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On flat lossy channel machines

Ph. Schnoebelen

Abstract

We show that reachability, repeated reachability, nontermination and unbounded-
ness are NP-complete for Lossy Channel Machines that are flat, i.e., with no nested
cycles in the control graph. The upper complexity bound relies on a fine analysis of
iterations of lossy channel actions and uses compressed word techniques for efficiently
reasoning with paths of exponential lengths. The lower bounds already apply to acyclic
or single-path machines.

1 Introduction

Lossy channel machines, aka LCMs, are FIFO automata, i.e., finite-state machines operat-
ing on buffers with FIFO read/write discipline, where the buffers are unreliable, or lossy,
in the sense that letters (or “messages”) in a buffer can be lost nondeterministically at any
time.

LCMs were first introduced as a model for communication protocols designed to work
properly in unreliable environments. They immediately attracted interest because, unlike
FIFO automata with reliable buffers, they have decidable safety and termination prob-
lems [Fin94, AJ96, CFP96, ACBJ04]. It was later found that LCMs are a relevant com-
putational model per se, useful for verifying timed automata [ADOW05, LW08], modal
logics [GKWZ06], etc., and connected to other problems in computer science [KS15, CS10,
Sch16].

Flat LCMs. In this paper we consider the case of flat LCMs, i.e., LCMs where the control
graph has no nested cycles. In the area of infinite-state systems verification, flat systems
were first considered in [FO97, CJ98] for counter systems1. In addition, some earlier “loop
acceleration” results, e.g. [BW94], where one can compute reachability sets along a cycle,
can often be generalised to flat systems. Positive results on flat counter systems can be found
in [LS05, BIL09, DFGvD10, BIK14, LPS14, DDS15], and in [GI15] for counter systems with
recursive calls. Regarding flat FIFO automata, verification was shown decidable by Boua-
jjani and Habermehl [BH99] who improved on earlier results by Boigelot [BG99], and the
main verification problems were only recently proven to be NP-complete [EGM12, FP19].
These results have applications beyond flat systems in the context of bounded verification
techniques, where one analyses a bounded subset of the runs of a general system [EGM12].

1 Flatness remains relevant with finite-state systems, see e.g., [KF11]. This is especially true when one is
considering the verification of properties expressed in a rich logic as in, e.g., [DHL+17]. In language theory,
flat finite-state automata correspond to regular languages of polynomial density, sometimes called sparse

languages, or also bounded languages.
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Flat LCMs have not been explicitly considered in the literature. They are implicit
in forward analysis methods based on loop acceleration, starting with [ACBJ04], but these
works do not address the overall complexity of the verification problem, only the complexity
of elementary operations.

It is not clear whether one should expect flat LCMs to be simpler than flat FIFO
automata (on account of unrestricted LCMs being simpler than the Turing powerful, unre-
stricted FIFO automata), or if they could be more complex since message losses introduce
some nondeterminism that does not occur when one follows a fixed cycle in a FIFO sys-
tem. Indeed, message losses can be seen as hidden implicit loops that disrupt the apparent
flatness of the LCM.

Our contribution. We analyse the behaviour of the backward-reachability algorithm on
cycles of lossy channel actions and establish a bilinear upper bound on its complexity.
As a consequence, reachability along runs of the form ρ1σ

∗
1ρ2σ

∗
2 . . . ρmσ∗

m where the ρi, σi
are sequences of channel actions, can be decided in time nO(m). While shortest reachability
witnesses can be exponentially long when the numberm of cycles is not bounded, techniques
based on SLP-compressed words allow handling and checking these witnesses in polynomial
time, leading to an NP algorithm for flat LCMs. This easily translates into NP algorithms
for nontermination, repeated reachability, and unboundedness, and in fact all four problems
are NP-complete. Thus the restriction to flat systems really brings some simplification
when compared to the very high complexity —sometimes undecidability as is the case for
unboundedness— of verification for unrestricted LCMs [CS08, SS11, Sch16].

Remark 1.1 (Lossy channel machines vs. lossy channel systems). In line with most works
on loop acceleration and verification of flat systems, we consider lossy channel “machines”
instead of the more usual lossy channel “systems”, i.e., systems where several independent
concurrent machines communicate via shared channels. This is because a combination of
individually flat machines does not lead to a “flat” system. Additionally, finite-state con-
current systems typically have PSPACE-hard verification problems already when they have
no channels and run synchronously, or when they only synchronise via bounded channels
that can hold at most one message [DLS06].

Outline. After some technical preliminaries (Section 2), we present our main technical
contribution (Section 3): we analyse the computation of predecessors (of some given con-
figuration) through a cycle iterated arbitrarily many times. In particular we show that the
backward-reachability analysis of a single cycle reaches its fixpoint after a bilinear number
of iterations. This leads to an effective bound on the length of the shortest runs between
two configurations. In Section 4 we show how the previous analysis can be turned into
a nondeterministic polynomial-time algorithmic via the use of SLP-compressed words for
efficiently computing intermediary channel contents along a run. In Section 5 we show how
our main results also apply to termination, repeated reachability, and boundedness. Finally
Appendix C presents reductions showing how the problems we considered are NP-hard, even
for acyclic LCMs or single-path LCMs.

Related work. After we circulated our draft proof, we became aware that a related NP-
membership result will be found in [FP20]. There the authors adapt the powerful technique
from [EGM12] and encode front-lossy channel systems into multi-head pushdown automata,
from which an NP-algorithm for control-state reachability in flat machines ensue. Our
approach is lower level, providing a tight bilinear bound on the number of times a cycle
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must be visited in the backward-reachability algorithm. Once these bounds are established,
our NP algorithm only needs to guess the number of times each cycle is visited.

2 Preliminaries

We consider words u, v, w, x, y, z, . . . over a finite alphabet Σ = {a, b, . . .}. We write |u|
for the length of a word and ε for the empty word. The set of letters that occur in u is
written alph(u). For a n-letter word u = a1 · · · an and some index ℓ ∈ {0, 1, . . . , n}, we write

u≤ℓ
def
= a1 · · · aℓ and u>ℓ

def
= aℓ+1 · · · an for the ℓ-th prefix and the ℓ-th suffix of u. We write

u(ℓ)
def
= u>ℓ · u≤ℓ for the ℓ-th cyclic shift of u.
Exponents are used to denote the concatenation of multiple copies of a same word, i.e.,

u3 denotes uuu. A fractional exponent p ∈ Q can be used for up if p·|u| is a natural number.

E.g., when a, b, c are letters, (abc)
11

3 , or equivalently (abc)3+
2

3 , denotes abc abc abc ab.
We write u 4 v to denote that u is a (scattered) subword of v, i.e., there exist 2m+ 1

words u1, . . . , um, x0, x1, . . . , xm such that u = u1 · · · um and v = x0u1x1 . . . umxm. It
is well-known that 4 is a well-founded partial ordering. For a word x ∈ Σ∗, we write

↑x
def
= {y ∈ Σ∗ |x 4 y} to denote the upward-closure of x, i.e., the set of all words that

contain x as a (scattered) subword.

LCMs. In this paper we consider channel machines with a single communication channel2.
A lossy channel machine (LCM) is a tuple S = 〈Q,Σ,∆〉 where Q = {p, q, . . .} is a finite set
of control locations, or just “locations”, Σ = {a, b, . . .} is the finite message alphabet, and
∆ ⊆ Q× ({!, ?} × Σ∗) ×Q is a finite set of transition rules. A rule δ = 〈q, (d,w), q′〉 has a

start location q, an end location q′ and a channel action (d,w). We write ActΣ
def
= {!, ?}×Σ∗

for the set of channel actions over Σ, and often omit the Σ subscript when it can be inferred
from the context. We use θ, θ′, . . . to denote actions and σ, ρ, . . . to denote sequences of
channel actions.

We’ll constantly refer to the written part and the read part of some channel action (or
sequence of such). These are formally defined via

wri(!w)
def
= w ,

rea(!w)
def
= ε ,

wri(?w)
def
= ε ,

rea(?w)
def
= w ,

wri(θ1 · · · θm)
def
= wri(θ1) · · · wri(θm) ,

rea(θ1 · · · θm)
def
= rea(θ1) · · · rea(θm) .

