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1 Introduction and summary

Conformal boundary conditions pose a challenging classification problem: what is the set
of possible boundary conformal field theories (BCFT) for a given bulk CFT? In this paper
we continue the investigation of this problem initiated in [1] for the simplest possible bulk
conformal field theory: a free massless scalar. Even in this simple case there is a rich
set of possibilities to explore when we go beyond the well-known Neumann and Dirichlet
‘free’ boundary conditions and we allow for interactions with boundary degrees of freedom,
see e.g. [2–4].

In the previous work [1] we showed how to phrase the question in a way that makes it
amenable to be attacked using the numerical conformal bootstrap [5] (see also the review [6]
and [7, 8] for previous approaches to the bootstrap of BCFTs). This allowed us to put
rigorous bounds on the space of conformal boundary conditions for a free scalar in a 4d
bulk. The goal of the present work is to apply the same technique in the case of a 3d bulk.
We recall that our method relies on three universal properties of the boundary conditions
for a free field: (i) the existence of two operators Ô1 ∼ φ and Ô2 ∼ ∂⊥φ with protected
scaling dimensions and corresponding to the boundary modes of the bulk field, (ii) a relation
between the OPE coefficients of Ô1 and Ô2 with any other boundary operator, descending
from the consistency with the (exactly known) bulk OPE expansion and (iii) the existence
of special boundary operators with protected scaling dimensions coming from the bulk
higher-spin currents. All these properties can be implemented in the bootstrap approach
when studying the crossing symmetry constraints on the mixed set of boundary four-point
functions of Ô1 and Ô2.

A convenient parametrization of the space of boundary conditions is in terms of the
spin 2 gap ∆̂2, which measures the non-locality of the boundary, and of the parameter aφ2 ,
i.e. the coefficient of the one-point function of the operator φ2. The latter also encodes
the coefficients of Ô1 and Ô2 in the bulk-to-boundary OPE of φ, and enters in the relation
between boundary OPE coefficients mentioned above. Moreover, a novel feature in the
3d/2d setup is that the unitarity bound for boundary scalar operators is 0. To isolate
the contribution of the identity operator one is then forced to also introduce a scalar gap
∆̂0 > 0. Therefore we obtain our numerical bounds in the space of the three parameters
(aφ2 , ∆̂2, ∆̂0) (see figure 1).

The study for a 4d bulk showed that indeed the bootstrap problem is constrained
enough to carve out a large chunk of the parameter space of possible boundary conditions.
It also revealed the existence of an enticing kink that is naturally conjectured to correspond
to an interacting boundary condition, previously unknown. However that analysis was
‘shooting in the dark’, namely there was no input from data or perturbative constructions
to indicate what kind of interacting boundary conditions might exist, and where they might
be in the space of parameters.1

The situation is different in the 3d setup in that a perturbative construction exists,
and it is seen to lie at the edge of the numerical exclusion plots. This interacting boundary

1See [4] for attempts at constructing interacting boundary conditions for the 4d scalar. In particular an
example is discussed in their appendix B, though one that lies well within the allowed region of [1].
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condition can be reached through a coupling of the bulk scalar with Dirichlet boundary
condition to unitary diagonal minimal models Mm,m+1 on the 2d boundary, via the La-
grangian

g∂⊥φΦ(1,2) + hΦ(1,3) , (1.1)

where Φ(p,q) denote the primaries of the minimal model. The RG flow triggered by this
deformation has a perturbative fixed point at large m with g∗, h∗ ∼ 1/m. In the numerical
bootstrap analysis we find a family of kinks whose observables are in good agreement with
the perturbative prediction for largem (see figure 2). This allows us to follow the fixed point
to strong coupling and to establish the existence of the interacting boundary condition all
the way to m = 4. Surprisingly, the agreement with the perturbative prediction remains
good even for such a low value of m. The remaining case of m = 3, i.e. the coupling to
the 2d Ising model, can be seen as a special case of the Lagrangian studied in [9, 10] and
based on that we conjecture that it flows to the Neumann boundary condition.

In addition to these ‘boundary minimal models’, we find an additional more mysterious
family of kinks for lower values of the scalar gap ∆̂0 (see figures 5–6), for which we do not
propose a microscopic construction. Another feature that we observe and for which we
lack an explanation is a certain splitting of the minimal model kink beyond aφ2 & 0.36,
close to the Neumann boundary condition (see figure 3). In fact, we were not able to
rigorously establish in perturbation theory the existence of any interacting fixed point
from a perturbation of Neumann in 3d. Both for the ‘boundary minimal models’ and for
the family of kinks for lower ∆̂0 we use extremal functional methods to extract the low lying
spectrum, finding agreement with the perturbative calculations in the first case. Moreover,
in order to verify that the solution to crossing is indeed describing a BCFT rather than an
arbitrary non-local theory, we verify that the lowest lying protected operators satisfy the
Ward Identity that descends from their parent bulk higher-spin currents.

The rest of the paper is organized as follows. In section 2 we review the derivation
of the universal properties of a free scalar BCFT. In section 3 we discuss the perturbative
construction of interacting boundary conditions, in particular we show the existence of
the ‘boundary minimal model’ fixed points. Section 4 contains a brief description of the
numerical setup, which is then used in section 5 to obtain our main results, namely the
constraints from the numerical bootstrap. We conclude in section 6 by mentioning some
possible future directions. Various appendices contain technical results that we use along
the way.

2 Review on analytic constraints on the free scalar BCFT

In this section we review the analytic constraints discussed in [1] on the data that charac-
terize the free scalar BCFT. We consider a free massless scalar field φ in d > 2 dimensions
with a planar boundary. We denote the components of x = (~x, y) ∈ Rd−1 × R+ as xµ,
µ = 1, . . . , d where xd = y ≥ 0 is the direction orthogonal to the boundary at y = 0, and
those of ~x ∈ Rd−1 as xa, a = 1, . . . , d− 1. We are interested in local and unitary boundary
conditions that preserve the boundary conformal symmetry SO(d, 1).

– 3 –
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2.1 Protected boundary spectrum

The spectrum of operators in the free scalar BCFT includes infinitely many boundary
primaries with protected scaling dimensions. In any unitary free scalar BCFT this property
follows from the bulk equation of motion. This section is a review of results that have
already appeared in the BCFT literature. In particular, the spectrum of boundary modes
of the free scalar was discussed in [3, 7, 8, 11–14], the bulk-boundary crossing symmetry
relations in eq. (2.3) were derived in [7, 8], while higher-spin displacement operators were
discussed in [1, 3].

2.1.1 Boundary modes of the free scalar

Consider the bulk-boundary OPE (bOPE) of a scalar operator φ in a generic
BCFT [7, 11, 15]

φ(~x, y) ∼
y→0

∑
i

bi y
∆̂i−∆φ Ôi(~x) + . . . . (2.1)

By rotational symmetry, the sum above is restricted to scalar boundary operators only.
The ellipsis stands for boundary descendant operators, i.e. total derivatives with respect to
the parallel coordinates. We will take unit-normalized boundary operators unless explicitly
stated (see appendix A for a summary of our conventions).

We now specify φ to be a free massless field. The Laplace equation dictates that
∆φ = d

2 − 1 and, if bi 6= 0, it also implies that the scaling dimension of Ôi can only take
two values

∆̂1 = d

2 − 1 , ∆̂2 = d

2 . (2.2)

The bulk-boundary couplings bi, which are real numbers in unitary theories, are further
constrained by the bulk-boundary crossing symmetry of the two-point correlation function
of φ. Taking φ to be unit-normalized, the bulk-boundary couplings bi satisfy the following
relation [7, 8]

b21 = 1 + 2d−2aφ2 , b22 = (d− 2) (1− 2d−2aφ2) , (2.3)

where aφ2 is defined as

〈φ2(~x, y)〉 =
aφ2

yd−2 . (2.4)

Therefore unitarity restricts aφ2 to lie in an interval

− 1
2d−2 = a

(D)
φ2 ≤ aφ2 ≤ a(N)

φ2 = 1
2d−2 . (2.5)

As we indicated above, the boundaries of the interval correspond to the Dirichlet (b1 = 0)
and Neumann (b2 = 0) boundary condition.

– 4 –
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2.1.2 Higher-spin displacement operators

The φ × φ OPE contains, together with the bulk stress-tensor T ≡ J2, infinitely many
higher-spin conserved currents J` with even spin ` ≥ 4. The conservation of these currents
is generically violated by boundary-localized terms, so that

〈∂µJ
µµ1...µ`−1
` (~x, y) . . . 〉 = δ(y)〈Ôµ1...µ`−1

` (~x) . . . 〉 . (2.6)

Note that indices on the r.h.s. are labels when they take the value d. Therefore, the BCFT
generically contains boundary operators D(l)

` and V(l+1)
` of spin l and l + 1, respectively,

and protected dimensions ∆̂ = d+ `− 2, where l is an even integer ranging from 0 to `− 2.
It is important to remark that the appearence of such protected boundary primaries hinges
on the existence of the higher-spin conserved currents of the free scalar CFT. In the case of
the bulk stress-tensor, the Ward identity in eq. (2.6) with ` = 2 implies that the boundary
spectrum contains an l = 0 primary with scaling dimension ∆̂ = d. This operator, which
controls the breaking of translations in the direction transverse to the boundary, is the
so called displacement operator and will be denoted as D ≡ D(0)

2 . In the same boundary
multiplet, generically we expect a vector operator with l = 1 and scaling dimension ∆̂ = d

which controls the breaking of translations in the directions parallel to the boundary. This
is the so called flux operator, denoted as V(1) ≡ V(1)

2 . As shown in [1], in any unitary
BCFT where the parallel translations are preserved, locality implies that the flux operator
is absent, i.e.

V(1) = 0 . (2.7)

2.2 Exact OPE relations and bulk-boundary crossing

The three-point correlation functions between the boundary modes of φ and a generic
boundary primary satisfy certain exact OPE relations that ensure analyticity of the φ× φ
OPE. Bulk-boundary crossing symmetry imposes further relations between the BCFT data
of the protected boundary operators. Taken together these constraints will play a crucial
role in our numerical bootstrap analysis.

