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1 Introduction

Duality has long played a crucial role in string theory and supersymmetric gauge theories.
Finding two equivalent descriptions of the same object sheds light on its intrinsic properties,
and often offers alternative ways of computing physical quantities. In this note, we provide
a dual description of the Higgs branch of theories with 8 supercharges, using the concept of
magnetic quivers. Concretely, such a Higgs branch is described as a union of the 3d N = 4
Coulomb branches of a collection of quiver gauge theories. In favorable cases, which will
be discussed below, this provides a large class of 3d mirror pairs [1].

Our focus will be on the Higgs branch of linear quivers, which we treat as electric, and
their magnetic quivers. Linear quivers with only unitary gauge groups are well studied in
the context of 3d N = 4 gauge theories. Linear quivers with only special unitary gauge
theories make their appearance in 4d N = 2, 5d N = 1 and 6d N = (1, 0) theories.
However, studies of linear quivers with mixed unitary and special unitary gauge groups
are rare.
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The lack of investigation of quivers with mixed U & SU gauge groups can be at-
tributed to the lack of a brane description. For example, unitary quivers can arise as
3d N = 4 effective field theories living on the worldvolume of D3 branes in D3-D5-NS5
brane systems [2]. On the other hand, the description of special unitary quivers requires
a different brane system. In particular, they can be described as 5d N = 1 effective field
theories living on the worldvolume of 5-branes in certain brane web systems with 5-branes
and 7-branes [3–5]. The gauge groups appearing naturally in theories described by brane
webs is special unitary, rather than unitary, due to the linear bending of 5-branes.

Recently, it was found that Higgs branches of certain classes of Argyres-Douglas theo-
ries can be described as Higgs branches of linear quivers with mixed U&SU gauge groups,
which allows the construction of magnetic quivers for these theories [6–9]. The present
paper confirms these results and extends them to U/SU quivers not coming from Argyres-
Douglas theories.

In this paper, we use brane webs to describe changes in the Higgs branch when spe-
cial unitary gauge groups are turned to unitary gauge groups. The main idea can be
summarized in the following embedding, on which we comment in appendix A:

HSU ⊃ HU/SU . (1.1)

The left-hand side denotes the Higgs branch of a linear quiver with SU gauge nodes;
the right-hand side is the Higgs branch of the same quiver with some SU nodes replaced
by U nodes. The first theory can be constructed on a brane web configuration, and its
Higgs branch is realized by movements of irreducible subwebs; the inclusion corresponds to
restricting certain irreducible subwebs to move together, which we call web locking.1 The 3d
N = 4 magnetic quivers can then be readily read off the brane web following the algorithm
proposed in [11]. In other words, the inclusion (1.1) is realized on the magnetic side as

HSU =
⋃

Cones
C
(

MQ
(

Brane web
without locking

))
⊃

⋃
Cones

C
(

MQ
(

Brane web
with locking

))
= HU/SU .

(1.2)
Here C denotes the 3d N = 4 Coulomb branch, and MQ denotes the magnetic quivers read
from brane web intersections. In general, there are several maximal decompositions of a
given brane web into irreducible subwebs. When this happens, the Higgs branch is a union
of cones (which can intersect in a non-trivial way), one for each decomposition, and each
cone is described by a magnetic quiver. Equation (1.2) can be seen as the main message
of this paper:

• The embedding (1.1) is a hyper-Kähler quotient by U(1)r, where r is the number
of SU nodes that are turned into U nodes. Geometrically, seeing HSU as a complex
algebraic variety, it corresponds to imposing a quadratic algebraic equation (given by
the complex moment map), followed by a projection onto the (U(1)C)r invariant locus.

1Combining irreducible subwebs into one is also needed e.g. when computing the intersection of several
cones [10]. The new feature here is that the subwebs we lock together don’t need to intersect each other.
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• This embedding has the dual realization (1.2). Here it suffices to impose a linear
constraint — the locking — on the brane web degrees of freedom, after which one
can read the associated magnetic quiver(s).

We present an algorithm that provides the magnetic quivers in (1.2) in full generality.
Note that we provide magnetic quivers for electric theories which are good, bad or

ugly.2 If the electric theory is good, there is one magnetic quiver which is a 3d mirror.
If the electric theory is ugly, there is one magnetic quiver, which is a 3d mirror if free
hypers are added. If the electric theory is bad then in general no 3d mirror exists, see e.g.
section 4.3 and appendix B, and there may be multiple magnetic quivers.

Before dealing with the details of brane lockings, a word of warning is in order. When
the number of flavors is small enough (see fourth column in table 8), the classical Higgs
branch, as defined by generators and relations, can be a non-reduced scheme [10]. The
corresponding ring has nilpotent operators, to which brane webs are not known to be
sensitive. Therefore when this happens, the magnetic quivers produced by our algorithm
correspond to the underlying Higgs variety, i.e. the reduced part of the Higgs branch [10].
It should be noted that in these circumstances, it is challenging to cross-check our results,
as direct computation of Higgs branches require algorithms involving Gröbner bases, which
have prohibitive computational cost.

Conventions. Following [12] a 3d N = 4 gauge theory is called good if the R-charge q
(highest weight under SU(2)R) of any monopole operator satisfies q ≥ 1; we say that it is
ugly if this bound is replaced by q ≥ 1

2 and is saturated by at least one monopole operator;
and finally it is bad if at least one monopole operator has q ≤ 0.

A useful notion when dealing with a quiver gauge theory is the balance of a gauge
node. For a gauge node U(Nc) or SU(Nc) with Nf hypermultiplets in its fundamental
representation, we define the balance b as

b = Nf − 2Nc . (1.3)

We call a node balanced, if b = 0, overbalanced if b > 0 and underbalanced if b < 0. If
no node has negative balance we say the quiver has non-negative balance, if any node has
negative balance we say the quiver has negative balance.

For U(Nc) SQCD: the theory is good if b ≥ 0 (for b = 0 the Coulomb branch global
symmetry enhances from U(1)topological to SU(2)), the quiver is ugly if b = −1 and the
quiver is bad if b < −1.

For SU(Nc) SQCD: the theory is good if b ≥ −1 (a U(1) Coulomb branch global
symmetry emerges for b = −1) and it is bad if b < −1.

Note, however, that it is in general not enough to inspect the balance of the nodes in
a quiver to tell whether it is good. Counterexamples are discussed in section 4.3.

