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Abstract

This paper investigates automatic digitization with complete coverage of large and complex envi-

ronments using a TLS or a mobile scanner. We propose an adaptive multi-objective view-planner

that can operate in an unknown environment to provide guidance for the human operator and ease

the scanning task or by a mobile robot for an automatic exploration of the environment. The pro-

posed view-planner is adapted to environments where the sensor is operating on a flat surface

such as office spaces, urban areas, open fields or in some cultural heritage applications. First,

we propose an adaptive gap-based method to extract occluded areas in a point cloud, which is

completely automated and does not require extensive computations in a large environment such

as ray-tracing or level-set methods. Then, we introduce a novel exploration strategy that uses

specific regions of the environment called ”Conservative-Cells” to drastically reduce the number

of sensing positions to achieve complete digitization of the environment.

Both methods were validated with simulated and real point clouds. The proposed approach

has been applied to a scanner carried by a mobile robot, then to data acquired by a TLS used by a

human operator in a large, complex environment. Experimental results on both TLS and mobile

robot show that our view-planning approach is effective in finding a sequence of positions that

leads to a complete reconstruction of the environment. Moreover, the proposed approach shows

efficient performance in terms of coverage rate and computational time compared to others view-

planning approaches as well as the results of an experienced human operator in a large, complex

environment.
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1. INTRODUCTION

In recent decades, environment digitization with a laser scanner has become popular due

to the high demand for virtual models in various fields of application. A laser scanner can be

embedded on a mobile robot or positioned by a human in the case of a Terrestrial Laser Scanner

(TLS) to remotely digitize objects and provides fast measurements over a wide angular range.

In environments with complex object geometry and unavoidable obstacles, multiple scans from

different locations are required to achieve maximum coverage. The registration process is used

to ”link” the scans together by using artificial targets references, among other methods [1, 2, 3].

The key factor in acquiring a point cloud is to estimate the best sequence of the scanner’s

position, allowing the scanned area to environment to be expanded rapidly, this increasing the

coverage / completeness. Nevertheless, in large and complex environments, even an experienced

human operator cannot accurately identify the remaining occluded areas to achieve the best cov-

erage rate with the minimum number of the scanner positions.

Therefore, a computer-aid algorithm is needed to assist the task of environment digitization.

Usually, this class of algorithm is called ”View-Planner”. It intends to achieve visibility analysis

by extracting the locations of occluded areas and estimating the best sequence of sensing posi-

tions based on an exploration strategy to ensure global coverage of the environment. Besides, a

view-planner can be used by a human operator to provide guidance and ease the scanning task or

by a mobile robot for an automatic exploration of the environment.

The existing research on view-planning algorithms can be categorized into two groups: view-

planner with a prior model, view-planner with no prior model.

Planning with a prior model, also known as ”model-based planning” algorithms, was exam-

ined first with the art gallery problems [4, 5] and terrain guarding [6]. In the context of envi-

ronment digitization, the emphasis has been primarily laid on the development of model-based

algorithms [7] motivated by the widespread use of CAD software for sketching 2D floor plans

or 3D modeling of the environment to be scanned. Yet these approaches are used before the site

visit to plan a sequence of TLS positions to ensure the required completeness and quality of the

final digitization. Several works [8, 9, 10, 11] have already been conducted to solve model-based
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planning based on three main point cloud quality metrics: Completeness (coverage) [12, 13, 14],

Level of Accuracy (LOA) / Level of Density (LOD) [15, 16] and the registration accuracy [17].

In addition, other metrics such as acquisition time [18] or other factors that affect the quality

of the data, like the properties of the scanned surfaces [19] or the effect of range and incidence

angle [20, 21], are considered in other works.

However, the 2D floor plan of the environment to be scanned is not always available and

collecting accurate information about the environment for 2D floor plan sketching requires more

time and labor. Such limitations motivated the development of automated approaches for plan-

ning with no prior model commonly known as Next-Best-View planning algorithms. These

methods [22, 23, 24, 10] are mainly used with autonomous robots that operate in unknown en-

vironments with no prior knowledge of the scene. During the scanning process, the coverage of

the scanned model is extended and updated until the desired termination condition is reached.

In this paper, we propose a non-model-based view-planner for achieving the task of au-

tonomous exploration when the scanner is operating on a flat surface. In fact, it is usually the case

in many environments such as office spaces, urban areas, open fields or in some cultural heritage

applications. Several recent works in TLS view-planning [18, 14, 25] show that in this case, the

complexity of the Next-Best-View planning can be reduced by considering the 3D environment

as a 2D horizontal cross-section at the height of the scanner. Moreover, in mobile robotics explo-

ration [26, 27, 28], using a 2D map which is efficient for navigation with a 3D scanner embedded

on the robot for digitization, reduces the exploration time and provides a complete 3D model of

the environment.

The first step of our view-planner called ”Projective-Method” is a gap-based method used to

extract occluded areas with the finest resolution. In contrast to the previous gap-based methods

[28, 29, 30, 31] this avoids using predefined parameters which vary according to the scene’s

geometry. Moreover, the gap representation is simple, adapted to large environments, and does

not require extensive computations such as ray-tracing volumetric methods [32, 33, 34] or Level-

set based methods [35, 36].

The second step of our view-planner called Hierarchical Conservative Cells (HCC), is the

proposed exploration strategy used to select the next-best sensing position according to the vis-

ibility computation. Unlike other non-model-based planning algorithms that generate a huge

number of candidates either on frontiers [32, 34, 37], or by sampling the candidates over the
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entire scanned space [38, 39], our planner uses specific regions of the environment called con-

servative cells to drastically reduce the number of candidates. Both proposed algorithms are

combined to achieve the best coverage, even for large and complex environments.