2.2.1 Constraints from analiticity of the bulk OPE

Consider the three-point correlation function between the operators Ôi (the boundary
modes of the free scalar) and a generic boundary primary Ô(l) of scaling dimension ∆̂
transforming as a symmetric and traceless SO(d− 1) tensor of spin l. In any conformally
invariant boundary condition these correlators have the following form [16, 17]

〈Ôi(~x1)Ôj(~x2)Ô(l)(θ,∞)〉 =
f̂
ijÔ(l)

|~x12|∆̂i+∆̂j−∆̂

(
−~x12 · θ
|~x12|

)l
. (2.8)

Tensor indices are contracted by means of a polarization vector θa, which is null θ · θ = 0
as allowed by tracelessness of Ô(l). Bose symmetry requires that

f̂
ijÔ(l) = (−1)lf̂

jiÔ(l) , (2.9)

– 5 –
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therefore only even spins l are allowed in (2.8) if i = j. Analiticity of the φ × φ OPE
requires the following exact relations between the OPE coefficients [1]

f̂11Ô(l) = κ1(∆̂, l)f̂12Ô(l) , κ1(∆̂, l) ≡ −
b2Γ

(
l+∆̂

2

)
Γ
(
d+l−∆̂−2

2

)
2b1Γ

(
d+l−∆̂−1

2

)
Γ
(
l+∆̂+1

2

) ,

f̂22Ô(l) = κ2(∆̂, l)f̂12Ô(l) , κ2(∆̂, l) ≡ −
2b1Γ

(
l+∆̂

2

)
Γ
(
d+l−∆̂

2

)
b2Γ

(
d+l−∆̂−1

2

)
Γ
(
l+∆̂−1

2

) .

(2.10)

When O(l) is one of the protected boundary operators among D(l)
` or V(l+1)

` , some of
the gamma functions appearing in eq. (2.10) are singular and the relations above become
degenerate. In particular we have to discriminate between two cases. If O(l) is of the
D(l)
` type, then κ1 = κ2 = ∞ and so f̂12D(l)

`

= 0, leaving f̂11D(l)
`

and f̂22D(l)
`

unrelated to
each other. We will see in the next subsection that exact relations of a different type are
obeyed by f̂11D(l)

`

and f̂22D(l)
`

. If O(l) is of the V(l+1)
` type, then κ1 = κ2 = 0, so that

f̂11V(l+1)
`

= f̂22V(l+1)
`

= 0 and f̂12V(l+1)
`

is undetermined. For the V(l+1)
` type of operators,

the bulk-boundary crossing symmetry implies that whenever f̂12V(l+1)
`

6= 0 the operator
must also appear in the bulk-boundary OPE of J`, see e.g. appendix C of [1].

2.2.2 Constraints from bulk-boundary crossing

We conclude this section by discussing some of the consequences of the bulk-boundary
crossing symmetry for three-point functions involving D(0)

` type of operators, and more
specifically D and D(0)

4 . We shall recall that a boundary operator D(0)
` can appear in the

bulk-to-boundary OPE of φ2, while it can couple to a bulk higher spin current J`′ only
if `′ = `. Consequently the bulk-boundary crossing symmetry relates three-point function
coefficients f̂

iiD(0)
`

to the bulk-boundary OPE of J`, as well as to the one-point function
of φ2. For the displacement operator the precise relation was obtained in [1] (see also
appendix B.1) and reads

f̂11D =
(d− 2)

(
aφ22d + 2CDS

2
d

)
4(d− 1)Sdb21

, f̂22D =
(d− 2)

(
2CDS

2
d − aφ22d

)
2Sdb22

. (2.11)

In the equation above Sd ≡ Vol(Sd−1) = 2πd/2/Γ (d/2) and CD is the two-point correlation
function of the displacement operator

〈D(~x)D(0)〉 = CD
|~x|2d

. (2.12)

By unitarity CD ≥ 0.

– 6 –
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Analogous relations should hold more generally for any D(l)
` , although deriving them

may be more complicated. In the case of D(0)
4 we find (see appendix B.2 for a derivation)

f̂11D(0)
4

=
3aφ22d−4(d− 2)d2

b21(d+ 1)(d+ 3)Sd
+

(d− 2)SdĈD(0)
4

8b21(d2 − 1) ,

f̂22D(0)
4

=−
3aφ22d−2(d− 2)d2

b22(d+ 3)Sd
+

(d− 2)SdĈD(0)
4

2b22(d− 1) .

(2.13)

In the equation above we introduced a new quantity, ĈD(0)
4
, which is the two-point corre-

lation function of the D(0)
4 operator, i.e.

〈D(0)
4 (~x)D(0)

4 (0)〉 =
ĈD(0)

4

|~x|2d+4 . (2.14)

Unitarity requires ĈD(0)
4
≥ 0.

3 Perturbative constructions in 3d/2d

In this section we will discuss some perturbative constructions of interacting boundary
conditions for the free massles scalar. These constructions are based on finding a short RG
flow starting from either the Neumann or the Dirichlet boundary conditions and ending
on a perturbative, unitary and interacting fixed point. We will start by briefly reviewing
the results of [1] for deformations that are linear in the boundary mode of the scalar,
in generic d. Then we will consider specific examples: the deformation of the Dirichlet
boundary condition via coupling to minimal models Mm,m+1 on the boundary, which
becomes perturbative at large m, and the deformation of the Neumann boundary condition
via coupling to a Dirac fermion on the boundary, which becomes perturbative in the d =
4− ε expansion. We will conclude with some considerations about more general non-linear
deformations of the Neumann boundary condition.

3.1 Linear deformations (review of [1])

Let us consider first deformations of Dirichlet that are linear in ∂yφ, in generic d bulk
dimensions. We add a decoupled CFTd−1 and deform by coupling to a boundary primary
χ̂ of scaling dimension ∆̂χ̂ = d

2 − 1− ε with 0 < ε� 1

S
(D)
∂ = SCFTd−1 + g

∫
y=0

dd−1~x ∂yφ χ̂ . (3.1)

The modified Dirichlet boundary condition reads

φ|y=0 = −g χ̂ . (3.2)

As usual in conformal perturbation theory, we assume that any strongly relevant deforma-
tion (i.e. relevant for ε = 0) is tuned to zero, and this is consistent because when we do

– 7 –
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so the associated β functions in any massless regularization scheme vanish. In specific ex-
amples, like the one we will study later, there might be additional approximately marginal
couplings, i.e. couplings that become marginal when ε is 0, in which case one needs to
study the coupled β functions for all of them. For the purpose of this section, we will not
specify the β functions and simply assume the existence of a perturbative fixed point with
g2 ∝ ε. The first-order formulae we derive are valid as long as g is the only approximately
marginal coupling between the bulk and the boundary.

The stress-tensor of the CFTd−1 gets an anomalous dimension due to the coupling to
the bulk and becomes the lowest dimensional spin 2 operator on the boundary, which we
call the pseudo stress-tensor and denote with τ̂ab. The anomalous dimension of τ̂ at the
leading order is

∆̂τ̂ (g) = d− 1 + γ̂
(1)
τ̂
g2 +O(g4) , γ̂

(1)
τ̂

=
Γ
(
d
2 + 1

)
π
d
2 (d+ 1)

C
(0)
χ̂

C
(0)
τ̂

, (3.3)

with the constant C(0)
τ̂

being the ‘central charge’ of the CFTd−1 when g = 0 i.e.

〈τ̂ab(~x)τ̂cd(0)〉g=0 = C
(0)
τ̂

Iab,cd(~x)
|~x|2d−2 ,

Iab,cd(~x) ≡ 1
2[Iac(~x)Ibd(~x) + Iad(~x)Ibc(~x)]− 1

d− 1δ
abδcd ,

(3.4)

with Iab(~x) = δab − 2xaxb/|~x|2. We are adopting the normalization in which the central
charge for a d-dimensional free scalar CFT is [16]

C
(0)
τ̂

= d− 1
d− 2

1
S2
d−1

. (3.5)

The normalization for χ̂ and ∂yφ is taken to be

〈χ̂(0)χ̂(∞)〉g=0 = C
(0)
χ̂
, 〈∂yφ(0, 0)∂yφ(∞, 0)〉g=0 ≡ C(0)

∂yφ
=

Γ
(
d
2

)
π
d
2

. (3.6)

The leading correction to aφ2 and CD are

aφ2 = −22−d + δa
(1)
φ2 g

2 +O(g3) , δa
(1)
φ2 =

24−dπ
d
2C

(0)
χ̂

Γ
(
d
2 − 1

) ,

CD =
Γ
(
d
2

)2

2πd + δC
(1)
D g2 +O(g4) , δC

(1)
D = −

(d− 2)Γ
(
d
2

)
C

(0)
χ̂

π
d
2

.

(3.7)

We now consider the analogous deformation of Neumann, this time linear in φ. We
couple to a primary χ̂ of the CFTd−1 with scaling dimension ∆̂χ̂ = d

2 − ε and 0 < ε� 1

S
(N)
∂ = SCFTd−1 + g

∫
y=0

dd−1~x φ χ̂ . (3.8)

– 8 –
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The same comments that we made above about tuning strongly relevant couplings and
about the possibility of additional approximately marginal couplings apply here. In partic-
ular the deformation by φ2 is tuned to zero. The case d = 3 is special in that the Neumann
b.c. admits an additional Z2 even, approximately marginal deformation, namely φ4, and we
will comment on this special case later. The modified Neumann boundary condition reads

∂yφ|y=0 = g χ̂ . (3.9)

Assuming again the existence of a perturbative fixed point with g2 ∝ ε, the anomalous
dimension of the pseudo stress-tensor τ̂ at leading order reads

∆̂τ̂ (g) = d− 1 + γ̂
(1)
τ̂
g2 +O(g4) , γ̂

(1)
τ̂

=
Γ
(
d
2 − 1

)
4π d2

d

d+ 1
C

(0)
χ̂

C
(0)
τ̂

, (3.10)

where we assumed the normalizations

〈χ̂(0)χ̂(∞)〉g=0 = C
(0)
χ̂
, 〈φ(0, 0)φ(∞, 0)〉g=0 ≡ C(0)

φ =
Γ
(
d
2 − 1

)
2π d2

. (3.11)

The leading correction to aφ2 and CD under this deformation are

aφ2 = 22−d + δa
(1)
φ2 g

2 +O(g3) , δa
(1)
φ2 = −

23−dπ
d
2C

(0)
χ̂

Γ
(
d
2

) ,

CD =
Γ
(
d
2

)2

2πd + δC
(1)
D g2 +O(g4) , δC

(1)
D = −

Γ
(
d
2

)
C

(0)
χ̂

π
d
2

.

(3.12)

As in the Dirichlet case, our final formulae only depend on the normalization of χ̂ and
on C(0)

τ̂
.

3.2 Minimal models coupled to Dirichlet

We will now consider the coupling of the bulk 3d free scalar to a particular set of bound-
ary degrees of freedom: the unitary diagonal minimal model Mm,m+1. The coupling we
consider is

δS∂ = h

∫
y=0

d2~x Φ(1,3) + g

∫
y=0

d2~x Φ(1,2)∂yφ , (3.13)

where Φ(p,q)(z, z̄) denotes the Virasoro primary with Kac labels (p, q), which we assume
unit normalized and whose scaling dimension we denote with ∆(p,q). At large m we have

∆̂(1,2) = 1
2 −

3
2m +O

( 1
m2

)
,

∆̂(1,3) = 2− 4
m

+O

( 1
m2

)
.