Organization of the paper. The rest of the paper is organized as follows. In section 2
we start by looking at specific examples with quivers containing only special unitary gauge

2See conventions at the end of the introduction.
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Linear U/SU

All Nf ≥ 2Nc

All Nf ≥ 2Nc−1

At least one Nf < 2Nc−1

Only U Only SU

Figure 1. Venn diagram of the different types of quivers discussed in this paper. Nc stands for the
gauge rank of a node in the quiver, while Nf stands for the number of hypermultiplets connected
to it. The circle represents all linear quivers with unitary and special unitary gauge groups, and
arbitrary numbers of flavors. In the left blue region, where all gauge groups are unitary, magnetic
quivers can be computed using D3-D5-NS5 systems (One can also use (fully) locked brane webs),
while in the right blue region, where all the gauge groups are special unitary, one can use 5-brane
webs. In the generic (middle) region, brane webs with lockings are needed. In the top region, all
gauge groups have enough matter to ensure that the magnetic quiver is a 3d mirror theory. Below
this, in the middle stripe, the same applies up to free hypermultiplets (see discussion in section 4)
if only one gauge node has Nf = 2Nc − 1; if two gauge nodes or more satisfy this equality, the
situation is more complex, see section 4. In the last region, a collection of effects can happen:
the Higgs branch can contain one cone or more, and the Higgs ring can possibly contain nilpotent
elements, see table 8.

groups. We then replace some of the gauge groups with unitary gauge groups and see
how to interpret this in a brane web configuration and how to arrive at the corresponding
mirror quiver. Section 3 generalizes this prescription by offering a simple and systematic
way for obtaining the mirror quiver of any linear quiver with mixed U/SU gauge groups.
Section 4 discusses more examples and general lessons that can be learned from the general
algorithm concerning the various quiver types according to figure 1.

2 Web locking: first examples

In this section, we introduce the concept of brane locking on a family of basic examples,
which are all good 3d N = 4 quiver theories (in the sense described in the introduction),
which meansNf ≥ 2Nc for every gauge node. For this kind of theory, brane locking provides
3d N = 4 mirror pairs. We confirm these findings using Hilbert series computations for
the Higgs and Coulomb branches of both quivers in the pair. More general quivers will be
dealt with later on, using the same principles.
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The traditional way of computing a 3d N = 4 mirror of a linear quiver with unitary
gauge groups makes use of brane set ups with D3, D5 and NS5 branes and S-duality.3 Let
us start with a T (SU(4)) quiver. Utilizing brane set ups, one finds that this theory is 3d
self mirror:

U(3) U(2) U(1)4 U(3)U(2)U(1) 4

3d mirror
(2.1)

This can be checked through explicit Coulomb branch and Higgs branch Hilbert series
computations as shown in table 3.

We now want to know what happens if we replace all the unitary gauge nodes with
special unitary gauge nodes:

SU(3) SU(2) SU(1)4
(2.2)

In 3d, we do not have a brane system for such a quiver, as stacks of D3 branes stretched
between 5-branes only give rise to unitary gauge groups. However we can construct a brane
configuration in 5d using brane webs [3–5]. Our quiver theories are now effective gauge
theories living on (p, q) 5-branes suspended between [p, q] 7-branes. Quantum effects cause
the 5-branes to bend when they end on each other, forming a web. This process freezes a
U(1) factor, turning unitary gauge groups into special unitary gauge groups. For the 5d
set up, the occupations of space-time directions by the different branes are given in table 1.

The 5d brane configuration of (2.2) with bare masses turned on takes the form:

x6

x7, x8, x9
×

x5

(2.3)

where nodes represent 7-branes and lines represent 5-branes (Specifically, horizontal lines
are D5 branes, vertical lines are NS5 branes, and lines at an angle here are (1,−1) 5-branes.)
The coordinate system we adopted here will be the same throughout the paper. The areas
of the polygons represent moduli of the Coulomb branch. For the case above we see three
polygons and hence the Coulomb branch has real dimension 3.

3One can also include orientifold planes, but these will not be needed in this article.
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Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

(p, q)5-brane × × × × × angle α
[p, q]7-Brane × × × × × × × ×

Table 1. Occupation of space-time directions of the (p, q)5-branes and [p, q]7-branes in Type IIB
are denoted by ×. The angle α depends on the (p, q) charges and the axio-dilaton τ ; α = arg(p+τq).
We set τ = i in the rest of the paper, s.t. tan(α) = q/p. Our 5d N = 1 theories exist as effective
field theories living on 5-branes suspended between 7-branes.

Going to the Higgs branch. As outlined in [10, 11], we can go to the Higgs branch by
first setting all the masses (given by the vertical distance between the D7 branes) to zero.
The resulting configuration is:

(2.4)

This diagram can be made clearer by pulling the fourth 7-brane from the left all the way to
the right. The process involves several brane creations and annihilations [2]. As a result,
(1,−1) branes become NS5 branes after passing through the monodromy cuts originating
from the 7-branes:

(2.5)

The Higgs branch moduli correspond to brane segments moving in the x7, x8, x9 directions.

Getting the magnetic quiver. Now, we employ the method pioneered in [11] to arrive
at the magnetic quiver. The magnetic quiver is a quiver whose 3d N = 4 Coulomb branch
is equal to the Higgs branch of theory (2.2), the original 5d N = 1 theory.4 The process
involves doing a maximal decomposition of the web into subwebs that move freely apart
from each other. By looking at the intersection numbers, we can construct the magnetic
quiver.

To demonstrate maximal decomposition, we color the different subwebs that are free
to move with respect to each together:

(2.6)

4In general, the Higgs branch of the 5d N = 1 theory can be made of several hyper-Kähler cones. In
such cases, there will be a magnetic quiver for each of the cones. However, for the examples in this section,
the Higgs branch of the 5d theory is only a single cone and therefore there is only one magnetic quiver. We
will discuss Higgs branch of several cones in later sections for bad quivers.
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We now read off the magnetic quiver where each subweb represents a unitary gauge node
with rank given by the number of coincident branes. The multiplicity of hypermultiplets
between the gauge nodes are then given by the intersection number between each pair of
subwebs. For the current example, each pair of subwebs intersect at most once so the edges
in the quiver have multiplicity at most one. The resulting magnetic quiver is:

321

1 1

1

1

(2.7)

where the colored nodes correspond to the different subwebs in (2.6). Here and throughout
the paper, magnetic quivers are denoted with only the ranks of the gauge groups on each
node, following the convention of [11]; it is understood that every node is unitary, and that
a global U(1) should be ungauged — the choice of this U(1) does not affect the Coulomb
branch, nor the Higgs branch. Eq. (2.7) reproduces results computed in [13, 14].

Now, (2.7) is only the magnetic quiver for (2.2) when the gauge couplings of the special
unitary gauge groups are all finite. Crucially, at finite gauge coupling, the Higgs branch of
the 5d quiver is classical and thus the same in 3−6 dimensions. This allows us to establish
the following relationship:

H5d
classical(2.2) = H3d(2.2) = C3d(2.7) (2.8)

The right equality of (2.8) is now an equality amongst 3d N = 4 theories. This motivates
us to conjecture that the two quivers form a 3d mirror pair:

C3d(2.2) = H3d(2.7) (2.9)

This is checked explicitly through Hilbert series computations in table 3.

Changing SU(3) to U(3). Now, consider gauging the SU(3) node to a U(3):

U(3) SU(2) SU(1)4
(2.10)

The Higgs branch of this quiver is now a subspace of the Higgs branch of (2.2). To
demonstrate this gauging process in the brane set up, we introduce the notion of locking.
Two subwebs are locked if they are forced to move together. The gauging of SU(3) to U(3)
then translates to locking the two left most NS5 branes (colored in blue). On the other
hand, the two remaining NS5 branes (in red and olive) are still free to move independently.

