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Superconducting circuits are currently developed as a versatile platform for the exploration of many-
body physics, by building on nonlinear elements that are often idealized as two-level qubits. A classic
example is given by a charge qubit that is capacitively coupled to a transmission line, which leads to the
celebrated spin-boson description of quantum dissipation. We show that the intrinsic multilevel structure of
superconducting qubits drastically restricts the validity of the spin-boson paradigm due to phase
localization, which spreads the wave function over many charge states. Numerical renormalization group
simulations also show that the quantum critical point moves out of the physically accessible range in the
multilevel regime. Imposing charge discreteness in a simple variational state accounts for these multilevel
effects, which are relevant for a large class of devices.

DOI: 10.1103/PhysRevLett.127.237702

Quantum computation has been hailed as a promising
avenue to tackle a large class of unsolved problems, from
physics and chemistry [1] to algorithmic complexity [2].
This research follows an original proposition from
Feynman [3], long before the technological and conceptual
tools were developed to make such ideas tangible [4].
While a general purpose digital quantum computer could
theoretically outperform classical hardware for some expo-
nentially hard tasks, building such a complex quantum
machine is at present out of reach. For this reason, analog
quantum simulation has been put forward as a crucial
milestone [5], aiming at the design of fully controllable
experimental devices mimicking the features of difficult
quantum problems of interest. This route has met tremen-
dous success in the past, with the realization of Kondo
impurities in quantum dots [6], the simulation of artificial
solids in optical lattices [7], and is gaining momentum with
new tools from superconducting circuits [8–14]. Ironically,
while Feynman anticipated quantum simulators [3], he
often warned in his lectures (where analogy was used as a
powerful teaching method) that there is no such thing as a
perfect analogue, and that some interesting physics can
emerge when the analogy breaks down [15]. Exploring
realistic superconducting circuits for the emulation of
strongly interacting quantum spin systems is the main
purpose of this Letter. By underlining the crucial role of
multilevel effects, we aim to unveil the peculiar many-body
physics of such simulators. Our study will focus on the
realm of quantum dissipation [16,17], a problem that is still
raising increasing interest [10,18,19] due to potential
applications ranging from hardware-protected qubits
[20,21] to quantum optics with metamaterials [22].
Many ideas that will be presented here will, however,

apply to the more general context of superconducting
simulators of many-body problems [23].
Addressing the full complexity of superconducting

circuit simulators raises a long list of theoretical challenges,
and we emphasize already now the four unsolved issues
related to multilevel physics that we tackle in this Letter.
(i) Most quantum simulation protocols assume that qubits
behave as idealized spin 1=2 degrees of freedom. While a
large class of mesoscopic systems fall under this
assumption [24–29], this is clearly questionable for super-
conducting qubits where the nonlinearity is only provided
by the cosine Josephson potential. Indeed, we show that the
two-level description can be invalid for many-body ground
states due to proliferation of multilevel states (at strong
driving [30], multilevel effects are known to even plague a
single Josephson junction). (ii) Quantitative modeling of
simulators involving a large number of qubits or resonators
requires to incorporate the full capacitance network of the
circuit [18,31–34]. We will see that such electrokinetic
considerations impose strong constraints for models based
on multilevel qubits, that can even prevent the occurrence
of quantum phase transitions. (iii) Effects beyond the
simple RWA approximation can be difficult to simulate
numerically due to the exponential size of the Hilbert space,
making the study of many-body dissipation challenging
[35–37]. We find, however, that handling the complete
multilevel structure of Josephson qubits can be tackled by
the numerical renormalization group (NRG). (iv) Finally,
random charge offsets are a notorious experimental nui-
sance for the operation of superconducting circuits in
strongly nonlinear regimes, but are also difficult to model,
because they cannot be captured by a Kerr expansion
[30,38]. We propose here a simple wave function encoding
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multilevel charge discreteness, that remarkably reproduces
our full NRG simulations. This simple analytical theory can
be extended beyond dissipative models, e.g., to study bulk
quantum phase transitions [39–41] in the presence charge
noise [42].
Numerous theoretical works have recently studied the

