
HAL Id: hal-03441773
https://hal.science/hal-03441773v1

Submitted on 22 Nov 2021 (v1), last revised 17 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Explanations as Logical Derivations
Francesco A Genco

To cite this version:
Francesco A Genco. Formal Explanations as Logical Derivations. Journal of Applied Non-Classical
Logics, 2021, 31 (3-4), pp.279-342. �hal-03441773v1�

https://hal.science/hal-03441773v1
https://hal.archives-ouvertes.fr

Formal Explanations as Logical Derivations

Francesco A. Genco

IHPST – UMR 8590
Université Paris 1 Panthéon-Sorbonne and CNRS
13, Rue du Four, 75006 Paris, France
frgenco@gmail.com

ARTICLE HISTORY

Compiled November 22, 2021

ABSTRACT
According to a longstanding philosophical tradition dating back to Aristotle’s Pos-
terior Analytics and carried on in Bolzano’s Theory of Science, certain proofs do
not only certify the truth of their conclusion but also explain the reasons why their
conclusion holds. In contemporary philosophy, the explanatory relation of ground-
ing has taken the stage and much effort is being devoted to logically characterise
it, especially by proof-theoretical means. Nevertheless, no thorough investigation of
the resulting notion of formal explanation exists. In the present work, we show that
these formal explanations can indeed be seen as logical derivations of a particular
kind and we conduct a formal study of the interactions between grounding rules and
logical rules, formal explanations and logical derivations. In order to do so, we define
a minimal calculus that captures both grounding and logical derivability, we show
by a normalisation procedure that grounding rules are proof-theoretically balanced
with respect to logical elimination rules, and that the obtained normal proofs are
analytic. The introduced calculus enables us, moreover, to combine logical deriva-
tions and formal explanations, to distinguish the explanatory parts of derivations
from their non-explanatory parts, and to compose formal explanations in order to
construct chains of consecutive grounding steps, thus formalising also a notion of
mediate grounding.

KEYWORDS
Grounding; formal explanation; classical logic; proof theory; normalisation

1. Introduction

The act of proving a sentence is usually associated with the question whether the
sentence is true or false. The existence of a proof is supposed to guarantee that the
sentence is true. Nevertheless, some proofs are more informative than others. It happens
sometimes that a proof stands out among the other proofs of a sentence because it
does not only certify the truth of the sentence, but it also displays in the clearest
way the reasons of its truth. In other words, such a proof explains why the sentence is
true. The idea that certain proofs can be considered as rigorous explanations of the
reason why a truth holds goes far back in the history of philosophy. A longstanding
tradition of investigations on this notion of explanation has its origins in Aristotle’s
Posterior Analytics (Barnes, 1984, Post. An. I, 2–8) and has been carried on, for

Funded by the IBS project (ANR-18-CE27-0012-01).

instance, by Bolzano (2014) in his Theory of Science. According to this tradition,
rigorous explanations are proofs of a particular kind and thus two kinds of proof can
be distinguished: proofs that just guarantee that a statement is true—usually called
proofs-that—and proofs that also provide the reason why the statement is true—usually
called proofs-why.

In contemporary philosophy, an explanatory relation which can be traced back to
Bolzano’s notion of Abfolge (Bolzano, 2014, §162, §168, §198–221) has taken the stage
and is receiving considerable attention in several fields of philosophy: the grounding
relation. Grounding is usually introduced as an objective and explanatory relation
that connects two relata—the ground and the consequence—if the first determines
or explains the second.1 In other terms, we can say that the consequence holds in
virtue of the ground. Logical systems of various kinds have been employed for the
characterisation and study of the general features of grounding, see for instance the
works by Fine (2012a, 2012b) and Korbmacher (2018a, 2018b). Moreover, much work
is being devoted to characterise the relation that holds between a logically complex
formula F and the formulae in virtue of which F holds.2 This relation is usually called
logical grounding. In order to characterise and study the relation of logical grounding,
several proof systems have been developed, as for instance in the works by Schnieder
(2011), Correia (2014) and Poggiolesi (2018). While the methods of proof-theory are not
yet considered standard tools for the investigation of grounding, promising endeavours
of proof-theoretical analysis of grounding made their appearance—as the works by
Rumberg (2013), Poggiolesi (2018), and Prawitz (2019)3 witness—and constitute very
interesting instruments for the philosopher willing to formally frame the notion of
grounding and precisely formulate related problems.

While much has been done in order to define satisfactory logical grounding rules, no
thorough study of the resulting notion of formal explanation and of the relationship
between grounding rules and logical rules exists. Some even contest the legitimacy of
considering logical grounding as different from logical consequence, see for instance
the arguments presented by McSweeney (2020). We will show in this paper that there
is a sensible notion of grounding based on Bolzano’s Abfolge4 which can be clearly
and formally distinguished from logical entailment, but still induces a notion of formal
explanation which determines a meaningful subclass of the class of logical derivations.
We will show that this grounding relation can indeed be considered a derivability
relation of a particular kind—as Bolzano argued—and we will present a thorough
study of this relation by proof-theoretical means, focusing in particular on the usage
of grounding rules as introduction rules for the classical connectives and on their
interaction with logical elimination rules.

In particular, we will consider the notion of complete logical grounding introduced
by Poggiolesi (2016) and based on Bolzano’s analysis of Abfolge, and we will study
the resulting notion of formal explanation, that is, of derivation constructed by only
employing the grounding rules that characterise this notion of logical grounding. Our

1See Betti (2010); Correia (2014); Correia and Schnieder (2012); Fine (2012a); Korbmacher (2018b); McSweeney
(2020); Poggiolesi (2016); Rosen (2010); Rumberg (2013); Schnieder (2011); Sider (2018).
2See Correia (2014); Correia and Schnieder (2012); Fine (2012a); Poggiolesi (2016, 2018); Schnieder (2011).
3Notice that Prawitz also developed a different notion of grounding, see for instance Prawitz (2015), in order

to explain why certain inferences enable us obtain grounds for accepting their conclusion from the grounds that
we might have for accepting their premisses. Even though this notion could entertain interesting connections

with that of logical grounding, it certainly cannot be identified with it; and the investigation of the relationship

between the two lies outside the scope of this work.
4This kind of grounding is sometimes referred to as complete grounding, for instance by Poggiolesi (2016), as

opposed to full grounding as defined by Fine (2012a).

2

notion of formal explanation will hence comply with the requirements by Bolzano
on Abfolge which have been formalised by Poggiolesi (2016). This notion of formal
explanation will coincide with a particular kind of logical derivation in which the truth
of the premisses of each rule application occurring in it—that is, the application of
a logical grounding rule—determines the truth of each part of the conclusion. The
premisses of each step of a formal explanation, therefore, explain its conclusion in
the sense that they provide a complete account of the truth of the latter. The rules
that enable us to construct formal explanations of this kind are very particular rules:
they look rather different from traditional logical rules, and, in most cases, require
more information to be applied than the corresponding logical introduction rules.
Nevertheless, a closer inspection reveals that the role that these logical grounding rules
play is not so different from the one played by the traditional logical introduction rules.
We endeavour, hence, in the task of formally showing that these rules for complete
logical grounding can indeed be used instead of logical introduction rules; which means
that, in order to define a complete reasoning system for classical logic in which we
can also construct formal explanations, there is no need to add grounding rules to
a complete calculus for classical logic, because grounding rules already suitably play
the role of introduction rules. This result, in turn, corroborates the idea that a formal
explanation is a logical derivation of a particular kind, and does it in a stronger sense
than usual. Indeed by most logical grounding calculi we can show that, even though one
needs to use special rules to construct formal explanations, the resulting explanations
are also sound logical derivations. By the calculus that we will present, on the other
hand, we can also show that formal explanations are just some of the logical derivations
that we anyway need to be able to construct in order to show that the calculus is
complete with respect to classical logic. In other terms, formal explanations are simply
constructed in our calculus by some of the rules that we anyway need to use for regular
logical reasoning. In set-theoretical terms this means that we do not need to consider
a complete set of logical derivations L—those constructed by a traditional complete
set of logical rules—and add to it an additional set E of formal explanations which
are also sound logical derivations, as is usually done; but we can directly construct a
complete set of logical derivations D inside which we can find a subset S that contains
all our formal explanations. And the formal explanations in S are simply constructed
by some of the rules that we anyway need to use for constructing D. Determining
the set of formal explanations in this way—that is, as a non-redundant subset S of
D—confirms that formal explanations are a particular kind of logical derivations in a
strong sense: formal explanations are some of the logical derivations that we anyway
need if we want a complete set of logical derivations. The fact that our complete set of
logical derivations D is not ad hoc and unnatural is confirmed by the normalisation
and analyticity results, which guarantee us that the calculus employed to construct it
is formed by a proof-theoretically balanced pair of sets of rules, one of introduction
rules—with a non-dispensable subset of grounding rules—and one of elimination rules.

In order to formally develop this analysis, we will present the calculus Gr, which
is at the same time a grounding calculus and a complete calculus for classical logic.
The calculus Gr is based on a set of logical rules to eliminate connectives and a
set of grounding rules to introduce them. The first difference between grounding
rules and logical rules appears already: while logical rules can both introduce and
eliminate connectives, grounding rules can only be introductory since the complexity
of a ground must be smaller than the complexity of its consequence. This calculus will
enable us to study the direct interplay between grounding rules and logical elimination
rules. We will, first, study the calculus from a ground-theoretical perspective and,

3

in particular, prove that it is sound and complete with respect to the formalisation
by Poggiolesi (2016) of Bolzano’s notion of grounding. Secondly, we will study it
from a logical perspective, and prove that it is sound and complete with respect
to classical logic. Thirdly, we will conduct a proof-theoretical analysis by defining
a normalisation procedure, by proving that the procedure is terminating, and by
showing that it yields normal derivations which are analytic. As we will argue in
Section 4, the normalisation result guarantees that grounding rules can be suitably seen
as introduction rules, in the sense that the information required to apply grounding
rules in order to introduce a connective does not exceed the information obtained
by eliminating the connective. The analyticity result guarantees, in turn, that the
normalisation procedure is satisfactorily defined. An exemplification of the expressive
possibilities offered by Gr is also presented. We will show, in particular, that by Gr
we can construct grounding derivations, logical derivations and derivations combining
logical and grounding steps. For any derivation constructed in the calculus, we can
immediately determine which of its parts are explanatory and which are purely logical.
The calculus Gr also constitutes an improvement with respect to the calculus presented
by Poggiolesi (2018) in that it enables us to construct chains of formal explanations
and thus to formalise the notion of mediate grounding.

The article is structured as follows. In Section 2 we present some basic definitions,
introduce the grounding calculus Gr and discuss the function and meaning of its rules.
In Section 3.1 we prove that the notion of grounding induced by Gr complies with
the formalisation of Bolzano’s Abfolge proposed by Poggiolesi (2016). In Section 3.2
we prove that the calculus Gr is sound and complete with respect to classical logic.
In Section 4 we prove a normalisation result for Gr and in Section 4.1 we show that
normal form Gr derivations satisfy the subformula property and thus are analytic. In
Section 4.2 we exemplify and discuss the fact that Gr enables us to construct, combine
and distinguish formal explanations and purely logical derivations, and that a Gr
derivation can contain chains of explanations and thus formalise mediate grounding as
well. Finally, in Section 5 we conclude the article by some general considerations and
by pointing at some unsolved problems that may prove of interest for future work.

2. A calculus for grounding: Gr

In this section, we define the calculus Gr which formalises the notion of complete logical
grounding introduced by Poggiolesi (2016).

In order to provide the reader with some informal intuitions that should be useful
to have a better grasp on the technical details that will follow, we first show what kind
of grounding statements Gr is supposed to let us derive and how.

A complete logical grounding statement, see Definition 3.5, will be expressed in
our logical language by formulae of the form (A . B), (C,D . F) or (G | H . L).
The first two formulae respectively express that A is the complete logical ground
of B and that C and D form the complete logical ground of F . The third formula
expresses that G is the complete logical ground of L under the condition H. From
a proof-theoretical perspective, formulae of these forms respectively correspond to

4

grounding rule applications of the following forms:5

A
B

C D
F

G | H
L

The rules for introducing the grounding operator ., presented in Table 4, will enable
us to derive the corresponding grounding statement from the conclusion of the relative
grounding rule application.

Notice that the vertical bar | appearing in the third rule schema is not part of the
logical language and does not play any active role in the construction of derivations:
all premisses of any grounding rule must be derived before the rule can be applied.
This occurrence of the symbol | exclusively indicates that the premiss to the right of |
constitutes the condition required to be able to consider the premiss to the left of |
as the complete logical ground of the conclusion. This information is only used when
introducing the grounding operator . to conclude the correct grounding statement
from the rule application.

Now that a few basic intuitions about the interpretation of grounding statements and
about the use of grounding rules have been presented, let us briefly discuss the main
innovations and differences with respect to the calculus presented by Poggiolesi (2018).
Afterwards, we will be able to introduce in a straightforward manner the machinery
required to make these intuitions precise.

2.1. Innovations and differences

Gr presents several notational innovations with respect to the grounding calculus
presented in Poggiolesi (2018). These will be essential to prove the normalisation
result. The main differences concern the handling of ground-theoretically equivalent
formulae, the notation for converse formulae and the definition of grounding rules for
negated formulae. We will now discuss these three issues, briefly presenting the way
they are dealt with by Poggiolesi (2018) and the innovations concerning them that
will be adopted in Gr in order to define a calculus that admits a relatively simple
normalisation procedure.

Let us begin with ground-theoretic equivalences. While logical grounding does not
comply with logical equivalence—which means that there are formulae which are
logically equivalent but cannot be interchangeably used in a grounding statement—
there are stricter forms of equivalence with which grounding complies. These are often
called ground-theoretic equivalences, see e.g. Correia (2010) and Poggiolesi (2016, 2018).
Ground-theoretically equivalent formulae might be different from a purely syntactical
point of view but should be regarded as identical with respect to the grounding relation.
For instance, if A ∧ B is the ground of C, so is B ∧ A; but this does not mean that
C has two grounds, it just means that A ∧B and B ∧A represents the same ground.
The technical notion that we employ here to handle ground-theoretic equivalence
has been introduced by Poggiolesi (2016, 2018) and is that of a-c equivalence, see
Definition 3.2. While in the calculus presented by Poggiolesi (2018) the notion of a-c
equivalence appears in the side conditions on grounding rules, though, the calculus Gr
includes rules to explicitly transform a formula into any a-c equivalent formula inside a
derivation: the ακ rules, see Section 2.3. By using ακ rules in combination with the .
introduction rule—the first rule presented in Table 4—we introduce the possibility of

5The grounding rules for negation might have more complex structures, and they will be discussed in due time.

5

interchangeably using a-c equivalent grounds in a grounding statement. In particular,
if we show that A is a-c equivalent to A′ and there is a grounding rule with premiss
A′ and conclusion B, we can infer that A is the ground of B, and not only that A′ is.
This does not mean that we can derive more than one ground for each truth, since a-c
equivalent formulae are supposed to be different ways to refer to the same truth. As
a consequence, one grounding step according to the calculus presented by Poggiolesi
(2018) corresponds in Gr to one grounding rule application immediately preceded by
some ακ rule applications, as specified in Table 4 for the . introduction rule.

The second main innovation of Gr concerns the handling of converse formulae. Let
us first intuitively introduce the role of converse formulae with respect to the notion
of grounding that we adopt and then discuss how they are handled in Poggiolesi
(2018) and here. Sometimes, the logical ground of a formula F must contain a formula
equivalent to the negation of a subformula of F . For instance, the logical ground of
p→ q might, in certain cases, also contain the formula ¬p. Nevertheless, as formalised
by Definition 3.5, according to the notion of logical grounding that we adopt here, the
logical ground of a formula F must be simpler than F itself. Technically, we measure
the relative complexity of two formulae by employing g-complexity, see Definition 3.4,
and according to g-complexity the negation ¬S of a subformula S of F might not
be simpler than F . Hence, in order to construct the ground of F , we never directly
employ the negation ¬S of S, but we employ its converse S∗—where the converse S∗

of S is defined as the formula equivalent to ¬S which is as g-complex as S itself, see
Definition 3.1. Intuitively, S∗ is obtained by adding one negation to S if this does
not increase its g-complexity, or by removing one negation from S otherwise. While
converses in Poggiolesi (2018) are referred to by the meta-notation ()∗ that directly
indicates the converse formula of its argument, in the present work we employ the
structural connective ()⊥ for which explicit rules are defined. Notice that F⊥—as
opposed to F ∗—is not a formula in the language of the logic, but only an expression
in the language of the calculus Gr. The essential proof-theoretical difference is that,
while the application of certain rules of the calculus presented by Poggiolesi (2018)
requires us to check whether a formula is the converse of another one, Gr internalises
this check by rules that enable us to introduce the superscript ()⊥ in compliance with
the definition of converse.

The third main innovation of Gr concerns the rules for grounding negations. While
the Gr rules for introducing single negations follow the structure of the relative rule
presented by Poggiolesi (2018), these rules do not require any side condition since
all restrictions are handled in a local and purely syntactic fashion by exploiting the
constrained interplay of the rules presented in the last two lines of Table 2. The technical
details concerning the use of these rules will be discussed in Section 2.4.

2.2. The logical language and the language of the calculus Gr

In this section, we formally define the logical language that we will use for Gr and fix
some notational conventions.

Definition 2.1 (Language L). The language L is defined by the following grammar:

ϕ ::= ξ | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | (ϕ . ϕ) | (ϕ,ϕ . ϕ) | (ϕ | ϕ . ϕ)

ξ ::= p | q | r | . . .

where p, q, r, . . . are all propositional variables of the language.

6

Unless stated otherwise, when we talk about formulae, we assume that we are talking
about formulae of L. The logical constants ⊥,¬,∧,∨,→ are the standard ones for
falsity, negation, conjunction, disjunction and implication, and require no explanation.
In addition to these constants, we introduce the logical constant . in order to formulate
grounding statements. By a formula of the form A . B we express the fact that A is
the ground of B, by a formula of the form A,B . C the fact that A and B together
form the ground of C, and by a formula of the form A | B . C the fact that A is the
ground of C under the condition that B is true.

Notation. We denote by ¬n a sequence ¬ . . .¬ containing n consecutive occurrences
of the symbol ¬. For instance ¬3p will denote the formula ¬¬¬p.

In order to obtain an elegant normalisation proof, we avoid the usage in Gr of rules
with side conditions. To do so, we introduce some notational devices. These devices
will be essential, for instance, in the definition of the grounding rules for negations and
converse formulae.

Definition 2.2 (Expressions). For any language Lx, expressions in the language Lx
are defined by the following grammar:

η ::= µ | {µ} | [µ] | {{µ}} | [[⊥]]

µ ::= ν | ν⊥

ν ::= A | B | C | . . .

where the terminal elements are [[⊥]] and all formulae A,B,C . . . of the language Lx.

Curly and square brackets will be used in the calculus to restrict the form of certain
parts of derivations. In particular, they will be used to guarantee that only certain
elimination rules are used for deriving the minor premisses of an application of the
grounding rules for negation, see Table 2. The superscript ()⊥, on the other hand,
will be used to represent the converse of a formula, see Definitions 2.7 and 3.1. Just
like curly and square brackets, the superscript ()⊥ is a structural connective of the
calculus: it is not in the language of the logic, but only appears inside derivations.

