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Abstract

Cross-diffusion systems arise as hydrodynamic limits of lattice multi-species interacting particle mod-
els. The objective of this work is to provide a numerical scheme for the simulation of the cross-diffusion
system identified in [J. Quastel, Comm. Pure Appl. Math., 45 (1992), pp. 623–679]. To simulate this
system, it is necessary to provide an approximation of the so-called self-diffusion coefficient matrix of the
tagged particle process. Classical algorithms for the computation of this matrix are based on the estima-
tion of the long-time limit of the average mean square displacement of the particle. In this work, as an
alternative, we propose a novel approach for computing the self-diffusion coefficient using deterministic
low-rank approximation techniques, as the minimum of a high-dimensional optimization problem. The
computed self-diffusion coefficient is then used for the simulation of the cross-diffusion system using an
implicit finite volume scheme.

Introduction
Cross-diffusion systems appear in various application fields such as population dynamics [36], tumor growth
in medical biology [20], or diffusion processes in materials science. In particular, these models are used in
order to simulate diffusion processes within mixture of chemical compounds, which occurs for instance during
physical vapor deposition processes for the fabrication of thin film solar cells [5, 29]. Such cross-diffusion
systems read as nonlinear systems of coupled degenerate parabolic partial differential equations describing
the time evolution of diffusion processes within multi-component systems. The mathematical analysis of
such cross-diffusion systems has recently attracted the interest of many mathematicians because it yields
quite challenging new difficulties [9, 21, 22, 8].

Some cross-diffusion systems are derived as hydrodynamic limits of stochastic processes at the microscopic
level, for instance of some lattice-based stochastic hopping models such as the ones studied in [28, 31, 38,
37, 24, 7, 32, 34, 26, 3, 4]. In this work, we focus more specifically on cross-diffusion systems which read as
the hydrodynamic limit of the multi-species symmetric exclusion process studied in [31, 13].

One major difficulty of the numerical simulation of this system is that it requires the evaluation of the
so-called self-diffusion coefficient matrix of the tagged particle process [28, 7, 14, 31, 35, 13].

The most classical method to compute numerical approximations of these self-diffusion coefficients is to
use a Monte Carlo scheme, since these coefficients can be expressed as the long-time limit of the time average
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Figure 1: The evolution of state of the particles on a lattice with n = 5, d = 2. Left: Initial state. Middle:
After the blue particle at s = ( 1

5 ,
3
5 ) jumped with v = (1, 0) to s + 1

5v. Right: After the red particle at
position ( 4

5 ,
1
5 ) jumped with v = (0,−2). Since the lattice is periodic the particle ends up in position ( 4

5 ,
4
5 ).

expectation of the mean square deviation of the tagged particle [31]. However, this type of stochastic method
is typically very slow to converge because of the high variance of the quantity the expectation of which has
to be computed.

In this work, we propose a different approach exploiting the fact that the self-diffusion coefficients can be
explicitly obtained using the unique solutions of infinite-dimensional deterministic minimization problems [7,
31]. These problems can be approximated by high-dimensional finite-dimensional minimization problems,
which however suffer from the curse of dimensionality. We mitigate this curse by using low-rank tensor
methods in order to compute an approximate solution. This leads to a minimization problem over the
set of low-rank tensors, which we solve using a classical alternating scheme [6, 19, 33]. Our numerical
experiments demonstrate that this low-rank approach leads to very accurate approximations of the self-
diffusion coefficients. These results primarily serve as proof of concept and motivate the extension to more
sophisticated low-rank approximation formats [19] in future work.

Using this numerical approximation of the self-diffusion coefficients, the next step of this survey consists
in computing the solution of the full cross-diffusion system. We then employ a particular cell-centered finite
volume method, which satisfies local mass balance by construction [16, 2, 36, 10].

This work is organized as follows. In Section 1, we introduce the lattice-based stochastic hopping model
and its hydrodynamic limit. Section 2 is dedicated to the presentation of the method we consider for the
computation of the self-diffusion matrix from the resolution of some high-dimensional optimization problem.
The low-rank approach mitigating the curse of dimensionality is presented in Section 3. In Section 4, we
introduce the cell-centered finite volume scheme for the resolution of a cross-diffusion model inspired by [31].
Finally, in Section 5, we perform numerical simulations for this problem.

1 Hydrodynamic limit of a lattice-based stochastic hopping model
Our motivation for this work stems from the lattice-based stochastic hopping model proposed in [31], which
describes the evolution of a mixture of multi-species particles, the positions of which are clamped on a
(periodic) lattice Tn := {0, . . . , n−1

n }d, d = 1, 2, 3. After a certain amount of time, a single particle jumps
to a nearby node according to a given Markovian random walk. Let vk:= ((vk)i)1≤i≤d ∈ Zd \ {0} for
k = 1, . . . ,K be the displacement vectors for all possible jumps that one particle can make, i.e. a particle
at position x ∈ Tn lands at position x + 1

nvk ∈ Tn. The rate of jumping in the direction 1
nvk is given by

pk ∈ ]0, 1]. We assume that the particles can be of two possible species, either species blue or species red.
We study how the distribution of the particles belonging to each species evolves over time in the limit when
the number of lattice points and particles tends to infinity. See Figure 1 for a schematic illustration of this
lattice-hopping process.

