definable weakly convex functions, the SGD converges to a local
minimizer.

Keywords. nonsmooth optimization, stochastic gradient descent, avoidance of traps,
Clarke subdifferential, stratification.

1 Introduction

Stochastic approximation algorithms that operate on non-convex and non-smooth functions
have recently attracted a great deal of attention, owing to their numerous applications in
machine learning and in high-dimensional statistics. The archetype of such algorithms is
the so-called Stochastic Subgradient Descent (SGD), which reads as follows. Given a locally
Lipschitz function f : R — R which is not necessarily smooth nor convex, the R% valued
sequence () of iterates generated by such an algorithm satisfy the inclusion

Tn+1 € Ty — ’Ynaf<xn> + Ynln+1, (1)

where the set—valued function df is the so-called Clarke subdifferential of f, the sequence
(7n) is a sequence of positive step sizes converging to zero, and 7,41 is a zero-mean random
vector on R? which presence is typically due to the partial knowledge of 0f by the designer.
It is desired that (z,) converges to the set of local minimizers of the function f.

Before delving into the subject of convergence towards minimizers, let us first consider
the set Z := {x e R?: 0 € df(x)} of Clarke critical points of f, which is generally larger than
the set of minimizers, in the non-convex case. In order to ensure the convergence of (z;,) to
Z, the sole local Lipschitz property of f is not enough (see [14] for a counterexample), and
some form of structure for the function f is required. Since the work of Bolte et.al. [6] in



optimization theory, it is well known that the so-called definable on an o-minimal structure
(henceforth definable) functions, which belong to the family of Whitney stratifiable functions
(see Section 2 below), is relevant for the convergence analysis of (x,) and beyond. This
class of functions is general enough so as to contain all the functions that are practically
used in machine learning, statistics, or applied optimization. In this framework, the almost
sure convergence of (z,) to Z was established by Davis et.al. in [16]. Another work in the
same line is [27]. Bolte and Pauwels [7] generalize the algorithm (1) by replacing df with an
arbitrary so-called conservative field. The constant step size regime ~,, = y is considered in
[3].

Thanks to these contributions, the convergence of () to the set Z is now well understood.
However, as said above, Z is in general strictly larger than the set of minimizers, and can
contain “spurious” points such as local maximizers or saddle points. The issue of the non-
convergence of the sequence given by (1) towards spurious critical points is therefore crucial.
The present paper investigates this issue.

Before getting into the core of our subject, it is useful to make a quick overview of the
results devoted to the avoidance of spurious critical points by the iterative algorithms. The
rich literature on this subject has been almost entirely devoted to the smooth setting. In this
framework, the research has followed two main axes:

e The noisy case, where the analogue of the sequence (7,) in the smooth version of
Algorithm (1) is non zero. Here, the seminal works of Pemantle [28] and Brandiere
and Duflo [9] allow to establish the non-convergence of the Stochastic Gradient Descent
(and, more generally, of Robbins-Monro algorithms) to a certain type of spurious critical
points, sometimes referred to as traps or strict saddle. A critical point of a smooth
function f is called a trap if the Hessian matrix of f at this point admits at least
one negative eigenvalue. With probability one, the sequence (x,,) cannot converge to a
trap, provided that the projection of the random perturbation 7, onto the eigenspace of
corresponding to the negative eigenvalues of the Hessian matrix (henceforth, eigenspace
of negative curvature) has a non vanishing variance.

e The noiseless case where 7, = 0, studied for smooth functions by [23]. Here the authors
show that for Lebesgue almost all initialization points, the algorithm with constant step
will avoid the traps.

While both of these approaches rely on the center-stable invariant manifold theorem which
finds its roots in the work of Poincaré, they are different in spirit. Indeed, in [23] the trap
avoidance is due to the random initialization of the algorithm, whereas in [9, 28], it is due to
the inherent stochasticity brought by the sequence (7).

We now get back to the non-smooth case. Here, the only paper that tackles the problem
of the spurious points avoidance is, up to our knowledge, the recent contribution [15] of
Davis and Drusvyatskiy. The spurious points that were considered in this reference are the
so-called active strict saddles. Informally, a critical point is an active strict saddle if it lies
on a manifold M such that i) f varies sharply outside of M, ii) the restriction of f to M
is smooth, and iii) the Riemannian Hessian of f on M has at least one negative eigenvalue.
For instance, the function f : R? — R, (y, z) — |z| — ¥? admits the point (0,0) as an active
strict saddle with M = R x {0}, and the restriction of f to M is the function fy(y,0) = —y2,
which obviously has a second-order negative curvature. In this setting, and assuming that
f is weakly convex, the article [15] focuses on the noiseless case, and study variants of the



(implicit) prozimal point algorithm rather than the (explicit) subgradient descent. Similarly
to [23], they show that for Lebesgue almost every initialization point, different versions of the
proximal algorithm avoid active strict saddles with probability one. Such a result is possible
due to the fact that proximal methods implicitly run a gradient descent on a smoothened
version of f - the Moreau envelope.

Contrary to [15], the algorithm (1) studied in this paper is explicit, meaning that it does
not require the computation of a proximal operator associated with the non-smooth function.
In this situation, the sole randomization of the initial point is not sufficient to expect an
avoidance of active strict saddles. Here, in the same line as [28, 9], our analysis strongly relies
on the presence of the additive random perturbation 7,.

In the framework of definable functions, we investigate the problem of the avoidance of
the active strict saddle points. Our approach goes as follows. First, we need to show that the
iterates (z,,) converge sufficiently fast to M, thanks to the sharpness of f outside this manifold.
To that end, we first rely on the fact that when f is definable, its graph always admits a so-
called Verdier stratification, which is perhaps less known than the Whitney stratification,
and is a refinement of the latter [26]. The key advantage of the Verdier over the Whitney
stratification lies in a Lipschitz-like condition on the (Riemannian) gradients of f on two
adjacent stratas, which is established in the paper. Our second tool is an assumption that
we term as the angle condition. Roughly, this assumption provides a lower bound on the
inner product between the subgradients of f at z and the normal direction from M to x
when the point x is near M. The angle condition allow to control the distance between
the iterate x, of Algorithm (1) and the manifold M. As the restriction fy; of f to M is
smooth, the projected iterates, using the Verdier stratification property, are shown to follow
a dynamics which is similar to a (smooth) Stochastic Gradient Descent, up to a residual term
induced by the projection step. In that sense, the avoidance of active strict saddles in the
non-smooth setting follows from the avoidance of traps in the smooth setting, as established
in [9]. We show that the strict saddle is avoided under the assumption that the (conditional)
noise covariance matrix has a non zero projection on the subspace with negative curvature
associated with fj; near the active strict saddle.

Before pursuing, it is important to discuss the matter of the genericity of the assumptions
that we just outlined. First, since our avoidance results are restricted to the active strict
saddles, the question of the presence of critical points that are neither local minima nor
active strict saddles is immediately raised. Actually, this question was considered in [17, 15].
It is established there that if f is definable and weakly convex, then for Lebesgue almost all
vectors u € RY, the function f,(z) := f(z) — (u,z) admits a finite number of Clarke critical
points, and that each of these points is either an active strict saddle or a local minimizer. In
that sense, in the class of definable weakly convex functions, spurious critical points generically
coincide with active strict saddles. We also need to inspect the generality of the Verdier and
the angle conditions. In Theorem 2 below, we show that these assumptions are automatically
satisfied when f is weakly convex. From these considerations, we conclude that generically in
the sense of [17, 15], the SGD algorithm (1) converges to a local minimum when f is a weakly
convex function, assuming that the noise is omnidirectional enough at the strict saddles. We
emphasize the fact that, while the genericity of the active strict saddles is established in the
above sense for weakly convex functions, no assumption on weak convexity is made for our
avoidance of traps result.