(3.14)

As a result the couplings h and g are approximately marginal and more precisely weakly
relevant. Only the coupling g here couples the bulk to the boundary, however for the
consistency of the RG in conformal perturbation theory we are also forced to add the
second weakly relevant deformation h.
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3.2.1 Large m fixed points
Conformal perturbation theory gives the following result for the β functions

βh =− 4
m
h+ πh2C

(1,3)
(1,3)(1,3) + πg2C

(0)
∂yφ

C
(1,3)
(1,2)(1,2) +O(h3, hg2) ,

βg =− 3
2mg + 2πhgC(1,2)

(1,2)(1,3) +O(g3, h2g) .
(3.15)

The quantities C(r′,s′)
(n,m)(r,s) are the three-point structure constants of the Mm,m+1 minimal

model at m =∞, which in our conventions read

C
(1,3)
(1,2)(1,2) = C

(1,2)
(1,3)(1,2) = C

(1,2)
(1,2)(1,3) = −

√
3

2 +O

( 1
m

)
, C

(1,3)
(1,3)(1,3) = − 4√

3
+O

( 1
m

)
. (3.16)

Note that we are only using minimal model primaries of the form Φ(1,q) which close among
themselves for anym according to fusion rules. Within this subsector, there is a Z2 selection
rule such that Φ(1,q) is even if and only if q is odd.2 The possible terms in the β function
are restricted by the fact that the interaction (3.13) preserves the diagonal between this
selection rule and the bulk Z2 symmetry φ→ −φ. Setting the β functions to zero we find
three families of non-trivial fixed points, beside the gaussian one (h∗ = g∗ = 0):

• A family of fixed points at

h∗ = −
√

3
πm

, g∗ = 0 . (3.17)

In this case the RG only involves the boundary local degrees of freedom and the bulk
theory just remains a decoupled Dirichlet boundary condition. The new 2d CFT at
the IR fixed point is the minimal model with m→ m− 1, because the RG triggered
by h is the famous 2d RG flow between two consecutive minimal models [19, 20].

• Two families of fixed points related by the bulk Z2 symmetry at

h∗ = −
√

3
2πm , g∗ = ± 2√

πm
. (3.18)

This is a genuine interacting boundary condition for the bulk free scalar.

For each of the fixed points above we can compute the scaling dimensions of the clas-
sically marginal operators associated to h and g. These are obtained from the eigenvalues
of the matrix of derivatives of the β functions with respect to h and g, evaluated at the
fixed points. For the interacting conformal boundary conditions we find that out of the
two relevant deformations in the UV one linear combination becomes irrelevant in the IR,
while the other one stays relevant, namely

∆̂± = 2±
√

6
m

+O(1/m2) . (3.19)

At the leading order in the large m expansion, the operator with dimension ∆̂− is the
lightest boundary operator after ∂yφ|y=0.

2This is different from the Z2 symmetry of the modular invariant theory which exists for integer m and
assigns the parity (−1)m to Φ(1,2) [18].
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3.2.2 Some observables of the interacting b.c.

Next, we obtain the anomalous dimension of the pseudo stress-tensor on the boundary as
well as the leading correction to aφ2 . At the leading order in the 1/m expansion we can
extract these quantities by simply plugging into equations (3.3) and (3.7) the fixed point
value for g in eq. (3.18). We also need the central charge of the m-th minimal model in
the m =∞ limit, which in our conventions is

Ĉ
(0)
τ̂

= 1
2π2 +O

( 1
m

)
. (3.20)

Substituting these quantities we find

∆̂τ̂ = 2 + 3
2m2 +O

( 1
m3

)
, aφ2 = −1

2 + 8
m2 +O

( 1
m3

)
. (3.21)

As a consequence of the fact that g∗ is a real number all these results are compatible with
unitarity. This suggests that we have indeed found a family of unitary interacting conformal
boundary conditions for the 3d free scalar CFT. In section 5 we will find compelling evidence
from the numerical conformal bootstrap that this family survives in the strong coupling
limit, much beyond the expected validity of 1/m perturbation theory, up until m > 3.
From the general results of conformal perturbation theory we can also easily obtain the
first correction to CD at this fixed point. Plugging the value of g∗ from eq. (3.18) in eq. (3.7)
we find

CD = 1
8π2 −

2
π2m2 +O

( 1
m3

)
. (3.22)

3.2.3 The special case of m = 3

The minimal model with m = 3, i.e.M3,4, is the 2d Ising model. In this case the operator
Φ(1,2) is the spin operator σ of the Ising model. As a result the coupling g in eq. (3.13)
has the same form as the coupling of the d-dimensional Ising model to a scalar generalized
free field (GFF) of dimension d+s

2 considered in [9, 10], with parameters d = 2 and s = 1.
It was shown in that paper that this deformation triggers an RG flow to a fixed point
whose nature depends on the range of s: in the interval d

2 < s < s∗, s∗ being the value
of s for which the deformation stops being relevant, it is an interacting non-local fixed
point known as long-range Ising. The defect construction of this fixed point was addressed
in [21]. On the other hand for s ≤ d

2 the IR fixed point is again a scalar GFF but with
dimension d−s

2 . Since in our setup s = d
2 = 1, the prediction from [9, 10] is that we flow to

a boundary condition with a scalar GFF of dimension 1
2 , which we can interpret simply as

the Neumann boundary condition.3
One might be skeptical of the applicability of this result to our case, given that our

deformation (3.13) contains also the additional coupling h. However the need to consider
3Note that s = d

2 is precisely the point at which the line of the long-range interacting fixed points joins
the line of (generalized) free fixed points, see figure 1 of [9]. This is reflected in the existence of a classically
marginal operator, namely the operator quartic in the generalized free field, which for us is simply the φ4

deformation of the Neumann boundary condition. A one-loop calculation shows that this deformation is
marginally irrelevant.
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a flow in a two-dimensional coupling space is an artifact of large m, because only in that
case are two approximately marginal operators present. Here we are describing a different
way to approach the same IR fixed point that is not based on approximately marginal
operators and perturbative fixed points, but rather uses the consistency of the family of
RG’s with different values of d and s. In fact for generic d and s there is just one strongly
relevant deformation that triggers the RG, while a second Z2-even relevant deformation
proportional to the energy operator ε can be safely tuned to zero.4 This second deformation
maps to the unique Z2-even relevant deformation of the IR Neumann fixed point, namely
φ2. As a consistency check, also the fixed point that we find at large m contains only one
relevant deformation besides the protected operators coming from the boundary modes of
the scalar field (which are Z2-odd when m = 3). This can be seen in perturbation theory
and will be later confirmed also by the numerical analysis.

Based on these considerations we are led to conjecture that the continuation to m = 3
of the large-m fixed point is the free Neumann boundary condition. As a sanity check, we
can verify that the boundary RG flow between Dirichlet + Ising and Neumann is allowed
by the monotonicity of the 3d/2d boundary central charge b of [22], i.e. that

1
2 = cIsing ≥ bN − bD . (3.23)

Note that this is a non-trivial check because clearly bN − bD ≥ 0, given that it is always
possible to flow from Neumann to Dirichlet. From [22] we see that bN = −bD = 1

16 , so that
the constraint is indeed satisfied along the proposed RG.

3.3 Mixed Yukawa theory

We now consider an example of a deformation of the Neumann boundary condition to an
interacting one. This example is under control when we take the bulk dimension to be
4 − ε and ε � 1. As a result we cannot firmly establish that the interacting boundary
condition will keep existing when ε is extrapolated to 1. Concretely, we consider a free
scalar in d = 4 − ε bulk dimensions with Neumann b.c., coupled to a Dirac fermion ψ on
the boundary with action

S =
∫
y≥0

dd−1~x dy 1
2(∂φ)2 +

∫
y=0

dd−1~x
[
ψ̄ /∂ψ + g φ ψ̄ψ

]
. (3.24)

This theory has a Z2 symmetry which is the diagonal unbroken subgroup between the bulk
symmetry φ→ −φ and the boundary symmetry that flips the bilinear ψ̄ψ → −ψ̄ψ (this is
a reflection symmetry when ε = 0, i.e. for a 3d boundary). Using this symmetry we can
avoid considering the approximately marginal operator φ3, and as usual strongly relevant
deformations are tuned to zero. The modified Neumann b.c. is ∂yφ = g ψ̄ψ.

This theory was studied previously in [2], where the existence of a fixed point for small
ε was established. The one-loop β function was found to be

βg = − ε2g + 2
3π2 g

3 +O(g4) . (3.25)

4The Z2 here refers to the unbroken diagonal Z2 that flips both the spin operator and the bulk scalar
field.
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giving an interacting IR fixed point for

(g∗)2 = 3π2

4 ε . (3.26)

The anomalous dimension of the pseudo stress-tensor, as well as the one-loop correction
to aφ2 and CD at this fixed point can be then obtained from the general formulae (3.10)
and (3.12). We need the central charge for a single 3d Dirac fermion, and the normalization
of the two-point correlation function of ψ̄ψ in the free theory with ε = 0. These read [16]

C
(0)
τ̂

= 3
16π2 , C

(0)
ψ̄ψ

= 1
16π2 . (3.27)

Plugging in (3.10) and (3.12) we get

aφ2

a
(N)
φ2

= 1− 3π2ε

32 +O
(
ε2
)
, ∆̂τ̂ = 3− 19ε

20 +O(ε2) , CD

C
(N)
D

= 1− 3π2ε

32 +O
(
ε2
)
,

(3.28)

where C(N)
D = Γ( d2 )2

2πd and a(N)
φ2 = 22−d.

3.4 No-go theorem for deformations of Neumann

The Neumann boundary condition for a 3d free scalar admits a Z2-even classically marginal
boundary deformation, namely φ4. We can use this operator to prove that any approxi-
mately marginal deformation of the Neumann boundary condition of the generic form

g

∫
y=0

d2~xφnÔ , (3.29)

with ∆O = 2 − n
2 + ε, ε � 1 and n = 2, 3, or linear combinations of such deformations,

cannot lead to a unitary interacting boundary condition under perturbative control at small
ε. This is simply because any such coupling will also generate

λ

4!

∫
y=0

d2~xφ4 , (3.30)

at leading order in perturbation theory. Reading off the quadratic term from [23], βλ has
the structure

βλ = 3λ2

4π + C g2 + cubic terms , (3.31)

where C > 0. Therefore the only perturbative real solution to βλ = 0 is λ = g = 0 and
the bulk and the boundary are necessarily decoupled. This leaves as the only possibility
for a perturbative fixed point around the Neumann boundary condition the case of a linear
deformation, i.e. n = 1 in (3.29), for which some general results were proven in section 3.1.
For a linear deformation, g will only enter βλ at some higher order in perturbation theory
and therefore we cannot easily draw general conclusions about the existence of fixed points.
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4 Numerical setup

The numerical setup we consider is exactly as in [1], with the one exception that now the
boundary dimension is 2 instead of 3. In this section we briefly recall the main features,
leaving some details to appendix D and the rest to the references.