(2.11)
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Physically, the explanation for locking is that separating the NS5 branes in the x7, x8, x9

direction corresponds to moving on the baryonic branches of the 5d theory; as a conse-
quence, preventing the NS5 from moving apart is equivalent to removing one of the baryonic
branches, removing a baryonic U(1) global symmetry by gauging it, therefore producing
the Higgs branch of a theory with a unitary gauge group. Indeed, the Higgs branches of an
SU(3) gauge theory and the Higgs branch of a U(3) gauge theory share the same mesonic
branch, and the only difference is that the SU(3) theory has a baryonic branch in addition.
We can read off the magnetic quiver from (2.11):

321

1

1

1

(2.12)

One of the U(1) nodes is now connected to the U(3) node with an edge of multiplicity
two, which simply means there are twice as many hypermultiplets. This is because the
intersection number between the blue subweb and orange subweb is two. Edge multiplicity
naturally arises when studying magnetic quivers [10, 11]. Once again, the Coulomb branch
and Higgs branch computation shows that, at least on the level of Hilbert series, (2.11)
and (2.12) are indeed mirror pairs.

Changing SU(3) to U(3) and SU(1) to U(1). Let’s see what happens if we gauge
the baryonic U(1)s associated to both the SU(3) and SU(1) nodes:

U(3) SU(2) U(1)4
(2.13)

In the brane set up, this is equivalent to locking both the pair of branes on the left
(blue) and on the right (green):

(2.14)

Now, amongst the NS5 branes, there are only two pieces (rather than three in (2.11))
that move independently. Looking at the intersection numbers, one quickly obtains the
magnetic quiver:

321

11

(2.15)

where the edges of both U(1)s connecting the U(3) have multiplicity two. The unrefined
Coulomb and Higgs branch Hilbert series are presented in table 3 and is consistent with
the conjecture that they are 3d mirror pairs.
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Summary. We summarize all the different combinations of U/SU nodes for T (SU(4))
theories in table 2, along with their unrefined Coulomb and Higgs branch Hilbert series in
table 3 and global symmetries in table 4. As is clear from the magnetic quivers in table 2
and 3d mirror symmetry, the Higgs and Coulomb branches of these quivers only depend on
the partition of 4 which defines the locking (see the colored cells in the second column). For
each partition, we compute the Higgs branch Hasse diagram using the quiver subtraction
algorithm [15]. The results are shown in table 5. This illustrates a general lesson: when
unitary gauge groups are changed to special unitary gauge groups, the Higgs branch Hasse
diagram gets more complicated.

3 Web locking: an algorithm

In this section we give an algorithm which, for any framed linear quiver Q with unitary
and special unitary nodes, provides a list of quivers Qi such that

H(Q) =
⋃
i

C3d(Qi) . (3.1)

We state the algorithm in full generality, and illustrate every step of the algorithm with a
single example, namely the quiver

SU(5) U(5) SU(6)

2 3 4

(3.2)

which illustrates its many intricate features. For more examples, see section 4.1.
The plan of this section is as follows. In the first subsection, we set up our notation

and spell out the combinatorics of locking. Then we define some algorithms about lists and
partitions, before turning to the bulk of the algorithm. Then we explain how the algorithm
is justified by the brane constructions explored in the rest of the paper. We conclude with
a short description of the computer implementation.

3.1 Generalities about lockings

We start from a linear quiver with n gauge nodes, labeled by an index i ∈ I = {1, . . . , n},
which are either SU(ki) or U(ki), and with ki ≥ 1 and Ni ≥ 0 flavors. Note that we do not
make any assumption regarding the balance of the gauge nodes.

We also introduce I0 ≡ {0}∪I. This set labels the n+1 NS5 branes in the system (see
figure 3). We describe how the brane locking technique described in the previous section
allows us to compute magnetic quivers for the Higgs variety. In general, the Higgs variety
is a union of several hyper-Kähler cones, each characterized as the 3d N = 4 Coulomb
branch of its magnetic quiver.

– 9 –
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Electric Quiver Magnetic Quiver Brane web

U(3) U(2) U(1)4 1321

SU(3) U(2) U(1)4

1321

1

U(3) U(2) SU(1)4

1321

1

U(3) SU(2) U(1)4

1321

1

SU(3) SU(2) U(1)4

1321

1
1

SU(3) U(2) SU(1)4

1321

1
1

U(3) SU(2) SU(1)4

1321

1
1

SU(3) SU(2) SU(1)4

1321

1 1
1

Table 2. The left column shows extensions of the T (SU(4)) quiver with different combinations of
U/SU nodes. The middle column shows their respective magnetic quivers, which in this particular
case are in fact 3d mirrors. These magnetic quivers are derived from 5d brane webs, which yield
quivers with all unitary gauge nodes. The right column shows the maximal decompositions of the
brane webs into subwebs, with the necessary locking imposed. Note that the two magnetic quivers
in blue cells and the three magnetic quivers in yellow cells are identical: this shows that Higgs
branches for the family of theories considered in this table depends only on partitions of 4. This is
reflected in the next three tables by merging the corresponding cells.

– 10 –
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Electric Quiver Higgs branch unrefined Hilbert Series Coulomb branch unrefined Hilbert Series

U(3) U(2) U(1)4

(1− t4)(1− t6)(1− t8)
(1− t2)15

(1− t4)(1− t6)(1− t8)
(1− t2)15

SU(3) U(2) U(1)4 1 + 3t2 + 4t3 + 7t4 + 4t5 + 7t6 + 4t7 + 3t8 + t10

(1− t2)13(1− t3)4(1− t4)−2(1− t6)−1
(1− t6)(1− t8)(1 + 4t4 + t8)

(1− t2)8(1− t4)4

U(3) U(2) SU(1)4

U(3) SU(2) U(1)4

1 + 5t2 + 23t4 + 62t6 + 110t8 + 130t10 + 110t12 + 62t14 + 23t16 + 5t18 + t20

(1− t2)11(1− t4)3
(1− t6)(1− t8)2(1 + 8t4 + t8)

(1− t2)6(1− t4)7

SU(3) SU(2) U(1)4
 (1+3t+15t2+46t3+148t4+386t5+954t6+2064t7+4183t8+7649t9+13081t10+20490t11

+30060t12+40738t13+51804t14+61138t15+67790t16+69920t17+. . . palindrome+. . .+t34)


(1− t)−3(1− t2)8(1− t3)7(1− t4)4

1+t2+4t4+9t6+13t8+12t10+13t12+9t14+4t16+t18+t20

(1− t2)2(1− t4)5(1− t6)2(1− t8)−1

SU(3) U(2) SU(1)4

U(3) SU(2) SU(1)4

SU(3) SU(2) SU(1)4

 (1− t+13t2+12t3+96t4+172t5+572t6+1072t7+2479t8+4265t9+7813t10+11874t11

+18146t12+24124t13+31540t14+36640t15+41456t16+42064t17+. . . palindrome . . .− t33+t34)