(1)

Semantics. The operational semantics of LCMs is given via transition systems. Fix some
LCM S = 〈Q,Σ,∆〉. Actions in ActΣ induce a ternary relation −→ ⊆ Σ∗ × ActΣ × Σ∗ on
channel contents:

x
! w
−→ y

def
⇐⇒ y 4 x w , x

? w
−→ y

def
⇐⇒ w y 4 x . (2)

Observe how Equation (2) includes the subword relation in the definition of the operational
semantics. This models the fact that messages in the channel can be lost nondeterminis-
tically during any single computation step. A consequence is the following monotonicity

property: if x′ < x and y < y′ then x
θ
−→ y implies x′

θ
−→ y′.

2See Appendix D for a generalisation of our results to multi-channel machines.
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A configuration of S is a pair c = (q, x) ∈ Q×Σ∗ that denotes a current situation where

the control of S is set at q while the contents of the channel is x. We let Conf S
def
= Q×Σ∗

denote the set of configurations. The set of rules ∆ induces a labelled transition relation
−→ ⊆ Conf S ×∆× Conf s between configurations defined by

(q, x)
δ
−→ (q′, y)

def
⇐⇒ δ ∈ ∆ has the form 〈q, θ, q′〉 and x

θ
−→ y . (3)

Several convenient notations are derived from the main transition relation: we write c
θ
−→ c′

when c
δ
−→ c′ for a rule δ that carries action θ. When σ = θ1θ2 · · · θm is a sequence of actions,

we write c
σ
−→ c′ when there is a sequence of steps c0

θ1−→ c1
θ2−→ c2 · · ·

θm−→ cm with c0 = c and
cm = c′. Then c

∗
−→ c′ means that c

σ
−→ c′ for some sequence σ. Similar notations, e.g.,

“x
θ1 θ2−−→y” or “x

θ∗
−→y”, are used for channel contents. In fact, since we shall mostly consider

fixed paths, or paths of a fixed shape, we will usually concentrate on the channel contents
and leave the visited locations implicit.

Flat LCMs. An elementary cycle of length m in a LCM S is a non-empty set C =
{〈pi, θi, qi〉 |i = 1, . . . ,m} of rules from ∆ such that qm = p1 and pi = qi−1 when 2 ≤ i ≤ m,
and such that the pi’s are all distinct. A cycle of length 1 is a self-loop. The set {p1, . . . , pm}
is the set of locations visited by C. Note that two distinct cycles may have the same visited
set if they use different transition rules.

We say that S is flat if no control location is visited by two different elementary cycles.
An extreme case of flat machines are the machines having no cycles whatsoever, called
acyclic machines.3

When S is flat, there is (at most) one cycle around any location q and we write σq for
the sequence of actions along this cycle, making sure that σq starts with the action leaving
q (so that if q, q′ are two locations visited by the same cycle, σq′ will be a cyclic shift of σq).
When there is no cycle visiting q we let σq = ε by convention.

NP-hardness. It is known that reachability and other verification problems are NP-hard for
(reliable) FIFO automata: see [EGM12, App. C] and [FP19]. We strengthen these results
in Appendix C with the following theorems that cover reliable and unreliable channels
indifferently.

Theorem 2.1 (Hardness for acyclic channel machines). Reachability, nontermination and
unboundedness are NP-hard for acyclic channel machines, with reliable or with unreliable
channels. Hardness already holds for a single channel and a binary alphabet. It also holds
for a unary alphabet (i.e., for acyclic VASSes, reliable or lossy) provided one allows several
channels (or counters).

NP-hardness for acyclic machines uses the nondeterminism allowed in channel machines.
It is thus interesting to consider single-path machines where the control graph is a single
line possibly carrying cycles on some locations, as is done in [KF11] or [DDS15]. In such a
machine, nondeterminism only occurs in choosing how many times a cycle is visited (and
what messages are lost in unreliable systems). This is equivalent to considering reachabil-
ity (or nontermination or unboundedness) along a given bounded path scheme of the form
q1C

∗
1q2C

∗
2 · · · qmC∗

m.

3In the finite-automata literature, “acyclic automata” sometimes allow self-loops.
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Theorem 2.2 (Hardness for single-path channel machines). Reachability, nontermination
and unboundedness are NP-hard for single-path channel machines, with reliable or with
unreliable channels. Hardness already holds for a single channel. It also holds for single-
path VASSes, reliable or lossy, provided one allows several counters.

The above NP-hardness does not apply to bounded path schemes with a fixed number of
cycles and indeed we show in Section 3 that reachability along path schemes with m cycles
can be verified in polynomial-time nO(m).

3 Backward reachability in flat LCMs

In this section we consider a generic flat single-channel LCM S with channel alphabet Σ
and investigate the complexity of backward-reachability analysis.

3.1 Computing predecessors

The classical approach to deciding reachability in LCMs is the backward-reachability al-
gorithm proposed by Abdulla and Jonsson. They first developed it for lossy channel sys-
tems [AJ96] before generalising it to the larger class of Well-Structured Systems [AČJT00,
FS01].

For backward reachability, we write Pre[σ](x) for {y ∈ Σ∗ | y
σ
−→ x}, the set of σ-

predecessors of x, and Pre[σ](↑ x) for {y ∈ Σ∗ | ∃x′ ∈ ↑x : y
σ
−→x′}, the set of σ-predecessors

of x “and larger contents”. A consequence of the monotonicity of steps is that Pre[σ](↑ x)
is upward-closed set and, unless σ is the empty sequence, coincides with Pre[σ](x).

Definition 3.1 (pr[σ](x)). For a channel contents x ∈ Σ∗ and a sequence σ of channel
actions, we write pr[σ](x) = y when Pre[σ](↑ x) = ↑ y.

In the case of lossy channels, Pre[σ](↑ x) always has a single minimal element, hence
pr[σ](x) is always defined. We now explain how to compute it.

For two words x, v we define x/v as the prefix of x that remains when we remove from
x its longest suffix that is a subword of v. This operation is always defined and can be
computed using the following rules where a, b are letters:

x/ε = x , ε/v = ε , (x a)/(v b) =

{

x/v if a = b,

(x a)/v if a 6= b.
(4)

This immediately entails (x/v)/v′ = x/(v′ v). We’ll also use the following properties:

if x′/v 6= ε then x(x′/v) = (x x′)/v , if |x′| > |v| then x′/v 6= ε . (5)

We may now compute pr[σ](x) with:

pr[?u](x) = u · x , pr[!v](x) = x/v ,

pr[ε](x) = x , pr[σ1 · σ2](x) = pr[σ1]
(
pr[σ2](x)

)
.

(6)

W.r.t. subword ordering, the / operation is monotonic in its first argument and contra-
monotonic in the second : u 4 u′ implies u/v 4 u′/v and x/u < x/u′. Concatenation too
is monotonic. This generalises to the following useful lemma:

5



Lemma 3.2. Assume pr[σ](x) = y and pr[σ](x′) = y′ where σ is some sequence of actions.
Then x 4 x′ implies y 4 y′.

Proof. By induction on σ, using eqs. (4) and (6).

3.2 Cycles: repeating a given sequence of actions

We now focus on computing pr[σk](x) for σ a sequence of actions and some k ∈ N.
Without any loss of generality, σ can be written in the general form ?a1 !b1?a2!b2 · · ·?ar !br

where each ai and bi is a letter or the empty word ε. Then rea(σ) = a1a2 · · · ar and
wri(σ) = b1b2 · · · br.

To fix notation, we define “the small-step sequence for pr[σ](x)”, or just “the SSS”, as
the sequence yr, y

′
r, yr−1, y

′
r−1, . . ., y1, y

′
1, y0 of 2r + 1 words given by

yr = x , y′i = yi/bi , yi−1 = ai y
′
i . (7)

Clearly, the SSS lists all the intermediary steps in the computation of pr[σ](x) as dictated
by eq. (6), and thus it yields y0 = pr[σ](x).

Our first lemma handles the special case where x is made of copies of rea(σ).

Lemma 3.3. Let u = rea(σ).
(i) If x is a fractional power up of u, then y = pr[σ](x) is also a fractional power of u,
written y = um.
(ii) Furthermore, if m > 1, then pr[σ](up+n) = um+n for all n ∈ N.
(iii) Finally, for all n ∈ N, if m > n+ 1, then pr[σ](up−n) = um−n.