The rest of the paper is organized as follows. The proposed multi-objective view planning

strategy is presented in section 2 and experimentally validated and compared with other view-

planning approaches [28, 32, 33, 34] in section 3. Section 4 concludes the paper.

2. Proposed View Planning Strategy

In the context of environment reconstruction, efficient laser scanning digitization can be

achieved through a Next-Best-View exploration strategy. The problem of non-model-based plan-

ning has attracted increasing interest from the research community, and a number of approaches

have been proposed. This section presents the proposed view planning strategy, which is a novel

approach for solving the non-model-based planning problem. The first work contribution is a

method called ”Projective-Method” used for solving the task of visibility analysis. The second

part of this section describes the proposed Next-Best-View planner called ”Hierarchical Conser-

vative Cells (HCC)”.

2.1. Visibility Analysis: Projective-Method

In complex environments, multiple scans acquired from different viewpoints are required

to sample all visible surfaces of the scene. Each scanner at the location Li provides a point

cloud Ci = {iρ0, iρ1, ..., iρk} within a local frame Fi, with iρk ∈ R2 denotes the Cartesian

coordinates of the k-th measurement returned by a single laser beam. The set of data points Ci

bounds a region of free obstacles called the ”visibility polygon”; the occluded regions in the

environment from the scanner’s position Li are defined outside the boundary of the visibility

polygon. Then, the registration process determines the transformation 0Ti between each local

frame Fi and a common global frame F0 through targets or appropriate registration algorithm.

Depending on the use cases, for map building tasks where a scanner is embedded on a mobile

robot, local registration methods such as Iterative-Closest-Point [1] or Normal-Distributions-

Transform [3] can be used to converge faster. For better accuracy in registration results, global

methods such as Coherent-Point-Drift [2] can be used with a Terrestrial laser scanner. In both

cases, a final registered point cloud denoted C0 is produced in the global frame F0 and is defined
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by:

C0 =

N⋃
i=1

0Ti · Ci =

N⋃
i=1

0Ci (1)

where N is the number of scanner’s positions.

Our aim is to produce a highly accurate representation of the visibility in the global point

cloud C0. To achieve this, our approach consists of solving the visibility problem in each local

point cloudCi. Then, the registration process is used to propagate the local visibility to the whole

scanned space defined by C0. We call this method: the Projective-Method.

We summarize this approach into four main steps, which are:

1. Gap detection step. The goal here is to produce a geometric representation (gaps) of the

occluded areas (local visibility) in each local point cloud Ci.

2. Gap classification step. The aim of this step is to deal with the effect of the scanner angular

resolution to enable a robust detection of occluded areas to point cloud sparsity.

3. Visibility polygon correction step. This step is used to identify in which areas the scanner

cannot detect any object in its maximum range and then correct the point cloud and produce

a valid local visibility polygon.

4. Gap propagation step. It allows occluded areas in the registered point cloud to be extracted

by propagating the local visibility from each position Li to the global scanned space.

Figure 1 illustrates the workflow of the proposed Projective-Method. We will give more

details for each step in the following sections.

Gap detection

Gap
classification

Visibility
polygon

correction

Local point clouds 

Scanner angular resolution 

Scanner maximum range

Gap
propagation

For each: Local occluded areas (gaps)
before classification

For each: Local occluded areas (gaps)
after classification

True gapsOpen gapsFalse gaps

Next-Best-
View 

Planner

For each: Local visibility polygon 
after correction

Occluded areas in the global point cloud

AlignementLocal point clouds 

Figure 1: Flowchart of the Projective-Method which describes the interaction between the four mains steps: Gap detec-

tion, Gap classification, Visibility polygon correction and Gap propagation.
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2.1.1. Gap detection

Computational geometry, level-set method, or ray-tracing methods are approaches to repre-

sent visibility in both local and global point clouds. However, gap analysis methods provide a

simple geometric representation of visibility called a ”gap”. In fact, each gap corresponds to

a segment that connects two measurements in the point cloud and indicates the existence of an

occluded region behind it.

The gap detection is defined in the previous works [28, 29, 30, 31] as the process to detect a

line-segment called ”gap” denoted igk = (iρk,
iρk+1) that connects two measurements iρk and

iρk+1 in a local 2D point cloud Ci organized according to the polar angle of the measurements,

such that:

|iρk, iρk+1| ≥ δmin (2)

Where δmin is defined as a positive threshold.

The main challenge in these methods is to select an optimal threshold that is highly depen-

dent on the characteristics of the environment ( doorway widths or corridor widths in an indoor

environment, or spaces between buildings in an urban setting). One can empirically select a static

value for this threshold which remains constant throughout the gap detection process. However,

in spite of the user’s best efforts, the static threshold does not allow small gaps in the environment

to be accurately detected. Indeed, this threshold is not necessarily suitable for all point clouds Ci

because it does not take into account future needs.

We solve the problem by avoiding the use of a threshold. Thus, we detect the local-maxima

in the variation of the euclidean distance between consecutive measurements in a 2D point cloud

organized according to the polar angle of the scanned measurements. Each local-maximum at

a position k is used to calculate a line-segment (gap) that connect two measurements iρk and
iρk+1.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

(a) 

Scanning process
Local-maxima

detection

(b) 
(c) (d) 

Gap detection

Figure 2: (a) Environment with the scanner position Li. (b) Point cloud Ci with detected measurements iρk . (c)

Local-maxima detection. (d) Gaps detected in Ci with the proposed approach.
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Fig. 2a shows a laser scanner in the middle of a simple environment to illustrate the gap

detection process with the proposed method. First, the scanner produces a point cloud Ci. Then,

four local-maxima are detected at the positions k = {10, 131, 136, 165}, in this case (see Fig.

2c) in the point cloud Ci. For each position k, the measurement iρk is linked to iρk+1 to create

a gap denoted igk. As the Fig. 2d shows, the proposed approach allows detection in the point

cloud Ci of the final set of gaps Gi = {ig10, ig131, ig136, ig164}.