We choose five crossing equations for the correlation functions

〈Ô1Ô1Ô1Ô1〉, 〈Ô1Ô1Ô2Ô2〉, 〈Ô2Ô2Ô2Ô2〉 (4.1)

and analyze them with well known numerical bootstrap methods. Compared to a standard
multi-correlator problem the main distinctive features of these correlation functions are the
OPE relations of equation (2.10). They show that operators with a generic dimension can
only appear simultaneously in all three of the Ô1× Ô1, Ô1× Ô2 and Ô2× Ô2, with related
OPE coefficients.

Exceptions to this rule only occur for special scaling dimensions where the gamma
functions in equation (2.10) are singular; in that case the equations are still valid in the
obvious sense that certain OPE coefficients must be identically zero. These special dimen-
sions include the protected operators originating from the higher-spin bulk current but
more generally they simply coincide with the double-twist dimensions for Ô1 and Ô2.

At an operational level, one crucial implication of the OPE relations is that odd spin
operators X can only have the special dimensions, because for those f11X = f22X = 0 by
Bose symmetry, and only by tuning their scaling dimensions can we then avoid having to
set f12X = 0 by the OPE relations.

For the even spin channels the OPE relations for generic dimension are straightfor-
wardly implemented (see [1] for details) and we can then add all the additional operators
corresponding to the special dimensions by hand.5 This procedure however significantly
increases the necessary degree of the polynomial approximations, and in practice we there-
fore only implemented it for spins 0 and 2, leaving the structure of the higher-spin channels
as in a standard multiple-correlator problem.

After carrying out the steps in appendix D, the numerical problem was attacked with
SDPB v2 [24, 25] and PyCFTBoot [26].

5 Numerical results

In this section we discuss the results obtained from the conformal bootstrap. To structure
the discussion let us begin with an overview plot shown in figure 1. We show the maximal
gap in the spin 2 sector, denoted ∆̂2, as a function of aφ2 and the assumed gap ∆̂0 in the
scalar sector. The three different regions in the plot correspond to the following results:

I In this region we can make contact with the perturbative analysis of subsection 3.2.1,
where we discussed coupling the m’th minimal model to the free boson with Dirichlet
boundary conditions. This is best done by following the orange/blue slices; a more

5Note however that in the results below we did not add the scalar of dimension 1, unless indicated, if
the assumed gap in the scalar sector is higher than 1.
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Figure 1. Overview plot of our main numerical results. We plot the maximal gap in the spin 2
sector as a function of aφ2 and the assumed gap in the scalar sector. (Note the reflected axis for aφ2

which decreases when moving to the right.) We find noteworthy structure in the three indicated
regions. The red line is the perturbative result of subsection 3.2.1.

precise plot of these data points is shown in figure 2. (In figure 1 the perturbative
result is already shown as a red line; the exact formulas are summarized below.)

II Smaller values ofm correspond to larger values of aφ2 . Based on a crude extrapolation
of the analytic results we expect that m = 4 yields aφ2 ≈ 0 approximately, and
according to [9, 10] the case with m = 3 should correspond to aφ2 = 1/2 exactly. It
is then interesting to search for signs of non-unitarity in the solution to the crossing
equations with fractional m between 3 and 4. This brings us into region II, a more
detailed analysis of which is shown in figure 3. The data for this plot corresponds to
the (poorly visible) purple and brown slices in figure 1.

III For lower values of the scalar gap there is another noticeable but mysterious kink
that we analyze further below, starting with figure 5. The outer envelopes in that
figure correspond to the red and green slices of figure 1.

For completeness let us note that there is an intrinsic convexity property to the allowed
region: for fixed aφ2 , if a point in (∆̂0, ∆̂2) plane is excluded then so is every point with
larger ∆̂0 or larger ∆̂2.

5.1 Shrinking allowed regions

Region I. The blue slice furthest back in figure 1 shows that the bound ∆̂2 on the first
spin 2 operator is relatively weak if we set ∆̂0 = 0, so if we do not assume a gap for the
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Figure 2. The maximum spin 2 gap for five choices of the imposed scalar gap. The bound is
not smooth but contains a vertical line which sweeps to the left as the scalar gap is increased.
The red crosses emanating from the left are the Dirichlet deformations of the m’th minimal model,
eq. (3.21), extrapolated down to m = 3 (the rightmost value).

first non-trivial scalar operator. Fortunately the bound however comes down quickly if we
increase ∆̂0. For ∆̂0 = 1 we find that ∆̂2 = 2, the unitarity bound, both at the Dirichlet
(aφ2 = −1/2) and the Neumann (aφ2 = +1/2) points, whereas for intermediate values of
aφ2 the bound is the outer envelope of figure 2. Note that saturation at the endpoints does
not mean that these points necessarily have a stress-tensor at the boundary: instead the
double-twist vector V (1) = [Ô1Ô2]0,1 mimics a spin 2 primary of dimension 2 through the
fake primary effect [27].6 Figure 2 also shows some of the slices for several other values
with ∆̂0 ≥ 1. For any aφ2 we see that the maximal spin 2 gap as a function of ∆̂0 remains
constant for some time, until it suddenly drops to the unitarity bound. For a wide range
of values of aφ2 the tip of the resulting vertical cliff in the three-dimensional space, which
is clearly visible in figure 1, is in very good agreement with the perturbative estimates for
the minimal model boundary conditions, which we recall were given by

aφ2(m) = −1
2 + 8

m2 + . . .

∆̂0(m) = 2−
√

6
m

+ . . .

∆̂2(m) = 2 + 3
2m2 + . . . ,

(5.1)

from equations (3.19) and (3.21). For specific values of m we also include the prediction
for the spin 2 gap in the two-dimensional projection in figure 2. Remarkably the prediction
from conformal perturbation theory works well all the way down to m = 4. For m = 3
(so the Ising model) our numerics exclude the perturbative prediction, but the latter is
unlikely to be trustworthy in the first place.

6In fact, both for Dirichlet and Neumann boundary conditions one of the two operators whose correlation
functions we analyze is actually set to zero. For the purpose of finding solutions to the crossing equations
we can replace it with a decoupled generalized free field; this obeys the OPE relations.
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Figure 3. The maximum spin 2 gap, as in the previous figure, except with scalar gaps of 1.025,
1.05, 1.075, 1.1 and 1.125. The upper bound on ∆̂2 within one of these regions is no longer the
same as the upper bound for the ∆̂0 = 1 region. While it is possible that the upper right corners
still correspond to minimal model boundary conditions, it is curious that this effect occurs in the
part of the plot where non-unitarity is expected to be most pronounced.

Region II. For m = 4 the triplet of OPE data shown in the previous figures is in
reasonable agreement with the location of the cliff, and so we expect this minimal model
boundary condition to saturate our bounds near aφ2 ≈ 0. What happens for lower m?

Let us first discuss m = 3. Our perturbative prediction for m = 3 is that aφ2 ≈ 0.39,
but also that ∆̂0 ≈ 1.18 and that ∆̂2 ≈ 2.17, a triplet of OPE data which is easily excluded
by the numerics. So we cannot trust extrapolated perturbation theory. As we mentioned
above, it is in fact likely that the m = 3 case flows to the Neumann point at aφ2 = 1/2
because of the connection to the long-range Ising model [9, 10], and our numerics certainly
allow for this possibility.

Besides the fate of the m = 3 minimal model boundary condition we may also inquire
about the non-physical cases with 3 < m < 4. Presumably the solution to the crossing
equations continues to exist in this region, since we see no reason not to expect a reason-
ably smooth function of m, but one might expect it not to be consistent with the unitarity
conditions. In equations, one expects that some of the coefficients multiplying the confor-
mal blocks become negative. (Of course the same can be said about the other non-integer
values of m, but the effect of these non-unitarities is probably most distinct for the lowest
values of m.)

The above arguments provide sufficient motivation for a closer look at the regions
which we expect to correspond to 3 < m . 4. The most promising region for this search is
region II in figure 1. The data for this region is also shown in figure 3.
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(a) nmax = 4, 5, 6, 7, 8 (b) nmax = 8

Figure 4. The maximal gap for unprotected scalars plotted as a function of aφ2 . On the left, we
focus on region I, which we take as aφ2 < 0, where conformal perturbation theory works best. The
agreement between (3.18) and our data improves as the number of derivatives is increased. On the
right, we have extended the plot to aφ2 > 0 but only for nmax = 8 (black dots), the number of
derivatives used everywhere else in this paper. For most values of aφ2 , the maximal scalar gap is the
same whether or not we make assumptions about operators with spin 2. After reaching aφ2 ≈ 0.36,
however, this is no longer the case. The upper set of points here comes from maximizing ∆̂0 with
no assumptions while the lower set of points comes from maximizing ∆̂0 along the line having
maximal ∆̂2.

Interestingly, we do observe a qualitative change in this region: for aφ2 & 0.36 the
endpoint of the cliff (in the spin 2 gap) for a fixed ∆̂0 > 1 starts to deviate from the curve
given by ∆̂0 = 1. In other words, in this region we find two natural extremal points: one
can be obtained by first extremizing the spin 2 gap and then the scalar gap, and the other
by performing these extremizations in the reverse order. We are not entirely sure about the
meaning of this phenomenon. Clearly the split happens close to the perturbative prediction
for aφ2 at m = 3, but that might just be a numerical coincidence. We will return to this
region when we discuss extremal spectra in the next subsection.

The phenomenon discussed above can also be seen in figure 4 where we plot just the
maximal scalar gap. For aφ2 < 0, which is displayed on the left, we not only see a good
match with the perturbative prediction but also find that the match improves by increasing
nmax. This strengthens our conviction that the minimal model boundary conditions indeed
saturate our bounds. On the right of figure 4 we see an increasing mismatch in the region
where perturbation theory is less trustworthy. In this plot we have also added a second
set of data points, which correspond to the maximal dimension of the scalar if we first
maximize the spin 2 gap — in other words, if we move along the envelope of figure 1. The
clear jump at about aφ2 ≈ 0.36 is our best indication that something special is going on at
that value.