Proof. The lemma holds spuriously if u = ε, so we assume |u| > 0. Let us write σ in the
general form ?a1 !b1 ?a2 !b2 · · ·?ar !br, so that u = a1a2 · · · ar. To simplify notation we will
write u(i) for the shift ai+1 · · · ar ·a1 . . . ai that really should be written u(|a1···ai|) (remember
that aj = ε is possible).

We now claim that, in the SSS (yi, y
′
i)i for σ and x, each yi and y′i is a fractional power

of u(i), written yi = upi(i) and y′i = u
p′i
(i).

The proof is by induction on r − i. For yi, there are two cases: (1) yr = x is a power of

u by assumption, hence of u(r), with pr = p; (2) yi−1 is ai y
′
i, i.e., ai u

p′i
(i) by ind. hyp., hence

a power of u(i−1) with pi−1 = p′i +
|ai|
|u| . For y

′
i the proof is simpler: by ind. hyp. it is upi(i)/bi

and, as a prefix of a power of u(i), is itself a power of u(i), albeit with a perhaps smaller

exponent, i.e., pi −
|bi|
|u| ≤ p′i ≤ pi.

(i) Since y coincide with y0, we obtain y = um as required by letting m = p0.

(ii) Equation (8) gathers the (in)equalities we just established:

pr = p , pi−1 = p′i +
|ai|

|u|
, max

(

0, pi −
|bi|

|u|

)

≤ p′i ≤ pi , p0 = m . (8)

Thus the assumption m > 1 entails p′i > 0, i.e. y′i 6= ε, for all i = r, r − 1, . . . , 2, 1. Let
us now consider the SSS (zi, z

′
i)i for pr[σ](u

p+1). We claim that for all i, zi = u(i)yi and
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z′i = u(i)y
′
i, as is easily proven by induction on r − i. The crucial case is z′i, defined as

zi/bi and equal to (u(i)yi)/bi by ind. hyp. Since yi/bi = y′i 6= ε as just observed, we
deduce (u(i)yi)/bi = u(i)(yi/bi) from eq. (5). This is u(i)y

′
i as required. Finally we end up

with pr[σ](up+1) = z0 = u(0)y0 = uum = um+1, and this generalises to pr[σ](up+n) = um+n.

(iii) With eq. (8), the assumption m > n+ 1 now entails pi, p
′
i ≥ n+ 1

|u| for all i. We claim

that the SSS (zi, z
′
i)i for pr[σ](u

p−n) satisfies un(i)zi = yi and un(i)z
′
i = y′i for all i, as can be

proved by induction on r − i. The base case unzr = unup−n = up = yr is clear. Let us
now consider un(i)z

′
i. It is u

n
(i)(zi/bi), that is u

n
(i)(u

pi−n
(i) /bi) since un(i)zi = yi by ind. hyp. and

yi = upi(i) by (i). Now |upi−n
(i) | = |u|(pi − n) ≥ 1 ≥ |bi|, so eq. (5) applies and we deduce

un(i)(zi/bi) = (un(i)zi)/bi = yi/bi (by ind. hyp.) = y′i. We have proved un(i)z
′
i = y′i as required.

Finally, proving un(i)zi = yi is handled in a similar way.

Note that m > 1 is required for part (ii) of the Lemma. For example, with σ =?a!b?c!c!a

one has u = rea(σ) = a c and pr[σ](u
1

2 ) = u1. However one can check that pr[σ](u
3

2 ) =

a c a = u
3

2 .

Equipped with Lemma 3.3, we turn to the general case for pr[σk](x).

Theorem 3.4. Let σ ∈ Act∗Σ be a sequence of actions and write u for rea(σ). Let x ∈ Σ∗

be some channel contents and write yk for pr[σk](x).
(i) For every k ∈ N, yk has the form upk ·x<ℓk for some fractional power pk and some length
ℓk ∈ {0, 1, . . . , |x|}.
(ii) Furthermore, computing pk and ℓk can be done in time poly(|σ| + |x|+ log k).

Proof. (i) Write v for wri(σ) and consider the sequence (xk)k∈N given by x0
def
= x and

xk+1
def
= xk/v. Note that |xk+1| ≤ |xk| for all k and write κ for the largest index with

xκ 6= ε. We let κ = −1 if already we started with x = ε, and κ = ω if all xk’s are
non-empty, which happens iff alph(x) 6⊆ alph(v).

If k ≤ κ, pr[σk](x) = uk · xk and xk is a prefix of x, so taking pk = k and ℓk = |xk|
works.

If k = κ + 1, yk is pr[σ](uκ · x<ℓκ). Since x<ℓκ/v = ε, the result is a prefix of uκ+1, so
has the form upκ+1 for some pκ+1. One also lets lκ+1 = 0.

Finally, if k > κ+ 1, we have yk = pr[σk−κ−1](yκ+1) = pr[σk−κ−1](upκ+1) and we just
have to invoke Lemma 3.3 (and set lk = 0).

(ii) Computing κ takes time O(|x|+ |σ|).
If k ≤ κ, comparing k with κ and computing pk and ℓk takes additional time O(|x| +

|σ|+ log k).
If k = κ + 1, we need to compute pr[σ](uκ x<κ) in order to extract pκ+1. This uses

eq. (6) for O(|σ|) small steps. Note that we do not build uκ explicitly: once x has been
consumed, we work on some up(i) and just update p and i when applying some pr[?a], or

only update p when applying some pr[!b], for which we only need to know where are the
occurrences of b in u. For each small step, the updates can be computed in time O(|u|+ |x|),
hence pκ+1 is computable in quadratic time.
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If k > κ+1, we set q0 = pκ+1, k
′ = k−κ−1 and aim for pr

[
σk′

]
(x′), starting from x′ =

uq0 . We need to compute uqk′ in the sequence uq0 , uq1 , . . . , defined by uqi+1
def
= pr[σ](uqi).

Let us first compute q1 and consider the three possibilities:
(1) If q0 = q1, yp is a fixpoint for pr[σ] and we know pk = p.
(2) If q0 < q1, the exponents increase under pr[σ] and after computing at most |u| + 1
consecutive values, we’ll find two indexes 1 ≤ i < j ≤ |u| + 1 such that qi and qj have the
same fractional parts, i.e., differ by some natural number. We can then use Lemma 3.3.(ii)

and compute q
j+

⌊

k′−j

j−i

⌋ = qj +
⌊
k′−j
j−i

⌋

. From there, we’re just at most |u| steps from qk′ ,

i.e., pk.
(3) Finally, if q0 > q1 a similar technique, now relying on Lemma 3.3.(iii), will let us compute
qk′ in polynomial time.

The next step is to compute Pre[σ∗](↑ x), that is, ↑x ∪ Pre[σ](↑ x) ∪ Pre[σ2](↑x) ∪ · · · .
Like Pre[σ](↑x), this set is upward-closed. However it may have several minimal elements
and one needs to collect all of them in order to represent the set faithfully.

Definition 3.5 (Iteration number). The iteration number L(σ, x) associated with a se-
quence of actions σ and a channel contents x is the smallest integer such that there exists
ℓ ≤ L(σ, x) with pr[σℓ][x] 4 pr[σL(σ,x)+1](x). Note that, by Higman’s Lemma, such an
integer always exists.

The point of Definition 3.5 is that it captures the number of iterations that are sufficient
to compute Pre[σ∗](↑x).

Lemma 3.6. Pre[σ∗](↑x) =
⋃L(σ,x)

i=0 ↑ pr[σi](x).

Proof. Write yk for pr[σk](x) and L for L(σ, x). By definition there is some ℓ ≤ L with
yℓ 4 yL+1. By Lemma 3.2, this continues into yℓ+1 4 yL+2, yℓ+2 4 yL+3, etc., implying
↑ yℓ ⊇ ↑ yL+1, ↑ yℓ+1 ⊇ ↑ yL+2, ↑ yℓ+2 ⊇ ↑ yL+3, . . . Finally Pre[σ∗](↑x), which is

⋃

i∈N ↑ yi

coincides with the finite union
⋃L(σ,x)

i=0 ↑ yi.

Theorem 3.7 (Bounding iteration numbers). L(σ, x) ≤ |x|(| rea(σ)| + 1) for any action
sequence σ and channel contents x.

