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Stochastic Subgradient Descent Escapes Active Strict Saddles

Pascal Bianchi, Walid Hachem, Sholom Schechtman

August 4, 2021

Abstract

In non-smooth stochastic optimization, we establish the non-convergence of the stochas-
tic subgradient descent (SGD) to the critical points recently called active strict saddles
by Davis and Drusvyatskiy. Such points lie on a manifold M where the function f has a
direction of second-order negative curvature. Off this manifold, the norm of the Clarke
subdifferential of f is lower-bounded. We require two conditions on f . The first assump-
tion is a Verdier stratification condition, which is a refinement of the popular Whitney
stratification. It allows us to establish a reinforced version of the projection formula
of Bolte et.al. for Whitney stratifiable functions, and which is of independent interest.
The second assumption, termed the angle condition, allows to control the distance of the
iterates to M . When f is weakly convex, our assumptions are generic. Consequently,
generically in the class of definable weakly convex functions, the SGD converges to a local
minimizer.

Keywords. nonsmooth optimization, stochastic gradient descent, avoidance of traps,
Clarke subdifferential, stratification.

1 Introduction

Stochastic approximation algorithms that operate on non-convex and non-smooth functions
have recently attracted a great deal of attention, owing to their numerous applications in
machine learning and in high-dimensional statistics. The archetype of such algorithms is
the so-called Stochastic Subgradient Descent (SGD), which reads as follows. Given a locally
Lipschitz function f : Rd Ñ R which is not necessarily smooth nor convex, the Rd–valued
sequence pxnq of iterates generated by such an algorithm satisfy the inclusion

xn`1 P xn ´ γnBfpxnq ` γnηn`1, (1)

where the set–valued function Bf is the so-called Clarke subdifferential of f , the sequence
pγnq is a sequence of positive step sizes converging to zero, and ηn`1 is a zero-mean random
vector on Rd which presence is typically due to the partial knowledge of Bf by the designer.
It is desired that pxnq converges to the set of local minimizers of the function f .

Before delving into the subject of convergence towards minimizers, let us first consider
the set Z :“ tx P Rd : 0 P Bfpxqu of Clarke critical points of f , which is generally larger than
the set of minimizers, in the non-convex case. In order to ensure the convergence of pxnq to
Z, the sole local Lipschitz property of f is not enough (see [14] for a counterexample), and
some form of structure for the function f is required. Since the work of Bolte et.al. [6] in
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optimization theory, it is well known that the so-called definable on an o-minimal structure
(henceforth definable) functions, which belong to the family of Whitney stratifiable functions
(see Section 2 below), is relevant for the convergence analysis of pxnq and beyond. This
class of functions is general enough so as to contain all the functions that are practically
used in machine learning, statistics, or applied optimization. In this framework, the almost
sure convergence of pxnq to Z was established by Davis et.al. in [16]. Another work in the
same line is [27]. Bolte and Pauwels [7] generalize the algorithm (1) by replacing Bf with an
arbitrary so-called conservative field. The constant step size regime γn ” γ is considered in
[3].

Thanks to these contributions, the convergence of pxnq to the set Z is now well understood.
However, as said above, Z is in general strictly larger than the set of minimizers, and can
contain “spurious” points such as local maximizers or saddle points. The issue of the non-
convergence of the sequence given by (1) towards spurious critical points is therefore crucial.
The present paper investigates this issue.

Before getting into the core of our subject, it is useful to make a quick overview of the
results devoted to the avoidance of spurious critical points by the iterative algorithms. The
rich literature on this subject has been almost entirely devoted to the smooth setting. In this
framework, the research has followed two main axes:

� The noisy case, where the analogue of the sequence pηnq in the smooth version of
Algorithm (1) is non zero. Here, the seminal works of Pemantle [28] and Brandière
and Duflo [9] allow to establish the non-convergence of the Stochastic Gradient Descent
(and, more generally, of Robbins-Monro algorithms) to a certain type of spurious critical
points, sometimes referred to as traps or strict saddle. A critical point of a smooth
function f is called a trap if the Hessian matrix of f at this point admits at least
one negative eigenvalue. With probability one, the sequence pxnq cannot converge to a
trap, provided that the projection of the random perturbation ηn onto the eigenspace of
corresponding to the negative eigenvalues of the Hessian matrix (henceforth, eigenspace
of negative curvature) has a non vanishing variance.

� The noiseless case where ηn ” 0, studied for smooth functions by [23]. Here the authors
show that for Lebesgue almost all initialization points, the algorithm with constant step
will avoid the traps.

While both of these approaches rely on the center-stable invariant manifold theorem which
finds its roots in the work of Poincaré, they are different in spirit. Indeed, in [23] the trap
avoidance is due to the random initialization of the algorithm, whereas in [9, 28], it is due to
the inherent stochasticity brought by the sequence pηnq.

We now get back to the non-smooth case. Here, the only paper that tackles the problem
of the spurious points avoidance is, up to our knowledge, the recent contribution [15] of
Davis and Drusvyatskiy. The spurious points that were considered in this reference are the
so-called active strict saddles. Informally, a critical point is an active strict saddle if it lies
on a manifold M such that i) f varies sharply outside of M , ii) the restriction of f to M
is smooth, and iii) the Riemannian Hessian of f on M has at least one negative eigenvalue.
For instance, the function f : R2 Ñ R, py, zq ÞÑ |z| ´ y2 admits the point p0, 0q as an active
strict saddle with M “ Rˆt0u, and the restriction of f to M is the function fM py, 0q “ ´y

2,
which obviously has a second-order negative curvature. In this setting, and assuming that
f is weakly convex, the article [15] focuses on the noiseless case, and study variants of the
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(implicit) proximal point algorithm rather than the (explicit) subgradient descent. Similarly
to [23], they show that for Lebesgue almost every initialization point, different versions of the
proximal algorithm avoid active strict saddles with probability one. Such a result is possible
due to the fact that proximal methods implicitly run a gradient descent on a smoothened
version of f - the Moreau envelope.

Contrary to [15], the algorithm (1) studied in this paper is explicit, meaning that it does
not require the computation of a proximal operator associated with the non-smooth function.
In this situation, the sole randomization of the initial point is not sufficient to expect an
avoidance of active strict saddles. Here, in the same line as [28, 9], our analysis strongly relies
on the presence of the additive random perturbation ηn.

In the framework of definable functions, we investigate the problem of the avoidance of
the active strict saddle points. Our approach goes as follows. First, we need to show that the
iterates pxnq converge sufficiently fast toM , thanks to the sharpness of f outside this manifold.
To that end, we first rely on the fact that when f is definable, its graph always admits a so-
called Verdier stratification, which is perhaps less known than the Whitney stratification,
and is a refinement of the latter [26]. The key advantage of the Verdier over the Whitney
stratification lies in a Lipschitz-like condition on the (Riemannian) gradients of f on two
adjacent stratas, which is established in the paper. Our second tool is an assumption that
we term as the angle condition. Roughly, this assumption provides a lower bound on the
inner product between the subgradients of f at x and the normal direction from M to x
when the point x is near M . The angle condition allow to control the distance between
the iterate xn of Algorithm (1) and the manifold M . As the restriction fM of f to M is
smooth, the projected iterates, using the Verdier stratification property, are shown to follow
a dynamics which is similar to a (smooth) Stochastic Gradient Descent, up to a residual term
induced by the projection step. In that sense, the avoidance of active strict saddles in the
non-smooth setting follows from the avoidance of traps in the smooth setting, as established
in [9]. We show that the strict saddle is avoided under the assumption that the (conditional)
noise covariance matrix has a non zero projection on the subspace with negative curvature
associated with fM near the active strict saddle.

Before pursuing, it is important to discuss the matter of the genericity of the assumptions
that we just outlined. First, since our avoidance results are restricted to the active strict
saddles, the question of the presence of critical points that are neither local minima nor
active strict saddles is immediately raised. Actually, this question was considered in [17, 15].
It is established there that if f is definable and weakly convex, then for Lebesgue almost all
vectors u P Rd, the function fupxq :“ fpxq ´ xu, xy admits a finite number of Clarke critical
points, and that each of these points is either an active strict saddle or a local minimizer. In
that sense, in the class of definable weakly convex functions, spurious critical points generically
coincide with active strict saddles. We also need to inspect the generality of the Verdier and
the angle conditions. In Theorem 2 below, we show that these assumptions are automatically
satisfied when f is weakly convex. From these considerations, we conclude that generically in
the sense of [17, 15], the SGD algorithm (1) converges to a local minimum when f is a weakly
convex function, assuming that the noise is omnidirectional enough at the strict saddles. We
emphasize the fact that, while the genericity of the active strict saddles is established in the
above sense for weakly convex functions, no assumption on weak convexity is made for our
avoidance of traps result.

Let us summarize the contributions of this paper:
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� Firstly, we bring to the fore the fact that definable functions admit stratifications of
the Verdier type. These are more refined than the Whitney stratifications which were
popularized in the optimization literature by [6]. While such stratifications are well-
known in the literature on o-minimal structures [26], up to our knowledge, they have
not been used yet in the field of non smooth optimization. To illustrate their interest in
this field, we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula (see [6,
Proposition 4] and Lemma 2 below) to the case of definable, locally Lipschitz continuous
functions by establishing a Lipschitz-like condition on the (Riemannian) gradients of two
adjacent stratas.