Region III. We also discovered a second kink for lower values of ∆̂0, marked with a III
in figure 1. A good way to visualize this feature is to make plots along the lines of figure 5
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(a) aφ2 = −0.1, Ô2
1 disallowed
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(b) aφ2 = −0.4, Ô2
1 disallowed

0.0 0.5 1.0 1.5 2.0
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(c) aφ2 = −0.1, Ô2
1 allowed

0.0 0.5 1.0 1.5 2.0
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2.10

2.15

2.20

∆̂
2

(d) aφ2 = −0.4, Ô2
1 allowed

Figure 5. Allowed points in (∆̂0, ∆̂2) space for selected values of aφ2 . In the blue region, ∆̂0 is
the dimension of the unique relevant scalar while ∆̂2 is the spin 2 gap. In the pink region, they
are both gaps. The rightmost corner (indicated with a dot) is where we conjecture that a minimal
boundary condition lives. For previous examples of corners which maximize two gaps, see [28–32].
It would be interesting to find an interpretation of the second kink to the upper left. Note that the
smallest blue region is obtained when all possibilities for a second relevant scalar, including the one
that can only appear in Ô1 × Ô1, are disallowed. If one only disallows a generic second relevant
scalar, the blue and pink regions become more similar.

at fixed aφ2 .7 For each subfigure the rightmost kink corresponds to the minimal model
boundary condition, and our interest now lies with the kink appearing for ∆̂0 < 1. The
physical interpretation of this kink is an enigma. We have tried to follow it to the endpoints
of the aφ2 interval. For aφ2 → −1/2 it appears that ∆̂0 → 0.66, so approximately 2/3, and
∆̂2 → 2, but we do not have a natural CFT to associate to these dimensions. The fate of
the kink upon increasing aφ2 is shown in figure 6. (The data for this plot was not shown
in figure 1 to avoid clutter.) We see that the kink ends up sinking under the minimal
model boundary condition, but without merging with it; this can naturally occur because

7Note that the pink regions of these plots correspond to slices in figure 1. The blue ones reflect different
assumptions about the spectrum.
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Figure 6. Allowed regions analogous to figure 5 which come from following the upper left kinks
there to five larger values of aφ2 . For the nearly smoothed out boundary at aφ2 = 0.32, the two ∆̂2
values of interest have almost converged. Notice that the sharp cliff corresponding to the minimal
model boundary condition lies further to the right, outside the range of this plot.

of the aforementioned convexity property of the bounds. Unfortunately this implies that
we cannot track the fate of the kink for aφ2 → 1/2.

We present an analysis of the spectrum at the kink below.

5.2 Extremal spectra

In the previous subsection we provided evidence that minimal boundary conditions max-
imize both the scalar and spin 2 gap. Theories that saturate bootstrap bounds are ad-
vantageous because they can be studied with the extremal functional method [33, 34].
Extremizing an OPE coefficient (while redundant at the precise boundary) can also lead to
more stable results. We have carried this out by imposing gaps that correspond to kinks in
(aφ2 , ∆̂0, ∆̂2) space and maximizing λ̂2

12τ̂ (where τ̂ is the operator of dimension ∆̂2). The
maximization output encodes the scaling dimensions and OPE coefficients of exchanged
operators as described in [35] whose script we also use.

To deal with the behaviour in region II, we have chosen to maximize ∆̂0 first and ∆̂2
second. This means that for aφ2 > 0.36 (where the selected point is actually unlikely to
correspond to a physical boundary condition), we follow the upper branch in the right plot
of figure 4. It turns out that the spectra in between the upper and lower branches only
differ significantly in the dimension of their lightest scalar.

The spectrum in regions I and II. In figure 7 we show operator dimensions for the
first two spins as a function of aφ2 . Apart from those in the plot, we also assume the

– 20 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
6

(a) l = 0 (b) l = 2

Figure 7. Extremal spectra along the upper branch of figure 4 for unprotected operators of spins
0 and 2. Alongside the data points we have also added perturbative results around the Dirichlet
end (as a solid line of the same color) where available.

existence of spin 0 and spin 2 operators at the protected scaling dimensions of 3, 5, 7, . . .
but only in the Bose symmetric OPEs. The dimension of the lowest operator in either
channel is (of course) exactly the maximal gap ∆̂0 or ∆̂2, so the new information in these
plots lies in the higher-dimensional operators.

For the lowest pairs of operators the numerical spectrum in figure 7 matches well
against the perturbative results. Note also that the spectrum starts and ends at integer
values, in agreement with the expectations for the Dirichlet and Neumann points. On the
other hand, we show in appendix C that there are two scalars of dimension 4 + O(1/m)
but the functional only sees one of them. This likely happens because the other has a
parametrically smaller OPE coefficient. We remind the reader that the extremal functional
method is not an exact method, so small such discrepancies are not unexpected.

Another feature of figure 7 is the smooth behavior of the spectrum as a function of aφ2 .
(The same smoothness will be visible below when we discuss the OPE coefficients for some
of the protected operators.) We take this as another indication that the m = 3 minimal
boundary condition is just the Neumann point. Indeed, suppose this boundary condition
would correspond to a non-trivial fixed point with aφ2 strictly smaller that 1/2. Then it
is highly likely that we would have seen some rearrangement in the extremal spectrum at
this point. More precisely, for m = 3 the Φ1,3 operator gets a null descendant at level
2 (because it is then equal to Φ2,1) which we can schematically denote as L−2Φ1,3. This
operator has spin 2 and dimension 4 for large m. In figure 7 we however see no sign of
such a rearrangement: both operators that have these quantum numbers at aφ2 = −1/2
continue to exist smoothly all the way down to the Neumann point with aφ2 = +1/2.

The extremal function method also gives us access to protected operators which are
only in Ô1 × Ô1 and Ô2 × Ô2. The coefficients of the scalars in these OPEs are especially
interesting because they allow us to check the displacement Ward identity, along with its
higher-spin counterpart, a posteriori.
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The first two Ward identities in regions I and II. To make sure that the spectra in
figure 7 correspond to local boundary conditions, we need to be able to see artifacts of the
bulk currents. In particular, one of the dimension 3 scalars must be D(0)

2 ≡ D and one of the
dimension 5 scalars must be D(0)

4 . In all the extremal solutions we obtained (by maximizing
λ̂2

12τ̂ ) the dimension 3 and 5 scalars turn out to be unique, so it is straightforward to read
off the numerical predictions for λ̂11D, λ̂22D, λ̂11D(0)

4
and λ̂22D(0)

4
. Recalling our conventions

in appendix A, these are given by

λ̂iiD ≡
f̂iiD√
CD

, λ̂
iiD(0)

4
≡

f̂
iiD(0)

4√
CD(0)

4

(5.2)

for as yet unknown central charges.
The consequences of locality for the displacement operator D were derived in [1] and

reviewed in subsection 2.2.2. Due to the Ward identity, the two OPE coefficients must obey
the relation in eq. (2.11) which overdetermines the value of CD. In [1], this relation was
checked at a single point. Since our current task is to check it over the full range of aφ2 , we
must contend with the fact that there are several options for measuring the violation of the
Ward identity. As an example, one could choose CD by demanding that (2.11) reproduce
the numerically obtained λ̂11D

√
CD and then check whether the same is true for λ̂22D

√
CD.

Following this approach would lead to a quadratic equation. For simplicity, we will extract
CD by considering the ratio rD ≡ f̂11D/f̂22D = λ̂11D/λ̂22D and therefore only encounter a
linear equation. From the solution (for d = 3) we find that:

CD =
4aφ2

S2
d

4b21rD + b22
4b21rD − b22

. (5.3)

Having thus estimated CD from the ratio of the OPE numerical coefficients, it is straight-
forward to check how well the individual OPE coefficients actually agree with (2.11). This
way of verifying the Ward identity leads to the comparison in the left plot of figure 8.

An analogous situation applies to the higher displacement operators. For D(0)
4 , the

relations were written in eq. (2.13). We can again use their ratio to solve for CD(0)
4
. Defining

rD(0)
4
≡ f̂11D(0)

4
/f̂22D(0)

4
= λ̂11D(0)

4
/λ̂22D(0)

4
,

CD(0)
4

=
36aφ2

S2
d

16b21rD(0)
4

+ b22

16b21rD(0)
4
− b22

(5.4)

is the central charge for a given dataset. By plugging this back into (2.13), we can again
check the Ward identity by comparing the result to individual OPE coefficients in the
numerics. This is done in the right plot of figure 8.

An important property of equations (5.3) and (5.4) is the potential divergence when
rD = b22

4b21
and when rD(0)

4
= b22

16b21
, respectively. In actual theories these values must occur

precisely at aφ2 = 0 to ensure that CD > 0. This will however never quite happen in a
numerical spectrum, and plots of (2.11) and (2.13) with sufficient resolution will necessarily
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(a) ` = 2 (b) ` = 4

Figure 8. Plots demonstrating the extent to which the Ward identities hold at the kinks. Red
and blue crosses are the numerically determined λ11D(0)

`

and λ22D(0)
`

respectively. The red and blue
circles are obtained by computing a displacement central charge using their ratio and plugging
this back into (2.11) and (2.13). The yellow envelope shows how much the circles can vary if
the OPE coefficients are allowed to fluctuate within 5% of their extracted values. As such, large
disagreements should not be concerning if they occur near aφ2 = 0. Since the extremal functional
method does not yield rigorous errors, 5% was chosen arbitrarily.

encounter a pole. In other words, small numerical violations of the Ward identities near
aφ2 = 0 can lead to huge discrepancies between the predicted and numerical OPE coeffi-
cients. That is why the error window also diverges in figure 8. The right plot of figure 8
explictly shows this pole in the data. It is fairly wide because our numerical estimates of
the D(0)

4 OPE coefficients at aφ2 = 0 have a ratio of 0.05672 — about 10% away from the
ideal value of 1/16. Looking at D, on the other hand, the same ratio at aφ2 = 0 is 0.24988.
Since this is only 0.05% away from 1/4, the pole on the left plot is too narrow to see.

Outside of the window near aφ2 = 0 our results show an excellent match with the Ward
identities, providing another confirmation that these solutions to the crossing equations
correspond to physical boundary conditions.

Finally, it is interesting to see how the numerical results for (5.3) compare to the
minimum and maximum allowed values of CD for a given aφ2 . This is shown in figure 9
where the bounds come from adding explicit blocks with λ̂iiD coefficients and scanning
over CD to see when crossing can and cannot be solved. Since there is no gap between
the identity and the other boundary scalars, it is not obvious that such bounds need to
exist in the first place. Any parameter changing λ̂11D and λ̂22D by an overall rescaling,
for example, would have been completely unconstrained. We therefore attribute figure 9
to the presence of multiple correlators in our setup and the fact that CD enters the Ward
identity in a non-linear way.

In contrast to the analogous 4d/3d plot in [1], the upper bound on CD here is sym-
metric. We also see that the lower bound is asymptotic to the perturbative results around
the Neumann and Dirichlet ends which are given by (3.7) and (3.22) respectively. There is
an exactly solvable theory, interpolating between Dirichlet and Neumann, which comes re-
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Figure 9. The allowed region for the displacement central charge with minimal model b.c. results
(extracted with the extremal functional method) given by black dots. The dotted lines on either
side are the first-order predictions of conformal perturbation theory while the orange line in between
is the CD versus aφ2 curve realized by (5.5).

markably close to the lower bound at intermediate values of aφ2 . This is given by coupling
the Dirichlet bulk field to a GFF χ̂ having dimension ∆̂χ̂ = d/2− 1 via

δS∂ = g

∫
y=0

dd−1~x ∂yφ χ̂. (5.5)

Being a coupling between two GFFs with shadow dimensions, g is exactly marginal [36].8
Since the theory is gaussian, the one-point function of φ2 and the two-point function of D
are then straightforwardly computed, and for any g they are related by

CD(g) =
Γ
(
d
2

)2

4πd
(
1 + a2

φ2(g)4d−2
)
. (5.6)

It is pleasing that this solution appears to hug the lower bound on CD both for d = 3 (as
in figure 9) and for d = 4 [1]. We expect this agreement to become arbitrarily good upon
increasing the number of derivatives. As a check, solutions along the lower bound feature
a flux operator of the type found in (5.5).