(1− t)(1− t2)5(1− t3)7(1− t4)5

(1− t2+t4+4t6+t8 − t10+t12)
(1− t2)(1− t4)4(1− t6)2(1− t12)−1

Table 3. Extensions of the T (SU(4)) quiver are shown with different combinations of U/SU nodes, along with their Higgs and Coulomb branch
unrefined Hilbert series. These correspond to the Coulomb and Higgs branch Hilbert series, respectively, of their mirror quivers shown in table 2.
For brevity, unrefined Hilbert series are shown. Under the appropriate fugacity maps, this correspondence extends to refined Hilbert series.
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Electric Quiver Higgs branch global symmetry Coulomb branch global symmetry

U(3) U(2) U(1)4
A3 A3

SU(3) U(2) U(1)4
A3U1 A2

U(3) U(2) SU(1)4

U(3) SU(2) U(1)4
A3U1 A1A1

SU(3) SU(2) U(1)4

A3U1U1 A1SU(3) U(2) SU(1)4

U(3) SU(2) SU(1)4

SU(3) SU(2) SU(1)4
A3U1U1U1

Table 4. Extensions of the T (SU(4)) quiver are shown with different combinations of U/SU nodes,
along with their Higgs and Coulomb branch global symmetry. Notice that the ranks of the global
symmetries always add to 6.
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Partition [4] [3, 1] [2, 2] [2, 1, 1] [1, 1, 1, 1]

Hasse
Diagram

a3

a1

A1

A3

a3

a1 a1

a2 a2

A2

a3

a1

a1 a1

a1 a1

a1 a1

a3

a1 a1 a1

a3
a3

a3

a1

a3

a1 a1 a1 a1 a1

d4 d4 d4 d4 d4

Table 5. Hasse diagrams of symplectic leaves (black dots) for the Higgs branches of theories shown in tables 2, 4 and 3. The elementary slices
between adjacent leaves are labeled An for the Klein singularity C2/Zn+1 and an (respectively dn) for the closure of the minimal nilpotent orbit
of sl(n+ 1,C) (resp. so(2n,C)). The partition refers to hypers connecting the U(3) node and the bouquet of U(1) nodes in the second column of
table 2, as indicated by the coloring of the cells.
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A locking is a partition5 L of the set I0 into c ≥ 1 subsets L = (Lj)j=1,...,c. This
means that

c⋃
j=1

Lj = I0 and ∀i 6= j , Li ∩ Lj = ∅ . (3.3)

Note that a given locking is depicted on the brane webs with a coloring which uses c colors,
hence the choice of the letter c. Let Ln be the set of all lockings; it depends only on the
number of nodes n.6 The set Ln can be partially ordered as follows. For two lockings
L = (Lj)j=1,...,c and L′ = (L′j′)j′=1,...,c′ , one says that L ≤ L′ if

∀j ∈ {1, . . . , c}, ∃j′ ∈ {1, . . . , c′} : Lj ⊆ L′j′ . (3.6)

Example. For our example we have n = 3, so I0 = {0, 1, 2, 3}. There are 15 lockings,
which can be arranged in the Hasse diagram shown in figure 2.

3.2 Partitions and collapse

A partition λ of an integer α is a non-increasing sequence, with length `, of positive integers
(λ1, . . . , λ`) such that λ1 + · · · + λ` = α. It can be represented as a Young diagram with
` columns of heights λ1, . . . , λ`. The lengths of the rows of the diagram give the transpose
partition, denoted λT .

Given a list of integers x = (xi), we denote by Σ(x) the list of partial sums:

(Σ(x))i =
∑
j≥i

xj . (3.7)

We also call xR the list x in reverse order.
We now describe the collapse algorithm. This is an algorithm which, given any finite

sequence of positive integers, produces a non-decreasing sequence of positive integers. Let
x = (x1, . . . , x`) be a sequence of positive integers of length `. If x1 ≥ · · · ≥ x` then
nothing needs to be done and the sequence defines a partition. Otherwise let j be the first
index such that xj < xj+1. One defines a new sequence (x′1, . . . , x′`) where x′j = xj + 1,
x′j+1 = xj+1 − 1 and x′i = xi for i 6= j, j + 1. One then repeats this operation iteratively
on x′ until the sequence stabilizes and produces a partition. The resulting partition λ is
called the collapse of the initial sequence x: λ = Collapse(x).

5This is a partition in the set theoretic sense. The ordering of the Lj is irrelevant; for definiteness we
order the elements of the partition according to their lowest element.

6The cardinal of Ln is known as a Bell number,

|Ln| = Bn+1 := 1
e

∞∑
m=1

mn+1

m! . (3.4)

Note that this number increases fast with n, the first values being (sequence A000110 in the OEIS)

|L1| = 2 , |L2| = 5 , |L3| = 15 , |L4| = 52 , |L5| = 203 , |L6| = 877 . (3.5)
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0|1|2|3

01|2|3 02|1|3 03|1|2 0|12|3 0|13|2 0|1|23

01|23 02|13 03|12 012|3 013|2 023|1 0|123

0123

Figure 2. Hasse diagram of lockings L3. Each locking is denoted using bars |. Using the brane web
interpretation, this means for instance that 0|13|2 represents branes 1 and 3 being locked together,
while the other two are free to move independently. The locking in the box is L(s) for example (3.2).
The blue sub-diagram is the diagram of lockings compatible with L(s) (see definition on page 17).

Example. Take for instance x = (4, 7, 3, 6). The collapse algorithm gives in turn

(4, 7, 3, 6)→ (5, 6, 3, 6)→ (6, 5, 3, 6)→ (6, 5, 4, 5)→ (6, 5, 5, 4) . (3.8)

Therefore λ := (6, 5, 5, 4) = Collapse((4, 7, 3, 6)). In terms of Young diagrams (where the
sequences are encoded in the heights of columns), the collapse corresponds to pushing boxes
to the left:

−→ (3.9)

The transpose of λ is λT = (4, 4, 4, 4, 3, 1). One can evaluate Σ(λ) = (20, 14, 9, 4) and
Σ(λT ) = (20, 16, 12, 8, 4, 1).

3.3 Main algorithm

The inputs of the algorithm are

• The list of non-negative integers N = (Ni)i=1,...,n; we also set N0 = Nn+1 = 0, and
N = ∑

Ni.
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• The list of positive integers k = (ki)i=1,...,n; we also set k0 = kn+1 = 0.

• The list of symbols s = (si)i=1,...,n with si ∈ {U, SU}.

Here Ni denotes the number of flavors on gauge node i. A gauge node is U(ki) if si = U
and SU(ki) if si = SU. To the list of symbols (si) one can associate a locking as follows.
Let J ⊆ I be the set of indices i such that si = SU. We set c = |J | + 1, and denote
J = {i1, . . . , ic−1} with i1 < · · · < ic−1. We then define the locking

L(s) = (L1 = {0, . . . , i1 − 1}, L2 = {i1, . . . , i2 − 1}, . . . , Lc = {ic−1, . . . , n}) . (3.10)

The algorithm outputs a finite list of quivers, one for each cone of the Higgs variety.
The algorithm is divided in two steps:

α− Determining the list of locking patterns corresponding to the cones;

β− For each locking pattern, computing the associated magnetic quiver.