2.1.2. Gap classification

The gaps detection process provides a set of gaps (see Fig. 2d) that are supposed to show the

presence of occluded areas in the environment. However, this process is directly related to the

intrinsic characteristics of the scanner. Consequently, the maximal range of the scanner ρmax

and the angular resolution ∆θ lead to production of a distance jump between two successive

measurements similar to true gaps.

The gap classification process allows us to analyze each gap and classify it into one of the follow-

ing three categories ( see Fig. 3): ”true gaps”, ”open gaps” and ”false gaps”. The first category

defined as ”true gaps” refers to all gaps that are aligned with the scanner’s position Li. Therefore,
igk = (iρk,

iρk+1) is a ”true gap” if:

d⊥(Li,
igk) ' 0 (3)

where d⊥(Li,
igk) denotes the orthogonal projection of the scanner position Li on the exten-

sion of the segment gap igk.

In addition, the further away the objects are from the scanner position, the larger is the dis-

tance between two successive points, which results in creating ”false gaps”. In fact, gaps of

this kind are not aligned with the position Li and the two points delimiting the gap are succes-

sive so the angle iθk,k+1 = ∠ iρkLi
iρk+1 is equal to the scanner’s angular resolution ∆θ. The

constraints that allow detection of ”false gaps” igk are formulated as follows: d⊥(Li,
igk) > 0

iθk,k+1 ' ∆θ
(4)

When objects in the environment are beyond the maximum range of the scanner ρmax, the laser

beam cannot reach any obstacle. Therefore, it cannot produce any measurement during the scan-

ning process and the gap detection creates an ”open gap”. In this case, the angle iθk,k+1 is higher
7



than ∆θ and the constraints that allow the detection of ”open gaps” are: d⊥(Li,
igk) > 0

iθk,k+1 > ∆θ
(5)

True gap

False gap

Open gap

True gap

Figure 3: Detection of the three kind of gaps from the scanner’s position Li

After the gap classification, ”false gaps” are eliminated from the point cloud, ”open gaps”

are used in the visibility polygon correction step (subsection 2.1.3) and ”true gaps” are used in

the gap propagation step (subsection 2.1.4).

2.1.3. Visibility polygon correction

Each point cloud Ci is a discrete representation that bounds an obstacles-free region called

the visibility polygon, denoted Ωi. This polygon is usually calculated to determine where the

sensor can freely move. Therefore, the correct reconstruction of the visibility polygon is essential

to ensure that the sensor does not hit any obstacles in the environment during its movements.

However, the presence of an ”open gap” in the point cloud Ci after the classification process

indicates that the point cloud is not complete, which leads to a false visibility polygon.

The visibility polygon correction process is used to identify the endpoints of each ”open

gap”, denoted (iρk,
iρk+1). Considering that all laser beams that pass through the open gap do

not return any measurements, we reproduce the rotation of the laser beam from the point iρk until

it reaches the other endpoint iρk+1 and we substitute the real ranges by the simulated ranges.

Fig. 4 shows the visibility polygon Ωi after the correction process. We notice that the ”open gap”

in the point cloud is turned into two ”true gaps”.

2.1.4. Gaps propagation

In the case of a complex environment, it is generally necessary to move the scanner multiple

times and generate several point clouds Ci that must be merged into a single point cloud C0.
8



True gap

True gaps

Figure 4: Visibility polygon correction allows to identify the open gap and recalculates the visibility polygon Ωi.

Since it is no longer possible to organize the point cloud C0 according to the polar angle of the

measurements, the gap-based methods become useless after the alignment process.

Besides this, determining the local visibility in each point cloud Ci does not allow the hidden

areas in C0 to be guessed after the registration process. For example, a gap can be occluded from

a scanner position Li but visible from another position Lj 6=i.

To deal with this, we propose a process that we name ”gap propagation” to evaluate the im-

pact of all scans on the visibility of all gaps. This process allows us to create the set of fragments

of gaps G0 in the global point cloud C0 using the geometric transformations 0Ti previously de-

fined in the equation 1 and the Boolean operators of polygon topology: (OR) denoted ∪, (AND)

denoted ∩, the Boolean complement (NOT) such as the complement of the polygon Ωi, denoted

Ωc
i and the Boolean exclusive union (XOR) denoted ⊕.

These operators will be applied to the two geometric objects that are involved in our process:

The visibility polygons Ωi and the sets of ”true gaps” Gi.

The main idea behind our proposed solution is to project each set of ”true gaps” Gi =

{ig1; ig2; ...; igk; ..} from the scanner position Li in the visibility polygons Ωj 6=i of the other

positions of the scanner. Then, we identify and classify which parts of each gap in the set Gi

are visible (Definition 1) or invisible (Definition 2) in the others scanner positions Lj 6=i. We call

these gap parts ”Fragments”.

Definition 1. The visible fragments in the set Gi associated with the position Li consists of gaps

parts that are visible from at least one other position Lj 6=i. This set denoted iFvis is calculated
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using the following equation:

iFvis =
⋃
j 6=i

(0Ti ·Gi ∩ 0Tj · Ωj)

=
⋃
j 6=i

(0Gi ∩ 0Ωj)

= 0Gi ∩
⋃
j 6=i

0Ωj

(6)

where 0Gi = 0Ti ·Gi and 0Ωi = 0Ti · Ωi

Definition 2. The invisible fragments in the set Gi associated with the position Li consists of

gaps parts that are invisible from all the other positions Lj 6=i. This set is denoted iFinv and

calculated using the following equation:

iFinv = 0Ti ·Gi ⊕ iFvis

= 0Gi ⊕ iFvis

(7)

Fig. 5 summarizes the gap propagation of the set G1 in the case of three scanner’s positions

L1, L2 and L3. The final set 1Finv is illustrated as the subset ofG1 after the propagation process.