In this work, we are interested in simulating the hydrodynamic limit of this lattice-based hopping model,
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which was identified in [31, 7]. In the limit n→ +∞, this hydrodynamic limit reads as a cross-diffusion system
defined on the d-dimensional torus T d:= (R/Z)d. At this scale, we consider densities ρred : T d ×R+ → [0, 1]
and ρblue : T d × R+ → [0, 1], where ρred(x, t) (respectively ρblue(x, t)) denotes the local volumic fraction of
red (respectively blue) particles at point x ∈ T d and time t ≥ 0. The local volumic fractions ρred and ρblue
are shown to be solutions to the following cross-diffusion system [31]

∂

∂t

(
ρred
ρblue

)
=

1

2
∇ ·



ρblue
ρ

Ds(ρ) +
ρred
ρ

D
ρred
ρ

(D− Ds(ρ))

ρblue
ρ

(D− Ds(ρ))
ρred
ρ

Ds(ρ) +
ρblue
ρ

D

(∇ρred∇ρblue

) , in T d × R∗+, (1)

where ρ := ρred+ρblue. We complement system (1) by the initial conditions ρred(0,x) = ρ0
red(x), ρblue(0,x) =

ρ0
blue(x), where ρ0

red, ρ
0
blue ∈ L∞(T d) satisfying 0 ≤ ρ0

red + ρ0
blue ≤ 1 almost everywhere in T d. In this case, it

can be shown [31] that there exists a unique solution (ρred, ρblue) ∈ L∞(T d×R+)2 to system 1. In addition,
it holds that for almost all t ≥ 0 and x ∈ T d, 0 ≤ ρred(x, t), 0 ≤ ρblue(x, t) and ρred(x, t) + ρblue(x, t) ≤ 1.

The matrix D:= (Dij)1≤i,j≤d ∈ Rd×d is defined so that Dij :=
∑K
k=1 pk(vk)i(vk)j for all 1 ≤ i, j ≤ d.

The self-diffusion matrix application

Ds :

{
[0, 1] → Rd×d
ρ 7→ Ds(ρ) := (Ds,ij(ρ))1≤i,j≤d

will be defined in more details in Section 2, (see also [7, 14]) and is such that for all ρ ∈ [0, 1], Ds(ρ) is a
symmetric positive semi-definite matrix. The system (1) is a cross-diffusion system and is a highly nonlinear
degenerate parabolic system. Numerical simulations of system (1) require as a first step the computation of
numerical approximations of Ds(ρ) for any value ρ ∈ [0, 1], and we propose in this work a novel numerical
approach for this task.

2 Self-diffusion matrix

2.1 Definition of the self-diffusion matrix
For all u ∈ Rd and ρ ∈ [0, 1], the self-diffusion coefficient uTDs (ρ) u is obtained by considering the so-called
tagged particle process on S := Zd \ {0}. Let us first introduce some notation. Let η := (ηs)s∈S ∈ {0, 1}S .
For all y 6= z ∈ S, we define by ηy,z := (ηy,z

s )s∈S ∈ {0, 1}S so that

ηy,z
s :=

 ηs if s 6= y, z,
ηy if s = z,
ηz if s = y,

and for all w ∈ S, we define by η0,w := (η0,w
s )s∈S ∈ {0, 1}S so that

η0,w
s :=

{
ηs+w if s 6= −w,
0 if s = −w.

More precisely, denoting by H :=
{

Ψ : {0, 1}S → R
}
, it then holds that

uTDs(ρ)u := 2 inf
Ψ∈H

Eρ⊗

 K∑
k=1

pk

(1− ηvk
)
(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈S\{0}
y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2

 ,

(2)
where the notation Eρ⊗ refers to the fact that the expectation is computed on all random variables η :=
(ηs)s∈S so that the random variables ηs are independently identically distributed random variables according
to a Bernoulli law with parameter ρ. Problem (2) thus reads as an infinite-dimensional optimization problem
which we are going to discretize as follows.
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Figure 2: Middle: Visualization of one particular η ∈ S1 for d = 2 with three occupied sites marked in blue,
cyan and magenta. Additionally, we mark 0 in red. Left: Visualization of the occupied sites of η0,(−1,0). This
can be seen as a jump of the imaginary red particle one step to the left, followed by immediately relabeling of
the sites such that red particle remains at 0. By exploiting the periodicity, we obtain η0,(−1,0) ∈ S1. Right:
Visualization of the occupied sites of η(1,1)+(−1,0),(1,1). This can be seen as jump of the cyan particle one
step to the left. Far right: The enumeration scheme for the sites.