We describe the two steps in turn. For clarity it is better to start with Step β. In
other words, we first explain how, given a locking pattern, we compute a magnetic quiver,
and we turn to finding all locking patterns in the next paragraph.

Step β. Let x be the list defined by7

xi = ki − ki+1 +
∑
i′>i

Ni′ (3.11)

for i = 1, . . . , n. Let L = (Lj)j=1,...,c be a locking. For each Lj , consider the sublist xj of
x defined by xj = (xi)i∈Lj . We then define two lists of integers:

• Let
ρ̃j = Σ

(
Collapse(xj)T

)
. (3.12)

If the length of this list is less than N , add 0s on the right until the length is N .
Finally, reverse the order of the resulting list. Call ρj the resulting list of N integers.

• Define
σ̃j = Σ

(
xj
)
. (3.13)

Similarly, add 0s on the right until the length is n + 1, and finally delete the first
entry. Call σj the resulting list of n integers.

Define also
ρ0 := Σ(Σ(N)T )R −

∑
j

ρj , (3.14)

this is also a list of N integers (the last entry is always 0).
The elements of ρ0 give the ranks of a linear chain of gauge nodes, that we label by

i = 1, . . . , N (if the rank of the node is 0, the node is dropped). On top of this chain
one adds a collection of c U(1) nodes, that we label by j = 1, . . . , c. One finally needs to
describe the connections between those nodes:

7This is sometimes called the list of linking numbers of the NS5 branes.
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• The nodes i and i+ 1 are connected by one link.

• The nodes j and j′ are connected by(
N−1∑
i=1

ρjiρ
j′

i+1 + ρji+1ρ
j′

i − 2ρjiρ
j′

i

)
− ρjNρ

j′

N +
∑

i∈Lj−{n}
σj

′

i+1 +
∑

i∈Lj′−{n}
σji+1 (3.15)

links.

• The nodes j and i are connected by

ρji+1 + ρji−1 − 2ρji (3.16)

links.

Example. We look at two different lockings.

• Consider the locking L = (L1 = {0, 1, 2, 3}). Then x = (4, 7, 3, 6) is the one
considered in the previous section. Therefore ρ̃1 = (20, 16, 12, 8, 4, 1) and ρ1 =
(0, 0, 0, 1, 4, 8, 12, 16, 20), and σ1 = (16, 9, 6). One has N = (2, 3, 4), Σ(N) = (9, 7, 4),
Σ(N)T = (3, 3, 3, 3, 2, 2, 2, 1, 1), Σ(Σ(N)T )R = (1, 2, 4, 6, 8, 11, 14, 17, 20). Therefore
ρ0 = (1, 2, 4, 5, 4, 3, 2, 1, 0). The magnetic quiver then has a chain of eight nodes with
the ranks given by ρ0, dropping the last entry which is 0. It also has an additional
U(1) node. Evaluation of (3.16) for 1 ≤ i ≤ 8 gives (0, 0, 1, 2, 1, 0, 0). One deduces
the magnetic quiver, which is shown in table 6.

• Consider the locking L = (L1 = {0, 1, 2}, L2 = {3}). One computes similarly σ1 =
(10, 3, 0), σ2 = (6, 6, 6), ρ1 = (0, 0, 0, 1, 3, 5, 8, 11, 14), ρ2 = (0, 0, 0, 1, 2, 3, 4, 5, 6), and
ρ0 = (1, 2, 4, 4, 3, 3, 2, 1, 0). Again there are eight nodes with ranks given by ρ0 in the
chain, and two U(1) nodes in addition. These two nodes are connected by (3.15): 2 + 9 + 20 + 40 + 66

+3 + 10 + 24 + 44 + 70
−2− 12− 30− 64− 110

− 84 + (6 + 6 + 6)− (0) = 4 (3.17)

links. Finally (3.16) for j = 1 gives (0, 0, 1, 1, 0, 1, 0, 0) and for j = 2 gives
(0, 0, 1, 0, 0, 0, 0, 0). We then get the quiver which is shown in table 6.

Step α. The algorithm β above gives a quiver for each locking L. It remains to de-
termine which lockings contribute cones to the Higgs branch. We identify the lockings
L = (Lj)j=1,...,c that satisfy three criteria.

1. S-rule. Consider the lists ρ̃j defined by (3.12) from the list (3.11) and the locking L.
We say that L satisfies the S-rule if all the ρ̃j have length less or equal to N , and the
list ρ0 defined in (3.14) has only non-negative entries.

2. Compatibility. The locking L is compatible with the assignment s if it is lower than
L(s) in the partial order of lockings. See figure 2 for an example.
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3. Dominance. We say that the locking L dominates the locking L′ < L if the corre-
sponding vectors ρ0 and (ρ0)′ are such that all the entries of ρ0−(ρ0)′ are non-negative.

The set of lockings which satisfy the S-rule, are compatible with s and are not dominated
by another locking satisfying the same criteria is called admissible.

For each admissible locking, one can then compute the associated magnetic quiver
using the algorithm β. The Higgs branch of the initial quiver is the union of the Coulomb
branch of all these quivers.

Example. In example (3.2) we have s = (SU,U, SU) so J = {1, 3} and

L(s) = (L1 = {0}, L2 = {1, 2}, L3 = {3}) . (3.18)

We first compute all the ρ̃j that can be involved:

• For L1, ρ̃ = (4, 3, 2, 1).

• For L2, ρ̃ = (10, 8, 6, 4, 3, 2, 1).

• For L3, ρ̃ = (6, 5, 4, 3, 2, 1).

• For L1 ∪ L2, ρ̃ = (14, 11, 8, 5, 3, 1).

• For L1 ∪ L3, ρ̃ = (10, 8, 6, 4, 2).

• For L2 ∪ L3, ρ̃ = (16, 13, 10, 7, 4, 2, 1).

• For L1 ∪ L2 ∪ L3, ρ̃ = (20, 16, 12, 8, 4, 1).

The lengths of all these vectors is ≤ N = 9, so they satisfy the first part of the S-rule.
From the Hasse diagram we see that there are five lockings which are compatible:

• LI = ({0}, {1, 2}, {3}). Here ρ0 = (1, 2, 3, 3, 3, 3, 2, 1, 0).

• LII = ({0, 1, 2}, {3}). Here ρ0 = (1, 2, 4, 4, 3, 3, 2, 1, 0).

• LIII = ({0}, {1, 2, 3}). Here ρ0 = (1, 2, 3, 4, 4, 3, 2, 1, 0).

• LIV = ({0, 3}, {1, 2}). Here ρ0 = (1, 2, 3, 4, 3, 3, 2, 1, 0).

• LV = ({0, 1, 2, 3}). Here ρ0 = (1, 2, 4, 5, 4, 3, 2, 1, 0).