Proof. We write u for rea(σ). Using Theorem 3.4, we write yk = pr[σk](x) = upk ·x<ℓk and
observe that pi ≤ pj and ℓi ≤ ℓj imply yi 4 yj. Recall from the proof of Theorem 3.4 that
|x| = ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓi ≥ · · · is a decreasing sequence and that pk = k when ℓk > 0.

There are two cases:
(1) If (ℓk)k stabilises with some limit value ℓ∞ that is strictly positive, then ℓ|x|−1 = ℓ|x|
and we deduce y|x|−1 4 y|x|, entailing L(σ, x) < |x|.
(2) If ℓ∞ = 0 then, writing k0 for the first index with ℓk0 = 0, we know that k0 ≤ |x| and
pk0 = k0. If pk0+1 ≥ pk0 then yk0 4 yk0+1. Otherwise pk0 > pk0+1 and as a consequence
of Lemma 3.2 the suffix sequence pk0 > pk0+1 ≥ pko+2 ≥ pk0+3 ≥ · · · is decreasing. Since
the pk fractions are multiples of 1

|u| , the sequence (pk)k≥k0 can only take 1 + |u|k0 different

values and eventually yield pk = pk+1 for some k ≤ k0 + k0|u| ≤ |x|(|u| + 1), entailing
L(σ, x) ≤ |x|(|u| + 1) as claimed.

The bound given by Theorem 3.7 is tight as the next simple example shows.
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Example 3.8 (Bounds for L(σ, x) are tight.). For σ =!ab5 ?b4 and x = a4, the (yk)k sequence

with yk
def
= pr[σk](x) is:

a4,

y0

b4a3,

y1

b8a2,

y2

b12a,

y3

b16,

y4

b15,

y5

b14,

y6

b13,

y7

b,

y19

ε,

y20

ε,

y21

. . .. . .

|x|=l0>l1>···>l4=0
︷ ︸︸ ︷

k0=4=pk0∧p4≥p5≥p6···
︷ ︸︸ ︷

Since y20 4 y21 is the earliest increasing pair, Definition 3.5 gives L(!ab5 ?b4, a4) = 20.
This generalises to L(!abn+1 ?bn, am) = m(n+1) for any n,m ∈ N, which is exactly the

|x|(| rea(σ)| + 1) bound given by Theorem 3.7.

3.3 Bounding runs

Assume that a flat LCM S is such that (q′, y) ∈ Post∗(q, x). Since S is flat, the run

(q, x)
∗
−→ (q′, y) has the following shape:

(q, x) = (q0, z0)
σ
n0
0−−→ (q0, z

′
0)

θ1−→ (q1, z1)
σ
n1
1−−→ (q1, z

′
1)

θ2−→ (q2, z2)
σ
n2
2−−→ · · ·

· · · (qm−1, z
′
m−1)

θm−→ (qm, zm)
σ
nm
m−−→ (qm, z′m) = (q′, y) .

(9)

In eq. (9), the control locations (q =)q0, q1, . . . , qm(= q′) are all distinct, σi is the sequence
of actions performed along the (unique) cycle on qi, and ni is the number of times this cycle
has been traversed along the run. We use σi = ε when there is no cycle on qi, and we use
ni = 0 when the cycle is not traversed at all. For i = 1, . . . ,m, θi is the sequence of actions
that labels the transition from qi−1 to qi.

We say that the run in eq. (9) is minimal if for all i = 1, . . . ,m, zi is a minimal element
in Pre[σ∗

i ](↑ z
′
i) and ni is the smallest such zi = pr[σni

i ](z′i), and if zi = pr[σni

i ](z′i) for
i = 0, . . . ,m. By allowing z0 4 x, it is always possible to associate a minimal run with some
reachability statement “(q, x)

∗
−→ (q′, y)” and use the tuple

〈q0, z0, n0, z
′
0, q1, z1, n1, z

′
1, . . . , qm, zm, nm, y〉 (10)

as a witness of reachability.
We now try to bound the size of such a witness. One has

|z′m| = |y| , |zi| ≤ |z′i|+ ni| rea(σi)| , |z′i−1| ≤ |zi|+ | rea(θi)| , (11)

for all i. We further know from Theorem 3.7, that ni ≤ |z′i|(1 + | rea(σi)|) for i = 0, . . . ,m.
Thus, writing n for the size |S| + |x| + |y| of the instance (so that m ≤ n, and

| rea(σi)|, | rea(θi)| ≤ n for all i), we have quadratic bounds O(n2) for nm and |zm|, cubic
boundsO(n3) for nm−1 and |zm−1|, . . . , etc., so that the witness has size O(nm), hence 2O(n).

Unfortunately, as Example 3.9 shows, these bounds cannot be much improved upon.

Example 3.9. Consider the flat LCM S depicted in fig. 1. In S, (q0, ε)
∗
−→ (q′0, ε) is witnessed

by the following run schema

(q0, ε) −→ (q1, ab)
∗
−→ (q1, ba

2)−→ (q2, a
2b)

∗
−→ (q2, ba

4)−→ (q3, a
4b)

∗
−→ · · ·

∗
−→ (qn, ba

2n)

−→ (q′n, a
2nb)

∗
−→ (q′n, ba

2n−1

)−→ (q′n−1, a
2n−1

b)
∗
−→ · · · −→ (q′1, a

2b)
∗
−→ (q′1, ba)−→ (q′0, ε) .

9



q0 q1 q2 q3 · · · qn q′n q′n−1 · · · q′1 q′0

?a !aa ?a !aa ?a !aa ?a !aa ?aa !a ?aa !a ?aa !a

!ab ?b !b ?b !b ?b !b ?b !b ?ba

Figure 1: A flat LCM where (q0, ε)
∗
−→ (q′0, ε) requires exponential-sized configurations.

In fact, there is only one run witnessing (q0, ε)
∗
−→ (q′0, ε) and this run necessarily visits

(qn, ba
2n), a configuration of exponential size, iterating 2n−1 times the cycle on qn. Observe

that, starting from (q0, ε), any message loss will prevent ever reaching q′0.

4 SLP-compressed words and an NP algorithm for reachabil-

ity

In this section we explain how the exponentially long minimal runs analysed in Section 3.3
can be handled efficiently using SLP-compressed words. This provides witnesses of polyno-
mial size that can be validated in polynomial time, thus showing that reachability in flat
LCMs is in NP.

4.1 SLP-compressed words

Compressed words are data structures used to represent long words via succinct encodings.
If a long word is rather repetitive, it can have a succinct encoding of logarithmic size. Since
several operations on long words or decision tests about them can be performed efficiently on
the succinct representation, compressed words have been used to provide efficient solutions
to algorithmic problems involving exponential-size (but rather repetitive) words, see [Loh12]
for a survey.

The most studied encoding is the SLP, for Straight-Line Program, which is in effect an
acyclic context-free grammar that generates a single word, called its expansion.

From now on, we always use small letters x, y, u, v for usual words, and capital letters
X,Y,U, V for SLPs expanding to the corresponding words. Since SLPs are interpreted as
plain words, we will use them freely in places where words can be used. It will always
be clear when we consider the SLP as a data structure and then we use it to denote its
expansion. The main situation where we want to distinguish between the two usages is
when reasoning about size and algorithmic complexity: for this we write |X| for the length
|x| of the expansion, while we write ‖X‖ for the size of the SLP as a data structure. For
example, if X expands to x then for any fractional power of the form xp, there is an SLP
Xp with |Xp| = |xp| = p|x| and ‖Xp‖ = O(‖X‖ + log p).

In the rest of this section we will use well-known, or easy to prove, algorithmic results
on SLP. In particular, all the following problems can be solved in polynomial time:

length: Given a SLP X, compute |X|.

factor: Given a SLP X and two positions 0 ≤ i ≤ j ≤ |X|, construct a SLP of size O(‖X‖)
for the factor X[i : j].

concatenation: Given two SLPs X and Y , construct a SLP for X · Y .

10



matching: Given two SLPs X and Y , decide if X is a factor (or a prefix, or a suffix) of Y .