First, the set G1 and the visibility polygons Ω2 and Ω3 associated with the scanner’s positions

L2 and L3 are projected in the same global frame F0. Then, the definition 1 is used to extract the

set of visible fragments 1Fvis from the set of gaps G1. Finally, the definition 2 is used to extract

the set of invisible fragments 1Finv .

Therefore, the set of invisible fragments G0 in the global point cloud C0 can be defined by

the fusion of all invisible fragments iFinv:

G0 =

N⋃
i=1

iFinv (8)

Fig. 6 shows the results of the gap propagation process using the equation 8 with the same

three scanner’s positions L1, L2 and L3. Then, the gap propagation process extracts the sets of

invisible fragments 1Finv , 2Finv and 3Finv associated with each position of the scanner. Finally,

the fusion of these sets allows G0 (red segments) to be found. This represents the fragments in

the global point cloud C0. Moreover, the fusion of all visibility polygons represents the scanned

region, also known as the free space Ω0 where:

Ω0 =

N⋃
i=1

0Ωi (9)
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2D layout of the environment
with the three scanner’s positions

Scanning 
process

Obstacle

Free space

Visibility polygon

Free space

Visibility polygon

Visibility polygon

Figure 5: The gap propagation process of the set G1 in the case of three scanner’s positions (L1, L2, L3) allows

extraction of the set of occluded fragments 1Finv . After the alignment process, the set G1 is projected in the fusion of

visibility polygons Ω2 ∩ Ω3 to extract the subset of invisible fragments 1Finv

Bounding box

 Visibility polygon

Occluded areas

Figure 6: The gap propagation process in the case of three scanner’s positionL1,L2 andL3. The red segments represents

the set of fragments G0 = 1Finv ∪ 2Finv ∪ 3Finv . The red dashed areas inside the bounding box BB0 represent the

non-scanned region Ωc
0. The green dashed areas represent the fusion of all visibility polygons Ω0
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This region Ω0 is delimited within a rectangular area called the bounding box BB0.

Thereafter, the non-scanned region Ωc
0 in the environment is defined as the complement of

Ω0 inside the bounding box BB0 where:

Ωc
0 = (

N⋃
i=1

0Ωi)
c (10)

2.2. Next-Best-View planning

The Projective-Method described in the previous section allows the visibility problem to be

solved in a point cloud defined as the merging data Ci acquired from several positions Li of the

scanner. Then, the visibility is represented by the set of fragments G0, the free space Ω0, and the

non-scanned region of the environment Ωc
0.

The frontier between the free space Ω0 and the non-scanned region Ωc
0 is defined by a set of

regular edges and the fragments G0. The regular edges are a simplified polygonal representation

of the scanned environment. However, a fragment is only a link between two measurements in the

point cloud, it doesn’t represent any existing part of the real environment. Consequently, the only

available apertures to look inside the region Ωc
0 are the set of fragments G0 = {0g1, 0g2, ..., 0gk}

calculated by the Projective-Method (Equation 8).

Based on this observation, we propose an approach to maximize the scanner visibility through

the fragments G0 and to optimize the motion of the scanner.

In order to do this, we propose an approach called Hierarchical Conservative Cell Exploration

Strategy that consists of three major steps:

• Generation of a set of potential candidates for the next sensing position.

• Evaluation of each generated candidate according to the selected criteria.

• Selection of the best candidate as the next sensing position.

The following subsections detail this approach.

2.2.1. Candidates generation

A human operator or a robot carrying the scanner can only move and choose a specific po-

sition in the free space Ω0. A number of proposed approaches [40, 41, 42] for Next-best-view

planning use this constraint to generate a set of candidates to subsequently select the best one
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based on chosen criteria. However, the major limitation of these approaches is the huge number

of the generated candidates in the entire free space Ω0 after each scanner displacement.

Consequently, the design of our view-planning approach is mainly focused on reducing the num-

ber of generated candidates by working on specific regions of the free space that we called

”conservative cells” (definition 4).

Definition 3. An inflection is a variation in the sign of the curvature of the visibility polygon Ω0

boundary. The inflection ray is calculated by extending a ray from the inflection.

Definition 4. The conservative cell associated with a segment is defined as the area delimited

by the segment-line itself and the extended inflection rays from each of the segment’s endpoints

until the rays hits each others.

The particularity of a conservative cell is that the visibility of a specific sensor is the same

regardless of its position inside it. It is therefore possible to use both vertices of a fragment in

the point cloud C0 to create the conservative cells. As shown in Fig. 7, regardless of the blue

candidate’s positions inside this region, the same visibility through the gap will be obtained.

Therefore, it is no longer necessary to generate several candidates in the free space but only one

position associated with each conservative cell.

Projective-method

Bounding box

Free space

Occluded areas

Obsctale

Conservative cell

Figure 7: The Projective-Method allows detection of the fragments (red segments) and the occluded areas in the envi-

ronment (red dashed area). Then, each fragment is associated with a conservative cell. The blue candidates inside the

conservative cell associated with the convex region have the same visibility. However, the red candidates that observe a

concave region have different visibility.

Definition 4 is only possible in the case of fragments associated with a convex region. As

we can see in Fig. 7, the visibility of the red points changes according to their positions, which

confirms that the use of conservative cells is no longer possible in the case of concave regions.

Therefore, we introduced the proposition 1 that allows a specific position to be selected where

the sensor’s visibility is maximized through a fragment associated with a concave region.
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Proposition 1. The visibility through a fragment associated with a concave region is maximized

on one of the fragment’s endpoints and minimized on the other one.

PROOF. A concave region can be subdivided into at least two convex sub-regions. Each convex

sub-region can be associated with a conservative cell represented by a candidate. The candidate

that is contained in all conservative cells allows observation of the maximum number of convex

sub-regions. Therefore, the visibility is maximized when the sensor is placed on this candidate

position.