� With the help of the Verdier and the angle conditions, we show that the SGD avoids
the active strict saddles if the noise ηn is omnidirectional enough.

The paper is organized as follows. Section 2 is devoted to the introduction of the math-
ematical tools in use in this paper. Most of the results in this section are known, except for
the reinforced projection formula, which is stated in Theorem 1. In Section 3, we discuss the
notion of active strict saddles. After recalling some results of [15], we introduce the Verdier
and angle conditions. We also discuss the genericity of the these conditions, in the class of
weakly convex functions. In Section 4, we state the main result of the paper, namely, the
avoidance of active strict saddles. Section 5 is devoted to the proofs.

2 Preliminaries

Notations. Let d ě 1 be an integer. Given a set S Ă Rd, S denotes the closure of S, and
convpSq and convpSq respectively denote the convex hull and the closed convex hull of S. The
distance to S is denoted as distpx, Sq :“ inft}y ´ x} : y P Su. If E Ă Rd is a vector space,
we denote by PE the d ˆ d orthogonal projection matrix onto E. We say that a function
f : Rd Ñ R is weakly convex if there is ρ ą 0 such that the function gpxq :“ fpxq ` ρ ‖x‖2 is
convex. For two sequences panq, pbnq, we write an Á bn if lim inf anbn ą 0. With this notation
an „ bn means an Á bn and bn Á an. For r ą 0, Bp0, rq denotes the open ball of radius r.

Throughout the paper, C and C 1 will refer to positive constants that can change from line
to line and from one statement to another.

2.1 Functions on Manifolds

We refer to [22] for a detailed introduction on differential geometry.
Let Jgpxq denote the Jacobian matrix of a map g at point x. Given two integers p ě 1

and k ď d, a Cp map g : U Ñ Rd´k on some open set U Ă Rd is called a Cp submersion if the
rank of Jgpxq is equal to d´k for every x P U . We say that a set M Ă Rd is a Cp submanifold
of dimension k, if for every y P M , there is a neighborhood U of y and a Cp submersion
g : U Ñ Rd´k, such that U XM “ g´1pt0uq. We represent the tangent space of M at y by
TyM :“ ker Jgpyq (n.b., the definition is independent of the choice of g). Equivalently, TyM
can be represented as the set of vectors v P Rd such that there exists a differentiable map
c : p´ε, εq Ñ Rd such that cpp´ε, εqq ĂM , cp0q “ y and 9cp0q “ v.

For every x P Rd, we define

PM pxq :“ arg min
yPM

}y ´ x} ,
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whenever the argument of the minimum exists and is unique. The following lemma can be
found in [25] (see also [22, Chap. 3, Ex. 24]).

Lemma 1 (Projection onto a manifold). Let M be a Cp submanifold, with p ě 2. Consider
y P M . Then, the projection PM is well defined in a neighborhood of y. Moreover, PM is
Cp´1 in that neighborhood, and JPM

“ PTyM .

We say that a function f : M Ñ R is Cp, if M is a Cp submanifold, and if for every y PM ,
there is a neighborhood U Ă Rd of y and a Cp function F : U Ñ R that agrees with f on
M X U . If f : M Ñ R is C1, we define for every y PM ,

∇Mfpyq :“ PTyM∇F pyq ,

where PTyM is the orthogonal projection onto TyM , and where F : U Ñ R is any C1 function
defined in a neighborhood of y, and which agrees with f on M . The definition of ∇Mfpyq
does not depend on the choice of F (see e.g. [8, Section 3.8]). We refer to ∇Mfpyq as the
(Riemannian) gradient of f at M . We say that y is a critical point of f , if ∇Mfpyq “ 0.

If f : M Ñ R is C2 and if y is a critical point of f , we define the (Riemannian) Hessian
of f at a y as the quadratic form Hf pyq, defined on Rd Ñ R by:

Hf,M pyq : v ÞÑ vTPTyM∇2F pyqPTyMv ,

where F is a C2 function defined in a neighborhood of y which agrees with f on M , and
where ∇2F pyq is the standard Hessian matrix of F at y. The definition of Hf,M pyq does not
depend on the choice of F .

The above definitions have the following consequences. For a point y P M and a vector
v P TyM , consider a differentiable curve c : p´ε, εq Ñ Rd such that cpp´ε, εqq Ă M , cp0q “ y
and 9cp0q “ v. Then pf ˝ cq1p0q “ x∇Mfpyq, vy. If f and c are C2, and if y is a critical point
of f , then pf ˝ cq2p0q “ Hf,M pyqpvq.

If f : Rd Ñ R is a function defined on the whole space, the gradient and Hessian of the
restriction of f to M are still denoted by ∇Mfpyq and Hf,M pyq respectively, when they are
well defined.

2.2 Clarke subdifferential

Consider f : Rd Ñ R a locally Lipschitz continuous function. Denote by Regpfq the set
of points x at which f is differentiable, and by ∇fpxq the corresponding gradient., By
Rademacher’s theorem, f is differentiable almost everywhere. The Clarke subdifferential of f
at x [12] is given by:

Bfpxq :“ convtv P Rd : Dpxnq P RegpfqN, pxn,∇fpxnqq Ñ px, vqu .

That is, Bfpxq is the closed convex hull of the points of the form lim∇fpxnq for some sequence
pxnq converging to x. In particular, Bfpxq simply coincides with t∇fpxqu when f is continu-
ously differentiable in a neighborhood of x. We set Z “ tx P Rd : 0 P Bfpxqu. Every point of
Z is referred to as a Clarke critical point. In particular, Z includes the local minimizers and
the local maximizers of f .

Definition 1 (Path-differentiability). A locally Lipschitz continuous function f : Rd Ñ R is
said to be path-differentiable if for every absolutely continuous curve c : p0, 1q Ñ Rd, one has
for almost every t P p0, 1q,

pf ˝ cq1ptq “ xv, 9cptqy, @v P Bfpcptqq .
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In non-smooth optimization, the path-differentiability condition is often a crucial hypoth-
esis in order to obtain relevant results e.g., on the convergence of iterates [6, 16, 7]. In the
sequel, we will review sufficient conditions on f , which ensure its path-differentiablility. In
particular, we will review the notions of definability w.r.t. an o-minimal structure, Verdier
stratification and Whitney stratification. In a nutshell, the different notions are related by:

definable ùñ graph Verdier-stratifiable ùñ graph Whitney-stratifiable ùñ

path-differentiable.

2.3 o-minimality

An o-minimal structure can be viewed as an axiomatization of diverse properties of semial-
gebraic sets. In an o-minimal structure, pathological sets such as Peano curves or the graph
of the function sin 1

x do not exist. To our knowledge the first work to link ideas between op-
timization and o-minimal structures was [6], where the authors analyzed the structure of the
Clarke subdifferential of definable function and extended the Kurdyka- Lojasiewicz inequality
[21] to the nonsmooth setting. Nowadays a rich body of literature enforces this link, see e.g.
[16, 18, 5, 1, 7]. A nice exposure about usefulness of o-minimal theory in optimization is [20].
Results on the Verdier and Whitney stratification of definable sets can be found in [13, 30, 26].

An o-minimal structure is a family O “ pOnqnPN˚, where On is a set of subsets of Rn,
verifying the following axioms.

1. If Q : Rn Ñ R is a polynomial, then tQpxq “ 0u P On.

2. If A and B are in On, then the same is true for AXB, AYB and Ac.

3. If A P On and B P Om, then AˆB P On`m.

4. If A P On, then the projection of A on its first (n´ 1) coordinates is in On´1.

5. Every element of O1 is exactly a finite union of intervals and points.

Sets contained in O are called definable. We call a map f : Rk Ñ Rm definable if its graph
is definable. Definable sets and maps have remarkable stability properties, for instance, if f
and A are definable, then fpAq and f´1pAq, any composition of two functions definable in
the same o-minimal structure is definable, and many others. Let us look at some examples
of o-minimal structures.
Semialgebraic. Semialgebraic sets form an o-minimal structure. A set A Ă Rn is semialge-
braic if it is a finite union of intersections of sets of the form tQpxq ď 0u, where Q : Rn Ñ R is
some polynomial. A function is semialgebraic if its graph is a semialgebraic set. Example of
such functions include any piecewise polynomial functions but also functions such as x ÞÑ xq,
where q is any rational number. It can be shown that any o-minimal structure contains every
semialgebraic set.
Globally subanalytic. There is an o-minimal structure that contains, for every n P N,
sets of the form tpx, tq : t “ fpxqu, where f : r´1, 1sn Ñ R is an analytic function that can
be analytically extended in the neighborhood of the hypercube. The sets belonging to this
structure are called globally subanalytic (see [5, 4] for more details).
Log-exp. There is an o-minimal structure that contains globally sub-analytic sets as well as
the graph of the exponential and the logarithm (see [31]). As a consequence of this result it
can be shown that the loss of a neural network is a definable function [16].

6



In the following we fix an o-minimal structure O. Definable will always mean definable
O. The most striking property of definable sets is that they can always be partitioned into a
finite number of manifolds that fit well into each other. This is formalized by the concept of
stratification.

2.4 Whitney Stratification

Let A be a set in Rd, a Cp stratification of A is a finite partition of A into a family of stratas
pSiq such that each of the Si is a Cp submanifold verifying

Si X Sj ‰ H ùñ Si Ă SjzSj .