The spectrum in region III. We also used the extremal functional method for the
exotic kinks in region III. This time, extracting the spectrum in the right place requires
more care. In figure 10 we plot the spectrum along the boundary of the allowed region in
(∆̂0, ∆̂2) space for the fixed value aφ2 = −0.2. The exotic kink here happens to be very
close to ∆̂0 = 0.7, although the drop in the dimension of the first spin 2 operator is not
visible at the scale of this plot.

8In the context of BCFT this was considered in [4, 37]. The resulting line of (non-local) CFTs admits a
dual description in terms of a linear deformation of Neumann with coupling g′ = 1/g [36].
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(a) l = 0 (b) l = 2

Figure 10. Spectra in the vicinity of the exotic kink for aφ2 = −0.2. For each value of the imposed
scalar gap ∆̂0, we plot the dimensions of the first four operators of spins 0 and 2 for the solutions
which maximize the gap ∆̂2. The location of the kink itself is indicated with a vertical dotted line.

For ∆̂0 > 0.8 we see that the spectrum remains constant and in fact becomes equal
to that of the minimal model kink. In other words, for these values there is no operator
exactly at the value of the imposed gap ∆̂0 and we learn nothing new.

For ∆̂0 ≈ 0.8 we see a rearrangement of the spectrum and the extremal solution does
require an operator at the imposed gap. Moving further to the left towards the other
kink at ∆̂0 ≈ 0.7 the situation is more interesting. This time it is the second lightest
scalar whose OPE coefficient decreases. But as soon as it goes to zero, we find that Ô2

1 of
dimension 1 steps in to replace the missing operator.

It is curious that for all of the operators we have looked at other than the first two
scalars, the dimensions never change by more than 10% over the whole range of figure 10.
This continues to be the case for other values of aφ2 — if the numerics find an irrelevant
operator at the minimal model kink, they will find one having almost the same dimension
at the other kink. This in particular implies that both exhibit a weakly irrelevant operator
as we take aφ2 → −1/2. The exotic kink does not have a weakly relevant operator in
this limit due to the decoupling of the red/black line. However, the dimension of its most
strongly relevant operator appears to be approachig 2/3.

Although not shown, we have also investigated the spectrum near the ‘sinking’ of the
kink as in figure 6. For these values of aφ2 , we in particular traced the lightest scalar in the
minimal boundary condition, so the scalar corresponding to the red/black line in figure 10.
This scalar again tends upwards as we move to the left, but it eventually decouples well
before dimension 2. From figure 6 it is immediate that the lightest spin 2 operators have
the same dimension when the exotic kink disappears into the convex space spanned by the
minimal model kink. The remainder of the two spectra are however not identical: indeed,
the lightest exchanged scalar at the exotic kink still has a significant OPE coefficient when
the sinking takes place. Altogether it appears that the exotic kink is moving into the
interior of the allowed region. It is possible that this happens at aφ2 ≈ 0.36, which played a
special role in our previous analysis, but we leave a detailed investigation for future work.
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6 Outlook

The world of conformal boundaries and defects for free theories is remarkably rich. In this
paper we focused on boundary conditions for a three-dimensional free scalar and found that
there exist ‘minimal model boundary conditions’ that we can analyze both perturbatively
and numerically. A second kink in our numerical bounds remains unexplained.9

There are many evident directions for future research. Remaining within the realm of
a free scalar bulk theory, we can continue numerical bootstrap studies for conformal defects
of varying spacetime dimension d and co-dimension q.

First let us consider taking the co-dimension q to be non-integral. In that case the
analysis of [9, 10] indicates that for q close to one our setup for m = 3 will flow to the
long-range Ising model, which should be smoothly connected to the Neumann boundary
condition as q → 1. For m > 3 this naturally raises the question whether there are
similar ‘long-range minimal models’ that we can obtain by coupling the minimal model
Φ1,2 operator to the bulk scalar for different values of q.

To expand on this idea, let us recall the Landau-Ginzburg description (see section 7.4.7
of [38] for a review) of the m’th minimal models as the fixed point of

1
2(∂Φ)2 + Φ2m−2. (6.1)

Following the ideas of [9, 10] we may want to couple Φ to a generalized free field, say
∂yφ for a bulk scalar φ which extends to a q co-dimensional space. In the infrared the
fundamental scalar Φ however becomes the Φ2,2 operator, whereas we considered a coupling
to the Φ1,2 ≡ Φm−1,m−1 operator. This latter operator should originate from Φm−2 in the
Landau-Ginzburg description and therefore we are rather looking at the fixed point of:

1
2(∂Φ)2 + Φ2m−2 + Φm−2∂yφ. (6.2)

It would be interesting to see whether such a theory can also flow to a non-trivial infrared
fixed point for non-integer co-dimensions. Similarly we would like to understand the fate in
the infrared of a more conventional long-range setup where the latter coupling gets replaced
by Φ ∂yφ for any m.

Finally we would also like to try varying both the boundary and bulk dimensions in
order to further understand the exotic kink in region III, the hope being that this kink will
move into a perturbatively understandable region.

Natural other directions are obtained by including more scalars or fermions in the bulk
theory (see [3, 39] for a study of O(N) invariant boundary conditions for multiple bulk free
massless scalars.). One may for example expect a rich variety of non-trivial supersymmetric
boundary conditions. Alternatively, one could go in the direction of breaking even more
symmetry for example by considering intersecting boundaries (see [40] for a recent study
along this direction). It would be also interesting to consider the Weyl rescaling of our

9We stress that our results are valid also if the scalar is compact, as would be the case for the Goldstone
boson of a broken U(1) symmmetry. For example, our minimal model boundary conditions are obtained
by a coupling to the operator ∂yφ which always exists.
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minimal model boundary conditions to AdS, along the lines of [41–46]. The addition of a
bulk mass in this setup would be another way to realize the coupling of the minimal models
to a more general GFF.
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A Conventions

A.1 bOPE

Consider a scalar bulk operator O, not necessarily free. The bOPE of O is completely
determined by SO(d, 1) symmetry, up to a certain collection of CFT data [11, 15]. Up to
boundary descendants this reads

O(~x, y) =
∑
Ô

bO
Ô

y
∆O−∆̂

Ô

Ô(~x) + . . . . (A.1)

The boundary operators O are scalar primaries with two-point correlation functions
given by

〈Ô(~x)Ô′(0)〉 =
ĈÔÔ′

|~x|2∆̂
Ô

, ĈÔÔ′ = δÔ
′

Ô ĈÔÔ , (A.2)

The contributions from the boundary descendants are determined by the bulk-boundary
correlators

〈O(~x, y)Ô(0)〉 =
bOÔ

y
∆O−∆̂

Ô(|~x|2 + y2)∆̂
Ô

, (A.3)

where bOÔĈÔÔ = bOÔ. We will take unit-normalized boundary two-point functions, except
for the protected operators that can appear in the bOPE of the bulk conserved currents J`.
Such operators, collectively denoted by Ĵ (l)

` (with l = 0, . . . `− 1) have their normalization
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fixed by the Ward identities (2.6), and therefore the coefficients in their two-point functions
are physical

〈D(~x)D(0)〉 = CD
|~x|2d

,

〈Ĵ (l)
` (~x, z1)Ĵ (l)

` (0, z2)〉 = C
Ĵ

(l)
`

(z1 · I(x̂) · z2)l
|~x2|d+`−2 .

(A.4)

A.2 Boundary OPE and physical OPE coefficients

Consider the OPE between two boundary operators Ôi. Up to boundary descendant this
reads

Ôi(~x)Ôj(0) ∼
∑
k

f̂ij
k

|~x|∆̂i+∆̂j−∆̂k

Ôk(0) + . . . (A.5)

The boundary two-point functions are normalized as in (A.2). We use the Zamolodchikov
metric ĈÔÔ′ to raise and lower indices of f̂ijks as follows

〈Ôi(~x1)Ôj(~x2)Ôm(∞)〉 = f̂ij
kĈkm

|x12|∆̂i+∆̂j−∆̂m

≡ f̂ijm

|x12|∆̂i+∆̂j−∆̂m

. (A.6)

The displacement operator, whose normalization is taken as in (A.4), enters the generic
boundary OPE (A.5) as

Ôi(x)Ôj(0) ⊃ f̂ij
D

|x|∆̂i+∆̂j−d
D(0) + . . . , (A.7)

and a generic boundary four-point function as

〈Ôi(0)Ôj(x)Ôk(1)Ôm(∞)〉 ⊃ f̂ijDf̂km
D〈D(0)D(∞)〉(1 + . . . )

= f̂ij
Df̂kmD g

∆̂ij ,∆̂kl

D (u, v)

= f̂ijDf̂kmD
CD

g
∆̂ij ,∆̂kl

D (u, v) .

(A.8)

In the equation above we introduced the conformal blocks in the standard normalization.
It will be sometimes convenient choose D to be unit-normalized. In that case the physical
boundary OPE coefficient is

〈Ôi(0)Ôj(x)Ôk(1)Ôm(∞)〉 ⊃ λ̂ijDλ̂kmD g
∆̂ij ,∆̂kl

D (u, v), λ̂ijD = f̂ijD√
CD

(A.9)

Similar remarks apply for other protected operators that can appear in the bOPE of the
bulk conserved currents J`.
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B Derivation of the Ward identities

B.1 Ward identity for the displacement operator

Here we review the derivation of [1] of the displacement Ward identity. The starting point
is the three-point function of the displacement operator D with the free bulk scalar, i.e.10

〈φ(~x1, y1)φ(~x2, y2)D(∞)〉 = y1y2b
2
2f̂22D + b21f̂11D

[
|~x12|2 − (d− 1)

(
y2

1 + y2
2

)]
. (B.1)

We want to match this expression against the bulk OPE channel expansion, which receives
a contribution from the φ2 as well as from the stress-tensor. The complete expression, i.e.
including contributions from bulk descendants, is

〈φ(x1)φ(x2)D(∞)〉 = bφ2DW
φφD
φ2 (~x12, y1, y2) + cφφT

CT
xµ12x

ν
12〈Tµν(x2)D(∞)〉 . (B.2)

The first term in the r.h.s. of the above equation is the 〈φ2D〉 bulk block computed in [1]

WφφD
φ2 (~x12, y1, y2) = (d− 1)(y1 + y2)2 − |~x12|2

4(d− 1) . (B.3)

The second term is the contribution from the bulk stress-tensor and reads [11, 15]

〈Tµν(x)D(∞)〉 =bTD

(
δµyδνy −

1
d
δµν

)
, bTD = dCD

d− 1 . (B.4)