Let us summarize the contributions of this paper:



e Firstly, we bring to the fore the fact that definable functions admit stratifications of
the Verdier type. These are more refined than the Whitney stratifications which were
popularized in the optimization literature by [6]. While such stratifications are well-
known in the literature on o-minimal structures [26], up to our knowledge, they have
not been used yet in the field of non smooth optimization. To illustrate their interest in
this field, we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula (see [6,
Proposition 4] and Lemma 2 below) to the case of definable, locally Lipschitz continuous
functions by establishing a Lipschitz-like condition on the (Riemannian) gradients of two
adjacent stratas.

o With the help of the Verdier and the angle conditions, we show that the SGD avoids
the active strict saddles if the noise 7, is omnidirectional enough.

The paper is organized as follows. Section 2 is devoted to the introduction of the math-
ematical tools in use in this paper. Most of the results in this section are known, except for
the reinforced projection formula, which is stated in Theorem 1. In Section 3, we discuss the
notion of active strict saddles. After recalling some results of [15], we introduce the Verdier
and angle conditions. We also discuss the genericity of the these conditions, in the class of
weakly convex functions. In Section 4, we state the main result of the paper, namely, the
avoidance of active strict saddles. Section 5 is devoted to the proofs.

2 Preliminaries

Notations. Let d > 1 be an integer. Given a set S c R? S denotes the closure of S, and
conv(.S) and conv(S) respectively denote the convex hull and the closed convex hull of S. The
distance to S is denoted as dist(z, S) := inf{|ly — z| : y € S}. If E < R? is a vector space,
we denote by Pg the d x d orthogonal projection matrix onto E. We say that a function
f:R? — R is weakly convex if there is p > 0 such that the function g(z) := f(x) + p ||z]* is
convex. For two sequences (an), (bn), we write a, X by if liminf §* > 0. With this notation
an ~ b, means a, 2 b, and b, 2 a,. For r > 0, B(0,r) denotes the open ball of radius r.

Throughout the paper, C and C” will refer to positive constants that can change from line
to line and from one statement to another.

2.1 Functions on Manifolds

We refer to [22] for a detailed introduction on differential geometry.

Let Jy(z) denote the Jacobian matrix of a map g at point z. Given two integers p > 1
and k < d, a C? map g: U — R%* on some open set U = R is called a C? submersion if the
rank of J, () is equal to d— k for every x € U. We say that a set M < R? is a CP submanifold
of dimension k, if for every y € M, there is a neighborhood U of y and a CP submersion
g: U — R¥F such that U n M = g~'({0}). We represent the tangent space of M at y by
TyM := ker J4(y) (n.b., the definition is independent of the choice of g). Equivalently, T, M
can be represented as the set of vectors v € R? such that there exists a differentiable map
c:(—¢,¢) — R? such that ¢((—¢,¢)) € M, ¢(0) =y and ¢(0) = v.

For every = € R?, we define

Pu(x) = argmin |y — o]
yeM
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whenever the argument of the minimum exists and is unique. The following lemma can be
found in [25] (see also [22, Chap. 3, Ex. 24]).

Lemma 1 (Projection onto a manifold). Let M be a CP submanifold, with p = 2. Consider
y € M. Then, the projection Py; is well defined in a neighborhood of y. Moreover, Py is
CP~1 in that neighborhood, and Jpy = Prym-

We say that a function f: M — R is CP, if M is a C? submanifold, and if for every y € M,
there is a neighborhood U < R? of y and a C? function F' : U — R that agrees with f on
MnU. If f: M —Ris C!, we define for every y € M,

Vuf(y) == Pr,uVFE(y),

where Pr, ) is the orthogonal projection onto T, M, and where F': U — R is any C'! function
defined in a neighborhood of y, and which agrees with f on M. The definition of Vs f(y)
does not depend on the choice of F' (see e.g. [8, Section 3.8]). We refer to V/f(y) as the
(Riemannian) gradient of f at M. We say that y is a critical point of f, if Varf(y) = 0.

If f: M — Ris C? and if y is a critical point of f, we define the (Riemannian) Hessian
of f at a y as the quadratic form H(y), defined on R? — R by:

Hen(y) : v vl Py VEF(y)Pryav,

where F is a C? function defined in a neighborhood of y which agrees with f on M, and
where V2F (y) is the standard Hessian matrix of F' at y. The definition of H s /(y) does not
depend on the choice of F.

The above definitions have the following consequences. For a point y € M and a vector
v € T, M, consider a differentiable curve c : (—¢,¢) — R? such that c((—¢,¢)) € M, ¢(0) =y
and ¢(0) = v. Then (f o¢)'(0) = (Varf(y),v). If f and ¢ are C?, and if y is a critical point
of f, then (fo¢)"(0) = Hsnm(y)(v).

If f:R? - R is a function defined on the whole space, the gradient and Hessian of the
restriction of f to M are still denoted by Vi f(y) and Hy a(y) respectively, when they are
well defined.

2.2 Clarke subdifferential

Consider f : R? — R a locally Lipschitz continuous function. Denote by Reg(f) the set
of points = at which f is differentiable, and by V f(z) the corresponding gradient., By
Rademacher’s theorem, f is differentiable almost everywhere. The Clarke subdifferential of f
at x [12] is given by:

Of (x) := conv{v € R : 3(x,) € Reg(H)Y, (zn, VF(zn)) — (z,0)}.

That is, 0f(x) is the closed convex hull of the points of the form lim V f(x,,) for some sequence
(xy,) converging to z. In particular, df(x) simply coincides with {V f(z)} when f is continu-
ously differentiable in a neighborhood of z. We set Z = {x € R?: 0 € df(z)}. Every point of
Z is referred to as a Clarke critical point. In particular, Z includes the local minimizers and
the local maximizers of f.

Definition 1 (Path-differentiability). A locally Lipschitz continuous function f : R? — R is
said to be path-differentiable if for every absolutely continuous curve ¢ : (0,1) — R, one has
for almost every t € (0,1),

(foc)(t) =<v,é(t)), Yvedf(c(t)).



In non-smooth optimization, the path-differentiability condition is often a crucial hypoth-
esis in order to obtain relevant results e.g., on the convergence of iterates [6, 16, 7]. In the
sequel, we will review sufficient conditions on f, which ensure its path-differentiablility. In
particular, we will review the notions of definability w.r.t. an o-minimal structure, Verdier
stratification and Whitney stratification. In a nutshell, the different notions are related by:

definable = graph Verdier-stratifiable = graph Whitney-stratifiable —
path-differentiable.

2.3 o-minimality

An o-minimal structure can be viewed as an axiomatization of diverse properties of semial-
gebraic sets. In an o-minimal structure, pathological sets such as Peano curves or the graph
of the function sin% do not exist. To our knowledge the first work to link ideas between op-
timization and o-minimal structures was [6], where the authors analyzed the structure of the
Clarke subdifferential of definable function and extended the Kurdyka-Lojasiewicz inequality
[21] to the nonsmooth setting. Nowadays a rich body of literature enforces this link, see e.g.
[16, 18, 5, 1, 7]. A nice exposure about usefulness of o-minimal theory in optimization is [20].
Results on the Verdier and Whitney stratification of definable sets can be found in [13, 30, 26].

An o-minimal structure is a family O = (Op)nens, where O, is a set of subsets of R",
verifying the following axioms.

1. If @ : R" — R is a polynomial, then {Q(z) = 0} € O,,.

2. If A and B are in O,,, then the same is true for A n B, A u B and A°.

3. If Ae O, and Be O,,, then A x Be€ O,1m.

4. If A € O,, then the projection of A on its first (n — 1) coordinates is in O,,_;.
5. Every element of O is exactly a finite union of intervals and points.

Sets contained in O are called definable. We call a map f : R¥ — R™ definable if its graph
is definable. Definable sets and maps have remarkable stability properties, for instance, if f
and A are definable, then f(A) and f~!(A), any composition of two functions definable in
the same o-minimal structure is definable, and many others. Let us look at some examples
of o-minimal structures.

Semialgebraic. Semialgebraic sets form an o-minimal structure. A set A < R” is semialge-
braic if it is a finite union of intersections of sets of the form {Q(z) < 0}, where @ : R — R is
some polynomial. A function is semialgebraic if its graph is a semialgebraic set. Example of
such functions include any piecewise polynomial functions but also functions such as = — x9,
where ¢ is any rational number. It can be shown that any o-minimal structure contains every
semialgebraic set.