Therefore all five lockings satisfy the S-rule. We now check that they are all dominant. LI

does not dominate LII as the difference of the ρ0s is (0, 0,−1,−1, 0, 0, 0, 0, 0) which contains
negative entries. Similarly LI does not dominate LIII nor LIV nor LV. One checks in the
same way that LV is not dominated because of the entry 5 in its ρ0. We conclude that
the Higgs branch is made of five cones, which are the 3d Coulomb branches of the quivers
presented in table 6.
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Locking Quiver

LI = ({0}, {1, 2}, {3})

1 2 3 3 3 3 2 1

1 1

1

3 3

LII = ({0, 1, 2}, {3})

1 2 4 4 3 3 2 1

1 14

LIII = ({0}, {1, 2, 3})

1 2 3 4 4 3 2 1

1 1
4

LIV = ({0, 3}, {1, 2})

1 2 3 4 3 3 2 1

1

1

6

LV = ({0, 1, 2, 3})

1 2 4 5 4 3 2 1

1

Table 6. Quivers for the five cones of the Higgs branch of (3.2), corresponding to the five admissible
lockings, which appear in blue in figure 2. When more than two lines connect two nodes, they are
denoted by a thick line, with a number indicating the multiplicity.

Number of cones. The algorithm presented in this section shows that for a linear
quiver with n unitary or special unitary gauge nodes, the classical Higgs branch is made
up of a finite number of cones. For any given quiver, the number of cones is precisely
given by the algorithm, but general statements are still difficult to make. For instance,
the number of cones is bounded above by the Bell number (3.4), but this is a very coarse
bound, that can presumably be considerably improved.

3.4 Brane web interpretation

The various quantities presented in the algorithm of the previous section have a direct
interpretation in terms of brane webs. The idea is to realize the quiver gauge theory on
a brane web in the usual way, and to push all the flavor branes to the left using Hanany-
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Witten (HW) transitions. On our example (3.2), the starting point is the web

[0,1] [0,1] [0,1] [0,1]

[-5,1]

[0,1] [-1,1]
[6,1]

5 5 6
(3.19)

where the lines denote fivebranes, and the circles sevenbranes. The charge of the seven-
branes is indicated unless it is [1, 0]. Thick lines denote stacks of fivebranes, with the
number of branes indicated below. Note that this brane web corresponds a priori to the
quiver (3.2) with all gauge nodes made special unitary. The U(5) gauge node is realized
using brane locking.

After the HW transitions, this creates a stack of N D5 branes which end on D7 branes
on the left, and on 5-branes on the right; the way they end can be encoded into partitions,
which are the basic objects of the algorithm. More precisely, the ρi and σi sequences of
integers correspond to numbers of segments of D5 branes which are bound to move together,
as illustrated in figure 3. Crucially, the ability to move is controlled by the locking, and the
S-rule. The reader can verify that imposing these conditions is realized by equations (3.12)
and (3.14). Once a partition solution is known, the magnetic quiver can be computed
in terms of stable intersections of the tropical curves, supplemented by specific rules for
fivebranes ending on sevenbranes. This is encapsulated in formulas (3.16) and (3.15).

4 Examples and effects

In this section, certain families of magnetic quivers are studied in detail.

1. In section 4.1 we study electric quivers for which every U(Nc) or SU(Nc) node has
at least 2Nc hypermultiplets connected to it (i.e. the top region of figure 1). These
theories are always good. In this case there is only one magnetic quiver which is
the 3d mirror of the electric quiver. Furthermore the different magnetic quivers for
various choices of U and SU nodes are related to the magnetic quiver for all U nodes.
This allows us to make very general statements about the magnetic quivers, based
on the T σρ (SU(n)) technology of the all U electric quivers.

2. In section 4.2 we turn to electric quivers, where some nodes have less hypermultiplets
than in the section before. In this case generally, the magnetic quiver is not a 3d
mirror, and if there are SU(Nc) nodes with less than 2Nc hypers, there are generally
multiple magnetic quivers. For magentic quivers that sastisfy a certain set of condi-
tions, we also provide the reversed algorithm which allows us to obtain an electric
quiver which is its 3d mirror.
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SU(5) U(5) SU(6)

2 3 4

Electric quiver

LI = ({0}, {1, 2}, {3})
[4,1] [7,1] [3,1] [6,1]

[0,1] [0,1] [0,1] [0,1]

[1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]

ρ3 = 0 0 0 1 2 3 4 5 6 6 6 6 = σ3
ρ2 = 0 0 1 2 3 4 6 8 10 10 3 0 = σ2
ρ1 = 0 0 0 0 0 1 2 3 4 0 0 0 = σ1
ρ0 = 1 2 3 3 3 3 2 1 0

LII = ({0, 1, 2}, {3})
[4,1] [7,1] [3,1] [6,1]

[0,1] [0,1] [0,1] [0,1]

[1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]

ρ2 = 0 0 0 1 2 3 4 5 6 6 6 6 = σ2
ρ1 = 0 0 0 1 3 5 8 11 14 10 3 0 = σ1
ρ0 = 1 2 4 4 3 3 2 1 0

Figure 3. Examples of two brane webs corresponding to two different admissible lockings LI and
LII. The slopes of the branes of type [p, 1] are not respected. Each thick line of a given color
corresponds to a stack of D5 branes; the number of D5 branes in each stack is indicated below
with a number of the same color. These number correspond to the lists ρj and σj computed in the
algorithm (the dotted line shows the limit between ρj and σj), for j = 1, . . . , c running through
the colors. The colors other than black denote the locking, while the various black stacks can move
independently of each other in the x7, x8, x9 direction. The list ρ0 corresponds to the number of
D5 branes in those stacks. The electric quiver is depicted on top, with a color code showing the
top locking L(s) = LI.

3. In section 4.3 we explain that for electric theories with incomplete Higgsing the
magnetic quiver does not provide a 3d mirror.8 This point is further elaborated in
appendix B.

4. In section 4.4 we give an example of an Argyres Douglas (AD) theory whose Higgs
branch is that of a linear quiver with U and SU nodes. We apply our algorithm to
this quiver and produce a magnetic quiver.

8Note that the converse is not true, when there is complete Higgsing there may still be multiple magnetic
quivers, as is the case e.g. for SU(3) with 4 flavors.
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5. Finally in section 4.5 we leave the scope of this paper, and consider a non-linear
electric quiver with SU nodes. Although our methods cannot be applied to produce
a magnetic quiver, we can produce one through other means.

4.1 Linear quivers with nodes of non-negative balance

From previous sections, we see that replacing an SU node with a U node (or vice versa)
in a linear electric quiver can drastically change its magnetic quiver. However, if we focus
only on good linear quivers, then many of the features in the magnetic quiver (which is
now also a 3d mirror) remain the same.

Good linear quivers with all nodes U go under the name T σρ (U(n)) theories. Each
unitary gauge group is either balanced or overbalanced. 3d mirror symmetry for these
theories was studied in [12] using the classic NS5-D3-D5 HW brane system. If we take the
NS5-D3-D5 brane system for any T σρ (U(n)) and we go to the Higgs phase (i.e. all D3 branes
are suspended between D5 branes, and any D3 branes stuck between a D5 and a NS5 are
annihilated by a HW transition) then all the NS5 branes have no D3 branes ending on
them.9 T-dualizing this system to a brane web, we obtain the brane system of the electric
quiver with all U nodes replaced by SU. The NS5 branes present in this system have no
D5 branes ending on them, which means the only 5-branes are NS5 and D5. This greatly
simplifies obtaining the magnetic quiver for any choice of locking, i.e. any choice of U and
SU nodes in the electric quiver. We proceed with some examples.