To this list we add results tailored to our needs:

(scattered) subword with a power word: Given a SLP X, a plain word v and some
power k ∈ N, decide if X 4 vk. This special case of the fully compressed subsequence
test can be done in time poly(‖X‖+ |v|+log k), see Proposition A.1 in the Appendix.

iterated LCM predecessor: Given a SLP X, a plain word v, and some power k ∈ N,
compute a SLP for X/vk, i.e., for pr[(!v)k](X). This can be done in time poly(‖X‖+
|v|+ log k), see Proposition A.2 in the Appendix.

With the above results, we are ready to lift the computation of pr[σk](x) from plain
words to SLPs:

Proposition 4.1. Given an SLP X, a sequence of actions σ, and some k ∈ N, it possible
to compute an SLP Y for pr[σk](X) in time poly(‖X‖ + |σ|+ log k).

Proof (sketch). We follow the construction described in the proof of Theorem 3.4, now using
SLPs. So again let us write u and v for rea(σ) and wri(σ).

The first step is to compute κ. This is done by dichotomic search, since we can decide in
polynomial time whether a candidate n leads to X/vn = ε. We then build X<ℓκ as X/vκ.

If k ≤ κ, we build a SLP Y for uk · (X/vk) and we are done.
If k ≥ κ + 1, we compute a SLP for yκ+1 = upκ+1 by applying pr[σ] on a SLP for

yκ = uκ ·x<ℓκ: this involves computing a SSS involving at most 2m operations like prefixing
by ai or computing Y/bj . This is done in polynomial time and the exponent in upκ+1 can
be computed by dividing the length of a SLP with the length of u. From there we continue
as in the proof of Theorem 3.4. This involves performing a polynomial number of simple
pr operations and some simple reasoning on the exponents.

4.2 Reachability for flat LCMs is in NP

We now explain how eq. (10) can be replaced by an SLP-based witness of the form

〈q0, Z0, n0, Z
′
0, q1, Z1, n1, Z

′
1, . . . , qm, Zm, nm, Y 〉 . (10’)

Lemma 4.2. If 〈q0, z0, n0, z
′
0, q1, n1, z1, z

′
1, . . . , qm, zm, nm, y〉 is a minimal witness for (q, x)

∗
−→(q′, y)

in S, then there exist SLPs Z0, Z
′
0, Z1, . . . , Zm, Y representing z0, z

′
0, z1, . . . , zm, y that have

size polynomial in |S|+ |y|.

Proof. By induction on m− i. We start with Y for y which does not need any compression
(and let Z ′

m = Y for the inductive reasoning).
Then any Zi has the shape U

pi
i · (Z ′

i)<ℓi for some pi and ℓi. Now ‖(Z ′
i)<ℓi‖ is in O(‖Z ′

i‖)
and since pi is in 2O(|S|) —as shown in Section 3.3—, the size of the SLP for upii is is
O(|ui|+ |S|), i.e., O(|S|).

Now any Z ′
i−1 is pr[θi](Zi) and is easily obtained from Zi and θi according to eq. (6).

One can ensure that ‖Z ′
i‖ is in O(‖Zi‖+ |S|).

Finally, and since each SLP has size linearly bounded in the size of the following one
(the bounds propagate from right to left), we have a quadratic bound on the individual
sizes for the Zi and Z ′

i, hence a cubic bound on the SLP witness overall (recall that the ni,
written in binary, have size O(|S|)).
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Theorem 4.3. Deciding whether (q, x)
∗
−→ (q′, y) in a flat LCM S is NP-complete.

Proof. NP-hardness is proven in Appendix C and we just provide a NP decision algorithm.
As expected, the algorithm just guesses a SLP-based witness and checks that it is indeed

a valid witness. For a positive instance of the problem, a witness exists and has polynomial
size as shown in Lemma 4.2. Now checking that it is valid, i.e., that each Zi is indeed
pr[σni ](Z ′

i) etc., can be done in polynomial time as shown with Proposition 4.1.4

5 NP algorithms for liveness properties

We show in this section how, for flat LCMs, liveness properties like nontermination, un-
boundedness, and existence of a Büuchi run, effectively reduce to reachability. This only
requires characterising and computing the set of configurations from which infinite runs are
possible but Section 3 provides all the necessary tools.

With any sequence of channel actions σ we associate Iσ
def
=

⋂

k=0,1,2,... Pre[σ
k](Σ∗).

Lemma 5.1. Iσ ⊆ Σ∗ is an upward-closed set of channel contents. It has a single minimal
element or is empty.

Proof. Write (yk)k∈N for the sequence y0
def
= ε and yk+1 = pr[σ](yk). Then Pre[σk](Σ∗) =

↑ yk for all k ∈ N (Definition 3.1) and Iσ =
⋂

k∈N Pre[σ
k](Σ∗) =

⋂

k ↑ yk. From y0 4 y1 and
monotonicity of pr (Lemma 3.2) we obtain y0 4 y1 4 y2 4 · · · and ↑ y0 ⊇ ↑ y1 ⊇ ↑ y2 ⊇ · · · .
Thus we have

Iσ =
⋂

k∈N

↑ yk =

{

↑ yK if yK = yK+1 for some K,

∅ if the (yk)k∈N sequence is strictly increasing.

We write pr[σω](ε) = y if Iσ = ↑ y, and pr[σω](ε) = ⊥ if Iσ is empty.

Lemma 5.2. pr[σω](ε) can be computed in time O(|σ|3).

Proof (sketch). We start computing the elements y0, y1, y2, . . . of the (yk)k sequence. If two
consecutive values yK and yK+1 coincide, we have found pr[σω](ε). Otherwise we continue
while the sequence is strictly increasing until eventually |yk| > | rea(σ)| for some k (indeed,
some k ≤ 1 + |σ|). In this case we can invoke Lemma 3.3.(ii) and conclude that the (yk)k
sequence will remain strictly increasing, hence pr[σω](ε) = ⊥.

For complexity, we note that each yk+1 is obtained in time O(|σ|+ |yk|) and has length
in O(|σ|2) since |yk+1| ≤ |yk|+ | rea(σ)| for all k.

The set Iσ, represented via pr[σω](ε), is interesting because it characterises the con-
figurations from which a σ-labelled cycle can be traversed infinitely many times, i.e., it
characterises nontermination.

Indeed, the following lemma reduces nontermination to reachability:

4In fact, it is sufficient to guess the exponents n1, . . . , nm for the σi’s since the Zi, Z
′
i’s can be computed

from them.
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Lemma 5.3 (Existence of infinite runs). (i) There exists an infinite sequence x = x0
σ
−→x1

σ
−→x2 · · ·

starting from x if, and only if, pr[σω](ε) 4 x.
(ii) There exists an infinite run in S that starts from (q, x) and visits a given q′ ∈ Q infinitely

many times if, and only if, q′ is on an elementary cycle of S and (q, x)
∗
−→ (q′, pr[σω

q′ ](ε)).

Proof. (i) Write y for pr[σω](ε). The proof of Lemma 5.2 shows that, unless y = ⊥,
y = pr[σ](y) and thus y

σ
−→ y.

(⇐=): Since x < y, we have x
σ
−→y

σ
−→y

σ
−→ · · · if σ 6= ε, and x

σ
−→x

σ
−→x

σ
−→ · · · in the degenerate

case where σ = ε.
(=⇒): We assume σ 6= ε since otherwise x < ε = pr[σω](ε) holds trivially. The infinite
sequence x0

σ
−→ x1

σ
−→ x2

σ
−→ · · · satisfies x0 < pr[σk](xk) < pr[σk](ε) for all k ∈ N. Thus

pr[σω](ε) 6= ⊥ and x = x0 < pr[σω](ε).

(ii) is an immediate consequence of (i).

By combining the above lemmas with Theorem 4.3 and the NP-hardness results proven
in Appendix C, one now obtains:

Theorem 5.4. Nontermination and existence of a Büchi run are NP-complete for flat
LCMs.

Remark 5.5 (Repeated coverability is NP-complete). Let us define more generally Iσ(x) as
⋂

k=0,1,2,... Pre[σ
k](↑x), so that Iσ really is shorthand for Iσ(ε). For a location q on a σq-

labelled cycle, Iσq (x) characterises a form of repeated coverability since y ∈ Iσq(x) iff there
is an infinite run from (q, y) such that the channel contains a superword of x every time q
is (re)visited. Using some temporal logic, this could be written under the form

y ∈ Iσq (x) ⇐⇒ (q, y) |=∃ GFq ∧ G(q =⇒ chan ≥ x) .