Globally subanalytic. There is an o-minimal structure that contains, for every n € N,
sets of the form {(x,t) : t = f(x)}, where f : [-1,1]" — R is an analytic function that can
be analytically extended in the neighborhood of the hypercube. The sets belonging to this
structure are called globally subanalytic (see [5, 4] for more details).

Log-exp. There is an o-minimal structure that contains globally sub-analytic sets as well as
the graph of the exponential and the logarithm (see [31]). As a consequence of this result it
can be shown that the loss of a neural network is a definable function [16].



In the following we fix an o-minimal structure O. Definable will always mean definable
0. The most striking property of definable sets is that they can always be partitioned into a
finite number of manifolds that fit well into each other. This is formalized by the concept of
stratification.

2.4 Whitney Stratification

Let A be a set in R%, a CP stratification of A is a finite partition of A into a family of stratas
(S;) such that each of the S; is a CP submanifold verifying

Siﬂ§j7é® - SZ‘CFJ‘\S]'.

Given a family {A1,..., Ax} of subsets of of A, we say that a stratification (.5;) is compatible
with {Ay,..., Ag}, if each of the A; is a finite union of stratas. We say that a stratification
(S;) is definable, if every strata .S; is definable.

Different types of stratifications exist depending on how tangent spaces of neighboring
stratas fit together. Let us first define the asymmetric distance between two vector spaces
El, EQ:

do(F1,Ey) = sup  dist(u, E9). (2)

ueFE,|lul|=1
Note that due to the lack of symmetry d, is not a distance. Nevertheless, we have that
do(F1,Ey) =0 = FE; c E,. A distance d between E; and Fj is then classically defined as

d(El,EQ) = max{da(El,Eg),da(Eg,El)} . (3)

This distance is equal to zero if and only if F; = Es. For a sequence of vector spaces (E, )nen,
we will denote E,, — E if d(E,, E) — 0.

Definition 2. We say that a CP? stratification (S;) satisfies a Whitney-(a) property, if for
every couple of distinct stratas Si, S;, for each y € S; n'S; and for each sequence (xy)nen €
(S)N such that x, — y, we have:

w-(a) d(T,8;,7) >0 — T,S;cT. (4)
We will refer to (S;) as a Whitney CP stratification.

It is known (see [13, 30]) that every definable function f admits a Whitney C? (for any p)
stratification (X;) of its domain such that f is CP on each strata. The following “projection
formula” relates the Clarke subdifferential df(y) of f at y, to Vx, f(v).

Lemma 2 (Projection formula, [6, Lemma 8]). Let f : RY — R be a locally Lipschitz, definable
function and p a positive integer. There is (S;), a definable Whitney CP stratification of
Graph(f), such that if one denotes by X; the projection of S; onto its first d coordinates,
the restriction f: X; — R is CP and the family (X;) is a Whitney CP stratification of R%.
Moreover, for any y € X; and v € 0f(y), we have Pr,x,(v) = Vx, f(y).

Lemma 2 has important consequences. One of them (see [16, Section 5] is that every
locally Lipschitz continuous and definable function is path-differentiable.

Lemma 3 ([16, Theorem 5.8]). Let f : R? — R be a locally Lipschitz continuous function. If
Graph(f) admits a Whitney C' stratification, then f is path-differentiable.



2.5 Verdier Stratification

A Verdier stratification is a special case of Whitney stratification, which posit a stronger
condition on the (asymmetric) distance between adjacent stratas. Whereas the Whitney
stratification can now be considered as well known in optimization community, the Verdier
stratification is comparatively less popular. We illustrate its advantage by establishing in
Theorem 1 a Lipschitz-like condition in the “projection formula” (Lemma 2). We believe
that this strengthened result is of independent interest.

Definition 3. Let (S;) be a CP stratification of some set A = RY. We say that (S;) satisfies a
Verdier property (v), if for every couple of distinct stratas S;, S; and for eachy € S;nS; # &,
there are two positive constants 8, C such that:

y €B(y,0)nS;

(U) T e B(y, 5) A Sj = da(Ty’SipTij) < C Hy/ - $H . (5)

We refer to (S;) as a Verdier CP stratification of A.

It is clear from the definitions that a Verdier CP stratification is always a Whitney CP
stratification. A fundamental result is that every definable set admits a Verdier stratification.

Proposition 1 ([26, Theorem 1.3]). Let {A1,..., A} be a family of definable sets of RY. For
any p = 1, there is a Verdier CP stratification of R compatible with {A1, ..., Ay}.

The following theorem, which we believe to be of independent interest, is the first main
result of this paper. It is an improvement of Lemma 2.

Theorem 1 (Reinforced projection formula). Let f : RY — R be a definable, locally Lipschitz
continuous function. Let p be a positive integer. There is (X;), a definable Verdier CP
stratification of R?, such that for each y € X; and each X; such that Xin X; # &, there is
C,0 > 0, such that for any two points y' € B(y,d) n X;, v € B(y,d) n X;,

|2, (Vx, £~ V£

<Clle-vll, ©
and, moreover, for any x € B(y,0) n X{ and any v € df(x),

HPTy/Xi (v) = Vx,f(y)

<C’Hx—y’H. (7)

Proof. In this proof ¢’ > 0 will denote some constant that can change from line to line.
Consider (S;) and (X;) as in Lemma 2. We claim that for any index j and = € X, we have
Ty t(2)Si = {(h,{Vx,f(z),h)) : h € T, X;}. Indeed, consider (hy,hy) € T, ¢(;)S; and a C?
curve c: (—¢,¢) s.t. ¢(0) = (hg,hy). Consider a CP function F' that agrees with f on Xj,
then (cz(t),c(t)) = (ca(t), Fce(t))) and we have ¢,(0) = hy and ¢¢(0) = (VF(x), hy) =
(Vx,; f(x), he).

Consider (S!) a Verdier stratification of Graph(f) compatible with (S;). Then the projec-
tion of S! onto its first d coordinates, that we denote X/, is still a submanifold s.t. f is C? on
Xj. Consider (y, f(y)) € S, S} a neighboring strata and C,¢ as in Equation (5). Denote by

L the Lipschitz constant of f on B(y,d) and ¢’ = LLH. Then, for every x € B(y,d"), we have:

1y, f(y)) — (@, f(@)]| < A+ L) ly — 2] <9,



that is to say (z, f(z)) € B((y, f(y)), ).
Consider y' € X] n B(y,0'), z € Xj n B(y,¢') and hy € T,y X] with ||hy|| = 1. We have
that (hy, (Vx/f(y') hy)) € Tiyy 5(y))S; and by the Verdier’s condition there is h, € T, X} s.t.

)

Hclh (hy/,<vng(y’), hy’>) = (ha (V fx: (2), hx>)” <SCL+1)||z -y

where ¢j, = H(hy/,<VXng(y’),hy/>)H < C'. Therefore,

[y = enha|| < C" ||z —y/[| .
and

[T £ @) = Vst ). )

) < H<VXJ< F(x), hy — cnha)
<Clz =y,

* HChWX;f(J«"% ha) =V x f(4) )

which proves the first statement.

Now, one can choose C, ¢ such that Inequality (6) holds uniformly on all of the stratas X ]/
that are neighboring X/. Consider a sequence x,, — z such that (x,,) lies in the stratas of full
dimension (which implies that f is differentiable at z,,) and V f(x,) — v, for n large enough

Pr,x,(V (@) = Vx, /)| < Cllwa =¥/

PTy/Xi (’U) - VX1f<y/>
element of 0f(x) is a convex combination of such v, the second statement is proved. O

we will have that =, € B(y,d) and, therefore, ’

Hence, passing to the limit, we have that < Clly — z|. Since any

3 Active strict saddles

In this section, f : R — R is supposed to be a locally Lipschitz continuous function. We
recall the definition Z := {x e R? : 0 € df(z)}.

3.1 Definition and Existing Results

Let p > 2 be an integer.

Definition 4 (Active manifold, [24]). Consider x* € Z. A set M < R% is called a CP active
manifold around x*, if there is a neighborhood U of x* such that the following holds.

i) Smoothness condition: M n U is a CP submanifold and f is C? on M nU.

i1) Sharpness condition:

inf{||v]| :vedf(z),xeUn M} >0.