Given a family tA1, . . . , Aku of subsets of of A, we say that a stratification pSiq is compatible
with tA1, . . . , Aku, if each of the Ai is a finite union of stratas. We say that a stratification
pSiq is definable, if every strata Si is definable.

Different types of stratifications exist depending on how tangent spaces of neighboring
stratas fit together. Let us first define the asymmetric distance between two vector spaces
E1, E2:

dapE1, E2q “ sup
uPE1,‖u‖“1

distpu,E2q. (2)

Note that due to the lack of symmetry da is not a distance. Nevertheless, we have that
dapE1, E2q “ 0 ùñ E1 Ă E2. A distance d between E1 and E2 is then classically defined as

dpE1, E2q “ maxtdapE1, E2q,dapE2, E1qu . (3)

This distance is equal to zero if and only if E1 “ E2. For a sequence of vector spaces pEnqnPN,
we will denote En Ñ E if dpEn, Eq Ñ 0.

Definition 2. We say that a Cp stratification pSiq satisfies a Whitney-(a) property, if for
every couple of distinct stratas Si, Sj, for each y P Si X Sj and for each sequence pxnqnPN P
pSjq

N such that xn Ñ y, we have:

w-(a) dpTxnSj , τq Ñ 0 ùñ TySi Ă τ . (4)

We will refer to pSiq as a Whitney Cp stratification.

It is known (see [13, 30]) that every definable function f admits a Whitney Cp (for any p)
stratification pXiq of its domain such that f is Cp on each strata. The following “projection
formula” relates the Clarke subdifferential Bfpyq of f at y, to ∇Xifpyq.

Lemma 2 (Projection formula, [6, Lemma 8]). Let f : Rd Ñ R be a locally Lipschitz, definable
function and p a positive integer. There is pSiq, a definable Whitney Cp stratification of
Graphpfq, such that if one denotes by Xi the projection of Si onto its first d coordinates,
the restriction f : Xi Ñ R is Cp and the family pXiq is a Whitney Cp stratification of Rd.
Moreover, for any y P Xi and v P Bfpyq, we have PTyXipvq “ ∇Xifpyq.

Lemma 2 has important consequences. One of them (see [16, Section 5] is that every
locally Lipschitz continuous and definable function is path-differentiable.

Lemma 3 ([16, Theorem 5.8]). Let f : Rd Ñ R be a locally Lipschitz continuous function. If
Graphpfq admits a Whitney C1 stratification, then f is path-differentiable.
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2.5 Verdier Stratification

A Verdier stratification is a special case of Whitney stratification, which posit a stronger
condition on the (asymmetric) distance between adjacent stratas. Whereas the Whitney
stratification can now be considered as well known in optimization community, the Verdier
stratification is comparatively less popular. We illustrate its advantage by establishing in
Theorem 1 a Lipschitz-like condition in the “projection formula” (Lemma 2). We believe
that this strengthened result is of independent interest.

Definition 3. Let pSiq be a Cp stratification of some set A Ă Rd. We say that pSiq satisfies a
Verdier property (v), if for every couple of distinct stratas Si, Sj and for each y P SiXSj ‰ H,
there are two positive constants δ, C such that:

pvq
y1 P Bpy, δq X Si
x P Bpy, δq X Sj

ùñ dapTy1Si, TxSjq ď C
∥∥y1 ´ x∥∥ . (5)

We refer to pSiq as a Verdier Cp stratification of A.

It is clear from the definitions that a Verdier Cp stratification is always a Whitney Cp

stratification. A fundamental result is that every definable set admits a Verdier stratification.

Proposition 1 ([26, Theorem 1.3]). Let tA1, . . . , Aku be a family of definable sets of Rd. For
any p ě 1, there is a Verdier Cp stratification of Rd compatible with tA1, . . . , Aku.

The following theorem, which we believe to be of independent interest, is the first main
result of this paper. It is an improvement of Lemma 2.

Theorem 1 (Reinforced projection formula). Let f : Rd Ñ R be a definable, locally Lipschitz
continuous function. Let p be a positive integer. There is pXiq, a definable Verdier Cp

stratification of Rd, such that for each y P Xi and each Xj such that Xi XXj ‰ H, there is
C, δ ą 0, such that for any two points y1 P Bpy, δq XXi, x P Bpy, δq XXj,∥∥∥PTy1Xip∇Xjfpxqq ´∇Xifpy

1q

∥∥∥ ď C
∥∥x´ y1∥∥ , (6)

and, moreover, for any x P Bpy, δq XXc
i and any v P Bfpxq,∥∥∥PTy1Xipvq ´∇Xifpy

1q

∥∥∥ ď C
∥∥x´ y1∥∥ . (7)

Proof. In this proof C 1 ą 0 will denote some constant that can change from line to line.
Consider pSiq and pXiq as in Lemma 2. We claim that for any index j and x P Xj , we have
Tx,fpxqSj “ tph, x∇Xifpxq, hyq : h P TxXju. Indeed, consider phx, hf q P Tx,fpxqSj and a Cp

curve c : p´ε, εq s.t. 9cp0q “ phx, hf q. Consider a Cp function F that agrees with f on Xj ,
then pcxptq, cf ptqq “ pcxptq, F pcxptqqq and we have 9cxp0q “ hx and 9cf p0q “ x∇F pxq, hxy “
x∇Xjfpxq, hxy.

Consider pS1iq a Verdier stratification of Graphpfq compatible with pSiq. Then the projec-
tion of S1i onto its first d coordinates, that we denote X 1i, is still a submanifold s.t. f is Cp on
X 1i. Consider py, fpyqq P S1i, S

1
j a neighboring strata and C, δ as in Equation (5). Denote by

L the Lipschitz constant of f on Bpy, δq and δ1 “ δ
L`1 . Then, for every x P Bpy, δ1q, we have:

‖py, fpyqq ´ px, fpxqq‖ ď p1` Lq ‖y ´ x‖ ď δ ,
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that is to say px, fpxqq P Bppy, fpyqq, δq.
Consider y1 P X 1i X Bpy, δ1q, x P X 1j X Bpy, δ1q and hy1 P Ty1X

1
i with

∥∥hy1∥∥ “ 1. We have
that phy1 , x∇X 1i

fpy1q, hy1yq P Tpy1,fpy1qqS
1
i and by the Verdier’s condition there is hx P TxX

1
j s.t.∥∥∥∥ 1

ch

´

hy1 , x∇X 1i
fpy1q, hy1y

¯

´ phx, x∇fX 1j pxq, hxyq
∥∥∥∥ ď CpL` 1q

∥∥x´ y1∥∥ ,
where ch “

∥∥∥phy1 , x∇X 1i
fpy1q, hy1yq

∥∥∥ ď C 1. Therefore,∥∥hy1 ´ chhx∥∥ ď C 1
∥∥x´ y1∥∥ ,

and∥∥∥x∇X 1j
fpxq ´∇X 1i

fpy1q, hy1y
∥∥∥ ď ∥∥∥x∇X 1j

fpxq, hy1 ´ chhxy
∥∥∥` ∥∥∥chx∇X 1j

fpxq, hxy ´ x∇X 1i
fpy1q, hy1y

∥∥∥
ď C 1

∥∥x´ y1∥∥ ,
which proves the first statement.

Now, one can choose C, δ such that Inequality (6) holds uniformly on all of the stratas X 1j
that are neighboring X 1i. Consider a sequence xn Ñ x such that pxnq lies in the stratas of full
dimension (which implies that f is differentiable at xn) and ∇fpxnq Ñ v, for n large enough

we will have that xn P Bpy, δq and, therefore,
∥∥∥PTy1Xip∇fpxnqq ´∇Xifpy

1q

∥∥∥ ď C ‖xn ´ y1‖.

Hence, passing to the limit, we have that
∥∥∥PTy1Xipvq ´∇Xifpy

1q

∥∥∥ ď C ‖y1 ´ x‖. Since any

element of Bfpxq is a convex combination of such v, the second statement is proved.

3 Active strict saddles

In this section, f : Rd Ñ R is supposed to be a locally Lipschitz continuous function. We
recall the definition Z :“ tx P Rd : 0 P Bfpxqu.

3.1 Definition and Existing Results

Let p ě 2 be an integer.

Definition 4 (Active manifold, [24]). Consider x˚ P Z. A set M Ă Rd is called a Cp active
manifold around x˚, if there is a neighborhood U of x˚ such that the following holds.

i) Smoothness condition: M X U is a Cp submanifold and f is Cp on M X U .

ii) Sharpness condition:

inft‖v‖ : v P Bfpxq, x P U XM cu ą 0 .

Definition 5 (Active strict saddle). We say1 that a point x˚ P Z is an active strict saddle
(of order p) if there exists a Cp active manifold M around x˚, and a vector w P Tx˚M , such

1The definition of active strict saddles provided in [15] involves the notion of parabolic subderivatives.
In this paper, we found convenient to use the equivalent Definition 5, which is closer in spirit to notions of
differential geometry.
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that ∇Mfpx
˚q “ 0 and Hf,M px

˚qpwq ă 0.
We say that f satisfies the active strict saddle property (of order p), if it has a finite number
of Clarke critical points, and each of these points is either an active strict saddle of order p
or a local minimizer .

In the special case of a smooth function f , the space M “ Rd is trivially an active
manifold around any critical point x˚ of f . If x˚ is moreover a trap in the sense provided in
the introduction (i.e., the Hessian matrix of f at x˚ admits a negative eigenvalue), then x˚ is
trivially an active strict saddle. Hence, the smooth setting can be handled as a special case.