Remark 2.1. Naturally, for all ρ ∈ [0, 1], since Ds(ρ) is a symmetric matrix, one can easily know the full
matrix Ds(ρ) from the knowledge of uTDs(ρ)u for a few vectors u ∈ Rd.

2.2 Finite-dimensional approximation of the self-diffusion matrix
Let M ∈ N∗ denote a discretization parameter and introduce the finite grid SM := {−M, · · · ,M}d \ {0}.
For any η ∈ {0, 1}SM , we can construct by periodicity an extension η̃ := (η̃s)s∈S ∈ {0, 1}S by assuming with
a slight abuse of notation that the site 0 is occupied, i.e. η̃s = 1 for s ∈ (2M + 1) · Zd \ {0}. Using this
notation, for all η ∈ {0, 1}SM and all y, z,w ∈ S, we define ηy,z ∈ {0, 1}SM and η0,w ∈ {0, 1}SM as

ηy,z := (η̃y,z
s )s∈SM

and η0,w :=
(
η̃0,w
s

)
s∈SM

.

Let us then denote by N := (2M + 1)d− 1 = Card(SM ). Then, any η = (ηs)s∈SM
∈ SM can be equivalently

viewed as an element η := (ηi)1≤i≤N ∈ {0, 1}N by enumerating the different sites of SM . Figure 2 shows an
illustration of ηy,z and η0,w.

For all ` ∈ {0, . . . , N}, let CM,` := {η ∈ {0, 1}SM |∑s∈SM
ηs = `} denote the set of all possible configu-

rations of the particles on SM so that the total number of occupied sites is equal to `.
Let us also denote by HM :=

{
Ψ : {0, 1}SM → R

}
. For every u ∈ Rd and ` ∈ {0, . . . , N}, we then

introduce the quadratic functional Au
M,` : HM → R defined by

Au
M,`(Ψ) :=

1

|CM,`|
∑

η∈CM,`

K∑
k=1

pk

(1− ηvk
)
(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈SM

y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2
 .

Then, assuming that ρ = `
N for some 0 ≤ ` ≤ N , one can define [7] for all u ∈ Rd,

uTDMs
(
`

N

)
u := 2 min

Ψ∈HM

Au
M,`(Ψ). (3)

Note that (3) can then be seen as a finite-dimensional approximation of optimization problem (2). Indeed,

it is proved in [27] that lim
M → +∞
`
N → ρ

uTDMs
(
`

N

)
u = uTDs(ρ)u.
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2.3 Combined minimization problem
The collection of sets CM,0, . . . , CM,N form a partition of the set {0, 1}SM . Observe for a given Ψ ∈
HM ,Au

M,`(Ψ) only depends on the values of Ψ(η) for η ∈ CM,`, since η ∈ CM,` implies that also η0,vk ∈ CM,`

and ηy+vk,y ∈ CM,` for all 1 ≤ k ≤ K. As a consequence, if ΨM,u
opt ∈ HM is a minimizer of

min
Ψ∈HM

Au
M (Ψ), (4)

where

Au
M (Ψ) :=

∑
η∈{0,1}SM

K∑
k=1

pk

(1− ηvk
)
(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈SM

y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2
 ,

(5)
then it holds that Au

M,`(Ψ
M,u
opt ) = minΨ∈HM

Au
M,`(Ψ) for all ` ∈ {0, . . . , N}. The knowledge of ΨM,u

opt then
allows us to compute uTDMs

(
`
N

)
u for all 0 ≤ ` ≤ N as 2Au

M,`(Ψ
M,u
opt ). Note that the minimization problem

(4) is then independent of `, in contrast to (3).

For small values of M , one can compute minΨ∈HM
Au
M (Ψ) explicitly. Indeed, the function Ψ ∈ HM can

be equivalently identified as a tensor Ψ := (Ψη)η∈{0,1}SM
∈ R2N

, where for all η ∈ {0, 1}SM , Ψη = Ψ(η).
We see the quadratic functional Au

M as sum of Q = NK · 2N−1 quadratic terms, which can be expressed as
‖MMΨ + bu

M‖22 for some matrix MM ∈ R2N×Q and vector bu
M ∈ R2N

. Thus, (4) then boils down to solving
the least squares problem

min
Ψ∈R2N

‖MMΨ + bu
M‖22. (6)

In the case where d = 2, M = 1 and K = 4, it holds that N = 8 so that 2N = 256 and Q = 4096. A solution
of (6) is then computed in practice up to a very high precision using lsqr in Matlab.