Definition 5 (Active strict saddle). We say' that a point x* € Z is an active strict saddle
(of order p) if there exists a CP active manifold M around x*, and a vector w € Ty« M, such

!The definition of active strict saddles provided in [15] involves the notion of parabolic subderivatives.
In this paper, we found convenient to use the equivalent Definition 5, which is closer in spirit to notions of
differential geometry.



that Varf(x*) = 0 and Hyp(x*)(w) < 0.

We say that f satisfies the active strict saddle property (of order p), if it has a finite number
of Clarke critical points, and each of these points is either an active strict saddle of order p
or a local minimizer .

In the special case of a smooth function f, the space M = R? is trivially an active
manifold around any critical point x* of f. If * is moreover a trap in the sense provided in
the introduction (i.e., the Hessian matrix of f at z* admits a negative eigenvalue), then x* is
trivially an active strict saddle. Hence, the smooth setting can be handled as a special case.

The archetype of an active strict saddle is given by the following example.

Example 1. The point (0,0) is an active strict saddle of the function f : R? — R given by
fy,2) = —y* + |2|. Indeed,

{(=2y, 1)} if 2> 0,
of((y;2)) = 1 {(=2y, —1)} if 2 <0,
{—2y} x [-1,1] otherwise ,

and the set M = R x {0} is a C? active manifold. Moreover, V1 f((y,0)) = (—2y,0) and
Hsar(0)((1,0)) = —2, which proves the statement.

While the definition of an active strict saddle might seem peculiar at first glance, the
following proposition of Davis and Drusvyatskiy shows that a generic definable and weakly
convex function satisfies a strict saddle property. The proof is grounded in the work of [17].

Proposition 2 ([15, Theorem 2.9]). Assume that f is definable and weakly convex. Define
fu(@) := f(x) —{u, ), for every u € R%. Then, for every p > 2 and for Lebesque-almost every
uweRY, f, has the active strict saddle property of order p.

It is worth noting that the result of [15, Theorem 2.9] is in fact a bit stronger than
Proposition 2, because it states moreover that for almost all u, the cardinality of the set of
Clarke critical points of f, is upper bounded by a finite constant which depends only on f.

One can wonder if Proposition 2 may still hold if f is definable and locally Lipschitz, but
not weakly convex. The answer is negative, as shown by the following example.

Example 2. Let f : R? — R be defined as f(y,z) = —|y| + |z|. Then for any u € B(0,1),
(0,0) is a critical point for f,, but is neither a local minimum nor an active strict saddle.
3.2 Verdier and Angle Conditions

On the top of the items i-i7) of Definition 4, we introduce the following useful conditions.

Definition 6. Let M be a C' active manifold around some x* € Z. We say that M satisfies
the Verdier condition and the angle condition, if the following conditions hold respectively.

i1i) Verdier condition. There is a neighborhood U of z* and C > 0, such that for every
ye M nU and every x € U,

| Pr,ae(0) = Vi f)|| < Clla —yll, Vvedf(z).
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iv) Angle condition. For every a > 0, there is B > 0 and a neighborhood U of x*, such
that for every x € U,

f(@) = f(Pu(z)) = ez = Pu(2)|| = v,z —Pu(x)) = Blle — Pu(z)l, Vvedf(z).

Definition 7. An active strict saddle x* is said to satisfy the Verdier and angle conditions, if
the active manifold M in Definition 5 satisfies the Verdier and angle conditions. The function
f is said to satisfy the active strict saddle property of order p with the Verdier and angle
conditions, if it satisfies the active strict saddle property of order p and if every active strict
saddle satisfies the Verdier and angle conditions.

The Verdier condition merely states that M is one of the stratas of the Verdier stratifi-
cation of Theorem 1 The purpose of the angle condition is to relate, close to M, the linear
growth of the function f and the lower boundedness of the inner product between the sub-
gradients of f at x and the normal direction to M. The latter will allow us to prove that the
iterates of SGD converge to M fast enough.

Remark 1. Let M be an active manifold around x*. As it will be clear from the proof
of Theorem 2, when f is weakly conver, M always satisfies the angle condition. Otherwise
stated, the angle condition is simply true in case of weakly convex functions. However, as the
following example shows, one is able to find many natural examples of functions which are
not weakly convez, and yet satisfy this condition.

Example 3. The function f : R? — R given by f(y,z) = —y* — |2| is not weakly conver.
Its unique Clarke critical point (0,0) is an active strict saddle, satisfying the Verdier and the
angle conditions.

Example 3 shows that the Verdier and angle conditions can be satisfied with no need for
f to be weakly convex. Nevertheless, more can be said when this assumption holds. The
following theorem strengthen the genericity result of Proposition 2 by establishing that the
active strict saddle property with the Verdier and angle conditions is satisfied by a generic
definable and weakly convex function. We recall the notation f,(z) = f(z) — (u, x).

Theorem 2. Assume that f : R? — R is a definable, weakly convex function. For every
p = 2, and for Lebesque-almost every u € RY, f, satisfies the active strict saddle property of
order p with the Verdier and angle conditions.

Proof. Let {X1,..., Xy} be the CP Verdier stratification from Theorem 1. Upon noticing
that in the proof of [17, Corollary 4.8 and Theorem 4.16] the active manifold ? can be chosen
adapted to {X71, ..., Xk}, the existence of an active manifold with a Verdier condition follows
from [15, Theorem 2.9, Appendix A]. For the angle condition note that by weak convexity of
f there is p = 0 such that:
F(Par(@)) = f(z) = (v, Pu(e) — 2y — plle — Pu()|* Vo eof(x).
Therefore, if f(z) = f(Py(x)) + a||Py(z) — 2|, then:
Vo e df(z), (v,x—Pu(@)) > ale— Pu(@)|—ple— Pule)|?

Taking U a neighborhood of z* close enough to zero, we see that the angle condition is
satisfied. O

2The name active manifold follows the work of [15], while in [17] they are called identifiable manifolds.
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4 Avoidance of Active Strict Saddles

Let f:R?Y — R be a locally Lipschitz continuous function. On a probability space (2,4, P),
consider a random variable ¢ and random sequences (v,), (7,) on R%. Define the iterates:

Tp+l = Tpn — VnUn + Ynlin+1, (8)

where (7,) is a deterministic sequence of positive numbers. Let (.%,) be a filtration on

(Q, A P).
Assumption 1.
i) The function f is path differentiable.
it) For every n, v, € 0f ().
i11) The sequences (vy,), (n,) are adapted to (), and xq is Fo-measurable.

iv) There are constants c1,co > 0 and o € (1/2,1] s.t. for all n € N:

Consider a point z* € Z.

Assumption 2. The point z* is an active strict saddle of order 4 satisfying the Verdier and
angle conditions.

Since Ha(x*) is a quadratic form we can write down R? = E~ @ E*, where E~ (re-
spectively ET) is the vector space spanned by the eigenvectors of the associated symmetric
bilinear form that have negative (respectively nonnegative eigenvalues). Note that by results
of Section 2.1 we have that £~ < T« M and by Assumption 2 we have that dim £~ > 1.

Assumption 3. The following holds almost surely on the event [z, — z*].
i) E[nn+1|Fn] =0, for all n.

i) Timsup E[ ||, 41]|* |- Zn] < +c0.

iii) Denote n, | the projection of n,4+1 onto E~. We have:

liminf E[|n;, || |#n] > 0

The following theorem is the main result of this paper.
Theorem 3. Let Assumptions 1-3 hold. Then P(x,, — z*) = 0.

Combining Theorem 3 with the results of Section 3.2 we obtain that, under appropriate
assumptions, the SGD on a generic definable, weakly convex function converges to a local
minimizer. We state this result in the following corollary.

Corollary 1. Let Assumptions 1 and 2 hold. Assume that f has the active strict saddle
property of order 4 with the Verdier and angle conditions. Moreover, assume that almost
surely the following holds.
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Z) E[nn+1|yn] =0, fO?” all n.

it) For every C > 0,
limsup E[|[n, 1] [ a1, j<c < +o0.

i) For all w e RN\{0},
lim inf E[|[{w, np+1)| |- Fn] > 0.