We conclude the preliminary definitions by introducing two simple adaptations of
the usual notation for contexts. This notation is used to be able to modify a part of
an expression without bothering about the rest of the expression. For instance, the
formula (p∧ (q∨ r))⊥ can be represented as C[q∨ r] where the context C[] indicates the
part of the formula that we do not intend to modify for the moment: (p ∧ ())⊥. So, if
a rule enables us to transform an expression of the form C[A ∨B] into one of the form
C[B ∨A], then, by applying it to C[q ∨ r] we can obtain C[r ∨ q], which means—since
C[] = (p ∧ ())⊥—that if we apply it to (p ∧ (q ∨ r))⊥ we obtain (p ∧ (r ∨ q))⊥.

Definition 2.3 (Expression Context). An expression context C[x] is an expression
containing a distinguished propositional atom x. For any formula A, by the notation
C[A], we denote the expression obtained by replacing x with A in C[x].

We also define a context notation for contexts composed of parentheses only. By
P[E], we indicate an expression of one of the following forms: E, [E], {E} or {{E}}.

Definition 2.4 (Parenthesis Context). A parenthesis context P[x] is an expression
of the form x, [x], {x} or {{x}} where x is a distinguished propositional atom. For
any formula A, by the notation P[A], respectively P[A⊥], we denote the expression

7

obtained by replacing x with A, respectively A⊥, in P[x].

We present now the rules of the calculus Gr in separate groups so that we can orderly
explain their features and functions.

2.3. Rules for a-c equivalent and converse formulae

As argued for instance by Correia (2010) and Poggiolesi (2016, 2018), grounding is
not supposed to distinguish between two formulae if, by applying commutativity or
associativity of ∧ or ∨ to some subformula of one of the two formulae, we can obtain
the other. As already mentioned in Section 2.1, in Gr we implement this by the ακ
rules presented in Table 1. The ακ rules enable us to explicitly transform a formula into
any ground-theoretically equivalent formula. By using ακ rules in combination with
the . introduction rule—the first rule presented in Table 4—we can interchangeably
use ground-theoretically equivalent formulae in a grounding statement. In particular, if
we show that A is ground-theoretically equivalent to A′ and there is a grounding rule
with premiss A′ and conclusion B, we cannot only infer that A′ is the ground of B,
but also that A is.

In Gr also converse formulae are handled explicitly. In particular, the expression A⊥

represents the converse of A in the language of the calculus. Notice that A⊥ is not a
formula of the logical language and that ()⊥ is a structural element of Gr which is
only used inside derivations and for the schematic representation of rules. Technically,
we can introduce ()⊥ by the relative rules in Table 1 or by assuming a hypothesis
of the form F⊥, as detailed in Definition 2.6. The elimination rules for ()⊥, on the
other hand, are in Table 2 and Table 3. These rules have the same form as negation
elimination rules since a pair of converse formulae can always be written as F and ¬F
for some formula F , and hence they always entail ⊥.

C[A ∧B]

C[B ∧A]
ακ

C[A ∧ (B ∧ C)]

C[(A ∧B) ∧ C]
ακ

C[A ∨B]

C[B ∨A]
ακ

C[A ∨ (B ∨ C)]

C[(A ∨B) ∨ C]
ακ

P[¬¬2nA]

P[(¬2nA)⊥]

P[¬2nA]

P[(¬¬2nA)⊥]

where C is an expression context and P is a parethesis context

Table 1. Equivalence and Converse Rules

Notice that ακ rules can be applied at any depth inside any expression, while
converse rules can only be applied inside curly or square brackets. Introducing the
superscript ()⊥ inside a formula—as in A⊥ ∧B—would indeed generate an ill-formed
sequence of symbols, which is neither a formula nor an expression of the calculus.

It is easy to show that that the full associativity of ∧ and ∨ is captured by the ακ
rules.

Proposition 2.5. The rules
C[(A ? B) ? C]

C[A ? (B ? C)]
ακ for ? ∈ {∧,∨} are derivable by using

applications of rules in Table 1 for the same context C[x].

8

2.4. Grounding rules

We present the grounding rules of the calculus. We distinguish the application of these
rules from the applications of other rules by a double inference line. This distinction
will be important later when we will discuss the possibility of separating explanatory
and non-explanatory parts of a derivation.

As discussed at the beginning of Section 2 and as we will detail in Section 2.6,
the grounding rules presented in the first two lines of Table 2 directly correspond to
grounding statements of the form (A . B), (C,D . F) or (G | H . L)—depending on
the number of premisses of the rule and on the presence, or absence, of the symbol |
between them—and will be used in combination with the introduction rules for the
grounding operator . to derive the corresponding grounding statements. The symbol |
occurring between the premisses of rules of the form

G | H
L

is not part of the logical

language but only a device of the calculus. This symbol is used to distinguish between
the premiss of a grounding rule that constitutes the ground of L from the premiss that
only acts as condition to the ground. More precisely, the premiss G is the ground of L
because it occurs to the left of |, while the premiss H acts as condition to the ground
G of L because it occurs to the right of |. This distinction is also employed to correctly
apply the introduction rules for the grounding operator ., as shown in Table 4. A rule
application of the form displayed above, for instance, would enable us to introduce .
in a grounding statement of the form (G | H . L).

While the rule for grounding double negations is rather simple, the rules for grounding
single negations—displayed in the third line of Table 2—are rather complex and require
some explanations. These rules are based on the idea that two formulae A and B
form the complete logical ground of a formula ¬C if, and only if, A and B directly
yield a contradiction in combination with the immediate subformulae of C. In order
to guarantee that the premisses [[⊥]] of a grounding rule for negations are actually
obtained through direct contradictions involving A,B and the immediate subformulae
of C, we employ square, curly and double curly brackets to limit the rules that we can
use in the derivations of [[⊥]].6 For instance, if we have an expression {F} where F is a
formula, we can only eliminate its outermost connective by one of the rules in Table 3
that has a premiss between curly brackets. The result of this elimination will yield a
formula between double curly brackets, and, again, only certain rules can be applied to
such a formula. These constraints enable us to be certain of the fact that if we obtained
[[⊥]] from the hypotheses between curly and square brackets generated by a grounding
rule for negation, [[⊥]] was obtained through direct contradictions involving [A], [B]
and the immediate subformulae of {C}.

For instance, ¬p and ¬q form the complete logical ground of ¬(p ∧ q) because ¬p
directly contradicts p and ¬q directly contradicts q. The series of rule applications that
correspond to this argument is the following:

¬p ¬q

[¬p]1

[p⊥]
ακ

{p ∧ q}1

{{p}}
[[⊥]]

[¬q]1

[q⊥]
ακ

{p ∧ q}1

{{q}}
[[⊥]]

¬(p ∧ q)
1

where the conjunction elimination and converse elimination steps are forced. Indeed, if

6Notice that square brackets are not used here to discharge hypotheses, superscripts are used for that.

9

we have a conjunction {{p∧ q}} inside square brackets, the only rule that we can apply
to it—apart from ακ and converse rules—is the one that eliminates the conjunction.
Similarly, the only rule that we can apply to the expression [q⊥]—apart from ακ and
converse rules—is the one that concludes [[⊥]] from the premisses [q⊥] and {{q}}.

The introduction rules for single negations are three because, depending on the
outermost connective of C, we might need to construct derivations of [[⊥]] with different
structures. For instance, if A = ¬p, B = ¬q and C = p ∨ q we have

¬p ¬q
{p ∨ q}1

[¬p]1

[p⊥]
ακ

{{p}}2

[[⊥]]

[¬q]1

[q⊥]
ακ

{{q}}2

[[⊥]]

[[⊥]]
2

¬(p ∨ q)
1

And if A = ¬p, B = q and C = p ∧ q we have

¬p

[¬p]1

[p⊥]
ακ

{p ∧ q}1

{{p}}
[[⊥]]

[q⊥]1
{p ∧ q}1

{{q}}
[[⊥]] | q

¬(p ∧ q)
1

A B
A ∧B

A B
A ∨B

A | B⊥

A ∨B
B | A⊥

A ∨B

B | A
A→ B

A⊥ B
A→ B

A⊥ | B⊥

A→ B
A
¬¬A

A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

A B

[A]n {C}n1....
[[⊥]]

[B]n {C}n2....
[[⊥]]

¬C
n
A

[A]n {C}n1....
[[⊥]]

[B⊥]n {C}n2....
[[⊥]] | B

¬C
n

where the hypotheses A,B,B⊥, C appear exactly once

in the derivations of [[⊥]]

{A ∧B}1
{{A}}

{A ∧B}2
{{B}}

{A ∨B}

{{A}}n
....

[[⊥]]

{{B}}n
....

[[⊥]]

[[⊥]]
n

{A→ B} [A]

{{B}}
[A⊥] {{A}}

[[⊥]]

where n ∈ N

Table 2. Grounding Rules and Auxiliary Rules for Grounding Negations

10

2.5. Logical rules

We present here the logical rules for the connectives ⊥,¬,∧,∨ and →. These comprise
the traditional elimination rules for these connectives, the double negation elimination
rule and the negation introduction rule.

A ∧B
A

A ∧B
B

A ∨B

An....
C

Bn
....
C

C
n A→ B A

B

An....
⊥
¬A

n ¬A A
⊥

A⊥ A
⊥

⊥
P

¬¬A
A

where n ∈ N and P is a propositional variable

Table 3. Logical Rules

The negation introduction rule is the only introduction rule in this table. While the
idea behind the definition of the calculus Gr is to replace logical introduction rules
by grounding rules, this does not work for negation. Indeed, the restrictions on the
grounding rules for negation make them wanting as logical introduction rules. An easy
solution to this problem is to include in the calculus an unrestricted version of the
grounding rules for negation: the traditional negation introduction rule.

Definition 2.6 (Calculus Gr). The grounding calculus Gr consists of the rules of
Tables 1, 2 and 3. A Gr derivation is built by starting from hypotheses of the form A,
{A}, {{A}}, [A] or [A⊥] and by applying the rules of Gr.

Notice that expressions of the form A⊥ can only be used inside hypotheses of the
form [A⊥].

2.6. Rules for .

In order to prove that the calculus Gr actually defines a calculus for logical grounding,
we also introduce a grounding operator . which internalises the grounding relation
defined by the Gr rules. We will not investigate the properties of this operator here, but
only show that . defines a grounding relation which corresponds to that of Poggiolesi
(2016, 2018), see Section 3.1.

The connective . will appear in expressions of the form orA1, . . . , An.C which express
the fact that A1, . . . , An form the ground of C, or of the form A1, . . . , An | B .C where
A1, . . . , An form the ground of C under the condition B. Intuitively, A1, . . . , An | B .C
can only be derived immediately after a rule application of the form

A1 . . . An | B
C

11

Obivously, if no condition B occurs in the rule application, then we derive the formula
A1, . . . , An . C. Nevertheless, some technical issue must be addressed: the subformulae
A1, . . . , An, B and C of the formula A1, . . . , An | B . C must obviously be formulae
themselves, but among the premisses A1, . . . , An, B of a grounding rule, there might
be expressions of the form D⊥, which are not formulae. To overcome this difficulty, we
define a simple function f that maps expressions of the form D⊥ into their interpretation
as formulae. By using f in . introduction rules, we will be able to introduce . without
adding side conditions to the rules of the calculus. Intuitively, f(D⊥) is the formula
from which we can infer D⊥ by one of the rules for introducing ()⊥. Or, in other terms,
f(D⊥) is ¬D if D has an even prefix of negations; otherwise, D = ¬E, for some E,
and D⊥ = E.

Since no ambiguity arises, for the sake of simplicity, we will exploit f also to map
expressions of the form {A}, {{A}}, [A], and [[A]] into the formula A.

Here is the formal definition of f .

Definition 2.7 (Formula Form). For any expression E and formula A,

• f({E}) = f({{E}}) = f([E]) = f([[E]]) = f(E),
• f(A) = A,
• if A = ¬2nB, then f(A⊥) = ¬A,
• if A = ¬¬2nB, then f(A⊥) = ¬2nB.

For any set of expressions Γ, we denote by f(Γ) the set of expressions {f(E) : E ∈ Γ}.

The first clause of Definition 2.7 makes f behave as the identity on formulae. The
second clause makes f ignore parentheses. The third and the fourth clauses simply
define the formula interpretation of A⊥ as the converse formula of A.

It is easy to show that the value of f(A⊥) is exactly the formula from which we can
infer A⊥ by one of the rules for introducing ()⊥. This will be used in the proof of
Theorem 3.18 to show the completeness of Gr with respect to classical logic.

Proposition 2.8. For any A, the following is a Gr. derivation:

f(A⊥)

A⊥

Proof. See the appendix.

A second technical issue concerns ακ rules. These rules have been introduced, as
explained is section 2.3, in order to account for the fact that certain formulae should
be regarded as identical with respect to grounding. We must reflect this also in the .
introduction rules. In order to do so, we enable to infer a formula A1, . . . , An | C . B
from a rule application

A′1 . . . A′n | C ′

B

whenever A′1, . . . , A
′
n and C ′ have been obtained only using ακ rules from A1, . . . , An

and C, respectively. The same holds for the formula A1, . . . , An .B when the condition
C ′ does not appear in the rule application.

12

The rules for . are presented in Table 4.7

If

A1
ακ1
A′

1 . . .

An
ακn
A′

n |

C
ακn+1

C ′

B

is a derivation

in which ακ1, . . . , ακn+1 contain zero or more ακ rule applications,

then

A1
ακ1

A′1 . . .

An
ακn
A′n |

C
ακn+1

C ′

B
f(A1), . . . , f(An) | f(C) . B

is a derivation.

A1, . . . , An | C . B

B

A1, . . . , An | C . B

Ai
for i ∈ {1, . . . , n}

A1, . . . , An | C . B

C

If there is no rule application
A′1 . . . A′n | C ′

B
—with possibly some more premisses [[⊥]]—

such that for i ∈ {1, . . . , n} A′i, resp. C ′, is a-c equivalent to Ai, resp. C,

then
f(A1), . . . , f(An) | f(C) . B

⊥
is a derivation.

Table 4. Rules for .

We explain now the . elimination rules. The first three of these rules are

A1, . . . , An | C . B

B

A1, . . . , An | C . B

Ai
for i ∈ {1, . . . , n}

A1, . . . , An | C . B

C

and enable us to infer, from a grounding statement, each component of the ground,
the condition and the explained formula. These rules reflect what is called the factivity
of grounding, that is, if A grounds C under the condition B, then A,B and C are
true. Since grounding rules do not discharge any hypothesis, this is perfectly coherent
with the structure of grounding derivations. For instance, if we have a grounding rule
application

A | B
C

then A and B can be hypotheses, derivable from hypotheses, or proven valid. In any of
these cases, it is sound to derive them from the formula A | f(B) . C.

7The elimination rules for . presented here differ with respect to those presented by Poggiolesi (2018), but

it is easy to see that by our rules we can derive all elimination rules of Poggiolesi (2018). In addition, by our
elimination rules it is possible to derive from a grounding statement all elements of the ground, the ground

condition and the consequence. This reflects the factivity of grounding.

13

The fourth elimination rule for . is

f(A1), . . . , f(An) | f(C) . B

⊥

and it can only be applied if there is no rule application

A′1 . . . A′n | C ′

B

with possibly some more premisses of the form [[⊥]] such that A′i, respectively C ′, is
a-c equivalent to Ai, respectively C, for i ∈ {1, . . . , n}. This rule enables us to use the
calculus in order to characterise also in a negative way the notion of logical grounding
that we adopt—that is, the notion of complete logical grounding defined in Poggiolesi
(2016). The rule is required, in particular, to derive the negation of false grounding
statements. For instance, we would like to be able to derive that the atom P is not the
ground of the atom Q, or that the atom R is not the ground of ¬R, and we can do it
by this rule as follows:

P . Q1

⊥
¬(P . Q)

1

R . ¬R1

⊥
¬(R . ¬R)

1

since it is clear by simple inspection of the grounding rules of Gr that there is no way
in Gr to construct derivations of the following two forms:

P
Q

R
¬R

We define the calculus Gr. by extending the calculus Gr with the rules presented in
Table 4 for the connective ..

Definition 2.9 (Calculus Gr.). The grounding calculus Gr. consists of the rules
presented in Tables 1, 2, 3, and 4. A Gr. derivation is built by starting from hypotheses
of the form A, {A}, {{A}}, [A] or [A⊥]—expressions of the form A⊥ cannot be used
as hypotheses—and by applying the rules of Gr..

3. Grounding and classical logic: two soundness and completeness results

In this section we first prove that Gr. is a calculus for complete and immediate
grounding and then we present a soundness and completeness result for Gr with respect
to classical logic. Thus we show that our grounding calculus can be also considered as
a calculus for classical logic, if we employ grounding rules as introduction rules.

3.1. Complete and immediate grounding

We show now that Gr. captures the notion of complete and immediate grounding
defined by Poggiolesi (2016). We start by recalling the essential definitions employed
in these two works.

14

The following two definitions correspond to Definitions 3.6 and 3.7 used by Poggiolesi
(2018) to fix the notion of complete and immediate grounding and to show soundness
and completeness for the grounding part of the calculus PGr. We will use them here to
show that the grounding relation induced by the grounding rules of Gr is the same
complete and immediate grounding relation defined by Poggiolesi (2016).

Definition 3.1 (Definition 3.2 in Poggiolesi (2018)). Let D ∈ LCL. The converse D∗

of D is

• ¬2nB if D = ¬¬2nB and the outermost connective of B is not a negation,
• ¬¬2nB if D = ¬2nB and the outermost connective of B is not a negation.

Coherently with the rules for ()⊥ in Table 1, to obtain the converse of a formula
D, we add a negation to D, if D has a prefix which consists of an even number of
negations; we remove one negation from D, if D has a prefix which consists of an odd
number of negations.

Definition 3.2 (Definition 3.4 in Poggiolesi (2018)). For any formulae A,B ∈ LCL, A
is a-c equivalent to B if one of the following holds:

• A = B,
• E ? F for ? ∈ {∧,∨} is a subformula of A the formula obtained by substituting
F ? E for E ? F in A is a-c equivalent to B,
• (E ? F) ? G for ? ∈ {∧,∨} is a subformula of A and the formula obtained by

substituting E ? (F ? G) for (E ? F) ? G in A is a–c equivalent to B.

Notice that this definition corresponds to the relation between formulae obtained by
applying ακ rules in Table 1, also considering Proposition 2.5.

The following definition introduces the the ∼= relation which combines a-c equivalence
and the converse relation.

Definition 3.3 (Definition 3.5 in Poggiolesi (2018)). For any A,B ∈ LCL A ∼= B if
either A is a-c equivalent to B, or A is a-c equivalent to B∗.

We recall now the complexity measure for complete grounding.

Definition 3.4 (Definition 3.6 in Poggiolesi (2018)). For any multiset of formulas
Γ ⊆ LCL and formula C ∈ LCL, we say that Γ is completely and immediately less
g-complex than C if one of the following holds:

• C ∼= ¬¬B and either Γ = {B} or Γ = {B∗}
• C ∼= B ? D, for ? ∈ {∧,∨,→}, and one of the following holds:

Γ = {B,D} Γ = {B,D∗} Γ = {B∗, D} Γ = {B∗, D∗}

Finally, we recall the definition of complete and immediate grounding.