Note that bulk descendant operators of Tµν do not enter into (B.2), since (B.4) is a constant.
One can use further Ward identities for the displacement operator [11, 15] to relate the
bOPE coefficient bφ2D to the one-point function of φ2:

bφ2D = −aφ2
2d(d− 2)

Sd
, Sd ≡ Vol(Sd−1) = 2πd/2

Γ
(
d
2

) . (B.5)

We can now equate (B.1) to (B.2) and solve for f̂11D and f̂22D. The result is

f̂11D =
aφ22dCT (d− 2)− 4CDcφφTSd

4CT (d− 1)Sdb21
, f̂22D = −

aφ22dCT (d− 2) + 4CDcφφTSd

2CTSdb22
. (B.6)

The final formula (2.11) is obtained by plugging into the above expression the values (B.7)
of cφφT and CT corresponding to a d-dimensional free scalar field with unit normalization11

cφφT = − d(d− 2)
2(d− 1)Sd

, CT = d

(d− 1)S2
d

. (B.7)

The final result is

f̂11D =
(d− 2)

(
aφ22d + 2CDS

2
d

)
4(d− 1)Sdb21

, f̂22D =
(d− 2)

(
2CDS

2
d − aφ22d

)
2Sdb22

. (B.8)
10The blocks for the bulk-bulk-boundary three-point functions of scalar operators were later derived using

a group theoretical approach in [48].
11In [16] the free scalar φ̄ is canonically normalized and Tµν = ∂µφ̄∂ν φ̄+ . . . . When φ is unit-normalized,

we have Tµν = Cφ∂µφ∂νφ+ . . . and the OPE coefficient cφφT is rescaled accordingly.
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B.2 Ward identity for D(0)
4

The computations that lead to the Ward identity for the displacement operator can be
easily adapted to derive the Ward identity satisfied by the special operators D(l)

` of spin l
and scaling dimension ∆̂ = d + ` − 2 (` is the spin of the bulk higher-spin current J`, see
section 2.2.2 of [1] for details). Here we are going to derive the Ward identities for D(0)

4 .

B.2.1 Prelude: normalization of the bulk J4

In this section we consider the free scalar on Rd, without a boundary. We find it convenient
to work with canonical normalization, i.e. the propagator is

〈φ(x)φ(0)〉 = Cφ
|x|d−2 , Cφ =

Γ
(
d
2 − 1

)
4πd/2

. (B.9)

The spin 4 bulk current reads (for generic higher-spin currents, see e.g. [3, 49, 50])

Jµνρσ(x) = N4

[
φ∂µ∂ν∂ρ∂σφ+ 12

d− 2δ(ρσ∂µ∂ν)∂
αφ∂αφ+ 3(d+ 4)(d+ 2)

d(d− 2) ∂(µ∂νφ∂ρ∂σ)φ

+ 6
d(d− 2)δ(µνδρσ)∂α∂βφ∂

α∂βφ− 12(d+ 2)
d(d− 2) δ(µν∂

α∂σφ∂ρ)∂αφ−
4(d+ 4)
(d− 2) ∂(µφ∂ν∂ρ∂σ)φ

]
,

(B.10)

where the brackets denote symmetrization of the indices (including the 1/4!). The nor-
malization N4 of the current is fixed by the Ward identity. A convenient way to do it in
practice is to pick a direction y and fix the normalization of the commutator of φ with the
charge operator supported on the hyperplane orthogonal to this direction, namely∫

y>y′
dd−1~x′ 〈Jyµνρ(~x, y)φ(~x′, y′) . . . 〉 −

∫
y<y′

dd−1~x′ 〈Jyµνρ(~x, y)φ(~x′, y′) . . . 〉

= −∂µ∂ν∂ρ〈φ(~x′, y′) . . . 〉 .
(B.11)

This gives

N4 = − d(d− 2)
8(d+ 1)(d+ 3) . (B.12)

Using the definition above we can compute e.g.

〈J4(x1, θ1)J4(x2, θ2)〉 = CJ4

x122d+4 (θ1 · I(x12) · θ2)4 ,

〈φ(x1)φ(x2)J4(∞, θ)〉 = cφφJ4(x12 · θ)4 ,

(B.13)

to find

CJ4 = 192C2
φ(d+ 1)(d+ 2)(d+ 3)(d+ 4)(N4)2 = 3d2(d+ 2)(d+ 4)

(d+ 1)(d+ 3)S2
d

,

cφφJ4 = C2
φ(d− 2)d(d+ 2)(d+ 4)N4 = − d2(d+ 2)(d+ 4)

8(d+ 1)(d+ 3)S2
d

.

(B.14)
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As a check, the CJ4 and cφφJ4 given above reproduce the blocks coefficients of a spin 4
primary with ∆ = d + 2, exchanged in the GFF four-point function of φ, when the latter
is normalized as in eq. (B.9). In particular, in d dimensions the GFF coefficients are found
to be [51]12

C2
φP2∆φ+2n+`,`

=
2`
(
(−1)` + 1

) (
−d

2 + ∆φ + 1
)2

n
(∆φ)2

`+n

`!n!
(
d
2 + `

)
n

(−d+ n+ 2∆φ + 1)n (`+ 2n+ 2∆φ − 1)`
(
−d

2 + `+ n+ 2∆φ

)
n

,
(B.15)

so that, using eq. (B.14) we find precisely

c2
φφJ4

CJ4
= C2

φPd+2,4 . (B.16)

B.2.2 Ward identity with the boundary

In the presence of the boundary, the non-conservation of J4 in the directions orthogonal to
the boundary is captured by

∂µJ
µyyy(~x, y) = δ(y)D(0)

4 (~x) . (B.17)

or equivalently

Jyyyy4 (~x, 0) = −D(0)
4 (~x) . (B.18)

Therefore, after specifying the transverse indices in eq. (B.10) and using the Laplace equa-
tion to write limy→0 ∂

2
yφ(~x, y) = −∂a∂aφ(~x, 0) we can find the explicit form of D(0)

4 for a
free massless scalar in d bulk dimensions

D(0)
4 (~x) =−N4

[
φ(∂a∂a)2φ− 12

d− 2∂µφ∂
µ∂a∂aφ+ 3(d+ 4)(d+ 2)

d(d− 2) (∂2
aφ)(∂2

bφ)

+ 6
d(d− 2)∂µ∂νφ∂

µ∂νφ− 12(d+ 2)
d(d− 2) ∂µ∂aφ∂

µ∂aφ+ 4(d+ 4)
d− 2 ∂yφ∂y∂a∂aφ

]
y=0

.

(B.19)

Note that in an interacting boundary condition this expression is understood as a non-
singular OPE among the boundary modes φ, ∂yφ and their derivatives.

Using this expression we can easily compute some data associated to D(0)
4 in the free

boundary conditions, where correlators are simply given by Wick contractions. For instance
we can compute

〈φ2(~x, y)D(0)
4 (0)〉 =

b
φ2D(0)

4

yd−2(~x2 + y2)d+2 , (B.20)

12The result of eq. (11) in [51] is multiplied by a factor of 2` to match our conventions. The factor of C2
φ

on the l.h.s. above is due to the canonical normalization of the external scalar.
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to find

b
φ2D(0)

4
= −32κC2

φ(d− 2)d
(
d2 − 1

)
N4 = κ

4d2(d− 1)
(d+ 3)S2

d

, (B.21)

where κ = 1 (−1) for the Neumann (Dirichlet, respectively) boundary condition. Similarly
we can compute the two-point function of D(0)

4 in eq. (2.14), finding

ĈD(0)
4

= 384C2
φ (d− 1)(d+ 1)2(d+ 3)(N4)2 = 6d2(d− 1)

(d+ 3)S2
d

. (B.22)

Note that we get the same result for both Neumann and Dirichlet boundary condition.
More generally, for any interacting boundary condition, the following Ward identity

holds ∫
dd−1~x′ 〈φ2(~x, y)D(0)

4 (~x′)〉 = −1
4∂

3
y〈φ2(~x, y)〉 . (B.23)

This identity can be proven starting from eq. (B.11) (with two insertions of φ), pulling out
the integral contour to wrap the boundary and then taking the bulk OPE limit. The minus
sign from eq. (B.18) is compensated by another minus sign which is due to a change in the
orientation in the integration. One can also check the identity by an explicit computation
in the Neumann and Dirichlet boundary conditions.

We now derive the identities satisfied by f̂
iiD(0)

4
for interacting boundary conditions.

For simplicity we go back to the CFT normalization, i.e. 〈φφ〉 = 1. With this normalization
eq. (B.11) is obeyed if we take the spin 4 current J4 to be normalized as

N4 = −Cφ
d(d− 2)

8(d+ 1)(d+ 3) , (B.24)

where Cφ is the same quantity that appeared in eq. (B.9). The starting point is the three-
point function of the displacement operator D(0)

4 with the free bulk scalar. From eq. (2.20)
of [1], and after imposing the OPE relations, this reads

〈φ(~x1, y1)φ(~x2, y2)D(0)
4 (∞)〉 = y1y2 b

2
2f̂22D(0)

4

[
|~x12|2 −

d− 1
3 (y2

1 + y2
2)
]

+ b21f̂11D(0)
4

[
|~x12|4 − 2(d+ 1)|~x12|2(y2

1 + y2
2) + 1

3(d2 − 1)
(
y4

1 + 6y2
1y

2
2 + y4

2

)]
.

(B.25)

We want to decompose the correlation function of eq. (B.25) in the bulk channel where
only φ2 and J4 can contribute, so we find

〈φ(x1)φ(x2)D(0)
4 (∞)〉

= b
φ2D(0)

4

(
〈φ2(x2)D(0)

4 (∞)〉+ . . .
)

+ cφφJ4

CJ4
xµ12x

ν
12x

ρ
12x

σ
12〈Jµνρσ(x2)D(0)

4 (∞)〉

= b
φ2D(0)

4
WφφD(0)

4
φ2 (~x12, y1, y2) + cφφJ4

CJ4
xµ12x

ν
12x

ρ
12x

σ
12〈Jµνρσ(x2)D(0)

4 (∞)〉 .

(B.26)
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Note that, since 〈J4(x)D(0)
4 (∞)〉 is constant, bulk descendants of J4 contribute trivially in

the r.h.s. above. In the second line above, the first term is the 〈φ2D(0)
4 〉 bulk block, which

is computed by plugging ∆̂ = d+ 2 into eq. (B.12) of [1]

WφφD(0)
4

φ2 (~x12, y1, y2) =
(
d2 − 1

)
(y1 + y2)4 − 6(d+ 1)|~x12|2(y1 + y2)2 + 3|~x12|4

16 (d2 − 1) . (B.27)

The other term is obtained using the results of [7, 14, 52]

xµ12x
ν
12x

ρ
12x

σ
12〈Jµνρσ(x2)D(0)

4 (∞)〉

= b
J4D(0)

4

3|~x12|4 − 6(d+ 1)|~x12|2(y1 − y2)2 + (d2 − 1)(y1 − y2)4

(d+ 2)(d+ 4) .
(B.28)

Putting all of this together, after comparing eq. (B.26)–(B.25), we find that the bulk-
to-boundary crossing symmetry for this correlator is satisfied only if

b21f̂11D(0)
4

=
3b
φ2D(0)

4

16(d2 − 1) + 3
(d+ 2)(d+ 4)

cφφJ4bJ4D(0)
4

CJ4
,

b22f̂22D(0)
4

=
3b
φ2D(0)

4

4(1− d) + 12(d+ 1)
(d+ 2)(d+ 4)

cφφJ4bJ4D(0)
4

CJ4
.