Then, almost surely, the sequence (x,,) is either unbounded, or converges to a local minimizer

of f.

5 Proof of Theorem 3

From now on, we assume without restriction that z* = 0. Thus, V,f(0) = 0, and there
exists a vector w € ToM such that Hy p(0)(w) < 0.

The general idea of the proof of Theorem 3 is that on the event [z, — 0], the function Py,
is defined for all large n, enabling us to write z,, = y, + 2, for these n, where y, = Py(x,).
The iterates (y,) can then be written under the form of a standard smooth Robbins-Monro
algorithm for which the trap avoidance can be established by the technique of Brandiere and
Duflo [9]. In this setting, the remainders z, will be shown to be small enough so as not to
alter fundamentally the approach of [9].

Let us provide more details on our proof. We first show that on [z, — 0], there is an
integer ng such that for all all n > ng, the norms ||z, | are small, and moreover,

Voe df(en), (v,zn) R [|znll- 9)

This will be the object of Proposition 4 below. The idea is to show that for these n, it holds
that f(zn) — f(yn) 2 ||2n||, and then, to use the angle condition (iv) of Definition 6.

Let us temporarily assume that ng is deterministic, and work on n = ng. Keeping Inequal-
ity (9) aside for further use, the next step is to make a Taylor development of y,,+1 = Pps(Zn+1)
around z,. This leads to

Paf(an+1) = Par(xn) + Jpy (20) (@41 = 20) + Oens1 — za)

= Prr(n) + Jpy (Yn) (@ns1 = 2n) + Ol|zns1 = zal®) + Ozl 2041 — 2l

where we used the Lipschitz continuity of the Jacobian matrix function Jp,, (). Using Equa-
tion (8), we rewrite the last display as

Yn+1 = Yn — TnJPy (yn)vn + MnJpy, (yn)nnJrl + 71%0(1 + ||77n+1||2) + 7n0(||zn|| (1 + H77n+1||))

Now, lemma 1 shows that .Jp,, (y,) coincides with the linear operator Pr, ;. Furthermore,
the Verdier condition (iii) of Definition 6 asserts that Pr, ar(vn) = Varf(yn) + O(lznl)-
Altogether, we obtain the Robbins-Monro iteration

Yt = Yn =¥V M S (n) + 9 Pry, mhn1 + 72O+ 10041 1) + 72O lzall (1 + a1 1))- (10)

Had we not have the last term v,O(||zn|| (1 + ||7n+1]|)) at the right hand side, the approach
of Brandiere and Duflo would have been enough to obtain the nonconvergence of ¥, to zero
under our assumptions on the noise. The presence of this term requires us to weaken a bit
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their conditions. This will be done in Proposition 3. In the case of Equation (10), this
proposition asserts that the trap avoidance remains true if

ee}
Y B |z = O(xn)

where
+00
Xn = Z 7i2~
=n

This is where Inequality (9) comes into play to establish this bound.

So far, we have assumed abusively that the moment ng after which ||z, || is small and (9) is
satisfied is deterministic. To deal with this issue, in Section 5.2, on an arbitrary large event A,
we construct a sequence (y,,) that is (for n large enough) equal to (Pys(xy,)) on A N [z, — 0]
and satisfies an equation of the form (10) almost surely. Proposition 3 will allow us to prove
that P([z, — 0] n A) < P([y, — 0]) = 0 and since the event A is arbitrary large, this will
prove Theorem 3.

5.1 Preliminary: Avoidance of Traps in the Smooth Case

The following proposition is nearly a quote of Brandiére and Duflo’s theorem [9, Theorem 1].
As discussed below, we alleviate some hypotheses of [9].

To state this proposition recall that, by a standard result from linear algebra, for a matrix
H e R¥4 there is a decomposition R = AT @ A~ such that A*,A™ are stable by H
and the eigenvalues of H|,- (respectively H|y+) have eigenvalues with negative (respectively
nonpositive) real parts. Recall that for a smooth map D : R? — R%, we denote Jp its jacobian
and that x, 1= >0, V2.

Proposition 3. Let (2, A,P) be a probability space, (%) a filtration and (v,) a sequence
of deterministic nonnegative step sizes such that Y vy = +0 and Y, %3 < 4o00. Let d be
an integer and D : R? — R? be such that D(0) = 0 and there is a neighborhood of 0 such
that on it D is continuously differentiable, with Lipschitz continuous Jacobian. Consider the
R%-valued stochastic process (y,) given by

Yn+1 = Yn — %LD(yn) + Y+l + YnOn+1 + YnOn+1 s (11)

where yo is Fo-measurable and the sequences (M), (0n) and (0n) are (Fy)-adapted. Assume
that A~ , the vector space associated to the eigenvectors of Jp(0) that have negative real parts,
is of positive dimension. Denote 1, the projection of fj,+1 on A~ and assume that on the
event [y, — 0] the following almost surely holds.

i) For all n, E[fy+1|-Fn] = 0.
#i) limsup & [Hﬁnﬂu“(%] < +.
iii) Hminf B [||7, 4 || %] > 0.

i) SpZ llowsl|* < +0.
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v) We have that:

+0
E [ﬂ[ynw] 2% llGill| = O0xn).

1=n

Then P([yn — 0]) = 0.

Proposition 3 is similar to [9, Theorem 1], except for the presence of the sequence (9,).
As the proof is mainly an adaptation of the proof of [9, Theorem 1], we provide a sketch of
proof in the appendix.

5.2 Application to Algorithm (8)

To apply the results of the preceding section we need, first, to find a candidate for D, this is
the purpose of the next lemma. Its proof readily follows from results of Section 2.

Lemma 4. Let Assumption 2 hold and let v > 0 be such that Py : B(0,r) — M is well
defined and is C3 and that there is a C* function F : B(0,r) — R that agrees with f on
M ~ B(0,7). Then, the function F o Py is C3 on B(0,7) and for y e M n B(0,r), we have:

V(FoPu)(y) =Vuf(y).

Moreover, for we R%:
Hyr(0)(w) = W VA(F o Py

By Tietze’s extension theorem the function V(F o Py) : B(0,7) — R? can be extended to
a bounded continuous function D : R¢ — R? that we shall use in the remainder of the paper.
For r > 0 such that Py is well defined on B(0,r), and for C' > 0, denote

Vi(C) = {xe B(0,r) : Vv e 0f(x),{v,x — Pu(x)) = Cllz — Par(@)]} -

The next proposition is a key element in our proof. To not interrupt our exposition its
proof is provided in Section 5.3.

Proposition 4. Let Assumptions 1-3 hold. There is 3,71 > 0, such that for every r < rq,
almost surely on the event [z, — 0], x, € V;.(B) for all n large enough.

In the remainder, we fix 5,71 > 0 as those provided by the previous proposition. We let
U be the neighborhood around zero that verify conditions of Definition 6. In the following,
we choose r < 1 such that Py is C3 on B(0,r), and B(0,r) < U. The value of r, while
always satisfying these requirements, will be adjusted in the course of the proof.

Firstly, to reduce technical issues, we notice that as in [9, Section 1.2] to prove Theorem 3
we can actually replace Assumption 3 by the following, more easy to handle, assumption.
The notation E,[-] stands for E[-|.%,,].

Assumption 4. Almost surely, the sequence (1) is such that E,[nn,+1] = 0 and there is
A, B > 0 such that for all n € N, we have:

En[lm+1]"'] < B

and
Enlflma] = A

15



Given an integer N > 0, we define the probability event
Ay =[Vn =N, z, € V.(8)].

Note that the sequence of events (LAy) is increasing for the inclusion. Furthermore, Proposi-
tion 4 shows that

o6}
[.’L’n — 0] = AN = lim AN.
va:Jo N=eo
Thus,
Plz, — 0] =P[[z, —» 0] nlimAyx] = lim P[[z, — 0] n An].