The archetype of an active strict saddle is given by the following example.

Example 1. The point p0, 0q is an active strict saddle of the function f : R2 Ñ R given by
fpy, zq “ ´y2 ` |z|. Indeed,

Bfppy, zqq “

$

’

&

’

%

tp´2y, 1qu if z ą 0 ,

tp´2y,´1qu if z ă 0 ,

t´2yu ˆ r´1, 1s otherwise ,

and the set M “ R ˆ t0u is a C2 active manifold. Moreover, ∇Mfppy, 0qq “ p´2y, 0q and
Hf,M p0qpp1, 0qq “ ´2, which proves the statement.

While the definition of an active strict saddle might seem peculiar at first glance, the
following proposition of Davis and Drusvyatskiy shows that a generic definable and weakly
convex function satisfies a strict saddle property. The proof is grounded in the work of [17].

Proposition 2 ([15, Theorem 2.9]). Assume that f is definable and weakly convex. Define
fupxq :“ fpxq´xu, xy, for every u P Rd. Then, for every p ě 2 and for Lebesgue-almost every
u P Rd, fu has the active strict saddle property of order p.

It is worth noting that the result of [15, Theorem 2.9] is in fact a bit stronger than
Proposition 2, because it states moreover that for almost all u, the cardinality of the set of
Clarke critical points of fu is upper bounded by a finite constant which depends only on f .

One can wonder if Proposition 2 may still hold if f is definable and locally Lipschitz, but
not weakly convex. The answer is negative, as shown by the following example.

Example 2. Let f : R2 Ñ R be defined as fpy, zq “ ´|y| ` |z|. Then for any u P Bp0, 1q,
p0, 0q is a critical point for fu, but is neither a local minimum nor an active strict saddle.

3.2 Verdier and Angle Conditions

On the top of the items i-ii) of Definition 4, we introduce the following useful conditions.

Definition 6. Let M be a C1 active manifold around some x˚ P Z. We say that M satisfies
the Verdier condition and the angle condition, if the following conditions hold respectively.

iii) Verdier condition. There is a neighborhood U of x˚ and C ě 0, such that for every
y PM X U and every x P U ,∥∥PTyM pvq ´∇Mfpyq

∥∥ ď C ‖x´ y‖ , @v P Bfpxq .
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iv) Angle condition. For every α ą 0, there is β ą 0 and a neighborhood U of x˚, such
that for every x P U ,

fpxq´fpPM pxqq ě α ‖x´ PM pxq‖ ùñ xv, x´PM pxqy ě β ‖x´ PM pxq‖ , @v P Bfpxq .

Definition 7. An active strict saddle x˚ is said to satisfy the Verdier and angle conditions, if
the active manifold M in Definition 5 satisfies the Verdier and angle conditions. The function
f is said to satisfy the active strict saddle property of order p with the Verdier and angle
conditions, if it satisfies the active strict saddle property of order p and if every active strict
saddle satisfies the Verdier and angle conditions.

The Verdier condition merely states that M is one of the stratas of the Verdier stratifi-
cation of Theorem 1 The purpose of the angle condition is to relate, close to M , the linear
growth of the function f and the lower boundedness of the inner product between the sub-
gradients of f at x and the normal direction to M . The latter will allow us to prove that the
iterates of SGD converge to M fast enough.

Remark 1. Let M be an active manifold around x˚. As it will be clear from the proof
of Theorem 2, when f is weakly convex, M always satisfies the angle condition. Otherwise
stated, the angle condition is simply true in case of weakly convex functions. However, as the
following example shows, one is able to find many natural examples of functions which are
not weakly convex, and yet satisfy this condition.

Example 3. The function f : R2 Ñ R given by fpy, zq “ ´y2 ´ |z| is not weakly convex.
Its unique Clarke critical point p0, 0q is an active strict saddle, satisfying the Verdier and the
angle conditions.

Example 3 shows that the Verdier and angle conditions can be satisfied with no need for
f to be weakly convex. Nevertheless, more can be said when this assumption holds. The
following theorem strengthen the genericity result of Proposition 2 by establishing that the
active strict saddle property with the Verdier and angle conditions is satisfied by a generic
definable and weakly convex function. We recall the notation fupxq “ fpxq ´ xu, xy.

Theorem 2. Assume that f : Rd Ñ R is a definable, weakly convex function. For every
p ě 2, and for Lebesgue-almost every u P Rd, fu satisfies the active strict saddle property of
order p with the Verdier and angle conditions.

Proof. Let tX1, . . . , Xku be the Cp Verdier stratification from Theorem 1. Upon noticing
that in the proof of [17, Corollary 4.8 and Theorem 4.16] the active manifold 2 can be chosen
adapted to tX1, . . . , Xku, the existence of an active manifold with a Verdier condition follows
from [15, Theorem 2.9, Appendix A]. For the angle condition note that by weak convexity of
f there is ρ ě 0 such that:

fpPM pxqq ´ fpxq ě xv, PM pxq ´ xy ´ ρ ‖x´ PM pxq‖2
@v P Bfpxq .

Therefore, if fpxq ě fpPM pxqq ` α ‖PM pxq ´ x‖, then:

@v P Bfpxq, xv, x´ PM pxqy ě α ‖x´ PM pxq‖´ ρ ‖x´ PM pxq‖2 .

Taking U a neighborhood of x˚ close enough to zero, we see that the angle condition is
satisfied.

2The name active manifold follows the work of [15], while in [17] they are called identifiable manifolds.
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4 Avoidance of Active Strict Saddles

Let f : Rd Ñ R be a locally Lipschitz continuous function. On a probability space pΩ,A,Pq,
consider a random variable x0 and random sequences pvnq, pηnq on Rd. Define the iterates:

xn`1 “ xn ´ γnvn ` γnηn`1 , (8)

where pγnq is a deterministic sequence of positive numbers. Let pFnq be a filtration on
pΩ,A,Pq.

Assumption 1.

i) The function f is path differentiable.

ii) For every n, vn P Bfpxnq.

iii) The sequences pvnq, pηnq are adapted to pFnq, and x0 is F0-measurable.

iv) There are constants c1, c2 ą 0 and α P p1{2, 1s s.t. for all n P N:

c1

nα
ď γn ď

c2

nα
.

Consider a point x˚ P Z.

Assumption 2. The point x˚ is an active strict saddle of order 4 satisfying the Verdier and
angle conditions.

Since Hf,M px
˚q is a quadratic form we can write down Rd “ E´ ‘ E`, where E´ (re-

spectively E`) is the vector space spanned by the eigenvectors of the associated symmetric
bilinear form that have negative (respectively nonnegative eigenvalues). Note that by results
of Section 2.1 we have that E´ Ă Tx˚M and by Assumption 2 we have that dimE´ ě 1.

Assumption 3. The following holds almost surely on the event rxn Ñ x˚s.

i) Erηn`1|Fns “ 0, for all n.

ii) lim supEr‖ηn`1‖4
|Fns ă `8.

iii) Denote η´n`1 the projection of ηn`1 onto E´. We have:

lim inf Er
∥∥η´n`1

∥∥ |Fns ą 0

The following theorem is the main result of this paper.

Theorem 3. Let Assumptions 1–3 hold. Then Ppxn Ñ x˚q “ 0.

Combining Theorem 3 with the results of Section 3.2 we obtain that, under appropriate
assumptions, the SGD on a generic definable, weakly convex function converges to a local
minimizer. We state this result in the following corollary.

Corollary 1. Let Assumptions 1 and 2 hold. Assume that f has the active strict saddle
property of order 4 with the Verdier and angle conditions. Moreover, assume that almost
surely the following holds.

12



i) Erηn`1|Fns “ 0, for all n.

ii) For every C ą 0,
lim supEr‖ηn`1‖4

|Fns1‖xn‖ďC ă `8 .

iii) For all w P Rdzt0u,
lim inf Er|xw, ηn`1y| |Fns ą 0 .

Then, almost surely, the sequence pxnq is either unbounded, or converges to a local minimizer
of f .

5 Proof of Theorem 3

From now on, we assume without restriction that x˚ “ 0. Thus, ∇Mfp0q “ 0, and there
exists a vector w P T0M such that Hf,M p0qpwq ă 0.

The general idea of the proof of Theorem 3 is that on the event rxn Ñ 0s, the function PM
is defined for all large n, enabling us to write xn “ yn ` zn for these n, where yn “ PM pxnq.
The iterates pynq can then be written under the form of a standard smooth Robbins-Monro
algorithm for which the trap avoidance can be established by the technique of Brandière and
Duflo [9]. In this setting, the remainders zn will be shown to be small enough so as not to
alter fundamentally the approach of [9].

Let us provide more details on our proof. We first show that on rxn Ñ 0s, there is an
integer n0 such that for all all n ě n0, the norms ‖xn‖ are small, and moreover,

@v P Bfpxnq, xv, zny Á ‖zn‖ . (9)

This will be the object of Proposition 4 below. The idea is to show that for these n, it holds
that fpxnq ´ fpynq Á ‖zn‖, and then, to use the angle condition (iv) of Definition 6.