However, for larger values of M (i.e. larger values of N) this approach quickly becomes intractable, since
the size of the matrix grows exponentially in N . The goal of Section 3 is to propose a low-rank approximation
method in order to compute a numerical approximation of ΨM,u

opt , hopefully in cases with M large, which
allows us to approximate uTDMs

(
`
N

)
u for all 0 ≤ ` ≤ N by evaluating Au

M,`(Ψ
M,u
opt ).

Remark 2.2. Note that we could compute the optimal value of minΨ∈HM
Au
M,`(Ψ) directly, by solving a

linear least squares problem with
(
N
`

)
degrees of freedom (see Section 2.3). While this is cheaper than solving

the system with 2N degrees of freedom, it still is intractable for many choices of l for larger N .

3 Separable low-rank approximation
A function R ∈ HM is called a separable or pure tensor product function when it can be written as

R(η) = Πs∈SM
Rs(ηs), ∀η = (ηs)s∈SM

∈ {0, 1}SM ,

for some Rs : {0, 1} → R for s ∈ SM . Let T 1
M ⊂ HM denote the set of pure tensor product functions of HM .

It holds that
min

Ψ∈HM

Au
M (Ψ) ≤ min

R∈T 1
M

Au
M (R).

The aim of this section is to present the numerical strategy we developed in this work so as to compute
a numerical approximation Ru

opt of a minimizer of

min
R∈T 1

M

Au
M (R). (7)
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Note that there always exists at least one minimizer to (7) but that uniqueness is not guaranteed in general.
The approximation Ru

opt is then used in turn as an approximation of Ψu
opt. We will present numerical tests

in Section 5.1.1 which demonstrate that Ru
opt is indeed close to Ψu

opt.

Remark 3.1. The goal of this work, is to demonstrate that optimization over the space of pure tensor
product functions yields good minimizers of Au

M . The extension of this approach to to sums of pure tensor
product functions or other low-rank approximation formats [19] offers the potential to yield even better
minimizers and is subject to future work.

3.1 Exploiting separability
Let us explain in this section why it is advantageous to minimize Au

M over the set T 1
M . Indeed, let us rewrite

Au
M (Ψ) for all Ψ ∈ HM as

Au
M (Ψ) =

K∑
k=1

pk

( ∑
η∈{0,1}SM

(1− ηvk
)Ψ(η0,vk)2 +

∑
η∈{0,1}SM

(1− ηvk
)Ψ(η)2 − 2

∑
η∈{0,1}SM

(1− ηvk
)Ψ(η0,vk)Ψ(η)

+ 2(u · vk)

( ∑
η∈{0,1}SM

(1− ηvk
)Ψ(η0,vk)−

∑
η∈{0,1}SM

(1− ηvk
)Ψ(η)

)
+ 2N−1(u · vk)2

+
1

2

∑
y∈SM

y+vk 6=0

( ∑
η∈{0,1}SM

Ψ(ηy+vk,y)2 +
∑

η∈{0,1}SM

Ψ(η)2 − 2
∑

η∈{0,1}SM

Ψ(η)Ψ(ηy+vk,y)

))
.

Note that for all 1 ≤ k ≤ K, there exists a bijection π0,vk : SM → SM such that for all η = (ηs)s∈SM
,

η0,vk =
(
ηπ0,vk (s)

)
s∈SM

.

Similarly, for all 1 ≤ k ≤ K and all y ∈ SM such that y+vk 6= 0, there exists a bijection πy,y+vk : SM → SM
such that for all η = (ηs)s∈SM

,
ηy,y+vk =

(
ηπy,y+vk (s)

)
s∈SM

.

Let us denote by σ0,vk (respectively σy,y+vk) the inverse of π0,vk (respectively πy,y+vk).
Then, it holds that for all separable function R ∈ T 1

M , so that R(η) = Πs∈SM
Rs(ηs) for all η = (ηs)s∈SM

for some Rs : {0, 1} → R,

Au
M (R) =

K∑
k=1

pk

[ (
Πs∈SM\{vk}Σηs∈{0,1}Rσ0,vk (s)(ηs)

2
)
Rσ0,vk (vk)(0)2 +

(
Πs∈SM\{vk}Σηs∈{0,1}Rs(ηs)

2
)
Rvk

(0)2

+ 2(u · vk)

((
Πs∈SM\{vk}Σηs∈{0,1}Rσ0,vk (s)(ηs)

)
Rσ0,vk (vk)(0)−

(
Πs∈SM\{vk}Σηs∈{0,1}Rs(ηs)

)
Rvk

(0)

)
+

1

2

∑
y∈SM

y+vk 6=0

[ (
Πs∈SM

Σηs∈{0,1}Rσy,y+vk (s)(ηs)
2
)

+
(
Πs∈SM

Σηs∈{0,1}Rs(ηs)
2
)

− 2
(
Πs∈SM

Σηs∈{0,1}Rs(ηs)Rσy,y+vk (s)(ηs)
) ]

+ 2N−1(u · vk)2

]
.