Definition 3.5 (Definition 3.7 in Poggiolesi (2018)). For any consistent multiset of
formulas C ∪Γ such that C ∪Γ ⊆ LCL, we say that, under the robust condition C (that
may be empty), Γ completely and immediately grounds A if all the following hold:

• A is derivable in a calculus for classical logic from the hypotheses Γ
• ¬A is derivable in a calculus for classical logic from the hypotheses ¬Γ, C
• C ∪ Γ is completely and immediately less g-complex than A, see Def. 3.4.

where ¬Γ = {¬B : B ∈ Γ}.

15

We define now the language L1, which represents the fragment of L containing those
formulae in which there is no nesting of occurrences of the connective .. This fragment
contains exactly those .-statements that correspond to the grounding statements
considered in PGr.

Definition 3.6 (Language L1). The language L1 is defined by the following grammar:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | (ψ, . . . , ψ | ψ . ψ)

ψ ::= ξ | ⊥ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ → ψ

ξ ::= p | q | r | . . .

where p, q, r, . . . are all propositional variables of the language and ψ, . . . , ψ is a list of
non-terminal symbols ψ separated by commata.

Before proving the two theorems that guarantee that Gr. captures exactly the
considered notion of grounding, we state a simple lemma about the negation of the
formula interpretation f(A⊥) of expressions of the form A⊥.

Lemma 3.7. For any formula A, there is a derivation of A in NC from the hypothesis
¬f(A⊥).

Proof. See the appendix.

Theorem 3.8 (Ground Soundness). For any consistent set of formulae
{G1, . . . , Gn, D,C} ⊆ LCL if we can derive

G1, . . . , Gn | C . D

in Gr. from the hypotheses G1, . . . , Gn, D, then {G1, . . . , Gn} completely and imme-
diately grounds D under the, possibly empty, robust condition C according to Defini-
tion 3.5.

Proof. Since G1, . . . , Gn, D,C ∈ LCL, the connective . is introduced immediately
below a grounding rule application—see Table 4. We reason on the grounding rule
which is applied immediately above the introduction of . and on the derivations

ακ1 . . . , ακn of its premises:

G1
ακ1

G′1 . . .

Gn
ακn
G′n |

C
ακn+1

C ′

D

. In the following we denote by

A′ the premiss of the grounding rule which is derived by ακ rules from the ground, or
robust condition, A.

We present a few interesting cases, see the appendix for an unabridged version of
the proof.

• A
′ | (B′)⊥

A′ ∨B′
First, we can derive the conclusion of this inference from the

hypothesis A by ακ rules—which are sound with respect to classical logic, see
Theorem 3.17—and disjunction introduction.

Second, we can derive ¬(A′ ∨ B′) from ¬A and the robust condition f(B⊥)
since we can derive ¬A′ and f(B′⊥) from these two formulae by ακ rules and

16

then, by Lemma 3.15, construct the following derivation:

A′ ∨B′1
¬A′ A′2

⊥
f(B′⊥) B′2

⊥
⊥

2

¬(A′ ∨B′)
1

Finally, {A, f(B⊥)} is less g-complex than A′ ∨B′ because A′ ∨B′ ∼= A ∨B,
since they are a-c equivalent, and {A, f(B⊥)} = {A,B∗}.

•
A′ B′

[A′]n [B′]n {C ′}n
....

[[⊥]]

¬C ′
n

First of all, we notice that the hypotheses [A′], [B′]

and {C ′} are between parentheses. Now, the only rules that can be applied to
formulae between parentheses are ακ rules, converse rules and the following five
rules:

{A ∧B}
{{A}}

{A ∧B}
{{B}}

{A ∨B}

{{A}}n
...
.

[[⊥]]

{{B}}n
...
.

[[⊥]]

[[⊥]]
n

{A→ B} [A]

{{B}}
[A⊥] {{A}}

[[⊥]]

Let us call the first two rules displayed here bracketed conjunction eliminations,
the third bracketed disjunction elimination, the fourth bracketed implication elim-
ination, and the fifth bracketed converse elimination. We argue, considering the
restrictions on the applicability of these five rules and considering that the hy-
potheses [A′], [B′] and {C ′} must appear exactly once in the derivation of [[⊥]],
that C ′ must be either of the form C1 ∨ C2 or of the form C1 → C2. Indeed,
[[⊥]] can only be obtained by bracketed eliminations applied to {C ′}. Moreover,
only bracketed implication and bracketed disjunction elimination enable us to
use both hypotheses [A′] and [B′] exactly once, as required by the grounding
rule for negation. Indeed, bracketed disjunction elimination enables us to obtain
[[⊥]] twice—once for each disjunct, once in combination with [A′] and once in
combination with [B′]; and bracketed implication elimination enables us to use
one among [A′] and [B′] to eliminate the implication and the other one to obtain
[[⊥]] in combination with the consequent of the implication. If we used bracketed
conjunction elimination, on the other hand, we would obtain only one formula
from {C ′} and we would not be able to use it in combination with both [A′] and
[B′] to obtain [[⊥]]. If we consider moreover that the ακ rules do not change the
main connective of their premiss and that, if we applied a converse introduction
rule to {C ′}, we would obtain an expression that cannot be used as premiss of
any rule—since there are no rules that act on expressions of the form {F⊥}—we
can conclude that C ′ must be either of the form C1 ∨C2 or of the form C1 → C2.
We reason then by cases on the form of C ′.

If C ′ = C1 ∨ C2, without loss of generality, we have that A′ and C⊥1 can be
obtained from each other by a—possibly empty—series of applications of ακ rules;
and B′ and C⊥2 can be obtained from each other by a—possibly empty—series of
applications of ακ rules. Therefore, we need to show that we can derive ¬(C1∨C2)
from the hypotheses A and B. We know that we can derive f(A′) and f(C⊥1), and
f(B′) and f(C⊥2) from the hypotheses A and B by ακ rules—which are sound
with respect to classical logic, see Theorem 3.17. But then, by Lemma 3.15, we

17

can construct the following NC derivation:

C1 ∨ C2
1

f(C⊥1) C1
2

⊥
f(C⊥2) C2

2

⊥
⊥

2

¬(C1 ∨ C2)
1

or a similar one also including some derivation steps translating the ακ rule
applications.

If C ′ = C1 → C2, without loss of generality, A′ and C1 can be obtained from
each other by a—possibly empty—series of applications of ακ rules; and B′ and
C⊥2 can be obtained from each other by a—possibly empty—series of applications
of ακ rules. Therefore, we need to show that we can derive ¬(C1 → C2) from
the hypotheses A and B. We know that we can derive A′ and C1, and f(B′) and
f(C⊥2) from the hypotheses A and B by ακ rules—which are sound with respect
to classical logic, see Theorem 3.17. But then, by Lemma 3.15, we can construct
the following NC derivation:

f(C⊥2)
C1 → C2

1 C1

C2

⊥
¬(C1 ∨ C2)

1

or a similar one also including some derivation steps translating the ακ rule
applications.

Second, we need to show that if C ′ = C1 ∨C2 we can derive ¬¬(C1 ∨C2) from
the hypotheses ¬A and ¬B, and if C ′ = C1 → C2 we can derive ¬¬(C1 → C2)
from the hypotheses ¬A and ¬B. In the first case, we can derive ¬f(A′) = ¬f(C⊥1)
and ¬f(B′) = ¬f(C⊥2) from ¬A and ¬B by ακ rules. Hence, by Lemma 3.7, we
can construct the following derivations:

¬(C1 ∨ C2)1

¬f(C⊥1)
....
C1

(C1 ∨ C2)

⊥
2

¬¬(C1 ∨ C2)
1

and
¬(C1 ∨ C2)1

¬f(C⊥2)
....
C2

(C1 ∨ C2)

⊥
2

¬¬(C1 ∨ C2)
1

or a similar one also including some derivation steps translating the ακ rule
applications. In the second case, we can derive ¬A′ = ¬C1 and ¬f(B′) = ¬f(C⊥2)
from ¬A and ¬B by ακ rules. Hence, by Lemma 3.7, we can construct the
following derivations:

¬(C1 → C2)1

¬C1 C1
2

⊥
C2

C1 → C2

2

⊥
¬¬(C1 → C2)

1

and
¬(C1 → C2)1

¬f(C⊥2)
....
C2

(C1 → C2)

⊥
2

¬¬(C1 → C2)
1

18

or a similar one also including some derivation steps translating the ακ rule
applications.

Finally, we show that {f(A), f(B)} is less g-complex than ¬C ′. Now, if C ′ =
C1 ∨ C2. we have that A′ = C⊥1 and B′ = C⊥2 can be obtained from ακ rules
from A and B. Hence, there are formulae D and E such that
◦ A = D⊥ and B = E⊥, and thus D∗ = f(A) and E∗ = f(B),
◦ D is a-c equivalent to C1 and E is a-c equivalent to C2.

Therefore, ¬C ′ = ¬(C1 ∨ C2) ∼= (D ∨ E) and {f(A), f(B)} = {D∗, E∗}. In
conclusion, {f(A), f(B)} is less g-complex than ¬C ′. If, on the other hand,
C ′ = C1 → C2. we have that A′ = C1 and B′ = C⊥2 can be obtained from ακ
rules from A and B. Hence, there is a formula E such that
◦ B = E⊥, and thus E∗ = f(B),
◦ E is a-c equivalent to C2.

Therefore, ¬C ′ = ¬(C1 → C2) ∼= (A → E) and {A, f(B)} = {A,E∗}. In
conclusion, also in this case, {A, f(B)} is less g-complex than ¬C ′.

Theorem 3.9 (Ground Completeness). For any A,C ∈ LCL and Γ ⊆ LCL, if Γ
completely and immediately grounds A under the, possibly empty, robust condition C
according to Definition 3.5, then we can derive Γ | C . A in Gr..

Proof. The proof proceeds as follows. For any formula A ∈ LCL, we select each
multiset Γ ⊆ LCL such that

• Γ is completely and immediately less g-complex than A according to Definition 3.4.
• Γ is consistent
• For some formula C ∈ LCL,

◦ There is a derivation of A in NC from a non-empty multiset Γ \ {C} .
◦ There is a derivation of ¬A in NC from the multiset ¬(Γ \ {C})∪ (Γ∩{C}).

where ¬∆ = {¬B : B ∈ ∆} and Γ \∆ is the multiset of elements of Γ that do not
occur in ∆.

For each selected Γ, if some C /∈ Γ satisfies the conditions above, we show that Γ .A
is derivable in Gr. from the hypotheses Γ; if some C ∈ Γ satisfies the conditions above,
we show that Γ | C . A is derivable in Gr. from the hypotheses Γ, C.

Notice that if C /∈ Γ, the choice of C is completely irrelevant.
According to Definition 3.4, if Γ exists, either (i) A ∼= ¬¬B or (ii) A ∼= (B ? C), for

? ∈ {∧,∨,→}.
If (i) is the case, A could either be a-c equivalent to ¬¬B or to its converse (¬¬B)∗.

In this case, Γ is either {B} or {B∗}. It is easy to see that from B we can derive ¬¬B
but not (¬¬B)∗, and from B∗ we can derive (¬¬B)∗ but not ¬¬B. Moreover, from
¬B we can derive ¬¬¬B, and from ¬(B∗) we can derive ¬((¬¬B)∗).

Accordingly:

B
¬¬B

B . ¬¬B

B∗

(¬¬B)∗

B∗ . (¬¬B)∗

are Gr. derivation.
If (ii) is the case, A could either be a-c equivalent to (B ? C) or to its converse

¬(B ? C). In this case, Γ is one of the following: {B,C}, {B,C∗}, {B∗, C}, {B∗, C∗}.

19

As for derivability, we only have the following combinations:

from {B,C} we derive B ∧ C from {B,C} we derive B ∨ C
from {B} we derive B ∨ C from {C} we derive B ∨ C
from {B,C∗} we derive B ∨ C from {B∗, C} we derive B ∨ C
from {B,C} we derive B → C from {C} we derive B → C
from {B∗} we derive B → C from {B∗, C} we derive B → C
from {B∗, C∗} we derive B → C from {B∗} we derive (B ∧ C)∗

from {C∗} we derive (B ∧ C)∗ from {B∗, C} we derive (B ∧ C)∗

from {B,C∗} we derive (B ∧ C)∗ from {B∗, C∗} we derive (B ∧ C)∗

from {B∗, C∗} we derive (B ∨ C)∗ from {B,C∗} we derive (B → C)∗

It is easy to construct these combinations from the truth tables of the connectives.
Each of these combinations can be constructed as pairs of the form (Γ \ {E}, A). We
select now those that enable us to derive ¬A from ¬(Γ \ {E}) ∪ (Γ ∩ {E}). We obtain
the following triples (Γ\{E}, E,A) in which we denote by − the absence of the formula
E:

({B,C},−, B ∧ C) ({B,C},−, B ∨ C) ({B}, C∗, B ∨ C)
({C}, B∗, B ∨ C) ({C}, B,B → C) ({B∗, C},−, B → C)
({B∗}, C∗, B → C) ({B∗}, C, (B ∧ C)∗) ({C∗}, B, (B ∧ C)∗)
({B∗, C∗},−, (B ∧ C)∗) ({B∗, C∗}, (B ∨ C)∗) ({B,C∗}, (B → C)∗)

It is easy to see that the combinations involving B ∧ C,B ∨ C and B → C exactly
correspond to the grounding rules in Table 2 for grounding formulae of the relevant
form. For the triple ({B∗}, C, (B ∧ C)∗), the grounding derivation is the following:

B∗

[B∗]1

[B⊥]

{B ∧ C}1

{{B}}
[[⊥]]

[C⊥]1
{B ∧ C}1

{{C}}
[[⊥]] | C

¬(B ∧ C)
1

For the triple ({C∗}, B, (B ∧ C)∗), the grounding derivation is the following::

C∗
[B⊥]1

{B ∧ C}1

{{B}}
[[⊥]]

[C∗]1

[C⊥]

{B ∧ C}1

{{C}}
[[⊥]] | B

¬(B ∧ C)
1

For the triple ({B∗, C∗},−, (B ∧ C)∗), the grounding derivation is the following:

B∗ C∗

[B∗]1

[B⊥]

{B ∧ C}1

{{B}}
[[⊥]]

[C∗]1

[C⊥]

{B ∧ C}1

{{C}}
[[⊥]]

¬(B ∧ C)
1

20

For the triple ({B∗, C∗}, (B ∨ C)∗), the grounding derivation is the following:

B∗ C∗
{B ∨ C}1

[B∗]1

[B⊥] {{B}}2

[[⊥]]

[C∗]1

[C⊥] {{C}}2

[[⊥]]

[[⊥]]
2

¬(A ∨B)
1

Finally, for the triple ({B,C∗}, (B → C)∗), the grounding derivation is the following:

B C∗

[C∗]1

[C⊥]

{B → C}1 [B]1

{{C}}
[[⊥]]

¬(B → C)
1

Corollary 3.10. The calculus Gr. is sound and complete with respect to the notion
of complete and immediate grounding of Definition 3.5 over the language L1.

Proof. By Theorems 3.8 and 3.9.

Corollary 3.11. The calculus Gr, over the language L1, is sound and complete with
respect to the calculus PGr

Proof. Theorem 5.4 in Poggiolesi (2018) establishes that PGr is sound and complete
with respect to the notion of complete and immediate grounding of Definition 3.7.
Corollary 3.10 establishes that Gr is sound and complete with respect to the notion of
complete and immediate grounding of Definition 3.5. Since Definition 3.7 in Poggiolesi
(2018) and Definition 3.5 are equivalent, we have that the claim holds.

Even though the calculus Gr is equivalent to the calculus PGr, in Gr we avoid side
conditions by explicitly introducing the ()⊥ operator for converse formulae in the
language of the calculus and ακ rules for the a-c equivalence. This does not only provide
an explicit procedural interpretation of a-c equivalence but also constitutes a central
simplification that enables us to prove a normalisation result for the calculus. Indeed,
the immediate subformulae of the conclusion of the grounding rules in Poggiolesi (2018)
are not identical to the corresponding premisses but only a-c equivalent to them, and
this would hinder the definition of reductions corresponding to those that we present
in Tables 6 and 7.

3.2. Classical soundness and completeness

We show now that, if we employ the grounding rules as introduction rules for the
connectives of classical logic, then the calculus Gr is also a suitable calculus for classical
logic. To do so, we prove that it is sound and complete with respect to the traditional
natural deduction calculus NC for this logic, see, for instance, Prawitz (1971). In order
to do so, we restrict ourselves to the language LCL of classical logic.

21

Definition 3.12 (Language LCL). The language LCL is defined by the following
grammar:

ϕ ::= ξ | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

ξ ::= p | q | r | . . .

where p, q, r, . . . are all propositional variables of the language.

We adopt the usual notation for derivability.

Definition 3.13 (Derivability). For any calculus χ, set of formulae Γ, and expression
E, the relation Γ `χ E holds if there is a derivation of E from hypotheses Γ constructed
using exclusively rules of the calculus χ.

Before proving soundness and completeness, we state some simple lemmata which
will enable us to work with the formula interpretation f(A⊥) of expressions of the form
A⊥ without bothering about the internal structure of A.

Lemma 3.14. For any formula A, A ∨ f(A⊥) is derivable in Gr and in NC.

Proof. See the appendix.

In the next lemma we establish the fact that a formula A and its converse formula
f(A⊥) are always contradictory.

Lemma 3.15. For any A, one of the following is both a Gr and an NC derivation:

f(A⊥) A

⊥
A f(A⊥)

⊥

Proof. See the appendix.

A B
A ∧B

A ∧B
A

A ∧B
B

A
A ∨B

B
A ∨B

A ∨B

An....
C

Bn
....
C

C
n

An....
B

A→ B
n A→ B A

B

An....
⊥
¬A

n ¬A A
⊥

⊥
A

¬An....
⊥
A

n

where n ∈ N

Table 5. The Calculus NC

We also establish that ακ rules are classically sound. In order to do so, we show
that for each instance of an ακ rule with premiss C[H] and conclusion C[K], we can
derive C[K] from C[H] by only using NC rules. Since deriving K from H in NC always
only requires a few rule applications, the proof boils down to a simple induction on the
number of symbols of the context C[x].

22

Lemma 3.16. The ακ rules in Table 1 are derivable in NC.

Proof. See the appendix.

We can finally prove that Gr is sound and complete with respect to classical logic.

Theorem 3.17 (Classical Soundness). The calculus Gr, over the language LCL, is
sound with respect to the calculus NC.

Proof. We show, in particular, that, for any set of hypotheses Γ and expression E,
if Γ `Gr E then f(Γ) `NC f(E). The proof is by induction on the number of rule
applications in the Gr derivation of E.

If no rule is applied in the NC derivation of E, f(Γ) = {f(E)} and the statement
trivially holds.

Assume then that the Gr derivation of F contains n > 0 rule applications and that
if E has a Gr derivation containing m rule applications, for m < n, then f(E) has an
NC derivation. We consider the last rule applied in the Gr derivation of E.

We only present some exemplar cases, see the appendix for an unabridged version of
the proof.