The proof of Lemma 5.2 can be extended to the computation of Iσ(x). One obtains Iσq(x) =
↑ y0 ∩ ↑ y1 ∩ · · · ∩ ↑ yK for some K in O(|σ| · |x|). We deduce that the repeated coverability
problem is in NP for flat LCMs, and is indeed NP-complete.

Note however that now the (yk)k sequence does not necessarily satisfies y0 4 y1, so that
Iσ(x) will have in general several minimal elements, and possibly exponentially many. In
fact already ↑ y0 ∩ ↑ y1 may have exponentially many minimal elements (see [GLHK+20,
§ 6.3]). Thus the NP-algorithm for repeated coverability represents Iσ(x) as a conjunction
of subword constraints, not via a set of minimal elements, but this is sufficient for its
purposes.

Unboundedness reduces to reachability in a very similar way. We say that a sequence

of actions σ is increasing if uℓv 4 vℓv−1 (and ℓv > 0) for u
def
= rea(σ), v

def
= wri(σ) and

ℓv
def
= |v|. Now pr[σω](ε) and increasingness of σ characterise unbounded reachability sets.

Lemma 5.6 (Proof in Appendix B.1). Let x ∈ Σ∗ be some channel contents and σ a
sequence of channel actions. T.f.a.e.:

(i) For all k ∈ N there exists xk with x
σ∗

−→ xk and |xk| ≥ k.

(ii) There exists an infinite unbounded sequence x
σ∗

−→x1
σ∗

−→x2
σ∗

−→ · · · with |x1| < |x2| < · · · .
(iii) σ is increasing and x < pr[σω](ε).
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Lemma 5.7 (Existence of unbounded runs). In a flat LCM, t.f.a.e.
(i) The reachability set Post∗(q, x) is infinite.
(ii) There is an unbounded run starting from (q, x).

(iii) (q, x)
∗
−→ (q′, pr[σω

q′ ](ε)) for some control location q′ with an increasing σq′.

Proof (sketch).
(ii =⇒ iii): In an unbounded run, there must be a control location q′ that is visited
infinitely many times with associated channel contents that are unbounded. Since from q′

one can only return to q′ by running through the cycle around q′, hence performing σq′

some number of times, the first visit of q′ is some (q′, x′) satisfying case (ii) of Lemma 5.6.
We deduce that σ′

q is increasing and that x′ < pr[σω
q′ ](ε) as in case (iii) of the Lemma.

(iii =⇒ ii): by Lemma 5.6 there exists an unbounded run starting from (q′, pr[σω
q′ ](ε)).

Hence there is one starting from (q, x).
(i ⇐⇒ ii): is an application of Kőnig’s Lemma, not specific to LCMs, see e.g. [Sch10,
§6].

We can thus reduce unboundedness to reachability of an increasing cycle. With the
NP-hardness results proven in Appendix C, one now obtains:

Theorem 5.8. Unboundedness for flat LCMs is NP-complete.

6 Conclusion

We analysed the behaviour of the backward-reachability algorithm for lossy channel ma-
chines when a cycle of channel actions can be performed arbitrarily many times. This
provides complexity bounds on the size of runs that follow a bounded path scheme of the
form σ∗

1ρ1σ
∗
2ρ2 . . . σ

∗
mρm, with applications in the verification of flat systems, or in bounded

verification for general systems. The main result is an NP upper bound for reachability
and, by reduction, several other verification problems like unboundedness or existence of a
Büchi run.

Natural directions for future work include extending our approach to deal with richer
verification problems, like temporal logic model checking. It would also be interesting to
consider more expressive models, like the partially lossy channel systems from [Köc19] or
the higher-order lossy channel systems and priority channel systems from [HSS14].
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[CFP96] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier
to verify than perfect channels. Information and Computation, 124(1):20–31,
1996.

[CGLM06] P. Cégielski, I. Guessarian, Y. Lifshits, and Y. V. Matiyasevich. Window
subsequence problems for compressed texts. In Proc. CSR 2006, volume 3967
of Lecture Notes in Computer Science, pages 127–136. Springer, 2006.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis, and
Presburger arithmetic. In Proc. CAV ’98, volume 1427 of Lecture Notes in
Computer Science, pages 268–279. Springer, 1998.

[CS08] P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy
channel systems. In Proc. LICS 2008, pages 205–216. IEEE Comp. Soc. Press,
2008.

15



[CS10] P. Chambart and Ph. Schnoebelen. Toward a compositional theory of leftist
grammars and transformations. In Proc. FOSSACS 2010, volume 6014 of
Lecture Notes in Computer Science, pages 237–251. Springer, 2010.

[DDS15] S. Demri, A. K. Dhar, and A. Sangnier. Taming past LTL and flat counter
systems. Information and Computation, 242:306–339, 2015.

[DFGvD10] S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking
CTL* over flat Presburger counter systems. Journal of Applied Non-Classical
Logics, 20(4):313–344, 2010.

[DHL+17] N. Decker, P. Habermehl, M. Leucker, A. Sangnier, and D. Thoma. Model-
checking counting temporal logics on flat structures. In Proc. CONCUR 2017,
volume 85 of Leibniz International Proceedings in Informatics, pages 29:1–
29:17. Leibniz-Zentrum für Informatik, 2017.

[DLS06] S. Demri, F. Laroussinie, and Ph. Schnoebelen. A parametric analysis of the
state explosion problem in model checking. Journal of Computer and System
Sciences, 72(4):547–575, 2006.

[EGM12] J. Esparza, P. Ganty, and R. Majumdar. A perfect model for bounded verifi-
cation. In Proc. LICS 2012, pages 285–294. IEEE Comp. Soc. Press, 2012.

[Fin94] A. Finkel. Decidability of the termination problem for completely specificied
protocols. Distributed Computing, 7(3):129–135, 1994.

[FO97] L. Fribourg and H. Olsén. A decompositional approach for computing least
fixed-points of datalog programs with Z-counters. Constraints, 2(3/4):305–
335, 1997.

[FP19] A. Finkel and M. Praveen. Verification of flat FIFO systems. In Proc. CON-
CUR 2019, volume 140 of Leibniz International Proceedings in Informatics,
pages 12:1–12:17. Leibniz-Zentrum für Informatik, 2019.

[FP20] A. Finkel and M. Praveen. Verification of flat FIFO systems. Long version
of [FP19], submitted for publication, June 2020.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

[GI15] P. Ganty and R. Iosif. Interprocedural reachability for flat integer programs.
In Proc. FCT 2015, volume 9210 of Lecture Notes in Computer Science, pages
133–145. Springer, 2015.

[GKWZ06] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive
recursive decidability of products of modal logics with expanding domains.
Annals of Pure and Applied Logic, 142(1–3):245–268, 2006.

[GLHK+20] J. Goubault-Larrecq, S. Halfon, P. Karandikar, K. Narayan Kumar, and Ph.
Schnoebelen. The ideal approach to computing closed subsets in well-quasi-
orderings. In Well Quasi-Orders in Computation, Logic, Language and Rea-
soning, volume 53 of Trends in Logic, chapter 3, pages 55–105. Springer, 2020.

16



[HSS14] Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel
systems. Logical Methods in Comp. Science, 10(4:4), 2014.

[KF11] L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In Proc.
CONCUR 2011, volume 6901 of Lecture Notes in Computer Science, pages
419–433. Springer, 2011.
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A Some SLP algorithms

We describe here some SLP algorithms that are not readily available in the literature (as far
as we know). Formally, by “an SLP X” we mean a grammar (Σ, N,X,P ) where X ∈ N is
the axiom (a non terminal), where Σ is the set of terminal letters, and where the production
rules in P are either Ai → a or Ai → AjAk for some a ∈ Σ and some nonterminals Ai, Aj , Ak

with i < j, k. There is exactly one production rule for each Ai ∈ N , so that each Ai defines
a unique word L(Ai) ∈ Σ∗.

A.1 Deciding X 4 vn

Deciding X 4 Y between SLPs is a difficult problem, PP-hard as show in [Loh12]. When
x (or y) is a plain word, the problem has polynomial-time solutions [MS04, CGLM06,
YBIT11].

Here we consider the special case where Y is some vn.