(B.29)

Next, we are now going to discuss how to fix b
J4D(0)

4
and b

φ2D(0)
4
. First, it follows from the

definition (B.18) and eq. (B.28) that

〈Jyyyy(x2)D(0)
4 (∞)〉 = b

J4D(0)
4

(d− 1)(d+ 1)
(d+ 2)(d+ 4) ≡ −ĈD(0)

4
, (B.30)

so that

ĈD(0)
4

= −b
J4D(0)

4

(d− 1)(d+ 1)
(d+ 2)(d+ 4) . (B.31)

Furthermore, we can use the Ward identity (B.23) in order to fix b
φ2D(0)

4
in terms of aφ2 .

Upon performing the integral we find

b
φ2D(0)

4
= 2dCφaφ2

d2(d− 1)(d− 2)2

d+ 3 . (B.32)

Altogether, upon plugging equations (B.31) and (B.32) into eq. (B.29) we find

b21f̂11D(0)
4

=
3aφ22d−4(d− 2)d2

(d+ 1)(d+ 3)Sd
+

(d− 2)SdĈD(0)
4

8(d2 − 1) ,

b22f̂22D(0)
4

=−
3aφ22d−2(d− 2)d2

(d+ 3)Sd
+

(d− 2)SdĈD(0)
4

2(d− 1) .

(B.33)

Let us now study the decoupling limits where, from the expressions of b1 and b2 in eq. (2.3)
and assuming that f̂

iiD(0)
4

remain finite in such limits, either the l.h.s. of the first equation
above (for Dirichlet b.c.) or the l.h.s. of the second equation above (for Neumann b.c.)

– 33 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
6

vanishes. Then, if we require that also the r.h.s. vanishes accordingly (as a sufficient
condition for having finite block coefficients) we find that, at either N or D

aφ2 = ±22−d , ĈD(0)
4

= 6(d− 1)d2

(d+ 3)S2
d

. (B.34)

This result reproduces that of eq. (B.22). At each decoupling limit the block coefficients
become

aφ2 = −22−d ,
(f̂11D(0)

4
)2

ĈD(0)
4

= indeterminate ,
(f̂22D(0)

4
)2

ĈD(0)
4

= 3d2

2(d− 1)(3 + d) ,

aφ2 = 22−d ,
(f̂11D(0)

4
)2

ĈD(0)
4

= 3d2(d− 2)2

32(d− 1)(d+ 1)2(3 + d) ,
(f̂22D(0)

4
)2

ĈD(0)
4

= indeterminate.

(B.35)

As expected, these indeed reproduce the blocks coefficients of a d − 1 dimensional GFF,
respectively for the operator Ô2 (of dimension ∆̂2 = d/2) and for Ô1 (of dimension ∆̂1 =
d/2− 1).

C More data of the minimal model b.c.

Consider the minimal model b.c. of section 3.2. At g, h = 0 we can form two scalar
boundary primaries of scaling dimension equal to four

Ô(~x) ≡ (Φ(1,2)∂
2
a∂yφ)(x) , τ̂ τ̄(~x) ≡ τ̂(x1 + ix2)¯̂τ(x1 − ix2) . (C.1)

These have tree-level two-point functions

〈τ̂ τ̄(~x)τ̂ τ̄(0)〉(0) =
Ĉ
τ̂ τ̄

|~x|8
, 〈τ̂ τ̄(~x)Ô(0)〉(0) = 0 , 〈Ô(~x)Ô(0)〉(0) =

CÔ
|~x|8

, (C.2)

with C
τ̂ τ̄

= (Ĉ(0)
τ̂

)2 = (1/4π4) and CÔ = 225/2π. It will be convenient to work with a
basis of unit-normalized operators, so we will define

S1(~x) = 1√
C
τ̂ τ̄

τ̂ τ̄(~x) , S1(~x) = 1√
CÔ

Ô(~x) . (C.3)

At one-loop we have that

δ〈S1(~x)S1(0)〉(1) = −2πhCS1S1,(1,3)
log x2

x4 ,

〈S1(~x)S2(0)〉(1) = −2πgCS1S2,Φ(1,2)∂yφ
log x2

x4 ,

δ〈S2(~x)S2(0)〉(1) = −2πhCS2S2,(1,3)
log x2

x4 ,

(C.4)
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and it is easy to verify that13

λ̂S1S1,(1,3) = 0 , λ̂S1S2,Φ(1,2)∂yφ = 3
40
√

2π
, λ̂S2S2,(1,3) = −

√
3

2 . (C.5)

From the results in eq. (C.4) the matrix of anomalous dimensions at the IR fixed point is

M ≡
(

0 2πg∗CS1S2,Φ(1,2)∂yφ

2πg∗CS1S2,Φ(1,2)∂yφ 2πh∗CS2S2,(1,3)

)
, (C.6)

and it has eigenvalues

γ
(1)
± = 3

20m
(
5± 3

√
3
)

+O(1/m2) . (C.7)

The corresponding unit-normalized eigenvectors are

V± = α
(1)
± S1 + α

(2)
± S2 , α

(1)
± = 5∓ 3

√
3√

6
(
9∓ 5

√
3
) , α

(2)
± = 1√

3
(
9∓ 5

√
3
) . (C.8)

We now want to compute the OPE coefficients between the boundary modes of φ and any
of the λ̂ijV± at the first non-trivial order, i.e. we want to compute the following three-point
correlation functions

〈Ôi(~x1)Ôj(~x2)V±(∞)〉. (C.9)

For λ̂11V± this is easily done using the modified Dirichlet boundary condition, so that
we find

λ̂11V± = α
(1)
± /8 +O(1/m) . (C.10)

For the other coefficients we simply invoke the exact relations of eq. (2.10), which we can
exploit perturbatively i.e. by plugging aφ2 = −1/2 + 8/m2 +O(1/m3) from eq. (3.21) and
∆± = 4 + γ

(1)
± +O(1/m2) from eq. (C.7) and expanding to find that

λ̂12V± = − 15α(1)
±

2
√

2
(
5± 3

√
3
) +O(1/m) , λ̂22V± = −9α(1)

±
m2 +O(1/m3) . (C.11)

D Parameters for rational approximations

In the crossing equations that we need to approximate, the arbitrarily large variable ∆̂
appears in two places: the usual conformal blocks and the gamma functions of the exact
relations. The greatest possible speed-up is achieved when both of these can be input to
the numerical bootstrap as rational functions. To write a conformal block in this form,
one must choose a single cutoff which we call K1. For a block with spin l and generic

13In our normalization, for the holomorphic three-point correlator with the stress-tensor we have that
〈T (0)φ(1)φ(∞)〉 ∝ λ̂Tφφ = − ∆̂φ

2π .
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external dimensions, the algorithm in [53] produces a function with
⌊

3K1
2

⌋
+ min(K1, l)

poles. All of these are at or below the unitarity bound since they are associated with null
descendants. As is also well known, the order of a given pole is at most 2 with double poles
only appearing when ν = d−3

2 is an integer.14

To approximate the exact relations using the steps in [1], two more cutoffs are required.
One of them appears in

Γ
(
d+l−∆̂−2

2

)2

Γ
(
d+l−∆̂−1

2

)2 ≈
1
K2

K2∏
k=0

(∆̂− d− l − 2k + 1)2

(∆̂− d− l − 2k + 2)2
. (D.1)

This introduces K2 + 1 double poles with the unusual property that they are above the
unitarity bound. Some consequences of this are discussed in [1, 54].

The other part that depends on a cutoff,

Γ
(

∆̂+l
2

)2

Γ
(

∆̂+l+1
2

)2 ≈

(
∆̂+l+1

2

)2

K3(
∆̂+l

2

)2

K3+1

[
2∆̂ + 2l + 4K3 + 1

4 + 1
8(2∆̂ + 2l + 4K3 + 1)

]
, (D.2)

has a more interesting effect on the degree of the approximation. This is because the
numerator and denominator of (D.2) both have zeros which can coincide with poles of the
conformal blocks themselves.

The precise number of poles that (D.2) can cancel or enhance depends on whether ν
is an integer. Approximating the blocks using PyCFTBoot, as in [1], would limit us to non-
integer values of ν resulting in some loss of precision. To avoid this, we have switched to
a workflow where conformal block tables are first generated with scalar_blocks [55].
Further numerical setup is then done in PyCFTBoot which can import tables from
scalar_blocks. A slight drawback to this approach is that we lose the ability to dis-
card the poles whose residues vanish as a result of special dimension differences ∆̂12 and
∆̂34.15 This has a bearing on all of the blocks in our setup (including the mixed ones)
because Ô1 and Ô2 have scaling dimensions which differ by 1. One needs to know whether
this truncation has been done to properly account for (D.2).

All tolled, table 1 describes the three most widely available approximations where
#(n)
> (#(n)

≤ ) is the number of n’th order poles above (not above) the unitarity bound. For
simplicity, we assume l ≤ K1 and K3 ≤

⌊
K1−1

2

⌋
. This work uses the last column and takes

(K1,K2,K3) = (40, 12, 1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

14Standard references define ν as d−2
2 . But here we keep the convention that d is the number of bulk

dimensions.
15In large enough bootstrap problems, vanishing residues are moot because any block having special ∆̂ij

will appear in at least one crossing equation with another block having generic ∆̂ij . Nevertheless, this work
only uses five crossing equations so there is still plenty of room to discard poles.
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PyCFTBoot scalar_blocks, ν /∈ N scalar_blocks, ν ∈ N

#(2)
> K2 + 1 K2 + 1 K2 + 1

#(1)
≤

⌊
3K1

2

⌋
+ l − 2K3 − 1

⌊
3K1

2

⌋
+ l −K3 − 1

⌈
K1+1

2

⌉
+ 3l + 2ν

#(2)
≤ K3 + 1 0

⌊
K1
2

⌋
− l − ν −K3 − 1

#(3)
≤ 0 K3 + 1 0

#(4)
≤ 0 0 K3 + 1

Table 1. A count of the number of poles from infinite families as a function of spin and the three
cutoffs. As shown in (D.2), there is also one more pole below unitarity at ∆̂ = −l− 2K3 − 1

2 . This
is a new simple pole for generic ν but it joins an existing pole when ν is a half-integer.
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