• A
⊥ | B⊥

A→ B
By induction hypothesis, f(A⊥) is derivable in NC. By Lemma 3.15,

one of the following is an NC derivation

A1 f(A⊥)

⊥
B

A→ B
1

f(A⊥) A1

⊥
B

A→ B
1

Therefore, the conclusion of the rule is derivable in NC as well.

•
A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

By induction hypothesis, f(A) and f(B) are derivable

in NC. Moreover, again by induction hypothesis, there is a derivation of ⊥ from
the hypotheses f(A), f(B) and f({C}) = C. Hence, we can derive the conclusion
¬C in NC by

f(A) f(B) Cn
....
⊥
¬C

n

where f(A) and f(B) are not cancelled by the negation introduction but derived
by an NC derivation.

• ¬¬A
A

Since ¬¬A is a formula, also A is one. Moreover, by induction hypothesis,

23

¬¬A is derivable in NC . By

¬(A ∨ ¬A)2

¬(A ∨ ¬A)2
A3

A ∨ ¬A
⊥
¬A

3

A ∨ ¬A
⊥

A ∨ ¬A
2 A1

A
¬¬A ¬A1

A
A

1

we can show that also the conclusion is derivable in NC.

Theorem 3.18 (Classical Completeness). The calculus Gr is complete with respect to
the calculus NC.

Proof. We show, in particular, that, for any set of hypotheses Γ and formula F ,
Γ `NC F then Γ `Gr F . The proof is by induction on the number of rule applications
in the NC derivation of F .

If no rule is applied in the NC derivation of F , the statement trivially holds.
Assume then that the NC derivation of F contains n > 0 rule applications and that

if a formula has an NC derivation containing m rule applications, for m < n, then it
has also an Gr derivation. We consider the last rule applied in the NC derivation of F .

We only present some exemplar cases, see the appendix for an unabridged version of
the proof.

• A
A ∨B By induction hypothesis, the premiss is derivable in Gr. By Lemma 3.14

and Proposition 2.8 we have that the following is a Gr. derivation:

. . .
B ∨ f(B⊥)

A B1

A ∨B
A |

f(B⊥)1

B⊥

A ∨B
A ∨B

1

•
An....
B

A→ B
n

By induction hypothesis, the premiss B is derivable in Gr fom

the hypothesis A. By Lemma 3.14 and Proposition 2.8 the following is a Gr.

derivation:

. . .
A ∨ f(A⊥)

A1

A1
....
B

A→ B

B ∨ f(B⊥)

f(A⊥)1

A⊥ B2

A→ B

f(A⊥)1

A⊥ |
f(B⊥)2

B⊥

A→ B

A→ B
2

A→ B
1

24

Corollary 3.19. The calculus Gr, over the language LCL, is sound and complete with
respect to the calculus NC for classical logic.

Proof. By Theorems 3.17 and 3.18.

4. Normalisation of the calculus Gr

In the previous sections we showed that the calculus Gr captures the notion of grounding
defined by Poggiolesi (2016, 2018) and is sound and complete with respect to classical
logic. This means that grounding rules can be used instead of introduction rules to fully
characterise classical logic. What we still have to show is that grounding rules are as
balanced as logical introduction rules with respect to elimination rules. In order to show
this, we define a normalisation procedure for Gr derivations. Normalising a derivation
means making it more direct by removing the redundant steps occurring inside the
derivation. These steps, if we consider Gr, are those in which we introduce a connective
by a grounding rule just to immediately eliminate it by a logical elimination rule. If we
are able to remove all these redundant steps from all Gr derivations—as shown by the
reductions in Tables 6 and 7—then we know that grounding rules are balanced with
respect to elimination rules in the sense that by eliminating a connective we do not
obtain more than what we had before introducing it. In other terms, we know that
the premisses of a grounding rule contain all the information that we can extract, by
elimination rules, from its conclusion. After the normalisation proof we will show that
any Gr derivation in normal form enjoys the subformula property. Formally, this means
that such a derivation only contains subformulae of its conclusion or of its hypotheses;
intuitively, this indicates that the derivation proceeds from the hypotheses directly to
the conclusion without going through formulae of unnecessarily high complexity. This
result is interesting for us here because it guarantees that our reductions are strong
and thorough enough: they really eliminate all redundant steps in the derivation.

We leave for the moment the rules for the grounding operator . aside, since we
focus here on the properties of grounding rules for logical connectives. The tasks of
defining a normalisation procedure also involving the rules for . and of studying the
proof-theoretical properties of these rules is certainly interesting, but for the sake of
clarity and not to burden the preset work too much, we leave them for future work.

Before introducing the specific machinery required for the normalisation procedure,
we divide grounding and logical rules into introduction rules and elimination rules.

Definition 4.1 (Introduction and Elimination Rules). The introduction rules are: the
grounding rules for ∧, ∨, → and ¬; the logical introduction rule for ¬; both rules for
introducing ()⊥ and the rule for introducing ¬¬.

The elimination rules are: the elimination rules for ∧, ∨, → and ¬, the rule for
eliminating ()⊥ and that for eliminating ¬¬.

The reduction rules for Gr derivations are presented in Tables 6, 7, 8 and 9.
We precisely define what a reduction of a Gr derivation is and some related termi-

nology.

Definition 4.2 (Reductions Redexes and Critical Rules). For any four derivations
s, s′, d and d′, if s 7→ s′ according to the reduction rules shown in Tables 6, 7, 8 and
9, d contains s as a subderivation, and d′ can be obtained by replacing s with s′ in d,
then the relation d 7→ d′ holds and we say that d reduces to d′.

25

A B
A ∧B
A

7→ A
A B
A ∧B
B

7→ B

B | A
A→ B A

B

7→ B
A⊥ B

A→ B A
B

7→ B
A⊥ | B⊥

A→ B A
B

7→
A⊥ A
⊥
B

A B
A ∨B

An....
C

Bn
....
C

C
n
7→

A....
C

A | B⊥

A ∨B

An....
C

Bn
....
C

C
n
7→

A....
C

B | A⊥

A ∨B

An....
C

Bn
....
C

C
n
7→

B....
C

Table 6. Reductions, Part 1

We denote by 7→∗ the reflexive and transitive closure of 7→.
As usual, if the bottom-most rule of a derivation d and one of the rules applied

immediately above it form one of the configurations shown in Tables 6, 7, 8 and 9 to
the left of 7→, then we say that d is a redex. We call the critical rules of the redex the
two rule applications that form one of the configurations shown in Tables 6, 7, 8 and 9.

We provide some simple and rather usual definitions that will be used for the
normalisation of the calculus.

Definition 4.3 (Logical Complexity). The logical complexity of formulae is defined as
usual. The logical complexity of an expression A⊥ is the logical complexity of A plus 1.

Definition 4.4 (Redex Complexity). The complexity of a redex r is defined as the
logical complexity of the formula, or expression, introduced by the uppermost critical
rule of r.

Definition 4.5 (Normal Form). We say that a Gr derivation d is normal, or in normal
form, if there is no derivation d′ such that d 7→ d′ holds.

Obviously, being normal and not containing redexes are equivalent conditions.
The normalisation proof for Gr will follow the method employed by Troelstra and

Schwichtenberg (1996). The basic idea behind this proof is that, generally, by applying a
reduction rule, we eliminate a redex of a certain complexity and, possibly, generate new
redexes of smaller complexity. For most reduction rules, there is nothing more to say. If
we apply them to a suitably selected redex in our derivation, either the maximal redex
complexity decreases, or the number of redexes with maximal complexity decreases.
If all our reduction rules were of this kind, we could just prove the normalisation by

26

An....
⊥
¬A

n
A

⊥

7→
A....
⊥

A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

C
⊥

7→
A B C....
⊥

A B

[A]n {C}n
....

[[⊥]]

[B]n {C}n
....

[[⊥]]

¬C
n

C
⊥

7→
A C....
⊥

A

[A]n {C}n
....

[[⊥]]

[B⊥]n {C}n
....

[[⊥]] | B
¬C

n
C

⊥

7→
A C....
⊥

¬A
A⊥ A
⊥

7→ ¬A A
⊥

A

(¬A)⊥ ¬A
⊥

7→ ¬A A
⊥

A
¬¬A
A

7→ A

Table 7. Reductions, Part 2: Negation and Double Negation

induction on a pair of values representing the maximal complexity of the redexes in
the derivation and the number of redexes with maximal complexity occurring in the
derivation. Nevertheless, not all reduction rules have such a smooth behaviour because
some of them implement permutations between rules, and a permutation does not have
any effect on the complexity of redexes. We need therefore a method to keep track of
permutations and to account for them in the complexity measure that we adopt. In
order to do so, we borrow the notion of segment from (Troelstra & Schwichtenberg,
1996, Def. 6.1.1.). A segment is a path inside the derivation tree which connects two
rule applications. But not any path is a segment. Intuitively, a path is a segment only if
it meets two conditions: first, the path must connect two rule applications that would
form a redex if they occurred one immediately after the other—where this redex must
be different from a permutation redex—and, second, it must be possible to shorten the
path by using permutations and eventually obtain the redex formed by the two rule
applications.

Definition 4.6 (Segment and Segment Complexity). For any Gr derivation d, a

27

A ∨B C C
C
D

elim.
7→ A ∨B

C
D

C
D

D

A ∨B C C
C D

E
elim.

7→ A ∨B
C D
E

C D
E

E

A ∨B C C
C D D

D
elim.

7→ A ∨B
C D D

D
C D D

D
D

Table 8. Reductions, Part 3: Disjunction Elimination Permutations

segment of length n in d is a sequence A1, . . . , An of formula occurrences in d such that
the following holds.

(1) For 1 < i < n, one of the following holds:
• Ai is a minor premiss of an application of ∨ elimination in d with conclusion
Ai+1 = Ai,
• Ai is the premiss of a converse rule with conclusion Ai+1 and the logical

complexity of Ai is the same as that of Ai+1,
• Ai is the premiss of an ακ rule.

(2) An is not the minor premiss of a ∨ elimination, not the premiss of a converse
rule the conclusion of which has the same logical complexity as An, and not the
premiss of an ακ rule.

(3) A1 is not the conclusion of a ∨ elimination, not the conclusion of a converse
rule the premiss of which has the same logical complexity as A1, and not the
conclusion of an ακ rule.

For any segment, if

• n > 0 or
• A1 is the conclusion of an introduction rule and An is the major premiss of an

elimination rule

then the complexity of the segment is the logical complexity of A. Otherwise, the
complexity of the segment is 0.

Notice that all formulae in a segment have the same logical complexity. This is
obvious for the case of ∨ eliminations, assumed for the case of converse rules, and easy
to see for the case of ακ rules.

We introduce some terminology to describe the relative position of two segments in
a derivation and prove a simple fact about the arrangement of segments in a derivation
which will be used in the normalisation proof.

Definition 4.7 (Terminology for Segments). If a segment contains only one formula oc-
currence, by reducing the segment we mean reducing—if possible—the non-permutation
redex the critical rules of which are applied immediately above and immediately below
the formula; if, otherwise, the segment contains more than one formula occurrence,

28

A→ B
A→ B′

ακ
A

B′
7→

A→ B A
B
B′

ακ

A→ B
A′ → B

ακ
A′

B
7→ A→ B

A′

A
ακ

B

A ∨B
A′ ∨B′

ακ

A′....
C

B′....
C

C

7→
A ∨B

A
A′

ακ
....
C

B
B′

ακ
....
C

C

A ∨B
B ∨A ακ

B....
C

A....
C

C

7→
A ∨B

A....
C

B....
C

C

A ∧B
A′ ∧B′

ακ

A′
7→

A ∧B
A
A′

ακ

A ∧B
A′ ∧B′

ακ

B′
7→

A ∧B
B
B′

ακ

¬A
¬A′

ακ
A′

⊥
7→ ¬A

A′

A
ακ

⊥

A⊥

A′⊥
ακ

A′

⊥
7→ A⊥

A′

A
ακ

⊥

Table 9. Reductions, Part 4: ακ Rules Permutations

by reducing the segment we mean reducing the permutation redex which has as
bottommost formula the bottommost formula of the segment.

A segment r occurs above a segment s if the bottommost formula of r occurs above
the bottommost formula of s.

A segment r occurs to the right of a segment s if there are derivations ρ and σ such
that some formula of r occurs in ρ, some formula of s occurs in σ, the root of ρ and
the root of σ are premisses of the same rule application, and the root of ρ occurs to
the right of the root of σ with respect to such rule application.

Lemma 4.8. For any two distinct segments in a derivation d, if neither is to the right
of the other, then one is above the other.

Proof. See the appendix.

We now prove that all Gr derivations normalize.

Theorem 4.9 (Normalisation). For any Gr derivation d, there is a derivation d′ such
that d can be reduced to d′ in a finite number of reductions and d′ is normal.

Proof. We employ the following reduction strategy. We reduce a rightmost segment
of maximal complexity that does not occur below any other maximal segment. By
Lemma 4.8, we can always find such a segment.

29

We prove that this reduction strategy always produces a series of reductions which
is of finite length and which results in a normal form.

We define the complexity of a derivation d to be the triple of natural numbers
(m,n, u), where m is the maximal complexity of the segments in d, n is the sum of the
lengths of the segments in d with segment complexity m, and u is the number of rule
applications in d. We then fix a generic derivation d and reason by induction on the
lexicographic order on triples of natural numbers.

If the complexity of d is (0, 0, u) then d is normal and the claim holds.
Suppose now that the complexity of d is (m,n, u), that m + n > 0, and that for

each derivation simpler than d the claim holds. Since m + n > 0, there must be at
least one maximal segment in d. By Lemma 4.8, we can always find one which does
not occur below any other maximal segment. We reduce a maximal segment which
does not occur below any other segment of this kind, and we reason on the obtained
derivation d′ by cases on the shape of the reduction—we use lowercase Greek letters to
denote subderivations of d.

We only present some exemplar cases, see the appendix for an unabridged version of
the proof.

•

α
A ∨B

β
C

γ
C

C
D

elim.
7→ α

A ∨B

β
C
D

γ
C
D

D

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one
of the following holds: (i) the segment does not contain any of the displayed
occurrences of C and D, (ii) the segment contains the displayed D, (iii) the
segment contains the displayed C. If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length
of the segment, but the resulting segment is still less complex than the reduced
one since D is obtained by eliminating some connectives of C. The lengths of all
segments for which (iii) holds have been reduced.
•

α
A→ B
A→ B′

ακ β
A

B′
7→ A→ B

β
A

B
B′

ακ

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has
been duplicated, the length of no segment of maximal complexity has been
increased, and no segment has become as complex as the reduced one; and hence
that the complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum
of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain neither

30

the displayed occurrence of B′ nor the displayed occurrence of A→ B′; (ii) the
segment contains the displayed occurrence of B′; (iii) the segment contains the
displayed occurrence of A→ B′ . If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length of
the segment, but the resulting segment is still less complex than the reduced one,
since B′ is less complex than A→ B and A→ B′. The lengths of all segments
for which (iii) holds have been reduced.
•

α
A⊥ |

β
B⊥

A→ B
γ
A

B

7→
α
A⊥

γ
A

⊥
B

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum
of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain neither
the displayed occurrence of A⊥ nor the displayed occurrence of A→ B, (ii) the
segment contains the displayed occurrence of A⊥, (iii) the segment contains the
displayed occurrence of A→ B. If (i) the segment has neither been modified nor
been duplicated by the reduction. If (ii) the reduction might have increased the
complexity of the segment since A⊥ was the premiss of an introduction rule and
now is the premiss of an elimination rule, but the resulting complexity is still
less than the complexity of the reduced segment since A⊥ is less complex than
A→ B. We just eliminated the only segment for which (iii) holds.
•

α
A

β
B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n γ

C
⊥

7→
α
A
β
B
γ
C....

⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed expression occurrences, (ii) the segment contains some of the displayed
occurrences of A, B or C (iii) the segment contains some of the displayed
occurrences of ⊥, (iv) the segment contains the displayed occurrence of ¬A. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since C, A
and B are less complex than ¬C; C for obvious reasons, and A and B because

31

of the restrictions of the ¬ introduction rule. If (iii) the reduction might join
the segment with another one for which (ii) holds, but the resulting segment is
still less complex than the reduced one since ⊥ is less complex than ¬C. We just
eliminated the only segment for which (iv) holds.
•

α
¬A
A⊥

β
A

⊥
7→

α
¬A

β
A

⊥

By the reduction we decrease the length of one maximal segment. We show
now that no segment of maximal complexity has been duplicated, the length
of no segment of maximal complexity has been increased, and no segment has
become as complex as the reduced one; and hence that the complexity of d′ is
(m,n′, u′) < (m,n, u) since we decreased the length of a maximal segment. For
each segment in d exactly one of the following holds: (i) the segment does not
contain the displayed A⊥ and ⊥, (ii) the segment contains the displayed A⊥. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction decreased the length of the segment—notice indeed that the
complexity of ¬A and A⊥ is the same.

4.1. The subformula property for Gr

We prove now that the normalisation procedure for Gr yields derivations that enjoy
the subformula property: each formula occurring in a normal derivation either already
appears in some hypothesis of the derivation or appears inside its conclusion. Since in
Gr we allow rules for commutativity and associativity to be applied inside formulae
because we do not want to distinguish between a-c equivalent formulae, we need to
accordingly adapt our formulation of the subformula property. Therefore, in stating it,
we will consider different a-c equivalent formulae as the same formula, or to be more
precise as undistinguishable formulae. Thus, for instance, if the formula A ∧ B is a
subformula of F , then we also consider B ∧A a subformula of F .

Since, moreover, expressions which are not formulae might occur in a derivation,
we strengthen the statement of the subformula property in order to include these
expressions as well. If an expression is not a formula, though, we certainly cannot
expect it to be a subformula of some hypothesis or of the conclusion of the derivation.
Therefore, instead of requiring this of the expressions themselves, we require it of their
formula interpretation. As a consequence, also negation plays a particular role. Indeed,
the formula interpretation of A⊥ might be ¬A.

Theorem 4.10 (Subformula Property). For any normal Gr derivation d of an expres-
sion G from hypotheses Γ, for any expression E occurring in d, one of the following
holds:

(1) f(E) = ⊥,
(2) f(E) is a-c equivalent to a proper subformula of the formula interpretation of

an element of Γ ∪ {G}.
(3) f(E) is a-c equivalent to the negation of a proper subformula of the formula

interpretation I of an element of Γ ∪ {G} and I is a conjunction, a disjunction

32

or an implication.8

Proof. We prove a stronger statement:

For any normal Gr derivation d of an expression G from hypotheses Γ, for any expression
E occurring in d, one of the following holds:

(1) f(E) = ⊥,
(2) f(E) is a-c equivalent to a proper subformula of the formula interpretation of an element

of Γ ∪ {G}.
(3) f(E) is a-c equivalent to the negation of a proper subformula of the formula interpretation

I of an element of Γ ∪ {G} and I is a conjunction, a disjunction, an implication or an
atomic formula.

Moreover, if G is obtained by an elimination rule which is not a ∨ elimination, G is a
subformula of an element of Γ.

Consider any normal Gr derivation d of G from hypotheses Γ. We show by induction
on the number of rules applied in d that the statement holds for d. If d contains no rule
application, then d consists only in the hypothesis G and the statement trivially holds.
Suppose now that d contains n+ 1 rule applications and that the statement holds for
all derivations containing n or less rule applications. We show that the statement holds
for d as well. We reason on the last rule applied in d.