Proposition A.1. Deciding whether X 4 vn, where X is an SLP, v is a plain word, and
n is a fractional exponent, can be done in time O(‖X‖ · |v|+ |v|2 + log n).

Proof. For v 6= ε and some word x such that alph(x) ⊆ alph(v), let us define p(x, v) as the
smallest fractional power such that x 4 vp. Now p(x, v) satisfies the following equalities:

p(ε, v) = 0

p(a, v) =
i

|v|
, if the first occurrence of a in v is at position i,

p(x y, v) = p(x, v) + p(y, v(j)), if p(x, v) is some q +
j

|v|
with q ∈ N.

(12)

Using eq. (12) leads to a dynamic programming algorithm computing p(X, v) for an SLP
X. After checking that alph(X) ⊆ alph(v), one computes the values of all p(A, v(i)) for
i = 1, . . . , |v| and A a nonterminal in SLP X. Each of these O(‖X‖ · |u|) values is computed
in time O(1) if one precomputes the first occurrences of letters in the cyclic shifts of v, say
in time O(|v|2). Finally, one only has to compare p(X, v) with n.

A.2 Computing X/vk

Proposition A.2. Building a SLP for X/vk, where X is an SLP, v is a plain word, and
k ∈ N, can be done in time poly(‖X‖ + |v| + log n).

Proof. For given ℓ, deciding whether X/vk has length at least ℓ is easy: One just applies
the definition, builds an SLP X ′ for the suffix of length |X| − ℓ of X, and checks that it is
a subword of vk with proposition A.1.

Thus one can computes |X/vk| by finding the length of the result via dichotomic search,
repeating the previous process log |X|, i.e., O(‖X‖), times.5

5A better, dynamic programming, algorithm exists but here we aim for the simplest feasability proof.
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B Forward reachability techniques

We collect in this section some proofs relying on forward-reachability analysis.
Let us reuse notations from [ACBJ04] and define a partial function x⊖u between channel

contents as follows:

x⊖ u
def
=







x if u = ε,

undefined if x = ε and u 6= ε,

x′ ⊖ u′ if x = ax′ and u = au′ for some a ∈ Σ,

x′ ⊖ u if x = ax′ and u = bu′ for some a 6= b ∈ Σ.

(13)

Observe that x⊖ u is defined if, and only if, u 4 x. Note also that, when x⊖ u is defined,
we can use monotonicity and commutation with concatenation:

if u 4 x then for all x′ :

{

x 4 x′ implies x⊖ u 4 x′ ⊖ u ,

(x⊖ u) · x′ = (xx′)⊖ u .
(14)

Now x⊖ u captures the forward effects of ?u actions in LCMs:

Lemma B.1. x
?u
−→ y iff y 4 x⊖ u.

We can also use ⊖ to characterise the outcome of arbitrary sequences of actions.

Lemma B.2. Let σ ∈ Act∗Σ be an arbitrary sequence of actions.

x′
σ
−→ y for some x′ 4 x iff x

σ
−→ and y 4

(
x · wri(σ)

)
⊖ rea(σ) .

Proof. By induction on the length of σ. The existential quantification on some x′ 4 x
accounts for the case where σ = ε is the empty sequence.

For the inductive step, we consider two cases:

1. σ = !w · σ′: For the “=⇒” direction, x
σ
−→ y implies x′

σ′

−→ y for some x′ 4 xw, which
implies

y 4
(
x′w · wri(σ′)

)
⊖ rea(σ′) by ind. hyp.,

=
(
x′ · wri(σ)

)
⊖ rea(σ) since σ = !w · σ′,

4
(
x · wri(σ)

)
⊖ rea(σ) by monotonicity.

For the “⇐=” direction, we know that y 4
(
x. wri(σ)

)
⊖ rea(σ) =

(
xw. wri(σ′)

)
⊖

rea(σ′), so the ind. hyp. tells us that x′
σ′

−→y for some x′ 4 xw. We deduce x
!w
−→x′

σ′

−→y.

2. σ =?w ·σ′: For the “=⇒” direction, x′
σ
−→y implies x′

?w
−→x′′

σ′

−→ y for some x′′ 4 x′⊖w.
We have

y 4
(
x′′. wri(σ′)

)
⊖ rea(σ′) by ind. hyp.,

4
(
[x⊖ w] · wri(σ′)

)
⊖ rea(σ′) by monotonicity,

=
(
x · wri(σ′)

)
⊖

(
w · rea(σ′)

)
by (14),

= (x · wri(σ)) ⊖ rea(σ) since σ = ?w · σ′.
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For the “⇐=” direction, we know that x
σ
−→ hence in particular x ⊖ w is defined.

We also know that y 4
(
x. wri(σ)

)
⊖ rea(σ) =

(
x. wri(σ′)

)
⊖ (w · rea(σ′)) =

(
(x ⊖

w). wri(σ′)
)
⊖ rea(σ′), so by ind. hyp. there is some x′ 4 x⊖w with x′

σ′

−→ y for some

x′ 4 xw. We deduce x
?w
−→ x′

σ′

−→ y.

B.1 Proof of Lemma 5.6

Write u, v for rea(σ), wri(σ).

(ii =⇒ iii): we only have to prove that σq is increasing since Lemma 5.3 entails x <

pr[σω](ε) already.
By assumption, there is a sequence x1, x2, . . . of channel contents of increasing length,

and some numbers n1, n2, . . . in N such that x
σni

−−→xi. W.l.o.g. we can assume n1 < n2 < · · · .
With Lemma B.2 we deduce xi 4 (xvni)⊖uni , hence uni xi 4 xvni , for all i = 1, 2, . . . If

u = ε, σ is trivially increasing, so assume |u| > 0 and write m = |x|: we get uni−mxi 4 vni

for all i such that ni ≥ m. Now take i such that |xi| ≥ (m+1)|v| (and such that ni > m): we
get uni−m 4 vni−m−1. We now applies Lemma 6.2 from [ACBJ04]: “if there is some k ≥ 1
such that wk

1 4 wk−1
2 (for two words w1, w2), then in particular one can choose k = |w2|”.

This yields u|v| 4 v|v|−1, i.e., σ is increasing.

(iii =⇒ i): we assume that σ is increasing, i.e., u|v| 4 v|v|−1, and that x < pr[σω
q ](ε). The

second assumption entails that x
σn

−→ for all n. The first assumption entails vk 4 xvk|v|⊖uk|v|,

hence x
σk|v|

−−→ vk by Lemma B.2, for all k ∈ N.

(i =⇒ ii): is an application of Kőnig’s Lemma, not specific to LCMs, see e.g. [Sch10, §6].

C NP-hardness for flat LCMs and flat FIFO machines

LCMs are derived from FIFO automata [VF80, BZ83] and our NP-hardness results apply
to both models. FIFO automata, sometimes called queue automata, or communicating
finite state machines, are reliable channel machines where messages are never lost. Their

operational semantics is based on a reliable notion of steps, formally given by x
! w
−→rel y

def
⇐⇒

y = xw and x
? w
−→rel y

def
⇐⇒ wy = x, to be compared with Equation (2). This is extended

to x
σ
−→rel y, c

∗
−→rel c

′, etc., as for LCMs.

C.1 Proof of Theorem 2.1: NP-hardness for acyclic machines

We first show hardness for reachability and reduce from SAT. Let ϕ = C1 ∧ · · · ∧ Cm be a
3CNF with Boolean variables among V = {v1, . . . , vn}. With ϕ we associate a machine Sϕ

as illustrated below in fig. 2.
Let us explain informally how Sϕ operates. Starting from Ib it first reaches Ie while

writing in the channel a word of the form w $ with w ∈ {0, 1}n. This word encodes a
valuation of the Boolean variables and carries an end marker $. Then Sϕ crosses from Cb

1

to Ce
1: this requires reading the valuation on the channel and checking that it satisfies C1.
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For this Sϕ has to choose the line corresponding to one of the three literals in C1, in fact
choose one literal made true by the valuation. During this check, the valuation is written
back on the channel. Then Sϕ checks that the remaining clauses, C2 to Cm, are satisfied by
the valuation, each time reading the valuation and writing it back on the channel. Finally,
the last leg from V b to V e checks that no message has been lost during all this run.