Let us temporarily assume that n0 is deterministic, and work on n ě n0. Keeping Inequal-
ity (9) aside for further use, the next step is to make a Taylor development of yn`1 “ PM pxn`1q

around xn. This leads to

PM pxn`1q “ PM pxnq ` JPM
pxnqpxn`1 ´ xnq `Op‖xn`1 ´ xn‖2

q

“ PM pxnq ` JPM
pynqpxn`1 ´ xnq `Op‖xn`1 ´ xn‖2

q `Op‖zn‖ ‖xn`1 ´ xn‖q,

where we used the Lipschitz continuity of the Jacobian matrix function JPM
p¨q. Using Equa-

tion (8), we rewrite the last display as

yn`1 “ yn ´ γnJPM
pynqvn ` γnJPM

pynqηn`1 ` γ
2
nOp1` ‖ηn`1‖2

q ` γnOp‖zn‖ p1` ‖ηn`1‖qq.

Now, lemma 1 shows that JPM
pynq coincides with the linear operator PTynM . Furthermore,

the Verdier condition (iii) of Definition 6 asserts that PTynM pvnq “ ∇Mfpynq ` Op‖zn‖q.
Altogether, we obtain the Robbins-Monro iteration

yn`1 “ yn´γn∇Mfpynq`γnPTynMηn`1`γ
2
nOp1`‖ηn`1‖2

q`γnOp‖zn‖ p1`‖ηn`1‖qq. (10)

Had we not have the last term γnOp‖zn‖ p1` ‖ηn`1‖qq at the right hand side, the approach
of Brandière and Duflo would have been enough to obtain the nonconvergence of yn to zero
under our assumptions on the noise. The presence of this term requires us to weaken a bit
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their conditions. This will be done in Proposition 3. In the case of Equation (10), this
proposition asserts that the trap avoidance remains true if

8
ÿ

i“n

γiE ‖zi‖ “ Opχnq

where

χn :“
`8
ÿ

i“n

γ2
i .

This is where Inequality (9) comes into play to establish this bound.
So far, we have assumed abusively that the moment n0 after which ‖xn‖ is small and (9) is

satisfied is deterministic. To deal with this issue, in Section 5.2, on an arbitrary large event A,
we construct a sequence pynq that is (for n large enough) equal to pPM pxnqq on AX rxn Ñ 0s
and satisfies an equation of the form (10) almost surely. Proposition 3 will allow us to prove
that Pprxn Ñ 0s X Aq ď Ppryn Ñ 0sq “ 0 and since the event A is arbitrary large, this will
prove Theorem 3.

5.1 Preliminary: Avoidance of Traps in the Smooth Case

The following proposition is nearly a quote of Brandière and Duflo’s theorem [9, Theorem 1].
As discussed below, we alleviate some hypotheses of [9].

To state this proposition recall that, by a standard result from linear algebra, for a matrix
H P Rdˆd, there is a decomposition Rd “ Λ` ‘ Λ´ such that Λ`,Λ´ are stable by H
and the eigenvalues of H|Λ´ (respectively H|Λ`) have eigenvalues with negative (respectively

nonpositive) real parts. Recall that for a smooth map D : Rd Ñ Rd, we denote JD its jacobian
and that χn :“

ř8
i“n γ

2
i .

Proposition 3. Let pΩ,A,Pq be a probability space, pFnq a filtration and pγnq a sequence
of deterministic nonnegative step sizes such that

ř

k γk “ `8 and
ř

k γ
2
k ă `8. Let d be

an integer and D : Rd Ñ Rd be such that Dp0q “ 0 and there is a neighborhood of 0 such
that on it D is continuously differentiable, with Lipschitz continuous Jacobian. Consider the
Rd–valued stochastic process pynq given by

yn`1 “ yn ´ γnDpynq ` γnη̃n`1 ` γn%n`1 ` γn%̃n`1 , (11)

where y0 is F0-measurable and the sequences pη̃nq, p%nq and p%̃nq are pFnq-adapted. Assume
that Λ´, the vector space associated to the eigenvectors of JDp0q that have negative real parts,
is of positive dimension. Denote η̃´n`1 the projection of η̃n`1 on Λ´ and assume that on the
event ryn Ñ 0s the following almost surely holds.

i) For all n, Erη̃n`1|Fns “ 0.

ii) lim supE
”

‖η̃n`1‖4
ˇ

ˇ

ˇ
Fns ă `8.

iii) lim inf E
“
∥∥η̃´n`1

∥∥ |Fn

‰

ą 0 .

iv)
ř`8
k“0 ‖%k`1‖2

ă `8 .
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v) We have that:

E

«

1rynÑ0s

`8
ÿ

i“n

γi ‖%̃i`1‖

ff

“ Opχnq.

Then Ppryn Ñ 0sq “ 0.

Proposition 3 is similar to [9, Theorem 1], except for the presence of the sequence p%̃nq.
As the proof is mainly an adaptation of the proof of [9, Theorem 1], we provide a sketch of
proof in the appendix.

5.2 Application to Algorithm (8)

To apply the results of the preceding section we need, first, to find a candidate for D, this is
the purpose of the next lemma. Its proof readily follows from results of Section 2.

Lemma 4. Let Assumption 2 hold and let r ą 0 be such that PM : Bp0, rq Ñ M is well
defined and is C3 and that there is a C4 function F : Bp0, rq Ñ R that agrees with f on
M XBp0, rq. Then, the function F ˝ PM is C3 on Bp0, rq and for y PM XBp0, rq, we have:

∇pF ˝ PM qpyq “ ∇Mfpyq .

Moreover, for w P Rd:
Hf,M p0qpwq “ wT∇2pF ˝ PM qw .

By Tietze’s extension theorem the function ∇pF ˝PM q : Bp0, rq Ñ Rd can be extended to
a bounded continuous function D : Rd Ñ Rd that we shall use in the remainder of the paper.

For r ą 0 such that PM is well defined on Bp0, rq, and for C ą 0, denote

VrpCq “ tx P Bp0, rq : @v P Bfpxq, xv, x´ PM pxqy ě C ‖x´ PM pxq‖u .

The next proposition is a key element in our proof. To not interrupt our exposition its
proof is provided in Section 5.3.

Proposition 4. Let Assumptions 1–3 hold. There is β, r1 ą 0, such that for every r ă r1,
almost surely on the event rxn Ñ 0s, xn P Vrpβq for all n large enough.

In the remainder, we fix β, r1 ą 0 as those provided by the previous proposition. We let
U be the neighborhood around zero that verify conditions of Definition 6. In the following,
we choose r ď r1 such that PM is C3 on Bp0, rq, and Bp0, rq Ă U . The value of r, while
always satisfying these requirements, will be adjusted in the course of the proof.

Firstly, to reduce technical issues, we notice that as in [9, Section I.2] to prove Theorem 3
we can actually replace Assumption 3 by the following, more easy to handle, assumption.
The notation Enr¨s stands for Er¨|Fns.

Assumption 4. Almost surely, the sequence pηnq is such that Enrηn`1s “ 0 and there is
A,B ą 0 such that for all n P N, we have:

Enr‖ηn`1‖4
s ď B

and
Enr

∥∥η´n`1

∥∥s ě A .
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Given an integer N ě 0, we define the probability event

AN “ r@n ě N, xn P Vrpβqs .

Note that the sequence of events pAN q is increasing for the inclusion. Furthermore, Proposi-
tion 4 shows that

rxn Ñ 0s Ă
8
ď

N“0

AN “ lim
NÑ8

AN .

Thus,
P rxn Ñ 0s “ P rrxn Ñ 0s X limAN s “ lim

NÑ8
P rrxn Ñ 0s XAN s .

Consequently, given an arbitrary δ ą 0, there is an integer Npδq ě 0 such that

P
“

rxn Ñ 0s XANpδq

‰

ě P rxn Ñ 0s ´ δ. (12)

For an integer N ě 0, define the stopping time

τN “ inftn ě N, xn R Vrpβqu,

with infH “ 8, and recall from the definition of r that for N ď n ă τN , the projection
PM pxnq is well-defined. Define recursively the process pyNn qněN´1 as follows: yNN´1 “ 0,

yNn “

$

’

&

’

%

PM pxnq if N ď n ă τN ,

yNn´1 ´ γn´1Dpy
N
n´1q ` γn´1JPM

pyNn´1qηn if n “ τN ,

yNn´1 ´ γn´1Dpy
N
n´1q ` γn´1ηn, otherwise,

and let
zNn “ pxn ´ y

N
n q1năτN for n ě N.

Observe that yNn and zNn are both Fn–measurable for all n ě N . To establish Theorem 3, we
shall show that for each N ě 0,

P
”

yNn ÝÝÝÑnÑ8
0
ı

“ 0. (13)

Indeed, on the event ANpδq, it holds that y
Npδq
n “ PM pxnq for n ě Npδq, thus,

“

rxn Ñ 0s XANpδq

‰

Ă

””

yNpδqn Ñ 0
ı

XANpδq

ı

.

Consequently, with the convergence (13) at hand, we get from Inequality (12) that Prxn Ñ
0s ď δ. Since δ is arbitrary, we obtain that Prxn Ñ 0s “ 0.

In the remainder of this section, N ě 0 is a fixed integer.

Proposition 5. Let Assumptions 1–2 and 4 hold. Then, the sequence pyNn qněN satisfies the
recursion:

yNn`1 “ yNn ´ γnDpy
N
n q ` γnη̃

N
n`1 ` γn%

N
n`1 ` γn%̃

N
n`1 ,

where the random sequences pη̃Nn qněN , p%Nn qněN , and p%̃Nn qněN are adapted to pFnq. More-
over, there is C ą 0 such that for all n ě N ,

i)
∥∥%Nn`1

∥∥ ď Cγnp1` ‖ηn`1‖2
q1τNąn`1.
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ii)
∥∥%̃Nn`1

∥∥ ď C
∥∥zNn ∥∥ p1` ‖ηn`1‖q.

iii) Enη̃Nn`1 “ 0, and En
∥∥η̃Nn`1

∥∥4
ă C.