ultrastrong coupling physics of superconducting qubits,
based on the two-level approximation [43–48]. While this
assumption is valid for the Cooper pair box (a qubit
designed with strong charging energy), this regime is,
however, unfavorable experimentally due to high sensitiv-
ity to external charge noise. A more realistic circuit is
shown in Fig. 1, composed of a superconducting charge
qubit containing a junction with Josephson energy EJ and
capacitanceCJ ¼ Cs þ Cg, whereCs is a shunt capacitance
andCg is a gate capacitance, that is capacitively coupled via
Cc to a transmission line characterized by lumped element
inductance L and capacitance C. All nodes are grounded
via capacitances Cg, and a dc charge offset controlled by
voltage Vg is included on qubit node 0, appearing as
dimensionless charge ng ¼ VgCg=2e. We will not make
any assumption on all these parameters here. The trans-
mission line may be designed in practice from an array of
linear Josephson elements [18], in order to boost its
coupling to the qubit, thanks to the high optical index
n ≃ 100 which slows down accordingly the velocity of
microwave modes. The circuit Lagrangian reads [49]
(working in units of ℏ ¼ 2e ¼ 1)

L ¼ 1

2

_Φ⃗
⊺
C _Φ⃗ −

1

2
Φ⃗⊺1=LΦ⃗þ EJ cosðΦ0Þ − ng _Φ0; ð1Þ

where Φ⃗ ¼ ðΦ0;Φ1; � � �Þ is a vector of dimensionless node
fluxes labeled according to Fig. 1. C and 1=L are the
capacitance and inductance matrices read from Fig. 1, that
define a generalized eigenvalue problem 1=LP ¼ CPω2, ω

being the diagonal matrix of the system eigenfrequencies,
bringing the Lagrangian in normal mode form in the new
basis ϕ⃗ ¼ P−1Φ⃗. The qubit degree of freedom can be
separated from the external modes via the change of
variables φ ¼ P

k P0kϕk and φm ¼ ϕm [50]. Once the bath
modes φm are quantized in terms of creation or annihilation
operators, we obtain the following Hamiltonian:

Ĥ ¼
X

k

ωkâ
†
kâk þ ðn̂ − ngÞ

X

k

igkðâ†k − âkÞ

þ 4Ecðn̂ − ngÞ2 − EJ cos φ̂; ð2Þ
which we name the “charge-boson model,” as the charging
4Ecðn̂ − ngÞ2 ¼ 4Ec

P
nðjnihnj − ngÞ2 and Josephson

energy EJ cos φ̂ ¼ ðEJ=2Þ
P

nðjnihnþ 1j þ H:c:Þ are rep-
resented in the full multilevel charge basis fjnig with
n ∈ Z. This model generalizes to many levels the standard
two-level “spin-boson model” describing quantum dissi-
pation [16,17]. Indeed, for a Cooper pair box in the regime
Ec=EJ ≫ 1, one can truncate the full spectrum of the
Josephson junction to the two charge states closest to ng,
namely, n0 ¼ bngc and n0 þ 1, so that the charge operator
reads n̂ ≃ n0j ↑ih↑ j þ ðn0 þ 1Þj↓ih↓j, while cos φ̂≃
ðj ↑ih↓j þ j↓ih↑ jÞ=2 ¼ σ̂x=2. At the charge degeneracy
point ng ¼ 1=2þ integer, we find n̂ − ng ≃ σ̂z=2, so that
Eq. (2) takes the usual spin-boson form.
In the charge-boson Hamiltonian (2), gk ¼

ffiffiffiffiffiffiffiffiffiffi
ωk=2

p
P0k

are the couplings to the bosonic normal modes, and the
qubit charging energy obeys

4Ec ¼
P2
00

2
þ
X

k≠0

g2k
ωk

¼ 1

2CJ þ 2Cc
þ 1

π

Z
∞

0

dω
JðωÞ
ω

: ð3Þ

Here JðωÞ ¼ π
P

k g
2
kδðωk − ωÞ lumps together the coup-

lings to all modes into a spectral function that is smooth for
an infinite chain [16,17]. For the circuit of Fig. 1, JðωÞ ¼
2παω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2=ω2

P

p
=ð1þ ω2=ω2

JÞθðωP − ωÞ, with dissi-
pation strength 2πα ¼ ð4e2=hÞ½Cc=ðCc þ CJÞ�2

ffiffiffiffiffiffiffiffiffiffiffi
L=Cg

p
,

plasma frequencyωP ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðCþ Cg=4Þ

p
, and a nontrivial

RC cutoff of the junction ωJ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
LCeff

p
with Ceff ¼

CJCc=ðCJ þ CcÞ þ ðCJCcÞ2=½CgðCJ þ CcÞ2� − C [50].
In order to unveil the crucial role of the multilevel

structure in the dissipative Hamiltonian (2), we eliminate
the capacitive coupling via a unitary transform
Û ¼ exp½iðn̂ − ngÞ