N—o0

Consequently, given an arbitrary § > 0, there is an integer N(0) = 0 such that
P [[zn — 0] 0 An(s)] = P [zn — 0] = 6. (12)
For an integer N > 0, define the stopping time
v = inf{n = N, x, ¢ V;(8)},

with inf & = oo, and recall from the definition of r that for N < n < 7, the projection
Pys(z,,) is well-defined. Define recursively the process (y2),=n_1 as follows: yjj\\;_l =0,

Py(zy) if N <n <71y,

N .
Yn = ?/712771 - ’Yn—lD(yr];ll) + ’Yn—lJPM (yrjlvq)ﬁn if n =7y,
YN 1 —n-1D(y) 1) + Y17, otherwise,

and let

ZVJ“LV = (xn _yquv)]ln<TN forn > N.
N.

Observe that 4 and 2V are both .%,,~measurable for all n >
shall show that for each N > 0,

To establish Theorem 3, we

n—a0

i [y,ﬁv — o] —0. (13)

Indeed, on the event Ay s), it holds that yé\/(&) = Py(zy,) for n = N(0), thus,

[[zn — 0] N AN((;)] c Hyfy(‘s) — 0] N .AN((;)] .

Consequently, with the convergence (13) at hand, we get from Inequality (12) that P[x,, —
0] < 6. Since ¢ is arbitrary, we obtain that P[x,, — 0] = 0.
In the remainder of this section, N > 0 is a fixed integer.

Proposition 5. Let Assumptions 1-2 and 4 hold. Then, the sequence (yé\[)nzN satisfies the
TeCUTSION:

YNy =y — 1 DY) + i+ ol 1+ e

where the random sequences (7Y =N, (0N )n=n, and (Y )n=n are adapted to (F,). More-
over, there is C > 0 such that for alln = N,

i) oMo |l < Cvn (L + 01 |P) Loy snt -
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i) |ofia || < C |20 (L + lmnalD)-
iii) Bniil,, = 0, and B, |7, " < C.
We furthermore have:

iv) The subspace E~ defined before Assumption 3 coincides with the eigenspace of the matriz
Jp(0) corresponding to its negative eigenvalues.

v) On the event [y —, 0], it holds that lim inf, |, HPE—ﬁ1]1V+1H > 0.
To prove this proposition, the following result will be needed.

Lemma 5. For r small enough, there is C > 0 such that for x,2' € B(0,r), we have:

Y —y=Jp,(y)(@ —z)+ Ri(z,2',y) + Ra(z,2'),

A

wherey',y = Pr(2'), Py(z), and where ||Ry(z, ', y)|| < Cll2’ — x| ||z — y||, and || Ra(x, 2')||
Clla’ — x>

Proof. Since Py is C? near zero, there is € > 0 such that t — Py(z + t(2' — x)) is C? on
(—e,1+ €). Hence, by Taylor’s theorem, we have

v —y=Jp,(x)(z' —x) + Ro(z, z),

with ||Ra(2/, z)|| < C ||z’ — z||*, where C is a bound on the second derivatives of Py;. Sim-
ilarly, since Py is C?, x — Jp,, (x) is Lipschitz continuous. Therefore, for some C' > 0,
l.Jp,, () — Jp,, (v)]| < C ||z — y||, which finishes the proof. O

Proof of Proposition 5. Letting n > N, we write
yr]xrl = PM(xn+1)]lTN>n+1+ (yrjy - ’YnD(yTJY)) ﬂTzvén-i—l +Yn (JPM (yrjy)ﬂn\f:n-i-l + ]lTNénnn-&-l) 5

accepting the small notational abuse in the expression Py (zp+1)1ry>n+1, since the projection
might not be defined when the indicator is zero. Similar abuses will also be made in the
derivations below.
Using Lemma 5 and Equation (8), we obtain
Uit = (yrjzv + Ty (yn ) (Tns1 — 2n)) Loysnt1 + TnON11 + a1
+ (%JLV - VnD(yvjzv)) Lry<n+l + 7 (JPM (yr]:[)]lTN:nJrl + L’NSnnnJrl)
= (v = W IPa (U)o + VT ay (U0 V1) Trymnid + Ynns1 + Vit
+ (y?J’LV - VnD(%]zv)) Lry<n+l + 7 (JPM (yr]:[)]lTN:nJrl + L’NSnnnJrl) )

where gﬁ[ +1 and C,JLV '\, are %, 1-measurable, and satisfy with the notations of Lemma 5
HC7]1V+1H = 77;1 HRl(xnaxn-&-hy?]zV)H ]lTN>n+1 < C’Vrjl Hxn-i-l - wnH HZ7]LVH < C(l + Hnn-i-l”) HZT]LVH
(in the last inequality, we used that ||v,|| is bounded on [Tx > n]), and

HQQ{HH = ’Y;l | R2 (20, Tnt1) | Lry>n+1
< 07;1 |Zn+1 — mnHQ Lry>n+1

< Oyp(1+ ||77n+1”2)]1‘r1v>n+1'
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Using Lemma 1 in conjunction with the Verdier condition (iii) of Definition 6, we also have
JPM (yrjlv)vn]lTN>n+1 = PTyTJyM(/Un)]lTN>n+1 = va(yle)]lTN>n+1+§1]1V+1 = D(yiv)]lTN>n+1+<~7]1V+1u

where (%, | is %, 1-measurable, and satisfies

& < Clon = Lesmir < C 0]
Gathering these expressions, we get

yrjzv+1 = yg - 'YnD(ysz) + ’Ynﬁr]zvﬂ + YnOn+1 + YnOn+1,

where

777]1\[+1 = (]lTN>nJPM (y7]l\/) + ILTNén) Nn+1, and (14)
~N N N
On+1 = Cn+1 + Cn .
The assertions i) and ii) of the statement are obtained from what precedes.
The noise ﬁflv is obviously .%,—measurable. Moreover, ]Enﬁ,]lv +1 = O since 1,y>,Jp), (yflv )+
1,y <n is Zp—measurable. The last bound in iii) follows from Assumption 4.

Assertion iv) follows from Lemma 4.
To establish v), we write

H(ﬁr]LVJrl)iH = HPE*JPM (yfzv)nn-HH ]lTN>n + HPE*nn-&-IH ]lTN<n

= HPE*nn+1H - HPE*JPM(erY)nn-&-I - PE*nn-&-lH ]17'N>TL-
On the event [y —, 0], it holds that Jp,, (yY) —, Jo. By Lemma 1, Jy is the orthogonal
projection on ToM, thus, limyn_, o Pg-Jp, (yN) = Pgp-. Consequently, we obtain on the
event [y —, 0]:

lim inf By, | (7551) (| = lim inf By [, || = limsup (|[Pg- ey, (v3') = Pp- || En llnnsal)
n
> limninfEn Hn;HH
>0,

and by Assumption 4. Proposition 5 is proven. O

Proposition 6. Let Assumptions 1-2 and 4 hold true. Then, there is C > 0 such that

2
ool < I = (=€) JNIP + 0 and
2
H

En [lzall” < |01 = (28 = On) |2 + €2

Proof. We shall use the notation
pnN =Tn — y1]1Vv

which enables us to write zﬁLV = pﬁ[ Tn<ry-
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We start with the development

HZTJX&-luz = HpnNJ,-1H2 ILn+1<‘rN
< pr"bv‘f‘l‘f H”<TN = Hp'r]:[—&-l pn +pn H ]ln<TN
NH + 2<xn+1 — T, Zp > - 2<yn+1 —Yn 7Zr]LV> + przVJrl - p£1VH2 ]ln<7'N- (15)

We now deal separately with each of the three rightmost terms in the last expression.
We first show that

= |z

By — oy 20 < Con |12 |1 + CA2 (16)

By Proposition 5,

a1 = Un' sz > =l =D(y) + gty + o1 + Gns 20 -
We have (D(yN), 2N = (Vaf(yl), 2y = 0 since Vi f(y) € T,~n M. Furthermore, we get
from Equation (14) that

Lncry 1 = In<ry IPy (yr]:[)nnJrl = :H-n<TNPTyNM(T]n+1)

by Lemma 1, thus, (7 ;, 22"y = 0. As a consequence,

(=317 Y°

|<y7]1V+1 — 2Ol < HZ + HQQ[H + @r]:[JrlH < Tn HZ + 279, ( HQnJrlH + H n+1H

From Proposition 5 again, we have

2
En HQnNJrlH < O’YnEn(l + ||77n+1||2)]]-71\7>n+1 < C’YnEn(l + ||77n+1||2) < C'Vn7

and
~ 2 N2 2 N2
En [|onsa||” < Cllzn |7 (1 + B s P) < Ol ||
Inequality (16) is obtained by combining these inequalities.
We next show succinctly that
2
E, Hqumv+1 - qum\[H ]ln<TN < 0’7721 (17)

Indeed,

Hpﬁfﬂ —pmf In<ry = Hxnﬂ — Tn — (%{YH - yév)||2 Ln<ry
< 32 (lonll® + a1 + [ID@ | + (1 | + [Nl + 12X ) Tnery

and the result follows by standard calculations making use of the results of Proposition 5.