We furthermore have:

iv) The subspace E´ defined before Assumption 3 coincides with the eigenspace of the matrix
JDp0q corresponding to its negative eigenvalues.

v) On the event ryNn Ñn 0s, it holds that lim infn En
∥∥PE´ η̃Nn`1

∥∥ ą 0.

To prove this proposition, the following result will be needed.

Lemma 5. For r small enough, there is C ą 0 such that for x, x1 P Bp0, rq, we have:

y1 ´ y “ JPM
pyqpx1 ´ xq `R1px, x

1, yq `R2px, x
1q ,

where y1, y “ PM px
1q, PM pxq, and where ‖R1px, x

1, yq‖ ď C ‖x1 ´ x‖ ‖x´ y‖, and ‖R2px, x
1q‖ ď

C ‖x1 ´ x‖2.

Proof. Since PM is C2 near zero, there is ε ą 0 such that t ÞÑ PM px ` tpx1 ´ xqq is C2 on
p´ε, 1` εq. Hence, by Taylor’s theorem, we have

y1 ´ y “ JPM
pxqpx1 ´ xq `R2px

1, xq ,

with ‖R2px
1, xq‖ ď C ‖x1 ´ x‖2, where C is a bound on the second derivatives of PM . Sim-

ilarly, since PM is C2, x ÞÑ JPM
pxq is Lipschitz continuous. Therefore, for some C ą 0,

‖JPM
pxq ´ JPM

pyq‖ ď C ‖x´ y‖, which finishes the proof.

Proof of Proposition 5. Letting n ě N , we write

yNn`1 “ PM pxn`1q1τNąn`1`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1`γn
`

JPM
pyNn q1τN“n`1 ` 1τNďnηn`1

˘

,

accepting the small notational abuse in the expression PM pxn`1q1τNąn`1, since the projection
might not be defined when the indicator is zero. Similar abuses will also be made in the
derivations below.

Using Lemma 5 and Equation (8), we obtain

yNn`1 “
`

yNn ` JPM
pyNn qpxn`1 ´ xnq

˘

1τNąn`1 ` γn%
N
n`1 ` γnζ

N
n`1

`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1 ` γn
`

JPM
pyNn q1τN“n`1 ` 1τNďnηn`1

˘

“
`

yNn ´ γnJPM
pyNn qvn ` γnJPM

pyNn qηn`1

˘

1τNąn`1 ` γn%
N
n`1 ` γnζ

N
n`1

`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1 ` γn
`

JPM
pyNn q1τN“n`1 ` 1τNďnηn`1

˘

,

where %Nn`1 and ζNn`1 are Fn`1–measurable, and satisfy with the notations of Lemma 5∥∥ζNn`1

∥∥ “ γ´1
n

∥∥R1pxn, xn`1, y
N
n q

∥∥1τNąn`1 ď Cγ´1
n ‖xn`1 ´ xn‖

∥∥zNn ∥∥ ď Cp1` ‖ηn`1‖q
∥∥zNn ∥∥

(in the last inequality, we used that ‖vn‖ is bounded on rτN ą ns), and∥∥%Nn`1

∥∥ “ γ´1
n ‖R2pxn, xn`1q‖1τNąn`1

ď Cγ´1
n ‖xn`1 ´ xn‖2

1τNąn`1

ď Cγnp1` ‖ηn`1‖2
q1τNąn`1.
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Using Lemma 1 in conjunction with the Verdier condition (iii) of Definition 6, we also have

JPM
pyNn qvn1τNąn`1 “ PT

yNn
M pvnq1τNąn`1 “ ∇Mfpy

N
n q1τNąn`1`ζ̃

N
n`1 “ DpyNn q1τNąn`1`ζ̃

N
n`1,

where ζ̃Nn`1 is Fn`1–measurable, and satisfies∥∥∥ζ̃Nn`1

∥∥∥ ď C
∥∥xn ´ yNn ∥∥1τNąn`1 ď C

∥∥zNn ∥∥ .
Gathering these expressions, we get

yNn`1 “ yNn ´ γnDpy
N
n q ` γnη̃

N
n`1 ` γn%n`1 ` γn%̃n`1,

where

η̃Nn`1 “
`

1τNąnJPM
pyNn q ` 1τNďn

˘

ηn`1, and (14)

%̃Nn`1 “ ζNn`1 ` ζ̃
N
n .

The assertions i) and ii) of the statement are obtained from what precedes.
The noise η̃Nn is obviously Fn–measurable. Moreover, Enη̃Nn`1 “ 0 since 1τNąnJPM

pyNn q`
1τNďn is Fn–measurable. The last bound in iii) follows from Assumption 4.

Assertion iv) follows from Lemma 4.
To establish v), we write∥∥pη̃Nn`1q

´
∥∥ “ ∥∥PE´JPM

pyNn qηn`1

∥∥1τNąn ` ‖PE´ηn`1‖1τNďn
ě ‖PE´ηn`1‖´

∥∥PE´JPM
pyNn qηn`1 ´ PE´ηn`1

∥∥1τNąn.
On the event ryNn Ñn 0s, it holds that JPM

pyNn q Ñn J0. By Lemma 1, J0 is the orthogonal
projection on T0M , thus, limyNn Ñn0 PE´JPM

pyNn q “ PE´ . Consequently, we obtain on the

event ryNn Ñn 0s:

lim inf
n

En
∥∥pη̃Nn`1q

´
∥∥ ě lim inf

n
En

∥∥η´n`1

∥∥´ lim sup
n

`∥∥PE´JPM
pyNn q ´ PE´

∥∥ En ‖ηn`1‖
˘

ě lim inf
n

En
∥∥η´n`1

∥∥
ą 0 ,

and by Assumption 4. Proposition 5 is proven.

Proposition 6. Let Assumptions 1–2 and 4 hold true. Then, there is C ą 0 such that

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
´ γn

ˆ

2β

r
´ C

˙∥∥zNn ∥∥2
` Cγ2

n, and

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
´ γn p2β ´ Crq

∥∥zNn ∥∥` Cγ2
n.

Proof. We shall use the notation
pNn “ xn ´ y

N
n ,

which enables us to write zNn “ pNn 1năτN .
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We start with the development∥∥zNn`1

∥∥2
“

∥∥pNn`1

∥∥2
1n`1ăτN

ď
∥∥pNn`1

∥∥2
1năτN “

∥∥pNn`1 ´ p
N
n ` p

N
n

∥∥2
1năτN

“
∥∥zNn ∥∥2

` 2xxn`1 ´ xn, z
N
n y ´ 2xyNn`1 ´ y

N
n , z

N
n y `

∥∥pNn`1 ´ p
N
n

∥∥2
1năτN . (15)

We now deal separately with each of the three rightmost terms in the last expression.
We first show that

En|xyNn`1 ´ y
N
n , z

N
n y| ď Cγn

∥∥zNn ∥∥2
` Cγ2

n. (16)

By Proposition 5,

xyNn`1 ´ y
N
n , z

N
n y “ γnx´Dpy

N
n q ` η̃

N
n`1 ` %

N
n`1 ` %̃

N
n`1, z

N
n y.

We have xDpyNn q, z
N
n y “ x∇Mfpy

N
n q, z

N
n y “ 0 since ∇Mfpy

N
n q P TyNn M . Furthermore, we get

from Equation (14) that

1năτN η̃
N
n`1 “ 1năτNJPM

pyNn qηn`1 “ 1năτNPTyNn M
pηn`1q

by Lemma 1, thus, xη̃Nn`1, z
N
n y “ 0. As a consequence,

|xyNn`1 ´ y
N
n , z

N
n y| ď γnp

∥∥zNn ∥∥2
`
∥∥%Nn`1 ` %̃

N
n`1

∥∥2
q ď γn

∥∥zNn ∥∥2
` 2γnp

∥∥%Nn`1

∥∥2
`
∥∥%̃Nn`1

∥∥2
q.

From Proposition 5 again, we have

En
∥∥%Nn`1

∥∥2
ď CγnEnp1` ‖ηn`1‖2

q1τNąn`1 ď CγnEnp1` ‖ηn`1‖2
q ď Cγn ,

and
En

∥∥%̃Nn`1

∥∥2
ď C

∥∥zNn ∥∥2
p1` En ‖ηn`1‖2

q ď C
∥∥zNn ∥∥2

.

Inequality (16) is obtained by combining these inequalities.
We next show succinctly that

En
∥∥pNn`1 ´ p

N
n

∥∥2
1năτN ď Cγ2

n. (17)

Indeed,∥∥pNn`1 ´ p
N
n

∥∥2
1năτN “

∥∥xn`1 ´ xn ´ py
N
n`1 ´ y

N
n q

∥∥2
1năτN

ď Cγ2
n

´

‖vn‖2
` ‖ηn`1‖2

`
∥∥DpyNn q∥∥2

`
∥∥η̃Nn`1

∥∥2
`
∥∥%Nn`1

∥∥2
`
∥∥%̃Nn`1

∥∥2
¯

1năτN ,

and the result follows by standard calculations making use of the results of Proposition 5.
We finally deal with the term xxn`1 ´ xn, z

N
n y. Since Enηn`1 “ 0, we have Enxxn`1 ´

xn, z
N
n y “ ´γnxvn, z

N
n y. Observing that xn P Vrpβq when zNn ‰ 0, we obtain from the very

definition of the set Vrpβq that

Enxxn`1 ´ xn, z
N
n y ď ´γnβ

∥∥zNn ∥∥ .
Getting back to Inequality (15), and using this result in conjunction with the inequalities (16)
and (17), we obtain that

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
` Cγn

∥∥zNn ∥∥2
´ 2γnβ

∥∥zNn ∥∥` Cγ2
n.