T (SU(n)) theories. The T (SU(n)) family has a single SU(n) flavor group and is 3d self
mirror. This makes it the simplest example to see how the different arrangements of U/SU
have on the mirror. The n = 4 case is already studied in detail in section 2. When all the
gauge nodes are unitary, the quiver is balanced and the theory is self-dual:

. . .
U(1) U(2) U(3) U(n− 1) n

. . .
U(1)U(2)U(3)U(n− 1)U(1)

3d mirror
n

(4.1)
As before, we first turn all the gauge nodes from U to SU. In this case, the 3d mirror
obtained from the brane web takes the following form:

. . .
SU(1)SU(2)SU(3) SU(n− 1) n

. . .
U(1)U(2)U(3)

U(n− 1)3d mirror
...n

U(1)

U(1)

U(1)

U(1)

(4.2)
which appeared in [13]. Comparing (4.1) and (4.2) we see that the only difference in the
mirror quivers is the U(n− 1) connected to a U(1) with n links exploded into a bouquet of

9Note that we can only reach such a Higgs phase, when there is complete Higgsing. Otherwise there are
always some D3 branes suspended between NS5 branes. See appendix B for more details.

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
0
6
1

n U(1)s. As pointed out in previous sections, regardless of the choice of U/SU groups, the
U(Ni) gauge nodes with 1 ≤ Ni ≤ n − 1, in the mirror theory remain the same because
they correspond to D5 branes in the brane web and not NS5 branes, hence are not affected
by locking. When all gauge nodes are SU, the brane web has n independent (unlocked)
NS5 branes, each corresponding to a U(1) in the bouquet.

Starting from (4.2), we then turn some of the SU into U. The only change to the 3d
mirror is in the U(1) bouquet which is connected to the U(n − 1) node. The number of
U(1) nodes in the new bouquet and the multiplicity of the edges connected to the U(n−1)
can be determined solely from the different ways the NS5 branes are locked. To illustrate
this, it is sufficient to draw an incomplete brane diagram with only NS5 branes. When all
the gauge groups are SU, the NS5 branes are unlocked and is denoted by different colors:

n

. . .

S SSSS

(4.3)

where S stand for special unitary group in the electric quiver. For n− 1 balanced nodes in
the electric quiver, there are n NS5 branes in the brane web. The dictionary between the
figure and the electric quiver is as follows. For adjacent NS5s with different/same color, a
D brane stretched between them has a special unitary/unitary gauge group, respectively.
Changing the gauge groups in the original quiver from special unitary to unitary is equiva-
lent to setting the adjacent branes to the same color. The adjacent branes are locked, hence
corresponding to a single U(1) node in the bouquet of the mirror quiver. The multiplicity
of the edge is then the number of NS5 branes that move together. This is because in the
full brane web, this number is the intersection number between the locked NS5s and the
D5 branes.

The changes in the mirror quiver are dictated soley by the arrangement of U/SU
nodes in the electric quiver. The ranks of the gauge and flavor groups are irrelevant
here. For example, if the electric quiver has a USUSUU structure (where U/S stand for
unitary/special unitary group, respectively), then the NS5 branes takes the form:

UU USSU

(4.4)
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The mirror quiver has the following bouquet:

111

(4.5)

where the rest of the quiver remains the same. Notice that the order of the links with mul-
tiplicities (triple, double, double) in (4.5) is in reverse to the multiplicities read from (4.4).
This order reversal is just to be consistent with the way the brane webs are drawn through-
out this paper. The reverse order does not make a difference here since all gauge nodes
are balanced. However, this becomes important below when there are overbalanced nodes.
We can illustrate this with T (SU(7)) with a particular choice of U/SU:

U(1) SU(2) U(3) SU(4) U(5) U(6) 7

3d mirror
6 5 4 3 2 1

111

(4.6)
For T (SU(n)) theories, we can easily write down the prescription for any general U/SU
combination:

a1 − 1 a2 − 1 ak−1 − 1

n
U U U S U U S U U S U S

a3 − 1 ak − 1

U U

(4.7)
where ai − 1 counts the number of unitary nodes in between neighboring special unitary
nodes such that

k∑
i=1

ai = n (4.8)

and the gauge node starts with (U or SU)(1), (U or SU)(2), . . . , (U or SU)(n − 1). The
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mirror quiver takes the following form:

1 2 3 n−1

a1
a2 a3

ak−1

ak

1 1

1

1

1

(4.9)

Linear quiver where all gauge nodes are balanced. A linear quiver where all k
gauge nodes are unitary and balanced has a 3d mirror with only one SU(k+1) flavor node.
Written as an unframed quiver, this means there is a U(1) gauge group connected to one
of the other gauge groups with k + 1 links. This is because the Coulomb branch global
symmetry of an electric theory with k consecutive balanced nodes is SU(k+ 1). The Higgs
branch global symmetry of the mirror theory is SU(k + 1) as well, which translates to a
single flavor node.10 If k unitary gauge nodes are replaced with special unitary nodes, then
the single flavor node in the mirror will become a bouquet of k U(1)s with multiplicities
ai such that ∑k

i ai = n. The procedure described above in this subsection can then be
straightforwardly applied to any linear quiver where all gauge nodes are balanced. For
example, consider the following balanced quiver and its mirror:

U(3) U(3)
3d mirror 1 2 3 2 1U(3) U(3) U(3)

33

6

1

(4.10)
and when all gauge nodes are SU:11

SU(3) SU(3)
3d mirror 1 2 3 2 1SU(3) SU(3) SU(3)

33 1 1 1 1 1 1

(4.11)

10Recall, the global symmetry of the Coulomb branch can be read off from the number of balanced nodes
in the quiver. The global symmetry of the Higgs branch is the same as the flavor symmetry.

11The quiver on the right is also the 3d mirror of the A2 class S theory with 2 maximal and 6 minimal
punctures.
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An arbitrary selection of U/SU gives a bouquet of U(1)s connected to the U(3) with links
of different multiplicities. For instance,

U(3) SU(3)
3d mirror 12321SU(3) U(3) SU(3)

33 11 1
1

(4.12)

One or more overbalanced nodes. As mentioned above, for good linear quivers the
different combinations of U/SU only affect the way U(1) bouquets behave in the mirror.
When all gauge nodes are balanced, there is only a single bouquet. When there are one
or more overbalanced gauge nodes then there are more bouquets in the mirror. For the
remainder of this subsection, it is sufficient just to focus on the different kinds of bouquets
that can arise under different combinations of U/SU and balanced/overbalanced nodes.