We only present a few exemplar cases, see the appendix for an unabridged version
of the proof.

• A | B⊥

A ∨B
By inductive hypothesis, the statement holds for the derivations of

A and B⊥. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well. The formula f(B⊥) is indeed either a subformula
of B, and 2 holds, or the negation of B, and thus the negation of a proper
subformula of A ∨B, and 3 holds.

•
A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

By inductive hypothesis, the statement holds for the

derivations of A and B and for the derivation of [[⊥]] from [A], [B] and {C}. By
the restrictions on the form of the derivation of [[⊥]], we know that A and B are
proper subformulae of C. Therefore, the statement holds also for d.

•
A ∨B

An....
C

Bn
....
C

C
n

Since d is normal, A ∨B can only be the conclusion of an

elimination rule which is not a ∨ elimination. Thus, by inductive hypothesis,
A ∨B is a subformula of a hypothesis H. Since all subformulae of A and B are
also proper subformulae of H, we have, by induction hypothesis on the derivation
of A∨B and one the two derivations of C, that the statement holds for d as well.

8This condition is required because, according to Definition 3.4, the negations ¬A and ¬B are contained in
some of the multisets which are completely and immediately less g-complex than A ∧ B, A ∨ B and A→ B.

Which means that, with respect to our formalisation of grounding, we must regard also ¬A and ¬B as immediate
subformulae of A ∧B, A ∨B and A→ B.

33

4.2. Formal explanations and proofs

We have thus proven that Gr is a suitable grounding calculus and a complete one for
classical logic too. We can consider now the kind of analysis that Gr enables us to
conduct on specific derivations.

First of all, in Gr we can both construct grounding derivations and classical deriva-
tions. Since, moreover, Gr is a fully modular calculus, we can also interleave these two
kinds of derivations. Interleaving them, though, does not imply a loss of information:
we can still immediately determine what parts of a derivation are explanatory and
what parts are purely logical—and this can be simply done by noticing that formal
explanations only contain rule applications denoted by a double inference line. The fact
that formal explanations in Gr are not obtained by applying additional redundant rules
expressly introduced to construct formal explanations, but are obtained by applying
the same rules that are required to formalise regular logical reasoning, shows that Gr
implements a perspective on logical reasoning according to which formal explanations
are a non-redundant subset of logical derivations, and thus can be really considered as
logical derivations of a particular kind. The normalisation and analyticity results for
Gr, moreover, guarantee that Gr is a reasonable and natural way to formalise logical
reasoning. Hence, Gr constitutes a rather minimal framework formally embodying the
idea that we can see formal explanations as logical derivations of a particular kind.
Hence, if we restrict ourselves to the context of pure logic, the calculus Gr strongly
corroborates the idea, shared for instance by Aristotele (Barnes, 1984, Post. An. I,
2–8) and Bolzano (2014), that the general notion of proof covers both the notion of
proof-that—a proof that just guarantees that a statement is true—and the notion of
proof-why—a proof that also provides the reason why the statement is true.

Let us exemplify how Gr displays this relationship between formal explanations and
proofs by considering a simple example. Consider, for instance, the classical tautology
P → P ∨Q where P and Q are atomic formulae. We can prove it in Gr as follows:

α
P ∨ ¬P

β
Q ∨ ¬Q

P 1 Q2

P ∨Q | P 1

P → P ∨Q

P 1 |
¬Q2

Q⊥

P ∨Q | P 1

P → P ∨Q
P → P ∨Q

2

β
Q ∨ ¬Q

¬P 1

P⊥

Q3 |
¬P 1

P⊥

P ∨Q
P → P ∨Q

γ
P → P ∨Q

P → P ∨Q
3

P → P ∨Q
1

where α and β are proofs of the relevant instances of the excluded middle for atoms,
and γ is the derivation

¬P 1

P⊥ |

¬P 1 ¬Q3

{P ∨Q}

[¬P]4

[P⊥] {{P}}5

[[⊥]]

[¬Q]4

[Q⊥] {{Q}}5

[[⊥]]

[[⊥]]
5

¬(P ∨Q)
4

(P ∨Q)⊥

P → P ∨Q

Now, the whole derivation is clearly not an explanation since several logical rules
are used in it. At the same time, it contains several applications of grounding rules.
Hence we can say that it is a logical proof of P → P ∨Q—a proof that P → P ∨Q

34

holds—which also contains formal explanations of certain formulae. One of these is the
following:

(1)

P 1 Q2

P ∨Q | P 1

P → P ∨Q

Derivation (1) is a formal explanation of the truth of P → P ∨Q employing the truth
of P and Q. We can immediately see that (1) is a formal explanation because it only
contains grounding rule applications, which are recognisable by the double inference
line.

This simple example is already enough to prove several interesting points concerning
Gr. It shows us that (i) a formal explanation can just be seen as a derivation of a
particular kind, (ii) we can combine logical derivations and formal explanations, and
(iii) we can immediately distinguish the explanatory parts of a logical derivation from
its non-explanatory parts. Explanation (1) shows moreover that (iv) we can compose
formal explanations in order to construct chains of grounding steps mounting up from
consequences to simpler and simpler grounds. Indeed in (1) we have that P → P ∨Q
is explained by P ∨ Q under the condition that P is true, and, in turn, P ∨ Q is
explained by P and Q. And this chain of explanations is entirely contained in a single
Gr derivation, making the calculus also a suitable means for formalising the notion of
mediate grounding.

More general conclusions on logical grounding can also be drawn from the analysis
of Gr. The calculus, indeed, enables us to see that for any formula F containing at
least one conjunction, disjunction or implication we can find a grounding derivation
with conclusion F—it is enough to apply suitable grounding rules of Gr backwards
starting from F . By such a derivation, we can formally explain the truth of F under the
hyopothesis that its relevant subformulae are true. Nevertheless, we can also see that
no formula can have a proof entirely composed of grounding steps, that is, a formal
explanation with no undischarged hypotheses. Indeed, grounding rule applications in
Gr always depend on undischarged hypotheses, which reflects the fact that all elements
of the ground of a formula are supposed to be true—and hence, proof-theoretically
speaking, either derived or assumed as hypotheses.

Finally, as far as the relation between formal explanations and normal proofs is
concerned, Gr provides us with strong evidence in favour of the existence of an essential
connection between explanatoriness and normality as far as logical proofs are concerned.
Indeed, formal explanations in Gr are not modified by the normalisation procedure,
and we can hence consider them as derivations which are normal by nature. Technically,
individual grounding rule applications might be eliminated during the normalisation,
if they constitute redundant steps in the derivation, but a series of grounding rule
applications is never restructured by normalisation reductions. This is due to the
fact that all grounding rules are introduction rules and perfectly matches the idea
that a formal explanation is already supposed to be a logical derivation in which
all relevant information about the conclusion of each rule application occurring in it
is orderly displayed in the clearest and most direct way. It is moreover easy to see
that if a derivation only contains grounding rule applications, it already enjoys the
subformula property—modulo proof-theoretic equivalences and converses—and is thus
analytic. This relation between formal explanations and normal proofs seems also to
be in line with the comparison proposed by Rumberg (2013) between grounding trees

35

for conceptual truths—that is, a tree representing the ascension from a conceptual
truth to simpler and simpler grounds for it—and canonical normal proofs as defined in
Dummett (1991).

5. Conclusions

In the present work we investigated grounding rules, and formal explanations con-
structed by using them, from a proof-theoretical perspective. First of all, we showed
that grounding rules can be employed as logical introduction rules, and thus we cor-
roborated the view that a formal explanation by grounding rules can be seen as a
logical derivation of a particular kind. We proved, indeed, that grounding rules behave
rather satisfactorily as introduction rules and are balanced with respect to elimination
rules from a proof-theoretical perspective since they admit a normalisation procedure
that yields analytic derivations. Moreover, we showed that the introduced calculus
constitutes a significant improvement with respect to the calculus presented by Pog-
giolesi (2018), since it enables us to combine logical derivations and explanations, to
distinguish the explanatory parts of derivations from their non-explanatory parts, and
to compose explanations in order to construct chains of consecutive grounding steps
and thus formalise the notion of mediate grounding.

Many questions concerning the notion of logical grounding have not yet been
answered. Among the several obscure areas that still surround the notion of logical
grounding, we point at those that constitute natural extensions of the present work.

First of all, the calculus Gr does not only contain grounding rules for introducing
connectives, but also contains one logical introduction rule for negation. While this
enables us to prove a relatively simple normalisation procedure yielding proofs that
enjoy the subformula property, one might wonder whether it is possible to define a
calculus that exclusively uses grounding rules as introduction rules. Such a formal
system could be key for understanding in more depth the relationship between classical
logic and grounding rules. On a similar line, since grounding rules are sound with
respect to intuitionistic logic and since formal explanation and constructive reasoning
seem to have strong connections, it would be extremely interesting to endeavour also
in an investigation of the relation between grounding and intuitionistic logic, which
could be developed on the basis of the connection between classical logic and grounding
displayed in the present work.

A study of the proof-theoretical properties of the rules governing the grounding
operator is still missing as well. It would be interesting, in particular, to investigate
whether introduction and elimination rules for this operator display proof-theoretical
balance to some degree and, if not, what features of this relation interfere with the
proof-theoretical properties of its logical rules. There are, moreover, two main ways to
generalise the grounding relation in order to capture different notions of explanation:
on the one hand, we can consider transitive grounding, which enables us to directly
relate a truth to any of the simpler—and not necessarily immediately simpler—truths
on which it depends; on the other hand, we can consider explanation trees, which
are complex objects constructed by chaining individual grounding steps one after the
other, without loosing any information on each individual grounding step. It would be
of great technical and philosophical interest to develop proof-theoretical frameworks
in which suitable grounding operators can be used to represent these objects in the
logical language. These frameworks would enable an extensive proof-theoretical analysis
of a logic of formal explanations and might provide useful philosophical insights on

36

grounding itself. Finally, since grounding and explanation are typical examples of
hyper-intensional notions, such an endeavour could constitute a considerable step
forward for the proof-theory of hyper-intensional operators, a widely unexplored field
of great interest for both logics and philosophy.

Acknowledgements

We thank the anonymous reviewers for their extensive and detailed comments, which
greatly helped to improve this article. Moreover, we thank Francesca Poggiolesi very
much for a great number of long and fruitful discussions and for very useful comments
on the first draft of this article.

Declaration of interest

The author declares that there are no known conflicts of interest associated with this
work and that there has been no significant financial support that could have influenced
its outcome.

References

Barnes, J. (Ed.). (1984). The complete works of aristotle. Princeton University Press.
Betti, A. (2010). Explanation in metaphysics and bolzano’s theory of ground and consequence.

Logique & Analyse, 211 , 281–316.
Bolzano, B. (2014). Theory of science. Oxford: Oxford University Press. (Translated by Rolf

George and Paul Rusnok)
Correia, F. (2010). Grounding and truth-functions. Logique et Analyse, 53 (211), 251–279.
Correia, F. (2014). Logical grounds. The review of symbolic logic, 7 (1), 31–59.
Correia, F., & Schnieder, B. (2012). Methaphysical grounding. understanding the structure of

reality. Cambridge University Press.
Dummett, M. (1991). The logical basis of metaphysics. Harvard university press.
Fine, K. (2012a). Guide to ground. In Methaphysical grounding. understanding the structure

of reality (pp. 37–80). Cambridge University Press.
Fine, K. (2012b). The pure logic of ground. The Review of Symbolic Logic, 5 (1), 1–25.
Korbmacher, J. (2018a). Axiomatic theories of partial ground i. Journal of Philosophical Logic,

47 (2), 161–191.
Korbmacher, J. (2018b). Axiomatic theories of partial ground ii. Journal of Philosophical

Logic, 47 (2), 193–226.
McSweeney, M. M. (2020). Debunking logical ground: Distinguishing metaphysics from

semantics. Journal of the American Philosophical Association, 6 (2), 156–170.
Poggiolesi, F. (2016). On defining the notion of complete and immediate formal grounding.

Synthese, 193 , 3147–3167.
Poggiolesi, F. (2018). On constructing a logic for the notion of complete and immediate formal

grounding. Synthese, 195 , 1231–1254.
Prawitz, D. (1971). Ideas and results in proof theory. In Proceedings of the second scandinavian

logic symposium.
Prawitz, D. (2015). Explaining deductive inference. In H. Wansing (Ed.), Dag prawitz on

proofs and meaning (pp. 65–100). Springer International Publishing.
Prawitz, D. (2019). The concepts of proof and ground. In Mathesis universalis, computability

and proof (pp. 291–309). Springer.

37

Rosen, G. (2010). Metaphysical dependence: Grounding and reduction explanation in mathe-
matics. In B. Hale & A. Hoffmann (Eds.), Modality: Metaphysics, logic, and epistemology
(pp. 109–136). Oxford University Press.

Rumberg, A. (2013). Bolzano’s concept of grounding (abfolge) against the background of
normal proofs. Review of Symbolic Logic, 6 (3), 424–459.

Schnieder, B. (2011). A logic for because. Review of Symbolic Logic, 4 (3), 445–465.
Sider, T. (2018). Ground grounded. Philosophical Studies, 1–21.
Troelstra, A. S., & Schwichtenberg, H. (1996). Basic proof theory. Cambridge University Press.

38

Appendix. Unabridged Proofs

Proposition 2.5 The rules.
C[(A ? B) ? C]

C[A ? (B ? C)]
ακ for ? ∈ {∧,∨} are derivable by using

applications of rules in Table 1 for the same context C[x].

Proof. The rule

C[(A ? B) ? C]

C[A ? (B ? C)]
ακ

for ? ∈ {∧,∨} can be derived by the following derivation:

C[(A ? B) ? C]

C[C ? (A ? B)]

C[(C ? A) ? B]

C[B ? (C ? A)]

C[(B ? C) ? A]

C[A ? (B ? C)]

Proposition 2.8. For any A, the following is a Gr. derivation:

f(A⊥)

A⊥

Proof. If A = ¬2nB, then f(A⊥) = ¬A and

¬¬2nB

(¬2nB)⊥

If A = ¬¬2nB, then f(A⊥) = ¬2nB and

¬2nB

(¬¬2nB)⊥

Lemma 3.7. For any formula A, there is a derivation of A in NC from the hypothesis
¬f(A⊥).

Proof. If A = ¬2nB, then f(A⊥) = ¬A and ¬f(A⊥) = ¬¬A. Hence, we can derive A
in NC as follows:

¬¬A ¬A1

⊥
A

1

If A = ¬¬2nB, then f(A⊥) = ¬2nB and ¬f(A⊥) = ¬¬2nB. Thus, ¬f(A⊥) = A.

39

Theorem 3.8 (Ground Soundness). For any consistent set of formulae
{G1, . . . , Gn, D,C} ⊆ LCL, if we can derive

G1, . . . , Gn | C . D

in Gr. from the hypotheses G1, . . . , Gn, D, then {G1, . . . , Gn} completely and im-
mediately grounds D under the, possibly empty, robust condition C according to
Definition 3.5.

Proof. Since G1, . . . , Gn, D,C ∈ LCL, the connective . is introduced immediately
below a grounding rule application—see Table 4. We reason on the grounding rule
which is applied immediately above the introduction of . and on the derivations

ακ1 . . . , ακn of its premises:

G1
ακ1

G′1 . . .

Gn
ακn
G′n |

C
ακn+1

C ′

D

. In the following we denote by

A′ the premiss of the grounding rule which is derived by ακ rules from the ground, or
robust condition, A.

• A
′ B′

A′ ∧B′
First, we can derive the conclusion of this inference from the hypotheses

A and B by ακ rules—which are sound with respect to classical logic, see
Theorem 3.17—and conjunction introduction.

Second, we can derive ¬(A′ ∧ B′) from ¬A and ¬B since we can derive ¬A′
and ¬B′ from these two formulae by ακ rules and then construct the following
derivations:

¬A′
A′ ∧B′1

A′

⊥
¬(A′ ∧B′)

1
and

¬B′
A′ ∧B′1
B′

⊥
¬(A′ ∧B′)

1

Finally, {A,B} is less g-complex than A′ ∧B′ because A ∧B and A′ ∧B′ are
a-c equivalent.

• A
′ B′

A′ ∨B′
First, we can derive the conclusion of this inference from the hypotheses

A and B by ακ rules—which are sound with respect to classical logic, see
Theorem 3.17—and disjunction introduction.

Second, we can derive ¬(A′ ∨ B′) from ¬A and ¬B since we can derive ¬A′
and ¬B′ from these two formulae by ακ rules and then construct the following
derivation:

A′ ∨B′1
¬A′ A′2

⊥
¬B′ B′2

⊥
⊥

2

¬(A′ ∨B′)
1

Finally, {A,B} is less g-complex than A′ ∨B′ because A ∨B and A′ ∨B′ are
clearly a-c equivalent.

• A
′ | (B′)⊥

A′ ∨B′
First, we can derive the conclusion of this inference from the

hypothesis A by ακ rules—which are sound with respect to classical logic, see
Theorem 3.17—and disjunction introduction.

40

Second, we can derive ¬(A′ ∨ B′) from ¬A and the robust condition f(B⊥)
since we can derive ¬A′ and f(B′⊥) from these two formulae by ακ rules and
then, by Lemma 3.15, construct the following derivation:

A′ ∨B′1
¬A′ A′2

⊥
f(B′⊥) B′2

⊥
⊥

2

¬(A′ ∨B′)
1

Finally, {A, f(B⊥)} is less g-complex than A′ ∨B′ because A′ ∨B′ ∼= A ∨B,
since they are a-c equivalent, and {A, f(B⊥)} = {A,B∗}.

• B
′ | (A′)⊥

A′ ∨B′
This case is symmetric to the previous one.

• B
′ | A′

A′ → B′
First, we can derive the conclusion of this inference from the hypothesis

B by ακ rules—which are sound with respect to classical logic, see Theorem 3.17—
and implication introduction.

Second, we can derive ¬(A′ → B′) from ¬B and the robust condition A since
we can derive ¬B′ and A′ from these two formulae by ακ rules and then construct
the following derivation:

¬B′
A′ A′ → B′1

B′

⊥
¬(A′ → B′)

1

Finally, {B,A} is clearly less g-complex than A′ → B′ since A′ ∧ B′ is a-c
equivalent to A ∨B.

• (A′)⊥ B′

A′ → B′
First, we can derive the conclusion of this inference from the hy-

pothesis B by ακ rules—which are sound with respect to classical logic, see
Theorem 3.17—and implication introduction.

Second, we can derive ¬(A′ → B′) from ¬f(A⊥) and ¬B since we can derive
¬f(A′⊥) and ¬B′ from these two formulae by ακ rules and then, by Lemma 3.7,
construct the following derivation:

¬B′

¬f(A′⊥)
....
A′ A′ → B′1

B′

⊥
¬(A′ → B′)

1

Finally, {f(A⊥), B} is less g-complex than A′ → B′ because A′ → B′ ∼= A→ B,
since they are a-c equivalent, and {f(A⊥), B} = {A∗, B}.