Note that all these terms can be evaluated in O(N) operations, which avoids the summation over all 2N

possible η ∈ {0, 1}SM . Thus, the separability property allows us to efficiently evaluate Au
M (R) for all R ∈ T 1

M .
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3.2 Alternating least squares
In this work, we use the classical Alternating Least Squares algorithm [11, 25, 12, 30] in order to compute
an approximate solution of the minimization problem minR∈T 1

M
Au
M (R).

The main idea is to find an approximation of Ru
opt by an iterative scheme which amounts to solving a

sequence of small-dimensional linear problems. We start from an initial R(η) := Πs∈SM
Rs(ηs). The first

least squares problem is obtained by minimizing Au(R) only with respect to a selected Rs0 : {0, 1} → R for
some s0 ∈ SM leaving the other Rs, s 6= s0 fixed. By partially evaluating Au(R) for all terms not depending
on Rs0 , we obtain that minRs0∈{{0,1}→R}Au(R) with R(η) := Rs0(ηs0)Πs∈SM\{s0}Rs(ηs) is equivalent to a
quadratic optimization problem

min
Rs0∈{{0,1}→R}

α1Rs0(1)2 + α2Rs0(0)2 + α3Rs0(1)Rs0(0) + α4Rs0(1) + α5Rs0(0) + α6,

with constants α1, . . . , α6 ∈ R depending on the fixed Rs, s 6= s0. This quadratic optimization problem
always admits a unique optimal Rs0 , which is given by Rs0(1) = a and Rs0(0) = b, where a, b ∈ R are the
solution of the linear system (

2α1 α3

α3 2α2

)(
a
b

)
=

(
−α4

−α5

)
.

This allows us to optimize Au
M (R) with respect to individual Rs0 . By alternating the selected s0 ∈ SM ,

we obtain the alternating least squares algorithm, which is formalized in Algorithm 1.

Algorithm 1 Alternating least squares
1: Input: initial functions R0

s : {0, 1} → R for s ∈ SM , vector u, tolerance ε
2: Output: approximation Ropt(η) = Πs∈SM

Rs(ηs) of argminR∈T 1
M
Au
M (R)

3: vold =∞, vnew = Au
M (R0) with R0(η) := Πs∈SM

R0
s(ηs)

4: ∀s ∈ SM , Rs := R0
s .

5: while |vold − vnew| > ε |vnew|.
6: vold = vnew
7: for s0 ∈ SM
8: Rs0 = argminR̃s0 :{0,1}→RA

u(R̃) where R̃(η) = R̃s0(ηs0)Πs∈SM\{s0}Rs(ηs) for all η = (ηs)s∈SM
.

vnew = Au
M (R)

Remark 3.2. To compute the constants αi, we can either explicitly implement the partial evaluations
of Au

M (R). Alternatively, we can treat Au
M (R) as a function in R2 → R depending on the values Rs0(0)

and Rs0(1). We know that this function is a multivariate-polynomial of the form α1Rs0(1)2 + α2Rs0(0)2 +
α3Rs0(1)Rj(0) + α4Rs0(1) + α5Rs0(0) + α6. The constants can be computed using multivariate-polynomial
interpolation in six points. This interpolation has the advantages that it is non-intrusive and that the
evaluations of Au

M (R) can be performed efficiently using the ideas of Section 3.1.

4 Deterministic resolution of a cross-diffusion system
We describe in this section the numerical scheme we use in Section 5 for the resolution of a cross-diffusion
problem, which may be seen as a simplified version of system (1). The numerical scheme is baseed on a
cell-centered finite volume method [15, 16], assuming that a numerical approximation of the self-diffusion
matrix Ds(ρ) can be computed for any ρ ∈ [0, 1]. The design and numerical analysis of a numerical scheme
for the approximation of the original problem(1) is left for future work.

The simplified cross-diffusion system we consider here reads as follows. Let Ω ⊂ Rd be a polyhedric
bounded domain of Rd. Local volumic fractions of red and blue particles are given by functions ρred :
Ω × R+ → [0, 1] and ρblue : Ω × R+ → [0, 1], where ρred(x, t) (respectively ρblue(x, t)) denotes the local
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volumic fraction of red (respectively blue) particles at point x ∈ Ω and time t ≥ 0. We assume here that
ρred and ρblue are solutions to the following simplified cross-diffusion system:

∂

∂t

(
ρred
ρblue

)
=

1

2
∇ ·


Tr

[
ρblue
ρ

Ds(ρ) +
ρred
ρ

D
]

Tr

[
ρred
ρ

(D− Ds(ρ))

]
Tr

[
ρblue
ρ

(D− Ds(ρ))

]
Tr

[
ρred
ρ

Ds(ρ) +
ρblue
ρ

D
]
(∇ρred∇ρblue

) , in Ω× R∗+,

(8)

where ρ := ρred+ρblue. We complement system (1) by the initial conditions ρred(0,x) = ρ0
red(x), ρblue(0,x) =

ρ0
blue(x), where ρ0

red, ρ
0
blue ∈ L∞(Ω) satisfying 0 ≤ ρ0

red + ρ0
blue ≤ 1 almost everywhere in Ω. We also assume

here that system (8) is complemented with Neumann boundary conditions.