P
kðgk=ωkÞðâ†k þ âkÞ�, resulting in

Û Ĥ Û† ¼
X

k

ωkâ
†
kâk þ

�

4Ec −
1

π

Z
∞

0

dω
JðωÞ
ω

�

ðn̂− ngÞ2

−EJ cos

�

φ̂−
X

k

ðgk=ωkÞðâ†k þ âkÞ
�

: ð4Þ

This expression shows that the charging energy Ec and the
spectral function JðωÞ of the environment are not inde-
pendent parameters, since taking Ec down to zero would

FIG. 1. Microscopic electrokinetic model for a realistic circuit
of dissipative superconducting charge qubit, located at node 0,
characterized by Josephson energy EJ, shunt capacitance Cs,
and capacitively coupled via Cc to a transmission line. All
nodes are shunted to the ground via the capacitance Cg, and
each lumped element in the line is characterized by its
inductance L and self-capacitance C. Charge offsets are
modeled by a dc voltage source Vg.
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result in a negative capacitance. Indeed, Eq. (3) clearly
shows that the capacitance always stays positive. However,
the constraint 4Ec > ð1=πÞ R∞

0 dωJðωÞ=ω becomes hidden
upon making the two-level approximation, since the
quadratic charging term disappears in the spin-boson model
when taking the limit Ec → ∞. This implies that the
dissipation strength α has an upper bound:

α⩽αmax ¼ 2Ec=ωc: ð5Þ

with ωc ≃MinðωP; jωJjÞ, as obtained by parametrizing the
spectral function as JðωÞ ¼ 2παω exp ð−ω=ωcÞ. Such
electrostatic constraint must be fulfilled for any micro-
scopic model, and we provide the exact bound for the
circuit of Fig. 1 in the Supplemental Material [50]. From
Eq. (3), the maximum value of dissipation αmax is attained
forCc → ∞, namely, when the qubit becomes wire coupled
to the transmission line (see Fig. 1). In that case, charge
quantization is lost and the transformed charge-boson
Hamiltonian (4) becomes equivalent to the boundary
sine-Gordon model [51], because the phase φ̂ obviously
freezes out, leaving the cosine potential as a boundary
effect on the bosonic modes. We emphasize that the
resulting Schmid transition [52] has a different universality
to the spin-boson transition that we study, and is not
relevant for the case of finite Cc considered here.
The constraint (5) has profound consequences for the

dissipative quantum mechanics of realistic charge qubits.
Indeed, reaching the ultrastrong coupling regime α ≃ 1
where many-body effects are most prominent implies
Ec ≃ ωc. For Cooper pair boxes with EJ ≪ Ec, the first
excited qubit state lies at energy EJ ≪ ωc, well within the
linear regime of JðωÞ, so that Ohmic dissipation controls
the qubit dynamics, allowing the Ohmic spin-boson tran-
sition [16]. In the other extreme regime EJ ≫ Ec, the first
qubit excitation located at

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8EcEJ

p
≫ ωc now lies in the

tails of the cutoff function JðωÞ. This suggests that the
Ohmic spin-boson quantum phase transition is not possible
for a capacitively coupled transmon qubit, shedding light
on previous experimental attempts [18,19], and extending
predictions for systems of transmons coupled to single
cavities [53–55]. Establishing at which value of EJ=Ec the
phase transition becomes forbidden in the full charge-
boson model is very important to guide experimental
endeavors on superconducting simulators, and requires a
full-fledged many-body solution of the problem. For this
purpose, we first need to uncover the order parameter
controlling the quantum phase transition in the charge-
boson model. Because of the periodicity of charge quan-
tization, we can restrict ng ∈ ½0; 1�. We notice that, for
ng ¼ 1=2, Hamiltonian (2) is invariant by the symmetry:
a†k → −a†k and n̂ → 1 − n̂. If the ground state of
Hamiltonian (2) preserves this symmetry, we get
hn̂i ¼ h1 − n̂i, so that hn̂i ¼ 1=2, namely, hn̂ − ngi ¼ 0.
On the contrary, if the symmetry is spontaneously broken,

hn̂ − ngi ≠ 0 serves as an order parameter. This is
physically expected because the linear coupling term
ðn̂ − ngÞ