Ib 1 2 3 4 n Ie· · ·
!0

!1

!0

!1

!0

!1

!0

!1

!0

!1

!0

!1

!$

Cb
1 · · ·
?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?$ !$

· · ·
?0 !0

?1 !1

?0 !0
?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?$ !$

Ce
1· · ·

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?1 !1
?0 !0

?1 !1

?0 !0

?1 !1

?$ !$

Cb
2

Ce
m

?$ !$

· · ·

V b V e· · ·
?0

?1

?0

?1

?0

?1

?0

?1

?0

?1

?0

?1

?$

Write some valuation v

Check v |= C1 (≡ v1 ∨ ¬v2 ∨ v4)

Check v |= C2 ∧ · · · ∧Cm

Check no losses occurred

Figure 2: LCM Sϕ for satisfiability of ϕ = (v1 ∨ ¬v2 ∨ v4) ∧ C2 · · · ∧ Cm.

It is now clear that (Ib, ε)
∗
−→ (V e, ε) in Sϕ if, and only if, ϕ is satisfiable. The reasoning

holds for lossy LCMs and for reliable FIFO automata. We have thus reduced SAT to the
reachability problem for both types of acyclic machines.

Remark C.1. The construction of Sϕ can be simplified at the cost of making the reduction
perhaps less obviously correct: one can either omit the end-marker symbol $ since in the
end the machine checks that no message was lost (thus a binary alphabet suffices), or one
can stop the machine at Ce

m, getting rid of the V b to V e part, since the markers ensure
that the valuation read while checking a clause Ci is indeed the full valuation written at
the previous stage.

For hardness of nontermination and unboundedness we adapt the previous reduction

by adding a single cycle V e !$
−→ V e on the last control location. Starting from (Ib, ε), the

modified Sϕ has an infinite run iff it has an unbounded run iff ϕ is satisfiable.

The above reductions adapt to flat VASSes and lossy VASSes, i.e., channel machines
with unary alphabet, provided that we allow 2n channels (or counters) for a valuation on

21



n Boolean variables.

C.2 Proof of Theorem 2.2: NP-hardness for single-path machines

We first show hardness for reachability. For this we reduce from SAT. So let us consider
a 3CNF formula ϕ with Boolean variables among V = {v1, . . . , vn}. Let us say ϕ =
(v2 ∨ ¬v3 ∨ ¬vn) ∧ C2 ∧ · · · ∧Cm, with m clauses.

With ϕ we associate Sϕ, the single-path flat LCM described in Figure 3. This LCM has
O(mn2) control locations6, and is organised as a series of distinct operations on the channel
contents. The operations are grouped in lines and we describe them informally.

0start 0, 1 0, 2 0, n· · ·
!v10v20 · · · vn0 ?v1 !v1 ?v2 !v2 ?vn !vn

?0 !0 ?0 !1 ?0 !0 ?0 !1 ?0 !0 ?0 !1

1, 1 1, 2 1, 3 1, 4 1, n· · ·
?v1 !v1 ?v2 !v2 ?v3 !v3 ?v4 !v4 ?vn !vn

?0 !0 ?1 !1 ?0 !0 ?1 !1x ?0 !0x ?1 !1 ?0 !0x ?1 !1

2, 1 2, 2 2, n· · ·

?x !x

?v1 !v1

?v1x !xv1

?0 !0

?0x !x0

?1 !1

?1x !x1

?v2 !v2

?v2x !xv2

?0 !0

?0x !x0

?1 !1

?1x !x1

?vn !vn

?vnx !xvn

?0 !0

?0x !x0

?1 !1

?1x !x1

3, 1 3, 2 3, n· · ·
?x ?v1 !v1 ?v2 !v2 ?vn !vn

?0 !0 ?1 !1 ?0 !0 ?1 !1 ?0 !0 ?1 !1

L0

L1

L2,1

L3

... f

... · · · Repeat line above 2n− 1 times · · ·

· · · Repeat lines L1 to L3 (2n + 2 lines each time) for remaining clauses C2, . . . , Cm · · ·

Figure 3: Single-path LCM for satisfiability of ϕ = (v2 ∨ ¬v3 ∨ ¬vn) ∧ C2 · · · ∧ Cm.

L0, choosing a valuation nondeterministically: Sϕ first write v10v20 . . . vn0 on the
channel. This is our encoding for the valuation that is 0 for all variables. Then
Sϕ reads the valuation and write it back, possibly changing any 0 value with a 1 (this
happens at the red-coloured actions), and thus picking an arbitrary valuation nonde-
terministically. Here we see how the v1, . . . , vn markers are used to check positions
inside the valuation.

L1, marking where clause C1 is validated: Sϕ now checks whether the valuation stored
on the channel makes C1 true. In this example, we assume that C1 is v2 ∨¬v3 ∨¬vn.
Again Sϕ reads the valuation and writes it back. However, if it reads v21 or v30 or
vn0, it writes it back followed by a special checkmark symbol x that “means C1 has
been validated” (see red actions). Note that as many as 3 occurrences of x can be
inserted in the encoding of the valuation.

6Our reduction insists on using only one channel. With multiple channels the same idea would use
O(n+m) control locations.
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L2,1, pushing x to the head of the valuation encoding: Sϕ now pushes any checkmark
symbol to the left. This is done along the L2,1 line. While the valuation is read and
written back as usual (black actions), any symbol preceding a x can swap position
with it (red actions).

L2,2, . . . , L2,2n, more pushing x to the left: this behaviour is repeated 2n times in to-
tal, so that any x can be pushed completely to the left of the valuation. In case of
multiple occurrences of x, we just need one of them to reach the head of the valuation
so we assume that the other ones will just be lost.

L3, checking that clause C1 has been validated: Now Sϕ knows where to expect x.
The machine can only proceed if indeed a x is present in the channel, in front of the
valuation, and thus if the valuation on the channel satisfies C1. The rest of the line
reads and writes back the valuation, clearing it of any remaining x’s.

Same treatment for the remaining clauses C2, . . . , Cm: Sϕ now continues with simi-
lar locations and rules checking that the remaining clauses are validated.

Note that, once the valuation has been picked nondeterministically (in L1), it cannot be
modified. Also note that the machine will block if one of the vi markers is lost before the
last clause has been validated. If one of the 0/1 values of the valuation is lost, this value
cannot be used any more for checkmarking a validated clause. Such message losses do not
lead to any incorrect behaviour, they can only hinder the validation of a clause.

Finally, starting from (0, ε), Sϕ can reach its final location f iff ϕ is satisfiable.

Now the reduction extends to show prove NP-hardness of unboundedness for single-path
LCMs with exactly the same adaptation as in the proof for acyclic LCMs. For hardness of
nontermination a little more work is needed since every cycle where Sϕ reads the valuation
and writes it back could become a nonterminating cycle if all but one letter are lost. One
possible trick to overcome this is to have two copies of the alphabet, say of two different
colours, and to ensure that in all its phases the machine reads in one colour and writes back
in the other, so that the valuation is always read and written in alternating colours. Once
this is implemented, the system cannot have infinite runs as is. Adding a single loop on
f, the final control location, as we did for acyclic LCMs, now provides a correct reduction
from SAT to nontermination for single-path LCMs.

The idea behind this reduction can easily be adapted so that it applies to single-path
VASSes and lossy VASSes, or equivalently, to channel machines with a unary alphabet. One
uses 2n channels (or counters) for storing the valuation and m distinct counters for marking
the clauses that have been validated.

Restricting to a binary alphabet on a single channel is equally easy for reliable FIFO
automata, but more difficult when message losses have to be taken care of. Therefore we
won’t attempt it in this preliminary version.

D Multiple channels

The analysis we conducted in Section 3 carries over without any difficulty to systems with
multiple channels. Lemma 3.3 and Theorem 3.4 remain valid since, once σ and k have been
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fixed, computing pr[σk](〈x1, . . . , xc〉) for a system with c channels can be done indepen-
dently for each of the c channels: one only needs to distribute the actions on σ to their
corresponding channel, so that rea(σ) now is some tuple 〈u1, . . . , uc〉. In particular the
bound in Theorem 3.7 becomes

L
(
σ, 〈x1, . . . , xc〉

)
≤ maxci=1 |xi| · (|ui|+ 1) , where rea(σ) = 〈u1, . . . , uc〉 .
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