• (A′)⊥ | (B′)⊥

A′ → B′
First, we can derive f((A′)⊥) from the hypothesis f(A⊥) by ακ

rules—which are sound with respect to classical logic, see Theorem 3.17. Then,

41

by Lemma 3.15, we can derive the conclusion of this rule from f((A′)⊥)as follows:

f((A′)⊥) (A′)1

⊥
B′

A′ → B′
1

Second, we can derive ¬(A′ → B′) from ¬f(A⊥) and the robust condition
f(B⊥) since we can derive ¬f(A′⊥) and f(B′⊥) from these two formulae by ακ
rules and then construct the following derivation, by also using Lemmata 3.7
and 3.15:

f(B′⊥)

¬f(A′⊥)
....
A′ A′ → B′1

B′

⊥
¬(A′ → B′)

1

Finally, {f(A⊥), f(B⊥)} is less g-complex than A′ → B′ because A′ → B′ ∼=
A→ B, since they are a-c equivalent, and {f(A⊥), f(B⊥)} = {A∗, B∗}.

•
A′ B′

[A′]n [B′]n {C ′}n
....

[[⊥]]

¬C ′
n

First of all, we notice that the hypotheses [A′], [B′]

and {C ′} are between parentheses. Now, the only rules that can be applied to
formulae between parentheses are ακ rules, converse rules and the following five
rules:

{A ∧B}
{{A}}

{A ∧B}
{{B}}

{A ∨B}

{{A}}n
....

[[⊥]]

{{B}}n
....

[[⊥]]

[[⊥]]
n

{A→ B} [A]

{{B}}
[A⊥] {{A}}

[[⊥]]

Let us call the first two rules displayed here bracketed conjunction eliminations,
the third bracketed disjunction elimination, the fourth bracketed implication elim-
ination, and the fifth bracketed converse elimination. We argue, considering the
restrictions on the applicability of these five rules and considering that the hy-
potheses [A′], [B′] and {C ′} must appear exactly once in the derivation of [[⊥]],
that C ′ must be either of the form C1 ∨ C2 or of the form C1 → C2. Indeed,
[[⊥]] can only be obtained by bracketed eliminations applied to {C ′}. Moreover,
only bracketed implication and bracketed disjunction elimination enable us to
use both hypotheses [A′] and [B′] exactly once, as required by the grounding
rule for negation. Indeed, bracketed disjunction elimination enables us to obtain
[[⊥]] twice—once for each disjunct, once in combination with [A′] and once in
combination with [B′]; and bracketed implication elimination enables us to use
one among [A′] and [B′] to eliminate the implication and the other one to obtain
[[⊥]] in combination with the consequent of the implication. If we used bracketed
conjunction elimination, on the other hand, we would obtain only one formula
from {C ′} and we would not be able to use it in combination with both [A′] and

42

[B′] to obtain [[⊥]]. If we consider moreover that the ακ rules do not change the
main connective of their premiss and that, if we applied a converse introduction
rule to {C ′}, we would obtain an expression that cannot be used as premiss of
any rule—since there are no rules that act on expression of the form {F⊥}—we
can conclude that C ′ must be either of the form C1 ∨C2 or of the form C1 → C2.
We reason then by cases on the form of C ′.

If C ′ = C1 ∨ C2, without loss of generality, we have that A′ and C⊥1 can be
obtained from each other by a—possibly empty—series of applications of ακ rules;
and B′ and C⊥2 can be obtained from each other by a—possibly empty—series of
applications of ακ rules. Therefore, we need to show that we can derive ¬(C1∨C2)
from the hypotheses A and B. We know that we can derive f(A′) and f(C⊥1), and
f(B′) and f(C⊥2) from the hypotheses A and B by ακ rules—which are sound
with respect to classical logic, see Theorem 3.17. But then, by Lemma 3.15, we
can construct the following NC derivation:

C1 ∨ C2
1

f(C⊥1) C1
2

⊥
f(C⊥2) C2

2

⊥
⊥

2

¬(C1 ∨ C2)
1

or a similar one also including some derivation steps translating the ακ rule
applications.

If C ′ = C1 → C2, without loss of generality, A′ and C1 can be obtained from
each other by a—possibly empty—series of applications of ακ rules; and B′ and
C⊥2 can be obtained from each other by a—possibly empty—series of applications
of ακ rules. Therefore, we need to show that we can derive ¬(C1 → C2) from
the hypotheses A and B. We know that we can derive A′ and C1, and f(B′) and
f(C⊥2) from the hypotheses A and B by ακ rules—which are sound with respect
to classical logic, see Theorem 3.17. But then, by Lemma 3.15, we can construct
the following NC derivation:

f(C⊥2)
C1 → C2

1 C1

C2

⊥
¬(C1 ∨ C2)

1

or a similar one also including some derivation steps translating the ακ rule
applications.

Second, we need to show that if C ′ = C1 ∨C2 we can derive ¬¬(C1 ∨C2) from
the hypotheses ¬A and ¬B, and if C ′ = C1 → C2 we can derive ¬¬(C1 → C2)
from the hypotheses ¬A and ¬B. In the first case, we can derive ¬f(A′) = ¬f(C⊥1)
and ¬f(B′) = ¬f(C⊥2) from ¬A and ¬B by ακ rules. Hence, by Lemma 3.7, we
can construct the following derivations:

¬(C1 ∨ C2)1

¬f(C⊥1)
....
C1

(C1 ∨ C2)

⊥
2

¬¬(C1 ∨ C2)
1

and
¬(C1 ∨ C2)1

¬f(C⊥2)
....
C2

(C1 ∨ C2)

⊥
2

¬¬(C1 ∨ C2)
1

43

or similar ones also including some derivation steps translating the ακ rule
applications. In the second case, we can derive ¬A′ = ¬C1 and ¬f(B′) = ¬f(C⊥2)
from ¬A and ¬B by ακ rules. Hence, by Lemma 3.7, we can construct the
following derivations:

¬(C1 → C2)1

¬C1 C1
2

⊥
C2

C1 → C2

2

⊥
¬¬(C1 → C2)

1

and
¬(C1 → C2)1

¬f(C⊥2)
....
C2

(C1 → C2)

⊥
2

¬¬(C1 → C2)
1

or a similar one also including some derivation steps translating the ακ rule
applications.

Finally, we show that {f(A), f(B)} is less g-complex than ¬C ′. Now, if C ′ =
C1 ∨ C2. we have that A′ = C⊥1 and B′ = C⊥2 can be obtained from ακ rules
from A and B. Hence, there are formulae D and E such that
◦ A = D⊥ and B = E⊥, and thus D∗ = f(A) and E∗ = f(B),
◦ D is a-c equivalent to C1 and E is a-c equivalent to C2.

Therefore, ¬C ′ = ¬(C1 ∨ C2) ∼= (D ∨ E) and {f(A), f(B)} = {D∗, E∗}. In
conclusion, {f(A), f(B)} is less g-complex than ¬C ′. If, on the other hand,
C ′ = C1 → C2. we have that A′ = C1 and B′ = C⊥2 can be obtained from ακ
rules from A and B. Hence, there is a formula E such that
◦ B = E⊥, and thus E∗ = f(B),
◦ E is a-c equivalent to C2.

Therefore, ¬C ′ = ¬(C1 → C2) ∼= (A → E) and {A, f(B)} = {A,E∗}. In
conclusion, also in this case, {A, f(B)} is less g-complex than ¬C ′.

•
A′ B′

[A′]n {C ′}n1....
[[⊥]]

[B′]n {C ′}n2....
[[⊥]]

¬C ′
n

By using an argument similar to the one

used for the previous case, since the hypotheses [A′] and [B′] must appear exactly
once in the derivations of [[⊥]], we know that the only rules that can be used on
the hypotheses {C ′} are

{A ∧B}1
{{A}}

{A ∧B}2
{{B}}

and that C ′ must be of the form C1 ∧ C2. Without loss of generality, A′ and
C⊥1 can be obtained from each other by a—possibly empty—series of ακ rule
applications, and B′ and C⊥2 can be obtained from each other by a—possibly
empty—series of ακ rule applications. Therefore, we need to show that we can
derive ¬(C1 ∧ C2) from the hypotheses A and B. We know that we can derive
f(A′) = f(C⊥1) and f(B′) = f(C⊥2) from the hypotheses A and B by ακ rules –
which are sound with respect to classical logic, see Theorem 3.17. But then, by
Lemma 3.15, we can construct the following derivations:

f(C⊥1)
C1 ∧ C2

1

C1

⊥
¬(C1 ∧ C2)

1

and
f(C⊥2)

C1 ∧ C2
1

C2

⊥
¬(C1 ∧ C2)

1

44

or similar ones also including some derivation steps translating the ακ rule
applications.

Second, we need to show that we can derive ¬¬(C1 ∧C2) from the hypotheses
¬A and ¬B. Since we can derive ¬f(A′) and ¬f(C⊥1), and ¬f(B′) and ¬f(C⊥2)
from ¬A and ¬B by ακ rules, we can construct the following derivation, by also
using Lemma 3.7:

¬(C1 ∧ C2)1

¬f(C⊥1)
....
C1

¬f(C⊥2)
....
C2

(C1 ∧ C2)

⊥
2

¬¬(C1 ∧ C2)
1

or similar ones also including some derivation steps translating the ακ rule
applications.

Finally, we show that {f(A), f(B)} is less g-complex than ¬C ′. Now, A′ = C⊥1
and B′ = C⊥2 can be obtained from ακ rules from A and B. Hence, there are
formulae D and E such that
◦ A = D⊥ and B = E⊥, and thus D∗ = f(A) and E∗ = f(B),
◦ D is a-c equivalent to C1 and E is a-c equivalent to C2.

Therefore, ¬C ′ = ¬(C1 ∧ C2) ∼= (D ∧ E) and {f(A), f(B)} = {D∗, E∗}. In
conclusion, {f(A), f(B)} is less g-complex than ¬C ′.

•
A′

[A′]n {C ′}n1....
[[⊥]]

[B′⊥]n {C ′}n2....
[[⊥]] | B′

¬C ′
n

By using an argument similar to the

one used in the two cases above, since the hypotheses [A′] and [B′⊥] must appear
exactly once in the derivations of [[⊥]], we know that the only rules that can be
used on the hypotheses {C ′} are

{A ∧B}1
{{A}}

{A ∧B}2
{{B}}

and that C ′ must be of the form C1 ∧ C2. Without loss of generality, A′ and
C⊥1 can be obtained from each other by a—possibly empty—series of ακ rules
applications, and that B′ and C2 can be obtained from each other by a—possibly
empty—series of ακ rules applications. Therefore, we need to show that we can
derive ¬(C1 ∧ C2) from the hypotheses A and B. We know that we can derive
f(A′) and f(C⊥1) from the hypothesis A by ακ rules—which are sound with
respect to classical logic, see Theorem 3.17. But then, by Lemma 3.15, we can
construct the following derivation:

f(C⊥1)
C1 ∧ C2

1

C1

⊥
¬(C1 ∧ C2)

1

or a similar one also including some derivation steps translating the ακ rule
applications.

Second, we need to show that we can derive ¬¬(C1 ∧ C2) from the hypothesis

45

¬A and the robust condition B. Since we can derive ¬f(A′) and ¬f(C⊥1), and B′

and C2 from ¬A and B by ακ rules, we can construct the following derivation,
by also using Lemma 3.7:

¬(C1 ∧ C2)1

¬f(C⊥1)
....
C1 C2

(C1 ∧ C2)

⊥
2

¬¬(C1 ∧ C2)
1

or a similar one also including some derivation steps translating the ακ rule
applications.

Finally, we show that {f(A), B} is less g-complex than ¬C ′. Now, A′ = C⊥1
and B′ = C2 can be obtained from ακ rules from A and B. Hence, there is a
formula D such that
◦ A = D⊥, and thus D∗ = f(A),
◦ D is a-c equivalent to C1.

Therefore, ¬C ′ = ¬(C1∧C2) ∼= (D∧B) and {f(A), B} = {D∗, B}. In conclusion,
{f(A), B} is less g-complex than ¬C ′.
• A′

¬¬A′
First, we can derive A from A′ by ακ rules—which are sound with respect

to classical logic, see Theorem 3.17. Then, from A′ we can derive the conclusion
of the rule as follows:

A′ (¬A′)1

⊥
¬¬A′

1

Second, we can derive ¬A′ from ¬A by ακ rules. Then, we can derive ¬¬¬A′
as follows:

¬A′ (¬¬A′)1

⊥
¬¬¬A′

1

Finally, {A} is less g-complex than ¬¬A′ because ¬¬A ∼= ¬¬A′. Which in turn
is true since A and A′ are a-c equivalent.

Lemma 3.14. For any formula A, A ∨ f(A⊥) is derivable in Gr and in NC.

Proof. If A = ¬2nB, then f(A⊥) = ¬A and f((¬A)⊥) = A. Thus, we can derive

46

A ∨ f(A⊥) = A ∨ ¬A in Gr as follows:

¬(A ∨ ¬A)1

¬(A ∨ ¬A)1

A2 |
A2

(¬A)⊥

A ∨ ¬A
⊥
¬A

2
|

¬(A ∨ ¬A)1

A2 |
A2

(¬A)⊥

A ∨ ¬A
⊥
¬A

2

A⊥

A ∨ ¬A
⊥

¬¬(A ∨ ¬A)
1

A ∨ ¬A

If, on the other hand, A = ¬¬2nB, then f(A⊥) = ¬2nB and A ∨ f(A⊥) = ¬¬2nB ∨
¬2nB is of the form ¬C ∨ C where f(C⊥) = ¬C and f((¬C)⊥) = C. Thus, we can
derive A ∨ f(A⊥) = ¬C ∨ C in Gr as follows:

¬(¬C ∨ C)1

¬(¬C ∨ C)1

C2 |
C2

(¬C)⊥

¬C ∨ C
⊥
¬C

2
|

¬(¬C ∨ C)1

C2 |
C2

(¬C)⊥

¬C ∨ C
⊥
¬C

2

C⊥

¬C ∨ C
⊥

¬¬(¬C ∨ C)
1

¬C ∨ C

As for NC, we just have to notice—as we have argued above—that A ∨ f(A⊥) has
always either the form C ∨ ¬C or the form ¬C ∨ C. Hence, we can always derive
A ∨ f(A⊥) in NC by one of the following derivations:

¬(C ∨ ¬C)1

¬(C ∨ ¬C)1
C2

C ∨ ¬C
⊥
¬C

2

C ∨ ¬C
⊥

C ∨ ¬C
1

¬(¬C ∨ C)1

¬(¬C ∨ C)1
C2

¬C ∨ C
⊥
¬C

2

¬C ∨ C
⊥

¬C ∨ C
1

Lemma 3.15. For any A, one of the following is both a Gr and an NC derivation:

f(A⊥) A

⊥
A f(A⊥)

⊥

47

Proof. If A = ¬2nB, then f(A⊥) = ¬A and

¬A A
⊥

If A = ¬¬2nB, then f(A⊥) = ¬2nB and

¬¬2nB ¬2nB
⊥

Lemma 3.16. The ακ rules in Table 1 are derivable in NC.

Proof. We show in particular that each instance
C[H]

C[K]
ακ of some ακ rule can be

simulated by an NC derivation of C[K] from the hypothesis C[H]. The proof is by
induction on the number of symbols in the context C[x].

If C[x] = x, we have the following NC derivations:

A ∧B
B

A ∧B
A

B ∧A

A ∧ (B ∧ C)

A

A ∧ (B ∧ C)

B ∧ C
B

A ∧B

A ∧ (B ∧ C)

B ∧ C
C

(A ∧B) ∧ C
A ∨B

A1

B ∨A
B1

B ∨A
B ∨A

1

A ∨ (B ∨ C)

A1

A ∨B
(A ∨B) ∨ C

B ∨ C1

B2

A ∨B
(A ∨B) ∨ C

C2

(A ∨B) ∨ C
(A ∨B) ∨ C

2

(A ∨B) ∨ C
1

Suppose now that C[x] contains at least one symbol. Suppose moreover, that for each
context D[x] containing less symbols than C[x] and for any formulae D,E, F , it holds
that the inferences

D[D ∧ E]

D[E ∧D]
ακ

D[D ∧ (E ∧ F)]

D[(D ∧ E) ∧ F]
ακ

D[D ∨ E]

D[E ∨D]
ακ

D[D ∨ (E ∨ F)]

D[(D ∨ E) ∨ F]
ακ

are derivable in NC. We show that, for any formulae A,B,C, the inferences

C[A ∧B]

C[B ∧A]
ακ

C[A ∧ (B ∧ C)]

C[(A ∧B) ∧ C]
ακ

C[A ∨B]

C[B ∨A]
ακ

C[A ∨ (B ∨ C)]

C[(A ∨B) ∨ C]
ακ

are derivable in NC as well.

We consider a specific application of ακ rule of the form
C[H]

C[K]
ακ, and show that

we can derive C[K] in NC from C[H]. We distinguish several cases with respect to the
shape of C[H].

48

• C[H] = ¬E [H]. By induction hypothesis, we have that
E [H]

E [K]
ακ is derivable in

NC. By Proposition 2.5,
E [K]

E [H]
ακ is also derivable in NC. Therefore, we can

derive C[K] = ¬E [K] from the hypothesis ¬E [H] in NC as follows:

¬E [H]

E [K]1
....
E [H]

⊥
¬E [K]

1

• C[H] = E [H] ∧ J for some formula J . By induction hypothesis, we have that
E [H]

E [K]
ακ is derivable in NC. Therefore, we can derive C[K] = E [K] ∧ J from the

hypothesis E [H] ∧ J in NC as follows:

E [H] ∧ J
E [H]

....
E [K]

E [H] ∧ J
J

E [K] ∧ J

• C[H] = J ∧ E [H] for some formula J . This case is symmetric to the previous case.
• C[H] = E [H] ∨ J for some formula J . By induction hypothesis, we have that
E [H]

E [K]
ακ is derivable in NC. Therefore, we can derive C[K] = E [K] ∨ J from the

hypothesis E [H] ∨ J in NC as follows:

E [H] ∨ J

E [H]
....

E [K]1

E [K] ∨ J
J1

E [K] ∨ J
E [K] ∨ J

1

• C[H] = J ∨ E [H] for some formula J . This case is symmetric to the previous case.
• C[H] = E [H] → J for some formula J . By induction hypothesis, we have that
E [H]

E [K]
ακ is derivable in NC. By Proposition 2.5,

E [K]

E [H]
ακ is also derivable in NC.

Therefore, we can derive C[K] = E [K]→ J from the hypothesis E [H]→ J in NC
as follows:

E [H]→ J

E [K]1
....
E [H]

J
E [K]→ J

1

• C[H] = J → E [H] for some formula J . By induction hypothesis, we have that

49

E [H]

E [K]
ακ is derivable in NC. Therefore, we can derive C[K] = J → E [K] from the

hypothesis J → E [H] in NC as follows:

J → E [H] J1

E [H]
....
E [K]

J → E [K]
1

Theorem 3.17 (Classical Soundness). The calculus Gr is sound with respect to the
calculus NC.

Proof. We show, in particular, that, for any set of hypotheses Γ and expression E,
if Γ `Gr E then f(Γ) `NC f(E). The proof is by induction on the number of rule
applications in the Gr derivation of E.

If no rule is applied in the NC derivation of E, f(Γ) = {f(E)} and the statement
trivially holds.

Assume then that the Gr derivation of F contains n > 0 rule applications and that
if E has a Gr derivation containing m rule applications, for m < n, then f(E) has an
NC derivation. We consider the last rule applied in the Gr derivation of E.