P
k igkðâ†k − âkÞ in Eq. (2) tends to induce a finite

charge polarization n̂ − ng.
Computing the order parameter hn̂ − ngi can only be

achieved by reliable quantum many-body simulations of
the charge-boson Hamiltonian (2). Taking advantage of the
impurity structure of the problem, we have extended the
NRG [56] to dissipative Josephson junctions, in contrast to
previous treatments of the spin-boson model based on the
two-level system approximation [57]. The method is based
on an iterative diagonalization, adding modes one by one
on a logarithmic grid, with a truncation of the Hilbert space
at each NRG step. For the charge-boson model (2), the first
stage of the NRG starts with the qubit degree of freedom,
expressed in the charge basis, with up to 103 charge states
to ensure proper convergence for all considered EJ=Ec
values. We work with the Ohmic model JðωÞ ¼
2παω exp ð−ω=ωcÞ in units of ωc ¼ 1, and start the
NRG procedure with frequencies of order 10ωc down to
the minimal frequency 10−14ωc that guarantees conver-
gence of the NRG to the full many-body ground state.
Our first important finding concerns the dissipation-

induced quantum phase transition of the charge-boson
Hamiltonian (2), beyond the two-level approximation.
Figure 2(a) shows the ground state order parameter
hn̂ − ngi as a function of normalized dissipation α=αmax,
which always stays zero when EJ > Ec. However, Cooper
pair box qubits with Ec ≫ EJ do show a transition. This
scenario is confirmed by monitoring the enhanced quantum
fluctuations in the symmetric phase, from the charge
response function χðtÞ ¼ hðn̂ðtÞ − ngÞðn̂ð0Þ − ngÞi of the
qubit. A peak in the frequency domain occurs at the scale
ω⋆
qb, associated to the renormalized frequency of the qubit.

Extracting ω⋆
qb for various parameter values, we see in

Fig. 2(b) that ω⋆
qb vanishes exponentially fast at the

quantum critial point. Drawing the resulting phase diagram
in the ðα; EJ=EcÞ plane (here EJ=ωc ¼ 0.1 is fixed), we
find in Fig. 2(c) that the transition point between the two
phases simply disappears when EJ=Ec is increased (cross),
due to the border to the electrostatically forbidden region.
Reporting the boundary ðEJ=EcÞmax in the ðEJ=Ec; EJ=ωcÞ
plane, we obtain a completely general phase diagram in
Fig. 2(d). We thus established that the regime EJ=Ec ≳ 1
always forbids quantum criticality, so that the spin-boson
paradigm does not apply for multilevel charge qubits,
including transmons (EJ ≫ Ec).
In the absence of a quantum phase transition, one may be

tempted to conclude that the multilevel regime of dissipa-
tive qubits is trivial. On the contrary, it presents interesting
many-body physics that we explore in the rest of this Letter.
We investigate zero point fluctuations of the superconduct-
ing phase given by the average tunneling hcosðφ̂Þi in the
many-body ground state. For transmons (EJ ≫ Ec),
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hcosðφ̂Þi increases with dissipation α, because the phase is
damped by its environment towards the minimum φ̂ ¼ 0 of
the Josephson potential (this behavior is not captured by a
two-level approximation [50]). In contrast, for a Cooper
pair box (Ec ≫ EJ) at the charge offset ng ¼ 1=2, hcosðφ̂Þi
decreases with dissipation because charge fluctuations
between n ¼ 0 and n ¼ 1 tend to freeze, so that, due to
the Heisenberg principle, the phase delocalizes. This
regime is strongly ng sensitive, since for ng ¼ 0 the charge
is already frozen in absence of dissipation. Both behaviors
are clearly evidenced in Fig. 3, which shows hcosðφ̂Þi
against EJ=Ec, for several values of the normalized dis-
sipation strength α=αmax at ng ¼ 0.5 (dots are results from
NRG simulations). Remarkably, the crossover is charac-
terized by quantum fluctuations of the superconducting
phase that are nearly dissipation insensitive as seen by the
narrowing spread of the points at EJ ¼ Ec. This striking
behavior is a manifestation of the frustrated nature of the

qubit pointer states, that are neither purely phaselike nor
purely chargelike in the crossover from multilevel to two-
level qubits.
In order to capture physically these effects related to

discrete charge, we finally develop a new description of
dissipative multilevel qubits, since current polaronic theory
[58,59] applies mainly to the two-level regime. Obviously,
dissipation tends to localize the phase in the multi-level
regime, so that the wave function stays mostly trapped at
the minima of the cosine Josephson potential. For φ2 ≪ 1,
the self-consistent harmonic approximation (SCHA)
[13,60,61] replaces the cosine potential in Eq. (2) by a
harmonic term