4.1 Notation
Let Tf > 0 denote some final time. For the time discretization, we introduce a division of the interval [0, Tf ]
into subintervals Ip := [tp−1, tp], 1 ≤ p ≤ Pt for some Pt ∈ N∗ such that 0 = t0 < t1 < · · · < tPt

= Tf . The
time steps are denoted by ∆tp = tp − tp−1, p = 1, · · · , Pt. For a given sequence of real numbers (vp)p∈N, we
define the approximation of the first-order time derivative thanks to the backward Euler scheme as follows:

∂tv
p :=

vp − vp−1

∆tp
∀ 1 ≤ p ≤ Pt.

For the space discretization, we consider a conforming simplicial mesh Th of the domain Ω, i.e. Th is a
set of elements K verifying

⋃
K∈Th

K = Ω, where the intersection of the closure of two elements of Th is either

an empty set, a vertex, or a l-dimensional face, 0 ≤ l ≤ d − 1. Denote by hK the diameter of the generic
element K ∈ Th and h = maxK∈Th hK . We denote by Eh the set of mesh faces. Boundary faces are collected
in the set Eext

h = {σ ∈ Eh;σ ⊂ ∂Ω} and internal faces are collected in the set E int
h = Eh\Eext

h . To each face
σ ∈ Eh, we associate a unit normal vector nσ; for σ ∈ E int

h , σ = K ∩ L, nσ points from K towards L and
for σ ∈ Eext

h it coincides with the outward unit normal vector nΩ of Ω. We also denote by Ne the number of
elements in the mesh Th. Furthermore, the notation nK,σ stands for the outward unit normal vector to the
element K on σ. We also assume that the family Th is superadmissible in the sense that for all cells K ∈ Th
there exists a point xK ∈ K (the cell center) and for all edges σ ∈ Eh there exists a point xσ ∈ ∂K (the edge
center) such that, for all edges σ ∈ EK , the line segment joining xK with xσ is orthogonal to σ (see [16]).
For an interior edge σ ∈ E int

h shared by two elements K and L (denoted in the sequel by σ = K ∩ L), we
define the distance between these elements dKL := dist(xK ,xL). Figure 3 provides a schematic illustration.

Figure 3: Illustration of the notation for a mesh with two elements.
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4.2 The cell-centered finite volume method
In the context of the cell-centered finite volume method, the unknowns of the model are discretized using
one value per cell: ∀1 ≤ p ≤ Pt we let

Up := (Up
K)K∈Th ∈ R2Ne , with Up

K := (ρpred,K , ρ
p
blue,K) ∈ R2

where ρpred,K and ρpblue,K are respectively the discrete elementwise unknowns approximating the values of

ρred(tp) and ρblue(tp) in the element K ∈ Th. More precisely, ρpred,K ≈
1

|K|

∫
K

ρred(tp, x) dx and ρpblue,K ≈
1

|K|

∫
K

ρblue(tp, x) dx. Integrating (1) over the element K ∈ Th, using next the Green formula and the

Neumann boundary conditions, the cell-centered finite volume scheme we solve is the following : for a given
fixed value of Up−1, find Up ∈ R2Ne such that

H1,K(Up) = |K|∂tρpred,K −
1

2

∑
σ∈EK

F1,K,σ(Up) = 0 ∀K ∈ Th,

H2,K(Up) = |K|∂tρpblue,K −
1

2

∑
σ∈EK

F2,K,σ(Up) = 0 ∀K ∈ Th.
(9)

The numerical fluxes F1,K,σ(Up) and F2,K,σ(Up) are respectively approximations of

F1,K,σ(Up) ≈
(
S11(Up)∇ρpred + S12(Up)∇ρpblue

)
· nK,σ

F2,K,σ(Up) ≈
(
S21(Up)∇ρpred + S22(Up)∇ρpblue

)
· nK,σ,

where S11(Up) :=
(
S11
K (Up)

)
K∈Th , S

12(Up) :=
(
S12
K (Up)

)
K∈Th , S

21(Up) :=
(
S21
K (Up

)
)K∈Th , S22(Up) :=(

S22
K (Up)