Since xn P Bp0, rq on the event rn ă τN s, it holds that
∥∥zNn ∥∥ ď r and thus,

∥∥zNn ∥∥2
ď r

∥∥zNn ∥∥.
This leads at once to the inequalities in the statement of the proposition.
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Corollary 2. Under the assumptions of the previous proposition, there is C ą 0 such that

8
ÿ

i“n

γiE
∥∥zNi ∥∥ ď Cχn

for n ě N .

The proof of this corollary makes use of a technical result which is attributed to [11]. Its
proof can be found in, e.g., [10]:

Lemma 6 (Lemma D.2 in [10]). Let panq be a nonnegative sequence such that for all n large
enough,

an`1 ď an

ˆ

1´
P

np

˙

`
Q

np`q
,

where p P p0, 1s, q ą 0, and P,Q ą 0. It is further assumed that P ą q if p “ 1. Then, there
exists C ą 0 such that

an ď
C

nq
.

Proof of Corollary 2. Let C ą 0 be the constant provided in the statement of Proposition 6.
Choose r ą 0 small enough so that 2βr´1 ´ C ą 0. Replacing γn in this statement with the
bounds on this step size provided by Assumption 1–(iv), we get from the first inequality in
Proposition 6

E
∥∥zNn`1

∥∥2
ď

ˆ

1´
c1

nα

ˆ

2β

r
´ C

˙˙

E
∥∥zNn ∥∥2

`
c2C

n2α
.

We apply the previous lemma with an “ E
∥∥zNn ∥∥2

, after adjusting r ą 0 when needed in order
that all the conditions in the statement of this lemma are satisfied. We get that there exists
a constant C 1 ą 0 such that

E
∥∥zNn ∥∥2

ď
C 1

nα
.

Let k ą 0 be an integer. Telescoping the second inequality stated by Proposition 6 from n`k
back to n, we get

E
∥∥zNn`k∥∥2

ď E
∥∥zNn ∥∥2

´ p2β ´ Crq
n`k´1
ÿ

i“n

γiE
∥∥zNi ∥∥` C n`k´1

ÿ

i“n

γ2
i ,

which implies that

p2β ´ Crq
n`k´1
ÿ

i“n

γiE
∥∥zNi ∥∥ ď E

∥∥zNn ∥∥2
` C

n`k´1
ÿ

i“n

γ2
i ď

C 1

nα
` C

n`k´1
ÿ

i“n

γ2
i .

Making k Ñ8, we obtain that

p2β ´ Crq
8
ÿ

i“n

γiE
∥∥zNi ∥∥ ď C 1

nα
` Cχn.

To complete the proof, it remains to notice that since γn „ n´α with α P p1{2, 1s, it holds
that χn „ n1´2α Á n´α.
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Theorem 3: end of the proof. We now have all the elements to establish the identity (13),
proving Theorem 3. For this, notice that,for every N ě 0, by Proposition 5, yNn satisfies an
equation of the form Equation (11). The assumption of Proposition 3 on the sequence pη̃nq
are satisfied by Proposition 5 and the assumptions on the sequences p%nq, p%̃nq follow from
Assumption 4 and Corollary 2.

Hence, applying Proposition 3, we obtain that PpryNn Ñ 0sq “ 0, for all N ě 0. As
previously explained, the latter implies that Pprxn Ñ 0sq “ 0.

To complete the proof of Theorem 3 it remains to prove Proposition 4, which is the purpose
of the next section.

5.3 Proof of Proposition 4

The standard way to analyze the convergence of the SGD to the set of Clarke critical points
is by studying its continuous counterpart - the subgradient flow:

9xptq P ´Bfpxptqq . (18)

We say that an absolutely continuous curve x : R` Ñ R is a solution of the differential
inclusion (DI) (18) starting at x P Rd if xp0q “ x and if for almost every t P R`, the
inclusion (18) is verified. We denote S´Bf pxq the set of these solutions.

The idea of the proof of Proposition 4 goes as follows. For each initial point x P Bp0, r0q

with r0 ą 0 small enough, either all the trajectories of (18) issued from x leave Bp0, r0q in a
fixed time horizon, or fpxq´fpPM pxqq ě α ‖x´ PM pxq‖. This will be the content of the next
lemma. Next, we use the well-known fact that the interpolated process constructed from our
iterates pxnq is a so-called Asymptotic Pseudo Trajectory (APT) of the DI (18), as formalized
in [2] (see also, e.g., [19, 29]). The consequence is that on the event rxn Ñ 0s, necessarily
fpxnq´fpPM pxnqq ě α ‖xn ´ PM pxnq‖ after a certain finite moment. To complete the proof,
it remains to make use of the angle condition (iv) of Definition 6.

Lemma 7. Let f : Rd Ñ R a locally Lipschitz continuous, path differentiable function. Let
M be a C2 active manifold for f such that 0 PM , fp0q “ 0, and ∇Mfp0q “ 0. Then, there is
α, T ą 0 and r0 ą 0 s.t. for every x P S´BF pxq, with x P Bp0, r0q, either xpr0, T sq Ć Bp0, r0q

or fpxq ´ fpPM pxqq ě α ‖x´ PM pxq‖.

Proof. Let r ą 0 be such that Bp0, rq Ă U , where U is the neighborhood from Definition 4.
Since f is C2 on M X Bp0, rq and ∇Mfp0q “ 0, there is some constant C s.t. we have
supxPBp0,rq ‖∇MfpPM pxqq‖ ď C ‖PM pxq‖. Denote L the Lipschitz constant of f on Bp0, rq

and let cm be such that inft‖v‖ : v P Bfpxq, x P Bp0, rq XM cu ě cm. Fix r0 ď minp c
2
m

2LC , rq
and consider x P Bp0, r0q and x P S´BF pxq. Denote t1 “ inftt : xptq P M or xptq R Bp0, r0qu.
Since f is path differentiable, we have:

inf
x1PBp0,r0q

fpx1q ď fpxptqq “ fpxq ´

ż t

0
‖ 9xpuq‖ du ď fpxq ´ c2

mt1 ď sup
x1PBp0,r0q

fpx1q ´ c2
mt1 .

Hence, if we choose T s.t. c2
mT ą 2 supx1PBp0,r0q |fpx

1q|, we have t1 ď T and either xpt1q R
Bp0, rq or xpt1q PM . Assume that xpt1q PM and denote yptq “ PM pxptqq and zptq “ xptq´yptq.
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Notice that for almost every t ě 0, we have ‖ 9yptq‖ “
∥∥∥PTyptq 9xptq

∥∥∥ ď L. Moreover, by path-

differentiability of f we have:

|fpypt1qq ´ fpyp0qq| ď

ż t1

0
|x∇Mfpypuqq, 9ypuqy|du

ď

ż t1

0
‖∇Mfpypuqq‖ ‖ 9ypuq‖du

ď C

ż t1

0
‖ypuq‖ ‖ 9ypuq‖ du

ď LCr0t1 ď
1

2
c2
mt1 .

Where the first inequality comes from the fact that f is path differentiable and that for

all u P r0, T s, 9ypuq P TypuqM . Denote α “ c2m
4L and assume by contradiction that fpxq ´

fpPM pxqq ď α ‖x´ PM pxq‖. We have:

0 “ fpxpt1qq ´ fpypt1qq ď fpxq ´ c2
mt1 ´ fpypt1qq

ď fpxq ´ fpyp0qq `
c2
m

2
t1 ´ c

2
mt1

ď α ‖x´ PM pxq‖´
c2
m

2
t1 .

Which implies that ‖x´ PM pxq‖ ě c2m
2α t1 ě 2Lt1. On the other hand, we have that ‖zptq‖ “

distpxptq,Mq. Since the distance function is 1-Lipschitz, we have for almost every t ě 0:

ˇ

ˇ

ˇ

ˇ

d

dt
‖zptq‖

ˇ

ˇ

ˇ

ˇ

ď ‖ 9xptq‖ ď L .

Therefore,
0 “ ‖zpt1q‖ ě ‖zp0q‖´ Lt1 “ ‖x´ PM pxq‖´ Lt1 ,

which implies that ‖x´ PM pxq‖ ď Lt1, a contradiction.

Let X : R` Ñ Rd be the linearly interpolated process defined as:

Xptq “ xn `
t´

řn
i“0 γi

γn`1
pxn`1 ´ xnq, if t P rτn, τn`1q ,

where τn “
řn
i“0 γi.

It is well known that under our assumptions, on the event rxn Ñ 0s, X is an APT for the
DI (18), as shown in [2, 19, 29]. Namely, for every T ą 0,

sup
hPr0,T s

inf
xPS´Bf pXptqq

‖Xpt` hq ´ xphq‖ ÝÝÝÝÑ
tÑ`8

0 .