ĤSCHA¼
X

k

ωkâ
†
kâkþ n̂

X

k

igkðâ†k− âkÞþ4Ecn̂2þ
E⋆
J

2
φ̂2;

ð6Þ
which is nothing but the Caldera-Leggett model of a
damped harmonic oscillator with renormalized Josephson
energy E⋆

J. However, charge discreteness has to be taken
into account via the compactness of the phase φ ∈ ½0; 2π�,
which can be restored [62,63] by periodizing the vacuum of
ĤSCHA (denoted j0iSCHA):

j0↺i ¼
X

w∈Z
ei2πwn̂e−ingφ̂j0iSCHA; ð7Þ

including a gate offset ng associated to the Aharonov-
Casher interference [64]. After diagonalizing the linear
Hamiltonian (6) in eigenmodes b†μ, ĤSCHA¼

P
μΩμðb̂†μb̂μþ

1=2Þ, the qubit operators read n̂ ¼ i
P

μ vμðb†μ − bμÞ and

(a) (b)

(c) (d)

FIG. 2. (a) Order parameter hn̂ − ngi as a function of dissipation
α (normalized to αmax) for four values of EJ=Ec, obtained at fixed
EJ=ωc ¼ 0.1 and at the degeneracy point ng ¼ 1=2. A quantum
phase transition is only obtained if EJ=Ec ≪ 1. (b) Renormalized
qubit frequency ω⋆

qb for the same parameters, which vanishes at
the same critical point. (c) Phase diagram of the charge-boson
model showing the phase boundary and the electrostatic for-
bidden regime (EJ=ωc ¼ 0.1 is fixed). (d) General phase diagram
for arbitrary EJ=Ec and EJ=ωc, showing regimes where a spin-
boson quantum phase transition for multilevel qubits is ruled out.

FIG. 3. Josephson tunneling hcosðφ̂Þi in the ground state of the
charge-boson model, comparing full NRG simulation (dots) with
the simple ansatz (7) (lines), computed as a function of EJ=Ec for
offset charge ng ¼ 1=2 and several values of the normalized
dissipation strength α=αmax. Dissipation tends to localize the
phase for multi-level charge qubits (EJ > Ec), namely hcosðφ̂Þi
increases with α, while conversely phase delocalizes for two-level
qubits (EJ < Ec). Surprisingly, zero point fluctuations are nearly
dissipation insensitive in the crossover regime EJ ≃ Ec.
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φ̂ ¼ P
μ uμðb†μ þ bμÞ [50]. Using E⋆

J as variational param-
eter, we estimate the ground state energy of Hamiltonian
(2), and obtain analytically the tunneling

hcosðφ̂Þi¼
X

w∈Z

�ðπwÞ2
2

þð−1Þwe−u2
2

�

e−2ðπwÞ2v2−i2πwng ; ð8Þ

where u2 ≡P
μ u

2
μ, v2 ≡P

μ v
2
μ. The lines in Fig. 3 com-

pare the full NRG simulations to the simple formula (8) in
the range EJ=Ec > 1=2, with excellent agreement. The
crossover from the multilevel to two-level regime results
from a competition between two clear physical effects:
(i) the Franck-Condon term e−2π

2v2w2

associated with the
winding number w dual to the qubit charge n, weighting the
overlaps between wells; (ii) the Aharonov-Casher phase
e−i2πwng associated with the gate charge ng, driving inter-
ferences between wells.
In conclusion, we have demonstrated that realistic super-

conducting qubits do not show the same dissipative proper-
ties predicted from models based on the two-level
approximation. We also provided a new physical picture
of the many-body wave function for dissipative multilevel
qubits, based on charge discreteness. Regarding experi-
mental attempts at simulating quantum spins with super-
conducting circuits, we found that reaching the spin-boson
quantum phase transition requires very strong non-linear-
ities, well beyond the transmon regime. Similar consid-
erations could apply to a wide class of model Hamiltonians
that are touted as candidates for quantum simulators
[10,13,41,65].
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