•
C[A ∧B]

C[B ∧A]
ακ By Lemma 3.16, we know that the rule application is derivable

in NC. Hence, by induction hypothesis, we have that the conclusion is derivable
in NC as well.

•
C[A ∧ (B ∧ C)]

C[(A ∧B) ∧ C]
ακ By Lemma 3.16, we know that the considered rule appli-

cation is derivable in NC. Hence, by induction hypothesis, we have that the
conclusion is derivable in NC as well.

•
C[A ∨B]

C[B ∨A]
ακ By Lemma 3.16, we know that the considered rule application is

derivable in NC. Hence, by induction hypothesis, we have that the conclusion is
derivable in NC as well.

•
C[A ∨ (B ∨ C)]

C[(A ∨B) ∨ C]
ακ By Lemma 3.16, we know that the considered rule appli-

cation is derivable in NC. Hence, by induction hypothesis, we have that the
conclusion is derivable in NC as well.

• ¬¬
2nA

(¬2nA)⊥
By Definition 2.7, ¬¬2nA and f((¬2nA)⊥) are the same formula.

Therefore, we can clearly derive in NC the conclusion if the premiss is derivable
in NC. But the premiss is derivable in NC.

• ¬2nA

(¬¬2nA)⊥
By Definition 2.7, ¬2nA and f((¬¬2nA)⊥) are the same formula.

Therefore, we can clearly derive in NC the conclusion if the premiss is derivable
in NC. But the premiss is derivable in NC.

• A B
A ∧B

Since the conclusion of this rule application is a formula, also the

premises must be formulae. By induction hypothesis, moreover, the premisses

50

are derivable in NC. Since this rule belongs to NC as well, also the conclusion
can be derived in NC.

• A B
A ∨B

Since the conclusion of this rule application is a formula, also the

premises must be formulae. By induction hypothesis, moreover, the premisses
are derivable in NC. By one of the following inferences

A
A ∨B

B
A ∨B

we can construct an NC derivation of the conclusion.

• A | B⊥

A ∨B
Since the conclusion of this rule application is a formula, A must be

a formula. By induction hypothesis, moreover, A is derivable in NC. By

A
A ∨B

we can construct an NC derivation of the conclusion.

• B | A⊥

A ∨B
Since the conclusion of this rule application is a formula, B must be

a formula. By induction hypothesis, moreover, B is derivable in NC. By

B
A ∨B

we can construct an NC derivation of the conclusion.

• B | A
A→ B

Since the conclusion of this rule application is a formula, also the

premises must be formulae. By induction hypothesis, moreover, the premisses
are derivable in NC. By

B
A→ B

we can construct an NC derivation of the conclusion.

• A
⊥ B

A→ B
Since the conclusion of this rule application is a formula, B must be a

formula. By induction hypothesis, moreover, B is derivable in NC. By

B
A→ B

we can construct an NC derivation of the conclusion.

• A
⊥ | B⊥

A→ B
By induction hypothesis, f(A⊥) is derivable in NC. By Lemma 3.15,

one of the following is an NC derivation

A1 f(A⊥)

⊥
B

A→ B
1

f(A⊥) A1

⊥
B

A→ B
1

Therefore, the conclusion of the rule is derivable in NC as well.

51

•
A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

By induction hypothesis, f(A) and f(B) are derivable

in NC. Moreover, again by induction hypothesis, there is a derivation of ⊥ from
the hypotheses f(A), f(B) and f({C}) = C. Hence, we can derive the conclusion
¬C in NC by

f(A) f(B) Cn
....
⊥
¬C

n

where f(A) and f(B) are not cancelled by the negation introduction but derived
by an NC derivation.

•
A

[A]n {C}n1....
[[⊥]]

[B⊥]n {C}n2....
[[⊥]] | B

¬C
n

By induction hypothesis, f(A) and f(B)

are derivable in NC. Moreover, again by induction hypothesis, there is a derivation
of ⊥ from the hypotheses f(A) and f({C}) = C. Hence, we can derive the
conclusion ¬C in NC by

f(A) Cn
....
⊥
¬C

n

where f(A) is not cancelled by the negation introduction but derived by an NC
derivation.

• A
¬¬A

Since the conclusion of the rule is a formula, also A must be a formula.

By induction hypothesis, A ia derivable in NC. Therefore, by

¬A1 A
⊥
¬¬A

1

we can derive the conclusion of the rule in NC.

•
{A ∧B}1
{{A}}

By induction hypothesis, f({A∧B}) = A∧B is derivable in NC. By

A ∧B
A

we can derive A = f({{A}}) in NC.

•
{A ∧B}2
{{B}}

By induction hypothesis, f({A∧B}) = A∧B is derivable in NC. By

A ∧B
B

52

we can derive B = f({{B}}) in NC.

• {A ∨B}

{{A}}n
....

[[⊥]]

{{B}}n
....

[[⊥]]

[[⊥]]
n

By induction hypothesis, in NC , there is a deriva-

tion of ⊥ both from the hypothesis f({{A}}) = A and from the hypothesis
f({{B}}) = B. Moreover, there is an NC derivation of f({A ∨ B}) = A ∨ B.
Hence, by

A ∨B

An....
⊥

Bn
....
⊥

⊥
n

we can construct an NC derivation of the conclusion as well.

•
{A→ B} [A]

{{B}}
By induction hypothesis, f([A]) = A and f({A→ B}) = A→

B are derivable in NC. By

A→ B A
B

we can derive B = f({{B}}) in NC.

• [A⊥] {{A}}
[[⊥]]

By induction hypothesis, f({{A}}) = A and f([A⊥]) are derivable

in NC as well. By Lemma 3.15, also the conclusion can be derived in NC.

• A ∧B
A

The premiss of this rule is necessarily a formula and, by induction

hypothesis, it is derivable in NC. Since this rule belongs to NC as well, also the
conclusion can be derived in NC.
• A ∧B

B
The premiss of this rule is necessarily a formula and, by induction

hypothesis, it is derivable in NC. Since this rule belongs to NC as well, also the
conclusion can be derived in NC.

•
A ∨B

An....
C

Bn
....
C

C
n

Since the major premiss A∨B of this rule is a formula, also

A and B must be formulae. By induction hypothesis, A ∨B is derivable in NC.
Since this rule belongs to NC as well, also the conclusion can be derived in NC.

• A→ B A
B

The premisses of this rule and its conclusion are necessarily formulae.

By induction hypothesis, moreover, the premisses are derivable in NC. Since this
rule belongs to NC as well, also the conclusion can be derived in NC.

•
An....
⊥
¬A

n
The conclusion of this rule is necessarily a formula. By induction hy-

pothesis, there is an NC derivation of ⊥ from the hypothesis A. Since this rule
belongs to NC as well, also the conclusion can be derived in NC.

• ¬A A
⊥ Since ¬A is a formula, also A must be one. By induction hypothesis,

moreover, both ¬A and A are derivable in NC. Since this rule belongs to NC as
well, also the conclusion can be derived in NC.

53

• A
⊥ A
⊥

By induction hypothesis, f(A⊥) and A are derivable in NC as well. By

Lemma 3.15, also the conclusion can be derived in NC.

• ⊥
A

By induction hypothesis there is a derivation of ⊥ in NC. By

⊥
f(A)

we can derive f(A) in NC.

• ¬¬A
A

Since ¬¬A is a formula, also A is one. Moreover, by induction hypothesis,

¬¬A is derivable in NC . By

¬(A ∨ ¬A)2

¬(A ∨ ¬A)2
A3

A ∨ ¬A
⊥
¬A

3

A ∨ ¬A
⊥

A ∨ ¬A
2 A1

A
¬¬A ¬A1

A
A

1

we can show that also the conclusion is derivable in NC.

Theorem 3.18 (Classical Completeness). The calculus Gr is complete with respect to
the calculus NC.

Proof. We show, in particular, that, for any set of hypotheses Γ and formula F ,
Γ `NC F then Γ `Gr F . The proof is by induction on the number of rule applications
in the NC derivation of F .

If no rule is applied in the NC derivation of F , the statement trivially holds.
Assume then that the NC derivation of F contains n > 0 rule applications and that

if a formula has an NC derivation containing m rule applications, for m < n, then it
has also an Gr derivation. We consider the last rule applied in the NC derivation of F .

• A B
A ∧B By induction hypothesis, the premisses are derivable in Gr. Since this

rule belongs to Gr as well, also the conclusion can be derived in Gr.

• A ∧B
A

By induction hypothesis, the premiss is derivable in Gr. Since this rule

belongs to Gr as well, also the conclusion can be derived in Gr.

• A ∧B
B

This case is symmetric to the previous one.

• A
A ∨B By induction hypothesis, the premiss is derivable in Gr. By Lemma 3.14

and Proposition 2.8 we have that the following is a Gr. derivation:

. . .
B ∨ f(B⊥)

A B1

A ∨B
A |

f(B⊥)1

B⊥

A ∨B
A ∨B

1

54

• B
A ∨B This case is symmetric to the previous one.

•
A ∨B

An....
C

Bn
....
C

C
n

By induction hypothesis, the premisses are derivable in Gr.

Since this rule belongs to Gr as well, also the conclusion can be derived in Gr.

•
An....
B

A→ B
n

By induction hypothesis, the premiss B is derivable in Gr fom

the hypothesis A. By Lemma 3.14 and Proposition 2.8 the following is a Gr.

derivation:

. . .
A ∨ f(A⊥)

A1

A1
....
B

A→ B

B ∨ f(B⊥)

f(A⊥)1

A⊥ B2

A→ B

f(A⊥)1

A⊥ |
f(B⊥)2

B⊥

A→ B

A→ B
2

A→ B
1

• A→ B A
B

By induction hypothesis, the premisses are derivable in Gr. Since

this rule belongs to Gr as well, also the conclusion can be derived in Gr.

•
An....
⊥
¬A

n
By induction hypothesis, the premiss ⊥ is derivable in Gr from the

hypothesis A. Since this rule belongs to Gr as well, also the conclusion can be
derived in Gr.
• ¬A A

⊥ By induction hypothesis, the premisses are derivable in Gr. Since this

rule belongs to Gr as well, also the conclusion can be derived in Gr.

• ⊥
A

By induction hypothesis, the premiss is derivable in Gr. Since this rule

belongs to Gr as well, also the conclusion can be derived in Gr.

•
¬An....
⊥
A

n
By induction hypothesis, the premiss ⊥ is derivable in Gr from the

hypothesis ¬A. By the rules of negation introduction and double negation elimi-
nation, we can derive A in Gr. as follows:

¬An....
⊥
¬¬A

n

A

Lemma 4.8. For any two distinct segments in a derivation d, if neither is to the right
of the other, then one is above the other.

Proof. Suppose that neither r is to the right of s nor s is to the right of r. This means
that all subderivations of d that contain some element of one of the two segments,
say r, also contain all elements of s. Because if this were not the case we could find a
subderivation α of d that contains some element of r but does not contain some element

55

S of s. Since α does not contain S, there must be some rule application in d such that
above one of its premisses occurs α and above another premise occurs S. But this
would give us that either r is to the right of s or s is to the right of r, which contradicts
the assumption. Therefore, all subderivations of d that contain some element of r also
contain all elements of s. But this means that the bottommost element of s is above
the bottommost element of r.

Theorem 4.9 (Normalisation). For any Gr derivation d, there is a derivation d′ such
that d can be reduced to d′ in a finite number of reductions and d′ is normal.

Proof. We employ the following reduction strategy. We reduce any rightmost segment
of maximal complexity that does not occur below any other segment of maximal
complexity. By Lemma 4.8, we can always find such a segment.

We prove that this reduction strategy always produces a series of reductions which
is of finite length and which results in a normal form.

We define the complexity of a derivation d to be the triple of natural numbers
(m,n, u), where m is the complexity of the segments in d with maximal segment
complexity, n is the sum of the lengths of the segments in d with segment complexity
m, and u is the number of rule applications in d. We then fix a generic derivation d
and reason by induction on the lexicographic order on triples of natural numbers.

If the complexity of d is (0, 0, u) then d is normal and the claim holds.
Suppose now that the complexity of d is (m,n, u), that m+n > 0, and that for each

derivation simpler than d the claim holds. Since m + n > 0, there must be at least
one maximal segment in d that does not occur below any other maximal segment. We
reduce one of such segments and reason on the obtained derivation d′ by cases on the
shape of the reduction—we use lowercase Greek letters to denote subderivations of d.

•

α
A ∨B

β
C

γ
C

C
D

elim.
7→ α

A ∨B

β
C
D

γ
C
D

D

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one
of the following holds: (i) the segment does not contain any of the displayed
occurrences of C and D, (ii) the segment contains the displayed D, (iii) the
segment contains the displayed C. If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length
of the segment, but the resulting segment is still less complex than the reduced
one since D is obtained by eliminating some connectives of C. The lengths of all
segments for which (iii) holds have been reduced.
•

α
A ∨B

β
C

γ
C

C
δ
D

E
elim.

7→ α
A ∨B

β
C

δ
D

E

γ
C

δ
D

E
E

56

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one
of the following holds: (i) the segment does not contain any of the displayed
occurrences of C, D and E and does not occur in δ, (ii) the segment contains the
displayed E, (iii) the segment contains the displayed D or occurs in δ, (iv) the
segment contains the displayed C. If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length
of the segment, but the resulting segment is still less complex than the reduced
one since E is either obtained by eliminating some connective of C or by ()⊥

elimination. All segments for which (iii) holds have been duplicated by the
reduction, but their segment complexity is not maximal in d since the segment
that we reduced is rightmost among the segments of maximal complexity. The
lengths of all segments for which (iv) holds have been reduced.
•

α
A ∨B

γ1
C

γ2
C

C
δ1
D

δ2
D

D
elim.

7→ α
A ∨B

γ1
C

δ1
D

δ2
D

D

γ2
C

δ1
D

δ2
D

D
D

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one
of the following holds: (i) the segment does not contain any of the displayed
occurrences of C and D, and does not occur in δ1 or δ2; (ii) the segment contains
some of the displayed occurrences of D, or occurs in δ1 or δ2; (iii) the segment
contains some of the displayed occurrences of C. If (i) the segment has neither
been modified nor been duplicated by the reduction. If (ii) the reduction might
join the segment with another one for which (ii) holds, but the resulting segment
is still less complex than the reduced one since otherwise there would be in d
some segments of maximal complexity to the right of the reduced one, which
contradicts the assumptions. The lengths of all segments for which (iii) holds
have been reduced.
•

α
A→ B
A→ B′

ακ β
A

B′
7→ A→ B

β
A

B
B′

ακ

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has
been duplicated, the length of no segment of maximal complexity has been
increased, and no segment has become as complex as the reduced one; and hence
that the complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum

57

of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain neither
the displayed occurrence of B′ nor the displayed occurrence of A→ B′; (ii) the
segment contains the displayed occurrence of B′; (iii) the segment contains the
displayed occurrence of A→ B′ . If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length of
the segment, but the resulting segment is still less complex than the reduced one,
since B′ is less complex than A→ B and A→ B′. The lengths of all segments
for which (iii) holds have been reduced.
•

α
A→ B
A′ → B

ακ β
A′

B

7→ α
A→ B

β
A′

A
ακ

B

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has
been duplicated, the length of no segment of maximal complexity has been
increased, and no segment has become as complex as the reduced one; and hence
that the complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum
of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain neither
the displayed occurrence of A′ nor the displayed occurrence of A′ → B; (ii) the
segment contains the displayed occurrence of A′; (iii) the segment contains the
displayed occurrence of A′ → B . If (i) the segment has neither been modified
nor been duplicated by the reduction. If (ii) the reduction increases the length of
the segment, but the resulting segment is still less complex than the reduced one,
since B′ is less complex than A→ B and A′ → B. The lengths of all segments
for which (iii) holds have been reduced.
•

α
A ∨B
A′ ∨B′

ακ

A′n....
C

B′n....
C

C
n
7→ α

A ∨B

An

A′
ακ

....
C

Bn

B′
ακ

....
C

C

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one of
the following holds: (i) the segment does not contain the displayed occurrences
of A′, B′ and A′ ∨B′; (ii) the segment contains the displayed occurrence of A′

or B′; (iii) the segment contains the displayed occurrence of A′ ∨B′. If (i) the
segment has neither been modified nor been duplicated by the reduction. If
(ii) the reduction increases the length of the segment, but the resulting segment
is still less complex than the reduced one, since A′ and B′ are less complex than
A ∨B and A′ ∨B′. The lengths of all segments for which (iii) holds have been
reduced.

58

•

α
A ∨B
B ∨A ακ

Bn
....
C

An....
C

C

7→ α
A ∨B

An....
C

Bn
....
C

C

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one of
the following holds: (i) the segment does not contain the displayed occurrence
of B ∨A; (ii) otherwise. If (i) the segment has neither been modified nor been
duplicated by the reduction. The lengths of all segments for which (ii) holds have
been reduced.
•

α
A ∧B
A′ ∧B′

ακ

A′
7→

α
A ∧B
A
A′

ακ

α
A ∧B
A′ ∧B′

ακ

B′
7→

α
A ∧B
B
B′

ακ

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one of
the following holds: (i) the segment does not contain the displayed occurrences
of A′, B′ and A′ ∧B′; (ii) the segment contains the displayed occurrences of A′

or B′; (iii) the segment contains the displayed occurrence of A′ ∧B′. If (i) the
segment has neither been modified nor been duplicated by the reduction. If
(ii) the reduction increases the length of the segment, but the resulting segment
is still less complex than the reduced one, since A′ and B′ are less complex than
A ∧B and A′ ∧B′. The lengths of all segments for which (iii) holds have been
reduced.
•

α
¬A
¬A′

ακ β
A′

⊥
7→ α
¬A

β
A′

A
ακ

⊥

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one of
the following holds: (i) the segment does not contain the displayed occurrences
of A′ and ¬A′; (ii) the segment contains the displayed occurrence of A′; (iii) the

59

segment contains the displayed occurrence of ¬A′. If (i) the segment has neither
been modified nor been duplicated by the reduction. If (ii) the reduction increases
the length of the segment, but the resulting segment is still less complex than
the reduced one, since A′ is less complex than ¬A′. The lengths of all segments
for which (iii) holds have been reduced.
•

α
A⊥

A′⊥
ακ β

A′

⊥

7→ α
A⊥

β
A′

A
ακ

⊥

We reduced the complexity of the considered maximal segment because its length
has been reduced. We show now that no segment of maximal complexity has been
duplicated, the length of no segment of maximal complexity has been increased,
and no segment has become as complex as the reduced one; and hence that the
complexity of d′ is (m′, n′, u′) < (m,n, u) since we reduced the sum of the lengths
of the segments with maximal complexity. For each segment in d exactly one of
the following holds: (i) the segment does not contain the displayed occurrences

of A′ and A′⊥; (ii) the segment contains the displayed occurrence of A′; (iii) the

segment contains the displayed occurrence of A′⊥. If (i) the segment has neither
been modified nor been duplicated by the reduction. If (ii) the reduction increases
the length of the segment, but the resulting segment is still less complex than
the reduced one, because if A′ were more complex or as complex than A′⊥, then
the reduced segment would not be rightmost among the maximal ones, and this
is against the assumptions. The lengths of all segments for which (iii) holds have
been reduced.
•

α
A

β
B

A ∧B
A

7→
α
A

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of A and A ∧ B, (ii) the segment contains some of the
displayed occurrences of A. (iii) the segment contains the displayed occurrence
of A ∧B. If (i) the segment has neither been modified nor been duplicated by
the reduction. If (ii) the reduction might join the segment with another one for
which (ii) holds, but the resulting segment is still less complex than the reduced
one since A is less complex than A ∧B. We just eliminated the only segment for
which (iii) holds.