In Fig. 8, we present an example of the candidate generation process. In the case of a

fragment associated with a convex region, only one candidate (blue) is generated inside the

conservative cell. In the other case where the concave region is bounded by three fragments,

a candidate (red) is generated on the endpoint that maximizes the visibility of each of them

according to the proposition 1.

Figure 8: Results after the candidates generation process.

The following subsection proposes some criteria for evaluation of the generated candidates.

2.2.2. Evaluation of Candidates

A candidate location for the next sensing position ci allows observation of a part or all the

non-scanned region Ωc
0 through the set of fragments G0.

Each candidate associated with a specific fragment might be able to scan regions associated

with other fragments. In this case, some areas of the environment may obstruct the visibility of

the candidate. To address this problem, we propose subdividing the candidate’s field of view into

two levels of visibility.

The first level of visibility denoted Ni(
0gk) is represented by the region between ci and the

fragment 0gk. It determines whether a fragment is directly visible or not from ci. Therefore, a
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fragment 0gk is invisible from the candidate position ci if:

Ni(
0gk) ∩ Ωc

0 6= ∅ (11)

When a fragment is visible, the candidate uses the second level of visibility to observe the

area beyond the fragment. This level of visibility is denoted Bi(0gk) and allows measurement

of the area of Ωc
0 inside the region between the fragment 0gk and the bounding box BB0 of the

point cloud C0. This region is denotedR(0gk,BB0) and the level of visibility Bi(0gk) is defined

by:

Bi(0gk) = Area(R(0gk,BB0) ∩ Ωc
0) (12)

Fig. 9 illustrates two candidates c1 and c2 inside the conservative cell associated with 0g2

that observe another fragment 0g1 using two levels of visibility. The fragment 0g1 is visible for

c1 but hidden for c2 because N2(0g1) 6= ∅

Conservative cell

(a)

Conservative cell

(b)

Figure 9: (a) The fragment 0g1 is visible for the candidate c1. (b) The same fragment is hidden for c2 because

N2(0g1) 6= ∅

As, the candidate ci can observe more than one fragment in the set G0, the information gain

Ig(ci) of ci is defined by:

Ig(ci) =

V(ci)∑
k=1

Bi(0gk) (13)

where V(ci) is defined as the number of visible fragments.

In addition to the information gain criterion, the distance between each candidate’s position

and the current scanner’s position is an important factor in optimizing the time required for the
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scanning process. Therefore we add the length of the collision-free path LP(ci) between the

current scanner’s position and the candidate ci as an additional criterion to define the final score

si:

s(ci) = λ · Ig(ci) + (1− λ) · LP−1(ci) (14)

The positive constant λ ∈ [0, 1] is used to weight the cost of the motion against the expected

gain of information.

In order to select the value of λ that must provides the best compromise between the final path

length and the minimum number of candidates to cover the entire environment, we evaluated our

planning algorithm in different scenarios (indoor offices, outdoor open fields). To show how we

carried out the selection of λ in this paper, we use the following scenario: a scanner is positioned

at L1 in (Fig. 10).

Figure 10: An example of environment with one scanner positioned at L1

Then, our Projective-Method detected three gaps represented by three candidates c1, c2 and

c3 (Fig. 11a). For each candidate, we have plotted the variation of scores s(c1), s(c2), s(c3)

according to λ. These plots show that the score of the candidate c1 is the highest one for all

values of λ. It is therefore selected to become the second scanner’s position L2. From the

position L2, the same process selects the candidate c1 (Fig. 11b).

However, the third scan from the position L3 (Fig. 11c) reveals four candidates and none of

them shows a maximum score for all values of λ. In this case there are three different situations:

• λ < 0.57: The score s(c4) is the highest and the candidate c4 is selected to be the position

for L4. This case is illustrated in Fig. 16a.

• 0.57 ≤ λ ≤ 0.75: The score s(c1) is the highest and the candidate c1 is selected to be the

position L4. This case corresponds to the choice of our view-planner and is illustrated in

Fig. 15c.
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Figure 11: Candidates score with different values of λ after (a) the first (b) the second (c) and the third scanner displace-

ment.

• 0.75 < λ: The score s(c2) is the highest and the candidate c2 is selected to be the position

L4. This case is illustrated in Fig. 16b.

We notice that the shortest path to explore the environment is generated with 0.57 ≤ λ ≤

0.75. Thus, after conducting further similar experiments in other environments we consider the

value λ = 0.6.

2.2.3. Selection of the candidate

After the candidates generation and evaluation process, the HCC view planning algorithm

must select the next best view. Therefore, each fragment is represented by a single candidate

selected according to the associated region (convex, concave):

• Fragment associated with a convex region: All candidates inside the conservative cell

of the fragment share the same visibility. Thus, only one candidate inside the cell can

be chosen to represent the fragment. The selected candidate in our proposed strategy is

located at L(ci) which is the center of the conservative cell (definition 4).

• Fragment associated with a concave region: The selected candidate is located at L(ci)

which is the end-point of the fragment that maximizes the visibility (proposition 1).

The location L(ci) of each candidate ci allows calculation of the associated score s(ci) and

17



number of visible fragments V(ci). The candidates are then prioritized according to their scores

and level.

The HCC selection strategy consists of identifying a candidate ci that strikes a balance be-

tween a high score and the maximum number of visible fragments.

On the one hand, a high score means that the candidate provides significant information gain

at a short distance from the current scanner’s position. On the other hand, observing a large

number of fragments allows a large number of invisible areas to be scanned in a short amount of

time.

For example, as shown in Fig. 12a, c3 is a candidate with a very high score but it can observe

only one fragment V(c1) = 1. However, observing many fragments, as candidate c6, does not

necessarily guarantee the highest score.