)
K∈Th are collections of real numbers defined on each cell of the mesh as follows. For all K ∈ Th,

S11
K (Up) := Tr

[
ρpblue,K
ρpK

Ds(ρpK) +
ρpred,K
ρpK

D

]
,

S12
K (Up) := Tr

[
ρpred,K
ρpK

(D− Ds(ρpK))

]

S21
K (Up) := Tr

[
ρpblue,K
ρpK

(D− Ds(ρpK))

]

S22
K (Up) := Tr

[
ρpred,K
ρpK

Ds(ρpK) +
ρpblue,K
ρpK

D

]
,

where ρpK := ρpred,K+ρpblue,K . Now we are interested in computing an approximation of
(
Sij(Up)∇ρp]

)
·nK,σ

for all 1 ≤ i, j ≤ 2 and ] ∈ {red, blue}.
For any edge σ ∈ E int

h , denoting by K,L ∈ Th the two cells sharing the edge σ, we employ the following
harmonic averaging formula for all 1 ≤ i, j ≤ 2,(

Sij(Up)∇ρp]

)
· nK,σ ≈ |σ|

SijK(Up)SijL (Up)

dK,σSijL (Up) + dL,σSijK(Up)

(
ρp],L − ρ

p
],K

)
.

We refer to [17, 18, 1] for more details. This averaging formula enables then to obtain the expression of the
fluxes F1,K,σ(Up) and F2,K,σ(Up).

At each time step p, we thus have to solve the nonlinear problem: find Up ∈ R2Ne

Hp(Up) = 0

where Hp(Up) := (H1,K(Up), H2,K(Up))K∈Th ∈ R2Ne , where H1,K(Up) and H2,K(Up) are defined by (9).
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4.3 Resolution of the nonlinear problem by a Newton method
In this section, we present a Newton procedure for computing the approximate solution Up at each time
step p. For 1 ≤ p ≤ Pt and Up,0 ∈ R2Ne fixed (typically Up,0 = Up−1), the Newton algorithm generates a
sequence (Up,k)k≥1, with Up,k ∈ R2Ne given by the system of linear algebraic equations:

Ap,k−1Up,k = Bp,k−1. (10)

Here, the Jacobian matrix Ap,k−1 ∈ R2Ne,2Ne and the right-hand side vector Bp,k−1 ∈ R2Ne are defined by

Ap,k−1 := JHp(Up,k−1) and Bp,k−1 := JHp(Up,k−1)Up,k−1 −Hp(Up,k−1).

Note that JHp(Up,k−1) is the Jacobian matrix of the function Hp at point Up,k−1. A classical stopping
criterion for system (10) is for instance∥∥Hp(Up,k)

∥∥
2
/
∥∥Hp(Up,0)

∥∥
2
< εlin (11)

where εlin > 0 is small enough. We refer to the book [23] for large descriptions on linearization techniques.

5 Numerical Experiments
In the following numerical experiments 1, we consider the periodic lattice with M = 1 and d = 2, which
implies N = 8. The possible displacement vectors are v1 = (1, 0), v2 = (−1, 0), v3 = (0, 1), and v4 = (0,−1)
so that K = 4 with associated probability pk = 1/4 for k = 1, 2, 3, 4. Throughout this section, we set the
tolerance in Algorithm 1 to ε = 10−5. Note that using the low-rank approximation described in Section 3
for larger values of M is currently work in progress.

Remark 5.1. Equation (3) can only be evaluated for certain values ρ = `
N for some 0 ≤ ` ≤ N . To evaluate

DMs (ρ) for general ρ ∈ [0, 1], we interpolate the individual entries of DMs (ρ) based on the nodes, which are
admissible for Equation (3), using splines.

5.1 Approximation of the self-diffusion coefficient
5.1.1 Low-rank approximation error

We are interested in studying the effect of minimizing (5) with respect to functions Ψ ∈ HM compared to
functions in R ∈ T 1

M . We denote by Ψu
LSQ ∈ R2N

the solution to (6) computed numerically by solving the
linear least squares problem in Section 2.3 and the low-rank solution Ru

ALS obtained using Algorithm 1. Note
that Ru

ALS may vary depending on the initial choice of R0
s for s ∈ SM . Thus, we run Algorithm 1 100 times

with different initializations for Rs(0) and Rs(1) obtained by sampling from the uniform distribution on [0, 1].
For u = (1, 0) we obtain Au

M (Ψu
LSQ) ≈ 53.594 and mean(Au

M (Ru
ALS)) = 53.759 with min(Au

M (Ru
ALS)) = 53.758

and max(Au
M (Ru

ALS)) = 53.766. These results show that evaluating Au
M (Ru

ALS) differs from Au
M (Ψu

LSQ) by
less than 0.3%. At this point, we want to emphasize that the goal of Algorithm 1 is to compute a pure tensor
product minimizer of Au

M , which can potentially be different from a pure tensor product approximation of
Ψu

LSQ.
For the computation of the self-diffusion coefficient, we need to evaluate Au

M,` instead of Au
M . We again

consider the approximations Ψu
LSQ, R

u
ALS, for which we obtain the values displayed in Table 5.1.1. We observe

that the values obtained from Ru
ALS are again very close to the ones obtained from Ψu

LSQ.