We finally deal with the term (2,1 — 2y, 2 ). Since EnnnH = 0, we have E, (zp+1 —
T, 2Ny = —yp (v, 2N, Observing that x, € V;.(8) when 2 # 0, we obtain from the very
definition of the set V,.(/3) that

En<$n+1 - $n7z7]1\[> < _/V"B HZ7]1VH :

Getting back to Inequality (15), and using this result in conjunction with the inequalities (16)
and (17), we obtain that

B = < 11 + O ) — 2308 =2 + 2

Since z,, € B(0,7) on the event [n < 7x], it holds that HZNH
This leads at once to the inequalities in the statement of the prop051tlon

<7zl
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Corollary 2. Under the assumptions of the previous proposition, there is C' > 0 such that
[}

forn > N.

The proof of this corollary makes use of a technical result which is attributed to [11]. Its
proof can be found in, e.g., [10]:

Lemma 6 (Lemma D.2 in [10]). Let (ay,) be a nonnegative sequence such that for all n large

enough, » o
an+1 < <1 - np> + e’

where p € (0,1], ¢ > 0, and P,Q > 0. It is further assumed that P > q if p = 1. Then, there

exists C' > 0 such that o

Qp, < E
Proof of Corollary 2. Let C' > 0 be the constant provided in the statement of Proposition 6.
Choose 7 > 0 small enough so that 28r~! — C' > 0. Replacing 7, in this statement with the

bounds on this step size provided by Assumption 1—(iv), we get from the first inequality in

Proposition 6
c1 (28 c C
|l < (1- 5 (Z-0) ) u P + 25

We apply the previous lemma with a,, = E HZN H after adjusting » > 0 when needed in order
that all the conditions in the statement of this lemma are satisfied. We get that there exists
a constant C’ > 0 such that o
N2
Ez " <5
Let £ > 0 be an integer. Telescoping the second inequality stated by Proposition 6 from n+k
back to n, we get

n+k—1 n+k—1

Elz)ul’ <E[N|° - @8-Cr) Y 2Bl +C Y 2
i=n i=n
which implies that
n+k—1 n+k—1 C n+k—1
(26 —Cr) Z %EHZNH ]EH NH +C Z '7, 7_1_0 Z '712.
i=n i=n

Making £ — o0, we obtain that

o0 C/
ElLN < &
(28— Cr) Y wE[]7Y] < —  CXne

i=n

To complete the proof, it remains to notice that since vy, ~ n~® with a € (1/2,1], it holds
that x, ~ nt72% > n=?. O
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Theorem 3: end of the proof. We now have all the elements to establish the identity (13),
proving Theorem 3. For this, notice that,for every N > 0, by Proposition 5, 3V satisfies an
equation of the form Equation (11). The assumption of Proposition 3 on the sequence (7))
are satisfied by Proposition 5 and the assumptions on the sequences (o), (05) follow from
Assumption 4 and Corollary 2.

Hence, applying Proposition 3, we obtain that P([yY — 0]) = 0, for all N > 0. As
previously explained, the latter implies that P([x,, — 0]) = 0.

To complete the proof of Theorem 3 it remains to prove Proposition 4, which is the purpose
of the next section.

5.3 Proof of Proposition 4

The standard way to analyze the convergence of the SGD to the set of Clarke critical points
is by studying its continuous counterpart - the subgradient flow:

x(t) € =0f (x(t)) - (18)

We say that an absolutely continuous curve x : Ry — R is a solution of the differential
inclusion (DI) (18) starting at z € R? if x(0) = = and if for almost every ¢ € R,, the
inclusion (18) is verified. We denote S_s¢(z) the set of these solutions.

The idea of the proof of Proposition 4 goes as follows. For each initial point « € B(0, ()
with ro > 0 small enough, either all the trajectories of (18) issued from z leave B(0,rp) in a
fixed time horizon, or f(x)— f(Py(x)) = ||z — Py(z)||. This will be the content of the next
lemma. Next, we use the well-known fact that the interpolated process constructed from our
iterates (z,,) is a so-called Asymptotic Pseudo Trajectory (APT) of the DI (18), as formalized
in [2] (see also, e.g., [19, 29]). The consequence is that on the event [z, — 0], necessarily
f(zn) — f(Pu(zn)) = a||xn — Pu(zy)|| after a certain finite moment. To complete the proof,
it remains to make use of the angle condition (iv) of Definition 6.

Lemma 7. Let f : R - R a locally Lipschitz continuous, path differentiable function. Let
M be a C? active manifold for f such that 0 € M, f(0) =0, and V1 f(0) = 0. Then, there is
a, T >0 and rg > 0 s.t. for every x € S_pp(x), with x € B(0,r), either x([0,T]) ¢ B(0,ro)
or f(x) = f(Pu(z)) = aflz — Py ()]

Proof. Let r > 0 be such that B(0,7) < U, where U is the neighborhood from Definition 4.

Since f is C? on M ~ B(0,r) and Vf(0) = 0, there is some constant C' s.t. we have
suPep (o, |Var f(Pu ()] < Cl|Py(2)]]. Denote L the Lipschitz constant of f on B(0,r)

and let ¢, be such that inf{||v|| : v e df(z),x € B(0,r) n M} = ¢p,. Fix rg < min(%,r)
and consider z € B(0,rp) and x € S_sp(z). Denote ¢, = inf{t : x(t) € M or x(t) ¢ B(0,r¢)}.
Since f is path differentiable, we have:

t
inf f(2') < f(x(t)) = f(=) —J Ix(w)]| du < f(z) —cpti < sup f(z') = et
z'eB(0,r0) 0 z'eB(0,r¢)

Hence, if we choose T s.t. 2T > 28UP,rep(0,r) | f(2')], we have t1 < T and either x(t1) ¢
B(0,7) or x(t1) € M. Assume that x(¢1) € M and denote y(t) = Pys(x(t)) and z(t) = x(t)—y(t).
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Notice that for almost every ¢ > 0, we have ||y(t) HP L X )H < L. Moreover, by path-
differentiability of f we have:

t1
uwanyﬂwmn<J;Kvaww»mw»Mu

t1
<j‘nvaww»MWWMdu

cf|w

< LCOrpt1 <

\_/

[y ()l du

t .