Consider α, T and r0 from Lemma 7. On the event rxn Ñ 0s let xn P S´BF pxnq be such that

sup
hPr0,T s

‖Xpτn ` hq ´ xnphq‖ ÝÝÝÝÑ
nÑ`8

0 .
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Consider r1 ď r0 such that Bp0, r1q Ă U , where U is the neighborhood associated to α by the
angle condition. If for n large enough, xnpr0, T sq remains in Bp0, r1q, then by Lemma 7 we
have:

fpxnq ě α ‖xn ´ PM pxnq‖` fpPM pxnqq ,

which, by the angle condition, implies that there is β ą 0

xvn, xn ´ PM pxnqy ě β ‖xn ´ PM pxnq‖ . (19)

Otherwise, on the event rxn Ñ 0s, there is hn P r0, T s such that after an extraction Xpτn `
hnq Ñ x, with x R Bp0, r1q. Since the limit points of X are the accumulation points of the
sequence pxnq, this contradicts the fact that xn Ñ 0.

Appendix A Sketch of proof of Proposition 3

We recall that Enr¨s denotes Er¨|Fns. Denote d´ the dimension of Λ´. Using the center-stable
manifold theorem, the authors of [9, Page 407–409] construct a sequence pwnq

3 in Rd´ such
that

wn “ wn ` γnHnwn ` γnprn`1 ` r
1
n`1 ` en`1q ,

where the sequences pwnq, prnq, pr
1
nq, penq are adapted to pFnq and we have the inclusion

ryn Ñ 0s Ă rwn Ñ 0s. Moreover, on the event ryn Ñ 0s, the following almost surely holds.

i) There is H an invertible matrix such that all of the real parts of its eigenvalues are
positive and

Hn Ñ H .

ii) The sequence penq is such that Enren`1s “ 0 and

0 ă lim inf Enr‖en`1‖2
s ď lim supEnr‖en`1‖2

s ă `8 .

iii) The sequence prnq is such that
ř`8
i“0 ‖ri`1‖2

ă `8.

iv) The sequence pr1nq is such that Er1Γ
ř`8
i“n γi

∥∥r1i`1

∥∥s “ Opχnq.

The only difference with [9] is in the presence of pr1n`1q and the point (iv).
Using this representation, the avoidance of traps result follows from the following proposi-

tion. The only difference with [9, Proposition 4] is, once again, in the presence of the sequence
pr1nq.

Proposition 7 ([9, Proposition 4]). Let d be an integer, pΩ,A,Pq be a probability space, pFnq

a filtration on it and pwnq be a sequence in Rd verifying:

wn`1 “ wn ` γnHn ` γnprn`1 ` r
1
n`1 ` en`1q , (20)

where the sequences pwnq, pHnq, prnq, pr
1
nqpenq are adapted to pFnq and pγnq is a sequence of

positive stepsizes s.t.
ř`8
i“0 γi “ `8 and

ř`8
i“0 γ

2
i ă `8. Assume that on an event Γ P A we

have the following.

3U`n in their notations.
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i) The sequence pγnq is such that
ř`8
i“0 γi “ `8 and

ř`8
i“0 γ

2
i ă `8.

ii) The sequence penq is such that Enren`1s “ 0 and

0 ă lim inf Enr‖en`1‖s ď lim supEnr‖en`1‖2
s1{2 ă `8 .

iii) The sequence prnq is such that
ř`8
i“0 ‖ri`1‖2

ă `8.

iv) The sequence pr1nq is such that E
“

1Γ
ř`8
i“n γi

∥∥r1i`1

∥∥‰ “ Opχnq.

Let H P Rdˆd be a matrix such that all of the real parts of its eigenvalues are positive. Then,
denoting Υ “ ΓX rwn Ñ 0s X rHn Ñ Hs, we have P pΥq “ 0.

Proof. In this proof C will denote some absolute constant that can change from line to line.
The proof closely follows the one of [9, Proposition 4]. As in [9] it is sufficient to prove
the proposition in the case where there A,B,K ą 0 such that almost surely Enren`1s “ 0,
A ď Enr‖en`1‖s ď Enr‖en`1‖2

s1{2 ď B and
ř`8
i“0 ‖ri`1‖2

ď K.
We can rewrite Equation (20) as:

wn`1 “ wn ` γnHwn ` γn∆nwn ` γnpen`1 ` rn`1 ` r
1
n`1q ,

where ∆n “ Hn´H. Let Q be a positive definite symmetric matrix such that QH `HTQ “
2I, where I P Rdˆd is the identity matrix. Denote Un “ pw

T
nQwnq

1{2. Following the same
calculations as in [9], we obtain that:

pUn`1 ´ Unq ě
1

Un
wTn`1Qwn

ě
γn
Un

´

‖wn‖2
` wTnQ∆nwn ` w

T
nQpen`1 ` rn`1 ` r

1
n`1q

¯

ě γn ‖wn‖

˜

1

λ
1{2
max

´
‖Q∆n‖
λ

1{2
min

¸

`
γnw

T
nQpen`1 ` rn`1 ` r

1
n`1q

Un
,

where λmax, λmin are respectively the maximal and the minimal eigenvalue of Q. The event
Υ is included in a union of events Υp defined as:

Υp “ ΥX

«

@n ě p,
1

λ
1{2
max

´
‖Q∆n‖
λ

1{2
min

ě
1

2λ
1{2
max

ff

X

„

sup
něp

‖wn‖ ď 1



X

«

`8
ÿ

i“p

γi
∥∥r1i`1

∥∥ ă 1

ff

.

Therefore, on Υp, there is C ą 0 such that for M ě n ě p, we have:

M
ÿ

i“n

γi ‖wi‖ ď CUM`1 ` C

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qpei`1 ` ri`1 ` r

1
i`1q

Ui

∥∥∥∥∥ .
Hence,

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď C ‖UM`1‖2
` C

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qei`1

Ui

∥∥∥∥∥
2

` C

˜

`8
ÿ

i“n

γ2
i

¸˜

`8
ÿ

i“n

‖ri`1‖2

¸

` C

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2

ď C ‖UM`1‖2
` C sup

Měp

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qei`1

Ui

∥∥∥∥∥
2

` Cχn ` C

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2

,
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where we used the fact that
‖wT

nQ‖
Un

is bounded. On Υp we have that Er‖UM`1‖2
s Ñ 0.

The sequence p
řM
i“n γi

wT
i Qei`1

Ui
qMěn is a square summable martingale difference sequence.

Therefore, by Doob’s maximal inequality:

E

»

–1Γ sup
MPN

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

i“n

γi
wTi Qei`1

Ui

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď CE

«

`8
ÿ

i“n

γ2
i ‖ei`1‖2

ff

ď Cχn .

Finally, on Υp we have
ř`8
i“n γi

∥∥r1i`1

∥∥ ă 1. Therefore, by assumptions:

E

»

–1Υp

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2
fi

fl ď E

«

1Υ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff ď Cχn

Hence, there is C ą 0 such that:

E

»

–1Υp

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď Cχn . (21)

On the other hand, following the calculations of [9], on Υp we have:

´ wp “
`8
ÿ

i“p

`

R1
i ` γipei`1 ` ri`1 ` r

1
i`1q

˘

, (22)

where we denote Rn “ ∆nwn and for n ě p:

R1
n “ γnRn ´ pB

´1
n´1 ´B

´1
n qSn ,

Sn “
`8
ÿ

i“n

γipRi ` ei`1 ` ri`1 ` r
1
i`1q ,

Bn “
n
ź

i“p

p1` γiHq .

The idea of the remaining part of the proof is to apply [9, Theorem A] to obtain that the
left hand side of Equation 22 can be Fp-measurable only with probability 0. The latter will
imply PpΥpq “ 0 and since Υ “

Ť

pPN Υp, the proof will be finished. As in the proof [9], one
of the assumptions of [9, Theorem A], to obtain the remaining part it suffices to have:

E

«

1Υp

`8
ÿ

i“n

∥∥R1
i ` γir

1
i`1

∥∥ff “ op
?
χnq , (23)

where the difference with the proof of [9, Proposition 4] is in the presence of the term r1i`1.
To prove Equation (23) we write down:

E

«

1Υp

`8
ÿ

i“n

∥∥R1
i ` γir

1
i`1

∥∥ff ď CE

«

1Υp sup
iěn

‖∆i‖
`8
ÿ

i“n

γi ‖wi‖

ff

` CE

«

1Υp

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ ‖Si‖
ff

` E

«

1Υp

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff
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By Inequality (21) we have:

E

«

1Υp sup
iěn

‖∆i‖
`8
ÿ

i“n

γi ‖wi‖

ff

ď CEr1Υp sup
iěn

‖∆i‖2
s1{2E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

1{2

ď CEr1Υp sup
iěn

‖∆i‖2
s1{2
?
χn

ď opχnq .

(24)

As noticed in [9] we have
ř`8
i“1

∥∥B´1
i´1 ´B

´1
i

∥∥ ă `8. Therefore,

E
“

1Υp ‖Si‖
‰

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ ď C
?
χn

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ “ op
?
χnq , (25)

and by assumptions

E

«

1Υp

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff ď Cχn “ op
?
χnq . (26)

Combining (24), (25) and (26) we obtain Equation (23). Hence, we can apply [9, Theorem
A] to obtain that PpΥpq “ 0. Since Υ “

Ť

pPN Υp, the proof is finished.
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