60

•

α
A

β
B

A ∧B
B

7→
β
B

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of B and A ∧ B, (ii) the segment contains some of the
displayed occurrences of B. (iii) the segment contains the displayed occurrence
of A ∧B. If (i) the segment has neither been modified nor been duplicated by
the reduction. If (ii) the reduction might join the segment with another one for
which (ii) holds, but the resulting segment is still less complex than the reduced
one since B is less complex than A ∧B. We just eliminated the only segment for
which (iii) holds.
•

β
B |

α
A

A→ B
γ
A

B

7→
β
B

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of B and A → B, (ii) the segment contains some of the
displayed occurrences of B. (iii) the segment contains the displayed occurrence
of A→ B. If (i) the segment has neither been modified nor been duplicated by
the reduction. If (ii) the reduction might join the segment with another one for
which (ii) holds, but the resulting segment is still less complex than the reduced
one since B is less complex than A→ B. We just eliminated the only segment
for which (iii) holds.
•

α
A⊥

β
B

A→ B
γ
A

B

7→
β
B

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex

61

as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of B and A → B, (ii) the segment contains some of the
displayed occurrences of B. (iii) the segment contains the displayed occurrence
of A→ B. If (i) the segment has neither been modified nor been duplicated by
the reduction. If (ii) the reduction might join the segment with another one for
which (ii) holds, but the resulting segment is still less complex than the reduced
one since B is less complex than A→ B. We just eliminated the only segment
for which (iii) holds.
•

α
A⊥ |

β
B⊥

A→ B
γ
A

B

7→
α
A⊥

γ
A

⊥
B

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum
of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain neither
the displayed occurrence of A⊥ nor the displayed occurrence of A→ B, (ii) the
segment contains the displayed occurrence of A⊥, (iii) the segment contains the
displayed occurrence of A→ B. If (i) the segment has neither been modified nor
been duplicated by the reduction. If (ii) the reduction might have increased the
complexity of the segment since A⊥ was the premiss of an introduction rule and
now is the premiss of an elimination rule, but the resulting complexity is still
less than the complexity of the reduced segment since A⊥ is less complex than
A→ B. We just eliminated the only segment for which (iii) holds.
•

α
A

β
B

A ∨B

An....
C

Bn
....
C

C
n
7→

α
A....
C

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of A, C and A ∨ B, (ii) the segment contains some of
the displayed occurrences of A, (iii) the segment contains some of the displayed
occurrences of C, (iv) the segment contains the displayed occurrence of A∨B. If
(i) the segment has neither been modified nor been duplicated by the reduction.

62

If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since A is
less complex than A ∨B. If (iii) the length of the segment has been reduced by
the reduction. We just eliminated the only segment for which (iv) holds.
•

α
A |

β
B⊥

A ∨B

An....
C

Bn
....
C

C
n

7→
α
A....
C

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of A, C and A ∨ B, (ii) the segment contains some of
the displayed occurrences of A, (iii) the segment contains some of the displayed
occurrences of C, (iv) the segment contains the displayed occurrence of A∨B. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since A is
less complex than A ∨B. If (iii) the length of the segment has been reduced by
the reduction. We just eliminated the only segment for which (iv) holds.
•

β
B |

α
A⊥

A ∨B

An....
C

Bn
....
C

C
n

7→
β
B....
C

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of B, C and A ∨ B, (ii) the segment contains some of
the displayed occurrences of B, (iii) the segment contains some of the displayed
occurrences of C, (iv) the segment contains the displayed occurrence of A∨B. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since B is
less complex than A ∨B. If (iii) the length of the segment has been reduced by
the reduction. We just eliminated the only segment for which (iv) holds.

63

•

An....
⊥
¬A

n α
A

⊥

7→
α
A....
⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed occurrences of A, ⊥ and ¬A, (ii) the segment contains some of the
displayed occurrences of A, (iii) the segment contains some of the displayed
occurrences of ⊥, (iv) the segment contains the displayed occurrence of ¬A. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since A is
less complex than ¬A. If (iii) the reduction might join the segment with another
one for which (ii) holds, but the resulting segment is still less complex than
the reduced one since ⊥ is less complex than ¬A. We just eliminated the only
segment for which (iv) holds.
•

α
A

β
B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n γ

C
⊥

7→
α
A
β
B
γ
C....

⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed expression occurrences, (ii) the segment contains some of the displayed
occurrences of A, B or C (iii) the segment contains some of the displayed
occurrences of ⊥, (iv) the segment contains the displayed occurrence of ¬A. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction might join the segment with another one for which (ii) holds,
but the resulting segment is still less complex than the reduced one since C, A
and B are less complex than ¬C; C for obvious reasons, and A and B because
of the restrictions of the ¬ introduction rule. If (iii) the reduction might join
the segment with another one for which (ii) holds, but the resulting segment is
still less complex than the reduced one since ⊥ is less complex than ¬C. We just
eliminated the only segment for which (iv) holds.

64

•

α
A

β
B

[A]n {C}n1....
[[⊥]]

[B]n {C}n2....
[[⊥]]

¬C
n γ

C
⊥

7→
α
A
γ
C....
⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed expression occurrences except for B, (ii) the segment contains some
of the displayed occurrences of A or C (iii) the segment contains some of the
displayed occurrences of ⊥, (iv) the segment contains the displayed occurrence
of ¬A. If (i) the segment has neither been modified nor been duplicated by the
reduction. If (ii) the reduction might join the segment with another one for which
(ii) holds, but the resulting segment is still less complex than the reduced one
since C and A are less complex than ¬C; C for obvious reasons and A because
of the restriction of the ¬ introduction rules. If (iii) the reduction might join
the segment with another one for which (ii) holds, but the resulting segment is
still less complex than the reduced one since ⊥ is less complex than ¬C. We just
eliminated the only segment for which (iv) holds.
•

α
A

[A]n {C}n1....
[[⊥]]

[B⊥]n {C}n2....
[[⊥]] |

β
B

¬C
n γ

C
⊥

7→
α
A
γ
C....
⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain any of the
displayed expression occurrences except for B, (ii) the segment contains some
of the displayed occurrences of A or C (iii) the segment contains some of the
displayed occurrences of ⊥, (iv) the segment contains the displayed occurrence
of ¬A. If (i) the segment has neither been modified nor been duplicated by the
reduction. If (ii) the reduction might join the segment with another one for which
(ii) holds, but the resulting segment is still less complex than the reduced one
since C and A are less complex than ¬C; C for obvious reasons and A because
of the restriction of the ¬ introduction rules. If (iii) the reduction might join
the segment with another one for which (iii) holds, but the resulting segment is

65

still less complex than the reduced one since ⊥ is less complex than ¬C. We just
eliminated the only segment for which (iv) holds.
•

α
¬A
A⊥

β
A

⊥
7→

α
¬A

β
A

⊥

By the reduction we decrease the length of one maximal segment. We show
now that no segment of maximal complexity has been duplicated, the length
of no segment of maximal complexity has been increased, and no segment has
become as complex as the reduced one; and hence that the complexity of d′ is
(m,n′, u′) < (m,n, u) since we decreased the length of a maximal segment. For
each segment in d exactly one of the following holds: (i) the segment does not
contain the displayed A⊥ and ⊥, (ii) the segment contains the displayed A⊥. If
(i) the segment has neither been modified nor been duplicated by the reduction.
If (ii) the reduction decreased the length of the segment—notice indeed that the
complexity of ¬A and A⊥ is the same.
•

α
A

(¬A)⊥
β
¬A

⊥

7→
β
¬A

α
A

⊥

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum of
the lengths of the segments with maximal complexity. For each segment in d
exactly one of the following holds: (i) the segment does not contain the displayed
¬A and (¬A)⊥, (ii) the segment contains the displayed ¬A, (iii) the segment
contains the displayed (¬A)⊥. If (i) the segment has neither been modified nor
been duplicated by the reduction. If (ii) the reduction might have increased
the complexity of the segment—because now ¬A is the major premiss of an
elimination rule—but this is still simpler than the eliminated segment since ¬A
is simpler than (¬A)⊥. We just eliminated the only segment for which (iii) holds.
•

α
A
¬¬A
A

7→
α
A

By the reduction we eliminate one maximal segment. We show now that no
segment of maximal complexity has been duplicated, the length of no segment of
maximal complexity has been increased, and no segment has become as complex
as the reduced one; and hence that the complexity of d′ is (m′, n′, u′) < (m,n, u)
since we either reduced the maximal complexity of the segments or the sum
of the lengths of the segments with maximal complexity. For each segment in
d exactly one of the following holds: (i) the segment does not contain any of

66

the displayed occurrences of ¬¬A and A, (ii) the segment contains some of the
displayed occurrences of A, (iii) the segment contains the displayed occurrence
of ¬¬A. If (i) the segment has neither been modified nor been duplicated by the
reduction. If (ii) the reduction might have joined the segment with another one
for which (ii) holds, but the resulting segment is still simpler than the eliminated
one since A is simpler than ¬¬A. We just eliminated the only segment for which
(iii) holds.

Theorem 4.10 (Subformula Property). For any normal Gr derivation d of an expression
G from hypotheses Γ, for any expression E occurring in d, one of the following holds:

(1) f(E) = ⊥,
(2) f(E) is a-c equivalent to a proper subformula of the formula interpretation of an

element of Γ ∪ {G}.
(3) f(E) is a-c equivalent to the negation of a proper subformula of the formula

interpretation I of an element of Γ∪ {G} and I is a conjunction, a disjunction or
an implication.9

Proof. We prove a stronger statement:

For any normal Gr derivation d of an expression G from hypotheses Γ, for any expression
E occurring in d, one of the following holds:

(1) f(E) = ⊥,
(2) f(E) is a-c equivalent to a proper subformula of the formula interpretation of an element

of Γ ∪ {G}.
(3) f(E) is a-c equivalent to the negation of a proper subformula of the formula interpretation

I of an element of Γ ∪ {G} and I is a conjunction, a disjunction, an implication or an
atomic formula.

Moreover, if G is obtained by an elimination rule which is not a ∨ elimination, G is a
subformula of an element of Γ.

Consider any normal Gr derivation d of G from hypotheses Γ. We show by induction
on the number of rules applied in d that the statement holds for d. If d contains no rule
application, then d consists only in the hypothesis G and the statement trivially holds.
Suppose now that d contains n+ 1 rule applications and that the statement holds for
all derivations containing n or less rule applications. We show that the statement holds
for d as well. We reason on the last rule applied in d.

•
C[A ∧B]

C[B ∧A]
ακ By inductive hypothesis, the statement holds for the derivation

of C[A ∧B]. Since no hypothesis is discharged by the last rule applied in d and
since G is a-c equivalent to C[A ∧B], the statement holds for d as well.

•
C[A ∧ (B ∧ C)]

C[(A ∧B) ∧ C]
ακ By inductive hypothesis, the statement holds for the deriva-

tion of C[A ∧ (B ∧ C)]. Since no hypothesis is discharged by the last rule applied
in d and since G is a-c equivalent to C[A ∧ (B ∧C)], the statement holds for d as
well.

9This condition is required here because, according to Definition 3.4, the negations ¬A and ¬B are contained

in some of the multisets which are completely and immediately less g-complex than A ∧B, A ∨B and A→ B.
Which means that, with respect to our formalisation of grounding, we must regard also ¬A and ¬B as immediate

subformulae of A ∧B, A ∨B and A→ B.

67

•
C[A ∨B]

C[B ∨A]
ακ By inductive hypothesis, the statement holds for the derivation

of C[A ∨B]. Since no hypothesis is discharged by the last rule applied in d and
since G is a-c equivalent to C[A ∨B], the statement holds for d as well.

•
C[A ∨ (B ∨ C)]

C[(A ∨B) ∨ C]
ακ By inductive hypothesis, the statement holds for the deriva-

tion of C[A ∨ (B ∨ C)]. Since no hypothesis is discharged by the last rule applied
in d and since G is a-c equivalent to C[A ∨ (B ∨C)], the statement holds for d as
well.

• ¬¬
2nA

(¬2nA)⊥
By inductive hypothesis, the statement holds for the derivation of

¬¬2nA. Since no hypothesis is discharged by the last rule applied in d and since
by Definition 2.7, ¬¬2nA and f((¬2nA)⊥) are the same formula, the statement
holds for d as well.

• ¬2nA

(¬¬2nA)⊥
By inductive hypothesis, the statement holds for the derivation of

¬2nA. Since no hypothesis is discharged by the last rule applied in d and since
by Definition 2.7, ¬2nA and f((¬¬2nA)⊥) are the same formula, the statement
holds for d as well.

• A B
A ∧B

By inductive hypothesis, the statement holds for the derivations of

A and B. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well.

• A B
A ∨B

By inductive hypothesis, the statement holds for the derivations of

A and B. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well.

• A | B⊥

A ∨B
By inductive hypothesis, the statement holds for the derivations of

A and B⊥. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well. The formula f(B⊥) is indeed either a subformula
of B, and 2 holds, or the negation of B, and thus the negation of a proper
subformula of A ∨B, and 3 holds.

• B | A⊥

A ∨B
By inductive hypothesis, the statement holds for the derivations of

A⊥ and B. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well. The formula f(A⊥) is indeed either a subformula of
A, and 2 holds, or the negation of A, and thus the negation of a proper subformula
of A ∨B, and 3 holds.

• B | A
A→ B

By inductive hypothesis, the statement holds for the derivations of

A and B. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well.

• A
⊥ B

A→ B
By inductive hypothesis, the statement holds for the derivations of

A⊥ and B. Since no hypothesis is discharged by the last rule applied in d, the
statement holds for d as well. The formula f(A⊥) is indeed either a subformula of
A, and 2 holds, or the negation of A, and thus the negation of a proper subformula
of A→ B, and 3 holds.

• A
⊥ | B⊥

A→ B
By inductive hypothesis, the statement holds for the derivations

of A⊥ and B⊥. Since no hypothesis is discharged by the last rule applied in d,

68

the statement holds for d as well. The formulae f(A⊥) and f(B⊥) are either
subformulae of A respectively B, and 2 holds, or the negation of A respectively
B, and thus the negation of a proper subformula of A→ B, and 3 holds.

•
A B

[A]n [B]n {C}n
....

[[⊥]]

¬C
n

By inductive hypothesis, the statement holds for the

derivations of A and B and for the derivation of [[⊥]] from [A], [B] and {C}. By
the restrictions on the form of the derivation of [[⊥]], we know that A and B are
proper subformulae of C. Therefore, the statement holds also for d.

•
A

[A]n {C}n1....
[[⊥]]

[B⊥]n {C}n2....
[[⊥]] | B

¬C
n

By inductive hypothesis, the statement

holds for the derivations of A and B and for the derivations of [[⊥]] from [A] and
{C}, and [B⊥] and {C}. By the restrictions on the form of the derivations of
[[⊥]], we know that A and f(B⊥) are proper subformulae of C. Therefore, the
statement holds also for d.

• A
¬¬A

By inductive hypothesis, the statement holds for the derivation of A.

Since no hypothesis is discharged by the last rule applied in d, the statement
holds for d as well.

•
{A ∧B}1
{{A}}

The restrictions on this rule application imply that A ∧ B is a

hypothesis. Hence, the statement holds.

•
{A ∧B}2
{{B}}

The restrictions on this rule application imply that A ∧ B is a

hypothesis. Hence, the statement holds.

• {A ∨B}

{{A}}n
....

[[⊥]]

{{B}}n
....

[[⊥]]

[[⊥]]
n

The restrictions on this rule application imply

that A ∨B is a hypothesis. Hence, the statement holds.

•
{A→ B} [A]

{{B}}
The restrictions on this rule application imply that A→ B is

a hypothesis. Hence, the statement holds.

• [A⊥] {{A}}
[[⊥]]

The restrictions on this rule application imply that A⊥ is a

hypothesis and that A is a proper subformula of a hypothesis. Hence, the statement
holds.
• A ∧B

A
Since d is normal, A∧B can only be the conclusion of an elimination rule

which is not a ∨ elimination. Thus, by inductive hypothesis, A∧B is a subformula
of a hypothesis. Therefore, and by inductive hypothesis on the derivation of A∧B,
the statement holds for d as well.
• A ∧B

B
Since d is normal, A∧B can only be the conclusion of an elimination rule

which is not a ∨ elimination. Thus, by inductive hypothesis, A∧B is a subformula
of a hypothesis. Therefore, and by inductive hypothesis on the derivation of A∧B,
the statement holds for d as well.

69

•
A ∨B

An....
C

Bn
....
C

C
n

Since d is normal, A ∨B can only be the conclusion of an

elimination rule which is not a ∨ elimination. Thus, by inductive hypothesis,
A ∨B is a subformula of a hypothesis H. Since all subformulae of A and B are
also proper subformulae of H, we have, by induction hypothesis on the derivation
of A∨B and one the two derivations of C, that the statement holds for d as well.

• A→ B A
B

Since d is normal, A → B can only be the conclusion of an

elimination rule which is not a ∨ elimination. Thus, by inductive hypothesis,
A→ B is a subformula of a hypothesis. Therefore, and by inductive hypothesis
on the derivations of A→ B and A, the statement holds for d as well.

•
An....
⊥
¬A

n
By induction hypothesis on the derivation of ⊥ and since all subformulae

of A are proper subformulae of ¬A, the statement holds for d as well.

• ¬A A
⊥ Since d is normal, ¬A can only be the conclusion of an elimination rule

which is not a ∨ elimination. Thus, by inductive hypothesis, ¬A is a subformula
of a hypothesis. Therefore, and by inductive hypothesis on the derivations of ¬A
and A, the statement holds for d as well.

• A
⊥ A
⊥

Since d is normal, A⊥ can only be the conclusion of an elimination rule

which is not a ∨ elimination. Thus, by inductive hypothesis, f(A⊥) is a subformula
of a hypothesis. Therefore, and by inductive hypothesis on the derivations of A⊥

and A, the statement holds for d as well.

• ⊥
A

Since the last rule applied in d does not discharge any hypothesis, by

inductive hypothesis, the statement holds for d.

• ¬¬A
A

Since d is normal, ¬¬A can only be the conclusion of an elimination rule

which is not a ∨ elimination. Thus, by inductive hypothesis, ¬¬A is a subformula
of a hypothesis. Therefore, and by inductive hypothesis on the derivation of ¬¬A,
the statement holds for d as well.

70

	Introduction
	A calculus for grounding: Gr
	Innovations and differences
	The logical language and the language of the calculus Gr
	Rules for a-c equivalent and converse formulae
	Grounding rules
	Logical rules
	Rules for

	Grounding and classical logic: two soundness and completeness results
	Complete and immediate grounding
	Classical soundness and completeness

	Normalisation of the calculus Gr
	The subformula property for Gr
	Formal explanations and proofs

	Conclusions