As a solution, we propose to increase the initial score of each candidate ci according to the

number of observable fragments V(ci). First, the disparity in the scores of the candidates is

evaluated by the mean square of successive differences (MSSD), denoted δ2(s).

Therefore, a candidate observing more than one fragment V(ci) > 1 gets an initial score

increased by (V(ci)− 1) · δ2(s). However, a candidate ci observing a single fragment V(ci) = 1

remains at the same initial score.

Finally, the next sensing position is defined according to the following formula:

NBVi+1 = L(ck | k = argmax
x

{s(cx) + δ2(s) · (V(cx)− 1)} (15)

where Li is the current scanner position.

Fig. 12 shows a set of candidates before and after the NBV selection where the MSSD is

equal to 5.22 and λ = 0.5. The candidate c7 is selected as the next-best-view since it allows the

right balance between the score and the number of visible fragments V(c7) = 3.

2.2.4. Termination condition

The NBV process is stopped when the length of each fragment in the set G0 is smaller

than a predefined threshold. If this test is verified after the gap propagation process, then the

environment digitization is complete. Otherwise, the selection strategy passes to the candidates

generation step. This termination condition allows the handling of environments with small

geometric features.
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Figure 12: (a) The set of candidates before the NBV selection. (b) The candidate c7 is selected as the NBV.

3. Results

To validate our approach and evaluate the entire process of our methods, we performed tests

on synthetic data generated by a simulator that we developed for this specific task. This simulator

allows the creation of 2D environments, selection of the desired laser scanner positions, and

generation of the associated local and global 2D point clouds. Thereafter, we consider the case

of a real point cloud. For this purpose, a mobile robot equipped with a 2D scanner is used to

explore and perform a complete scan of an indoor environment. Finally, the performances are

evaluated by making a comparative study with four others view-planners [28, 32, 33, 34] and

the performance of an experienced operator in a large environment (The esplanade of Hassan in

Morocco).

3.1. Simulated experiments

As a first step, results obtained in a simple simulated environment are presented within the

context of two scenarios. The first simulated experiment demonstrates the concept of our ap-

proach when the sensor is a Terrestrial Laser Scanner (TLS) used by a human operator. The

second one presents the situation of a sensor embedded on a mobile robot.

3.1.1. Terrestrial laser scanner

In this scenario, the displacement of the sensor is performed by a human operator based on

its observations and prior knowledge of the environment. The main purpose of this experiment is

to demonstrate the interest of using our process as a computer-aid solution to guide the decision

of the operator in selecting the next sensing position. We assume that he is equipped with a TLS
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and aims to cover the whole environment illustrated in Fig. 13a. In order to achieve this, he

observes the environment and intuitively moves the scanner four times in such a way that the

global point cloud covers a large area of the environment. Afterwards, he decides to evaluate the

completeness of the point cloud to make the next decision. To do this, the Projective-Method is

used as a computer-aid solution to analyze the visibility in the global point cloud and generate

the fragments associated with the non-scanned areas (Fig. 13b).
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(b)

Figure 13: (a) Real (and unknown) environment (black lines) with all four scanner positions (yellow dots). (b) The

global point cloud C0 with the invisible area surrounded by the set of gaps.

Then, the next position for the scanner can be chosen based on the information provided

by the Projective-Method. Nevertheless, the use of a view-planning method brings additional

information that can help the human operator to choose the next best position for the scanner. As

the Fig. 14 shows, the use of our HCC method allows generation of a NBV position denoted L5.

Once the TLS is moved, the exploration strategy detects that a non-scanned area remains in the

point cloud and therefore provides a last position L6 to cover all the environment.
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𝐿2 𝐿3 𝐿4
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𝐿3 𝐿4𝐿2
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𝐿3 𝐿4𝐿2

𝐿6

𝐿5

Figure 14: The human operator moves the scanner four times to positions L1, L2, L3 and L4. Then, our view-planner

(HCC) automatically calculates the positions L5 then L6 which close all the gaps in this case.

3.1.2. Mobile robot

The following simulated experiment reproduces the case where a mobile robot equipped with

a laser scanner attempts to automatically explore its environment. Unlike a human, the robot is

unable to do multiple scans by itself. Consequently, our exploration strategy will not be used as
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a computer-aid solution in the middle of the scanning process but will be necessary in the first

scan until the termination condition is verified.

As shown in Fig. 15, we assume that the robot (represented by the sensor location) is initially

positioned at L1. First, from this position, the gap detection process is used to determine the

initial non-scanned areas to be explored. The result shown in the Fig. 15a reveals that there are

two distinct unexplored areas denoted R1 and R2 behind three gaps (red fragments). Then, the

HCC method generates three candidates (c1, c2, c3) and selects c1 as the NBV using the equation

15.

𝐿1 𝑅1𝑅2
𝑐2 𝑐3

(a)

𝑅2
𝑁𝐵𝑉

(b) (c)

Figure 15: (a) The gap detection process reveals two non-scanned areas near to the initial robot position L1. (b) The

robot remains inside the regionR1 during the exploration process. (c) The final robot path using the exploration strategy

HCC.

Fig. 15b illustrates an intermediate step in the exploration process and we notice that the

robot remained inside the region R1. The reason is that the HCC uses a distance constraint

which allows the complete exploration of a region before moving to another one. For example,

Fig. 15c shows that the final path of the robot avoids unnecessary back and forth displacement

between the region R1 and R2 during the exploration process.

In comparison with the path generated with our view-planning strategy (Fig. 15c), a strategy

where the next sensing position is selected as the nearest candidate to the robot’s current position

(distance-based strategy) (Fig. 16a) or otherwise an exploration strategy where the next sensing

position is the candidate that provides the maximum information gain (information gain-based

strategy) (Fig. 16b) usually produces paths with many round trips, which greatly increases the

time required to explore the entire environment.