2
Cm

l\.’)\»—\

Where the first inequality comes from the fact that f is path differentiable and that for

all u € [0,T], y(u) € TyyM. Denote a = % and assume by contradiction that f(z) —
f(Pu(z)) < af|lx — Py(z)||. We have:

0= f(x(t1)) — fy(t1)) < f(z) - 03nt1 — fly(t1))

2
< f(@) = F(y(0) + 4y — ity

2
2
< alle — Pue)] - 1
Which implies that ||z — Py (z)]| = —tl 2Lt;. On the other hand, we have that ||z(¢)|| =

dist(x(t), M). Since the distance functlon is 1-Lipschitz, we have for almost every ¢ > 0:
S| < 1Kl <
at "N S PRI
Therefore,
0 = [lz()Il = (0)l| = Lty = [lz — Py(2)]| — L1,
which implies that || — Pys(x)|| < Lt1, a contradiction. O

Let X : R, — R% be the linearly interpolated process defined as:

t— Z?:o Vi

Yt 1 (xn+1 - mn)> ifte [Tm TTL+1) 5
n+

where 7, = > V.
It is well known that under our assumptions, on the event [x,, — 0], X is an APT for the
DI (18), as shown in [2, 19, 29]. Namely, for every T' > 0,

sup inf X(t+h)—x — 0.
he[0,T]X€S—a5 (X(¢)) IX( ) 0l t——+00

Consider o, T and ro from Lemma 7. On the event [x,, — 0] let x,, € S_sp(x,,) be such that
sup [[X(7n + h) = xn(h)| —— 0.

he[0,T no+0
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Consider r1 < rg such that B(0,71) < U, where U is the neighborhood associated to a by the
angle condition. If for n large enough, x,([0,7"]) remains in B(0,71), then by Lemma 7 we
have:

f(an) = alln = Pa(zn)ll + f(Par(zn))
which, by the angle condition, implies that there is 5 > 0

<Un>$n_PM(xn)>ZBHxn_PM(wn)” . (19)

Otherwise, on the event [z, — 0], there is h, € [0,T] such that after an extraction X(r, +
hn) — x, with ¢ B(0,r1). Since the limit points of X are the accumulation points of the
sequence (), this contradicts the fact that z, — 0.

Appendix A Sketch of proof of Proposition 3

We recall that E,,[-] denotes E[-|.%,,]. Denote d~ the dimension of A~. Using the center-stable
manifold theorem, the authors of [9, Page 407-409] construct a sequence (w,)? in R%" such
that

Wy = Wy, + ’Yanwn + ’Yn(rn+1 + 7’;.5_1 + €n+1) ,
where the sequences (wy), (), (r],), (en) are adapted to (%,) and we have the inclusion
[y, — 0] < [wy, — 0]. Moreover, on the event [y, — 0], the following almost surely holds.

i) There is H an invertible matrix such that all of the real parts of its eigenvalues are
positive and
H,—> H.

ii) The sequence (e,,) is such that E,[e,+1] = 0 and

0 < liminfE,[[lens1]*] < limsup By [|lens1]]*] < +o0.

iii) The sequence (r,) is such that 3% ||ryq|* < +oo.
iv) The sequence (r},) is such that E[1p Y. v; ||}, 1[|] = O(xn)-

The only difference with [9] is in the presence of (7], , ) and the point (iv).
Using this representation, the avoidance of traps result follows from the following proposi-
tion. The only difference with [9, Proposition 4] is, once again, in the presence of the sequence

(r7)-

Proposition 7 ([9, Proposition 4]). Let d be an integer, (2, A,P) be a probability space, (%)
a filtration on it and (wy) be a sequence in RY verifying:

Wnt1 = Wy + Yoy + ’Yn(Tn-s-l + T;’L-ﬁ-l + en+t1) (20)

where the sequences (wy,), (Hy), (1), (rh)(en) are adapted to (F,) and (v,) is a sequence of

positive stepsizes s.t. Z;;OS v; = +00 and ZLOS 72 < +00. Assume that on an event I € A we

have the following.

3UF in their notations.
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i) The sequence () is such that 3 %0y = +o0 and Y7572 < +oo.

it) The sequence (ey) is such that Eylen+1] = 0 and

1/2

0 < liminf Ep[|lens1]|] < limsup Ep[|lens1]/*]Y? < +00.

iii) The sequence () is such that 3% |ri1]|? < +00.
iv) The sequence (r},) is such that E [1r 377 i ||ri1||]] = O(xn).

Let H € R¥™4 be  matriz such that all of the real parts of its eigenvalues are positive. Then,
denoting Y =T n [w, — 0] n [H, — H|, we have P(Y) = 0.

Proof. In this proof C will denote some absolute constant that can change from line to line.
The proof closely follows the one of [9, Proposition 4]. As in [9] it is sufficient to prove
the proposition in the case where there A, B, K > 0 such that almost surely E,[e,+1] = 0,
A <Eq[llensll] < Enlllens[*)? < B and 375 ||risa |* < K.

We can rewrite Equation (20) as:

Wp41 = Wy + ’YnHwn + ’VnAnwn + ’Yn(en-i-l + 41 + T7/1+1) )

where A, = H, — H. Let Q be a positive definite symmetric matrix such that QH + HTQ =
27, where T € R¥*? is the identity matrix. Denote U, = (w!Quw,)"?. Following the same
calculations as in [9], we obtain that:

1
(Un-i-l - Un) = 7wg+1an
n
> 2 (Jwall? + 0l QAnwn + wE Qlenst + st + 7))
n
1 HQAnH ’ang;Q(en+1 + Tnt1 + T;'L+1)
> lonll { —op — n ,
M A2 Un
max min

where A\paz, Amin are respectively the maximal and the minimal eigenvalue of Q). The event
T is included in a union of events T, defined as:

1 QA 1 S
Vn = p, R 1/2n = N [sup wn| < 1| N Z Vi HT§+1H <1y.
A A n=p i=p

1/2
mazx min 2 max

T,=Tn

Therefore, on T, there is C > 0 such that for M > n > p, we have:

M Y . ,
w; Q €ir1 T Tixr1 + 7T
S sl < QU + € |3 G LT >‘
1=n i=n
Hence,
j +
Z%len <C||UM+1H2+C Z%% +C<Z '712> <Z H7"i+1||2> +C Z’YiHTQHH
i=n in f “ ~ Z
M wTQe 1 2 +00 2
<Cl0wall+ € oup | 3=t |+ Ot € 3l
M2 fli=n ! 1=n
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where we used the fact that is bounded. On Y, we have that E[||Up41]*] — 0.

TL
The sequence (Zf\i n %%) M>n 1S a square summable martingale difference sequence.
7

Therefore, by Doob’s maximal inequality:

Z i w; Q€z+1
(2

E | 1p sup U

MeN

< Cxp -

2 +o0
< CE [Z % e l?

i=n

Finally, on T, we have ZZ n Vi Hr; 41 H < 1. Therefore, by assumptions:

+0 2 +0
E| Ly, | v llriall] | <E [hZ%H%H < Oxn
i=n i=n
Hence, there is C' > 0 such that:
+o0 2
E|1Lv,| > villwl| | <Cxa. (21)
i=n

On the other hand, following the calculations of [9], on Y, we have:

+o0
—wp = Z (Rll + ’yi(ei+1 + rit1 + T§+1)) s (22)
1=p

where we denote R, = A,w, and for n > p:

R711 = YnRn — (B;—ll - Bgl)Sn )
400

Sn = Z Vi(Ri + €it1 + rig1 + 1),

i=n
n
H1+%

The idea of the remaining part of the proof is to apply [9, Theorem A] to obtain that the
left hand side of Equation 22 can be .#,-measurable only with probability 0. The latter will
imply P(T;) = 0 and since T = | )y Tp, the proof will be finished. As in the proof [9], one
of the assumptions of [9, Theorem A], to obtain the remaining part it suffices to have:

o 1w, St vl =otvan) 23)

i=n

where the difference with the proof of [9, Proposition 4] is in the presence of the term
To prove Equation (23) we write down:

+1-

+00 400 +00
Ur, ), [|BE+ vt e, sup Al 35 % i | + CE |1, 35 [ BZ = B Isil
i=n i=n i=n

+0
+EFMZ%WMM
=n
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By Inequality (21) we have:

00 212
E | 1y, sup | A D)% llwill | < CE[y, sup [|Ail*]V°E Z%szH
izn i=n izn 1=n
(24)
< CE[Ly, sup | Ail*]*y/xn
Z/TL
o(Xn) -
As noticed in [9] we have Y% || B;Z} — B; || < +o0. Therefore,
+00 To
E [T, [Sil] 2 1B = B < Cvxn 25 1B = Bl = ofv/xn) (25)
i=n 1=n

and by assumptions

Combining (24), (
A] to obtain that P(Y,) = 0. Since T = | J

[]1“1‘ Z Vi H7’1+1H] Cxn = 0(y/Xn) - (26)

25) and (26) we obtain Equation (23). Hence, we can apply [9, Theorem

ben Tp, the proof is finished. O
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