1The code to reproduce all experiments is available on https://github.com/cstroessner/SelfDiffusionCoefficent.git
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 ` = 8

u =

(
1

0

)
Au
M,`(Ψ

u
LSQ) 0.5000 0.4196 0.3430 0.2708 0.2035 0.1421 0.0873 0.0398 0

Au
M,`(R

u
ALS) 0.5000 0.4197 0.3433 0.2714 0.2044 0.1430 0.0878 0.0398 0

u =

(
0

1

)
Au
M,`(Ψ

u
LSQ) 0.5000 0.4197 0.3430 0.2708 0.2035 0.1421 0.0873 0.0398 0

Au
M,`(R

u
ALS) 0.5000 0.4197 0.3433 0.2714 0.2044 0.1430 0.0878 0.0398 0

u =

(
1

1

)
Au
M,`(Ψ

u
LSQ) 1.0000 0.8393 0.6860 0.5416 0.4070 0.2843 0.1747 0.0795 0

Au
M,`(R

u
ALS) 1.0000 0.8393 0.6866 0.5428 0.4089 0.2860 0.1756 0.0796 0

Table 1: Evaluation of Au
M,` for Ψu

LSQ and Ru
ALS for different values of u and `.

5.1.2 Computing the self-diffusion coefficient

For 0 ≤ ` ≤ N we evaluate equation (3) for u ∈ {(1, 0), (0, 1), (1, 1)} to recover the entries of the symmetric
matrix Ds

(
`
N

)
. To evaluate the self-diffusion coefficient Ds(ρ) for different values of ρ ∈ [0, 1], we use an

interpolation technique as explained in Remark 5.1. We observe that the symmetry in the studied jumping
scheme leads to off-diagonal entries, which are numerically zero. Additionally, we find that (Ds(ρ))11 =
(Ds(ρ))22. In Figure 4, we plot Tr (Ds(ρ)), where Tr denotes the trace operator. Our approximation satisfies
the known properties Ds(0) = I and Ds(1) = 0 · I, where I denotes the identity matrix. Note that both
trace plots almost coincide.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 4: Plot of the trace of Ds(ρ) computed based on Ψu
LSQ and Ru

ALS and plot of the function 2− 2ρ.

5.2 Resolution of the cross-diffusion system
In the following, we solve the PDE system (1) based on the self-diffusion coefficient obtained from Ru

ALS.
The system is defined on the unit square domain Ω := (0, 1) × (0, 1). We consider a uniform spatial mesh
(Ne = 312 elements) and we use a constant time step ∆tp = ∆t = 10−3 seconds ∀1 ≤ p ≤ Pt. The final time
of simulation is Tf = 10 seconds. We employ at each time step 1 ≤ p ≤ Pt a Newton solver as described in
Section 4.3 with εlin = 10−8. The initial values are defined by

ρ0
red(x, y) := 0.25 + 0.25 cos(πx) cos(πy) and ρ0

blue(x, y) := 0.5− 0.5 cos(πx) cos(πy).
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Figure 5 displays the shape of the numerical solutions ρred and ρblue for several time steps. We observe

Figure 5: Solutions ρred and ρblue for several time steps. Top left p = 0, top middle p = 10, top right p = 30,
bottom left p = 50, bottom middle p = 110, bottom right p = 250.

that the local volumic fractions evolve over time to reach constant profiles (around 0.25 for ρred and 0.5 for
ρblue) in the long time limit. This indicates, that our scheme is stable in the sense that the densities lie in
their physical ranges. In every time step, only 2 or 3 Newton iterations are required to reach the stopping
criterion (11).

6 Conclusion
In this work, we derived a novel way of computing the self-diffusion matrix of the tagged particle process
via low-rank solutions of a high-dimensional optimization problem. The obtained approximation can then
in turn be used in order to compute the solution of cross-diffusion systems that arise as the hydrodynamic
limits of multi-species symmetric exclusion systems like the one introduced in [31], using a finite volume
scheme. Our numerical results have clearly demonstrated that the computed low-rank solutions led to
accurate approximations of the self-diffusion coefficient, at least for small finite lattice sizes. The extension
to more sophisticated low-rank approximation formats and larger lattices, for which solving the minimization
problem directly is intractable, as well as the derivation of a convergent entropy diminishing finite volume
scheme for hydrodynamic limits of multi-species exclusion processes will be explored in a future work.
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