Subsequently, the HCC was also evaluated in more complex environments, as shown in the

Fig. 17. In the case of the chosen environments, it is relatively complicated even for a human

to find a minimal number of TLS positions to scan the entire space. The simulated results show
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Figure 16: The blue path is produced by the distance based strategy with (a): λ < 0.57 and (b): The red one is based on

the information gain criterion with λ > 0.75

that our exploration strategy allows us to generate a sequence of positions until the termination

condition is verified with no more gaps in the global point cloud. The path that connects the

generated positions shows that the HCC avoids unnecessary back and forth movement in the

environment.

Figure 17: The path generated by the HCC in the case of more complex environments

3.2. Real-time experimentation: Mobile robot

The experiment’s objective was to evaluate the correct working of the experimental workflow

that is subdivided into two mains stacks summarized in the flowchart on Fig. 18. The first stack is

dedicated to the processing of the point cloud generated by the robot’s laser. It allows mainly to

detect and classify the gaps, to identify the invisible areas in the environment with the Projective-

Method and to compute the NBV using the HCC method. The robot stack is primarily composed

of ROS nodes. It allows the robot localization in the environment, path planning and following.

This experiment was conducted with a mobile robot equipped with a 2D laser scanner with a

range of 3m and a field of view of 120◦ (Fig. 19).

The robot operates inside an indoor environment (length around 15 meters), mostly made up

of corridors and several office rooms (Fig. 20).
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Figure 18: Experimental workflow which describes the interaction between the point cloud processing and the robot

stacks that allows interaction with the robot hardware (laser scanner and motors)

(a) (b)

Figure 19: (a) Omron Adept MobileRobots Pioneer LX. (b) SICK LMS 300

(a) (b)

Figure 20: (a) Initial position of the Pionner LX in the environment (b) Another point of view of the environment

The first position of the robot provides a single point cloud C1 with the corresponding gaps

(Fig. 21a). Then, the gap classification allows ”true gaps” to be selected (Fig. 21b). With only

one position of the scanner, there is no reason for the gap propagation step. Consequently, the

three ”true gaps” of the point cloud C1 are used to generate three HCC candidates (c1, c2, c3)

(Fig. 21c) and then to select c1 as the next sensing position NBV1 of the robot (Fig. 21d).

Subsequently, this position is used into the robot stack and allows the robot to automatically

move into the environment to the desired position.
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Figure 21: (a) Set of gap detected in the point cloud C1 before gaps classification. (b) Set of true gaps in the point cloud

C1 after the classification process. (c) HCC candidates (blue dots). (d) Selected Next Best View.

Once the robot reaches the goal position, and since its field of view is limited to 120◦, it makes a

complete turn on itself to scan the surrounding environment. At the end of this operation, a point

cloud C2 is produced.

The second step of the experimentation allows us to validate the Projective-Method. For this

purpose, the point clouds C1 and C2 are used to determine the areas that remain to be explored

(Fig. 22), and the HCC method recalculates a new NBV position.

This cycling process of observing and deciding where to move for the next sensing position

stops when the length of the remaining fragments are less than a predefined threshold (0.1 m).

Fig. 23 shows the final result of the path followed by the robot to explore its environment and

the acquired point cloud.

3.3. A comparative study

Automated view-planning has been addressed in the literature by several approaches using

different strategies to achieve a complete coverage of the explored environment. Each strategy

aims to calculate the shortest path to explore the entire environment in the least amount of time.

Therefore, in order to evaluate the performances of our view-planner, we propose to compare

it with four 2D exploration approaches: Gap navigation tree (GNT) [28], Frontier-Based Ap-

proach for Autonomous Exploration (Yamauchi) [32], Histogram based frontiers (HFB) [34] and

a volumetric-based strategy for exploring indoor environments (Gonzalez) [33]. The following

table (Table 1) summarizes each of the selected methods for the performances assessment.

We have simulated the selected methods in the same environment illustrated in the Fig. 24.

All the methods are initialized from the same scanner’s position L1, and at each new position,
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Figure 22: (a) Set of gaps in the first point cloud C1 and (b) the second point cloud C2 after the gaps classification

process. (c) Set of gaps in the global point cloud after the Projective-Method. (d) Selected Next Best View after the HCC

method.
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Figure 23: Final computed path using the Projective-Method to solve visibility and the HCC method to find the next

sensing position.

we have recorded the computation time as well as the accumulated path length.

As shown in Fig. 25a, Yamauchi [32] and HBF [34] are very time consuming because of
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View-planner
Environment

representation
Exploration strategy

Yamauchi

[32]

2D occupancy

grid map

The nearest unexplored frontiers in the grid map is selected

as the NBV.

HBF [34]
2D occupancy

grid map

An utility function (distance from the current position, size

of the frontier) is used to evaluate a score for each frontier in

the grid map. The frontier with the highest score is selected

as the NBV.

Gonzalez [33]
Point cloud /

gap-based

A set of candidates is generated randomly across each gap.

An utility function is used to select the nearest candidate with

the highest expected gain of information is selected as the

NBV.

GNT [28]
Point cloud /

gap-based

The gap navigation tree is used to classify the detected gaps.

Then, the tree is explored from the parents-nodes to the

children-nodes.

Table 1: Exploration strategy of the selected view-planner for the performances assessment
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Figure 24: Final paths generated by each of the selected view-planners.

the ray-tracing used with the occupancy grid map to extract the frontiers. Gonzalez [33] is a

gap-based strategy that avoids ray-tracing but the use of a large number of candidates for the

next sensing position leads to an increase in the computational time. However, it seems that the

GNT produces a very interesting results in terms of calculation time but the simplicity of this

exploration strategy results in a large cumulative path as shown in Fig. 25b.

In contrast, our method (Ours λ = 0.6) avoids using ray-tracing and reduces the number

of candidates thanks to ”conservative cells”. Moreover, using an utility function to evaluate the
26
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Figure 25: (a) Performances comparison according to computational time. (b) Performances comparison according to

the cumulative path length.

score of the candidates allows us to avoid a large cumulative path with only five scanner positions.

A strategy based solely on distance (Yamauchi, Ours λ = 0) or only expected information gain

(Ours λ = 1) generates six positions to cover the entire environment.

3.4. Offline experimentation: HCC vs Human operator

Humans are efficient at view-planning for coverage of a simple environment but even ex-

perienced operators will encounter considerable difficulty in complex environments to provide

optimal scanner placement. Therefore, in a scanning project, these locations are determined

empirically according to the operator’s experience and the site conditions. To assist the human

operator, view-planning algorithms such as Hierarchical conservative cells (HCC) are used to

find the optimal placement and minimize the number of scanner locations.

In order to assess the performance of our view-planning algorithm (HCC), we proposed to

compare the results achieved by an experienced human operator and our view-planing algorithm

in the same complex environment.

The chosen environment is the esplanade of Hassan in Morocco (Fig. 26a). The challenge in

scanning this environment lies in the surface area that exceeds 2000 m2 and also in the presence

of around 500 columns surrounded by a wall. In June 2015, as a part of the ATHAR3D project

[43], we carried out the digitization of this esplanade using lasergrammetry (Leica C10 scanner).
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(a) (b)

Figure 26: (a) The esplanade of Hassan in Rabat (Morocco). (b) The 3D points cloud of of the entire esplanade after 17

scans.

We made 17 scans over the entire esplanade to cover all the columns. The final 3D point cloud

is shown in figure 26b.

In order to make a comparison with the human operator results, we selected a 2D slice of this

point cloud (Fig. 27a) to create a high-fidelity environment (Fig. 27b) on our simulator.
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Figure 27: (a) The 17 scanner positions used to cover the centre of the esplanade with the corresponding 2D slice of the

points cloud (b) The simulated environment of the centre of the esplanade.

Thereafter, the simulator was configured to start the HCC method from the same initial posi-

tion chosen by the human operator and the results obtained are shown in Fig. 28.

In order to estimate the performance of our view-planning method, we use the coverage rate

of the scanning scene. The simulator allows us to estimate the coverage rate inside the region A0

28



m

m

𝐿1

𝐿15

Figure 28: Final computed candidates with the HCC in the simulated environment of the center of the esplanade of

Hassan.

(Fig. 29a) after each scanner displacement in both HCC and human operator placement of the

viewpoints. The coverage rate is defined as:

coverage(%) =
Area(Ω0)

Area(A0)
· 100 (16)

Where Ω0 is defined in the equation 9 as the fusion of local visibility polygons also knows as

the free space.

Results in Fig. 29b shows that the HCC method generates 15 scanner positions to ensure

a coverage rate close to 99.2% which is similar to the results obtained by the human opera-

tor (99.08% after 15 scanner displacements and 99.26% after 17 scanner displacements). The

scanning process is stopped when the lengths of all remaining fragments in the environment are

smaller than a chosen threshold which is 0.5m in this example. We notice that the viewpoints of

the HCC make it possible to achieve a higher coverage rate (94.5% with 9 positions) with fewer

scanner positions than the human operator (95% with 12 positions). We attempted to achieve the

maximum coverage rate (100%) with the HCC by selecting a small stop threshold (0.01m) as a

termination condition. We notice that the number of HCC viewpoints increases significantly to

reach 27 scanner positions.

Beyond this, our NBV planner can be used in online configuration with a TLS to assist the

human operator and ensure the completeness of the scanned environment. Unfortunately, we

were unable to perform any experiments in this configuration because of our TLS device (Leica

C10) does not provide a real-time API.
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However, the latest generation of TLS is now provides mobile applications that enable the user

to track the scanner in real time. The integration of our approach into one of these applications

is an interesting prospect, as long as the TLS manufacturers release the source code.
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Figure 29: (a) Comparison between the HCC views (red) and the choice of the human operator (blue) inside the region

A0 that bounds the center of the esplanade. (b) The coverage rate inside the region A0 after each scanner displacement.

4. CONCLUSIONS

In this paper, a Non-Model-Based exploration strategy was proposed for solving the view-

planning problem. Our pipeline, the “Projective-Method + Hierarchical Conservative Cells

(HCC)” allows visibility analysis and optimal scanner placement in the case of TLS and mo-

bile scanner. The design of our approach was focused on two aspects. One is to have the ability

to perform visibility analysis in large, complex environments. This objective is achieved with

the Projective-Method with high accuracy without hardware acceleration. The second aspect is

achieved by HCC by reducing the number of candidates for the next sensing position, based on

the concept of conservative cells.

The strategy has been evaluated in both simulated and real environments. In the case of a

mobile scanner embedded on a robot platform, the proposed approach provided efficient results

in terms of coverage rate within an indoor environment (MIS laboratory). Furthermore, the

comparison of our method with an experienced human operator in the case of a large (2000 m2),

complex outdoor environment (The esplanade of Hassan in Rabat) showed that the proposed

pipeline provided similar coverage rate with fewer scanner positions.
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In future work, we will add the overlap between scans as a criterion in the NBV selection.

This overlap will guarantee the success of the registration process and will improve the quality of

the scanned point cloud. This paper also presents a solution for the 2D view-planning problem.

This was motivated by the previous work in the literature which focuses mainly on a 2D approach

and confirmed by our experiments carried out using the mobile robot in the case of an indoor

environment and also the TLS in the case of a large outdoor environment. Indeed, experimental

results show that a unique slice in the 3D points cloud is sufficient to ensure accurate view-

planning and a high coverage rate of the scanned environment. However, the extension to 3D

view-planning in more complex environments and the problems mentioned above are expected

to be solved in the future work.
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