A good linear quiver with only unitary gauge nodes with one or more being overbal-
anced, has a mirror quiver with more than one flavor node. Written as an unframed quiver,
this means the U(1) node connects to several other gauge nodes. Let us start with a linear
theory with gauge nodes USUSUU where the cyan node is overbalanced. Once again, the
rank of the gauge nodes and the flavor nodes do not affect the results. The configuration
of NS5 branes takes the form:

S SU U U U

(4.13)

It is now important to pay attention to the interval between the two blue NS branes. This
is now an additional information beyond the color coding of the NS5s that needs to be
taken into consideration. The number of gauge nodes in the mirror theory that have U(1)
bouquets is u+1 where u is the number of overbalanced nodes in the electric quiver. Here,
we have two bouquets in the mirror quiver. The novelty compared to the all balanced case
is that the U(1) nodes in the bouquet may have edges connected to more than one gauge
node. For (4.13) the mirror quiver always has the following bouquets:

111

(4.14)
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Depending on the ranks of the gauge groups and flavor groups in the electric theory, there
can be many gauge nodes between the two unmarked nodes in (4.14) but they will not
have any links to the three U(1)s. In other words, they won’t have any U(1) bouquets
irrespective of the U/SU combination in the electric quiver.

Next up, we place two unbalanced unitary nodes next to each other. For a quiver with
USUUUU , the NS5 configuration is:

SU U U UU

(4.15)

Following the same set of rules, there are three gauge nodes in the mirror with bouquets.
The mirror quiver has the structure:

11

(4.16)

Unbalanced special unitary gauge group. If we look at USSSUU where the over-
balanced node is now special unitary, the NS5s read:

SU S U US

(4.17)

Like before, the special unitary node means the nearby NS5 branes will move independently
from each other, yielding a mirror quiver with the following bouquets:

111 1

(4.18)

Therefore, an unbalanced special unitary node results in the two U(1) nodes being con-
nected to two separate gauge nodes.
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Generalization. In general, the procedure of finding the mirror pair of a good linear
quiver is the following:

1. Set all the gauge nodes in the electric quiver to be unitary. This is now a T σρ (SU(n))
quiver whose mirror quiver is T ρσ (U(n)) and can be easily obtained following [12, 16].

2. Switch all the U nodes in the electric quiver to SU which translates to exploding all
the U(Ni) flavor nodes in the mirror into bouquets of Ni U(1)s.

3. Identify which gauge groups in the electric quiver are overbalanced.

4. Draw the incomplete brane configurations introduced above with only NS5 branes
and alter the bouquets depending on the U/SU and balanced/overbalanced conditions
outlined above. This reproduces the mirror quiver of the mixed U/SU electric theory.

Reverse algorithm. To reiterate, the procedure above is completely included in the
algorithm in section 3. Nevertheless, working with only linear electric quivers that are
good allows us to simplify the algorithm immensely using incomplete brane configurations
with only NS5s. Another advantage is that the algorithm for a good linear quiver can be
reversed: given a quiver, one can decide whether it is the mirror of a good linear quiver,
and if so we can find it.

1. The reverse algorithm only works if all the gauge groups are either balanced or
overbalanced (we are now talking about the mirror quiver but this still needs to be
true). Look for a set of U(1) gauge nodes, each not connected to any other in that
set, such that ungauging all of them (i.e turning U(1) gauge groups into U(1) flavors)
produces a framed linear quiver with only multiplicity 1 links. If this is not possible,
i.e. (a) the remaining gauge groups do not form a linear quiver, or (b) there are
multiple links between the remaining gauge groups, then there is no mirror that is a
good linear quiver and the algorithm stops here.12

2. Whenever multiple U(1) flavor nodes are attached to a single gauge node they should
be aggregated into a single U(k) flavor, taking account of linking multiplicities.

3. The resulting quiver will be a linear chain of unitary gauge nodes with flavors. If it
is a good linear quiver, then it is a T ρσ (SU(n)) theory. The mirror theory T σρ (SU(n))
is straightforward to obtain once the quiver is expressed using partitions (n, ρ, σ).
T σρ (SU(n)) is identical to the desired electric quiver under the reverse algorithm, but
with all its gauge groups set to unitary. Therefore, the next step is to figure out
which arrangement of U/SU nodes in T σρ (SU(n)) will reproduce our mirror quiver
under the forward algorithm.

12If there are links between two U(1)s with multiplicity k > 0, then ungauging both of them gives rise to

1
k

1 . If such a feature arises when creating a linear quiver, the electric quiver will be an ugly/bad
quiver and the reverse algorithm will not work. Another way to think about this is that the information
contained in the links between the U(1)s is lost after the ungauging.
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4. Return to the mirror quiver in the beginning but highlight the gauge nodes that form
the linear chain in step 1. The U(1)s attached to this chain will be the bouquets.
This brings the quiver into a familiar form which we see throughout the paper. By
studying how the bouquets connect to the rest of the quiver, we can reconstruct the
incomplete brane diagram where the number of NS5s is equal to the total number
of links to the U(1)s in the bouquets. With the incomplete brane diagram, we can
now identify which of the gauge groups in the electric quiver are unitary or special
unitary. Replacing the electric quiver in step 3 with the correct U/SU arrangement
recovers the electric quiver.

We demonstrate this with the following example:

3 6 5 2 4 4

1 1 1 1

(4.19)

Step 1–2: Ungauge the U(1)s until we have a linear quiver without links with multiplicity:

3 6 5 2 4 4

3 4 4 1 2 4

(4.20)

Step 3. Eq. (4.20) is a linear quiver where all gauge nodes are unitary and are either
balanced or overbalanced and thus a T ρσ (SU(N)) theory. The 3d mirror (which can be
obtained by following [12, 16]) is:

U(1) U(2) U(3) U(4) U(3) U(2) U(2) U(3) U(4) U(5) U(5) U(6) U(5) U(4) U(3) U(2) U(1)

3 1 2 1

(4.21)

Step 4: From the structure of the four bouquets in (4.19), we read off the following incom-
plete brane diagram with only NS5s:

UUUSUUUUUSU US UU U U

(4.22)
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This information specifies the U/SU nodes in (4.21) that makes it the electric quiver
of (4.19):

U(1) SU(2) U(3) U(4) U(3) U(2) SU(2) U(3) U(4) U(5) U(5) U(6) SU(5) U(4) U(3) U(2) U(1)

3 1 2 1

(4.23)

As a consistency check, the position of the overbalanced nodes (cyan) predicted in (4.22)
matches with those in (4.23). Eq. (4.23) is indeed the 3d mirror of (4.19) which can now
be checked with the presented algorithm.

4.2 Some underbalanced nodes

The Higgs branch of a 3d N = 4 quiver where all gauge nodes are either balanced or
overbalanced is a single cone. If one or more gauge groups are underbalanced, the Higgs
branch could be the union of several cones as first observed for SQCD in [17]. As a result,
we have one magnetic quiver for each of the cones. The concept of 3d mirror pairs is ill
defined in this case and we will therefore only speak of magnetic quivers.

The multitude of hyper-Kähler cones and hence magnetic quivers come from inequiv-
alent choices of maximal decomposition of our brane web into subwebs [11]. Consider the
following quiver:

SU(5)SU(5)

2 3

(4.24)

We see that both gauge nodes are underbalanced. When drawing the brane web, we follow
the convention of the algorithm in section 3 and move all the D7 branes to the left:

1 2 4 6 8 8

[5,1]

[0,1][0,1][0,1]

[0,1] [3,1]

5 (4.25)

The brane web has four inequivalent maximal decompositions, each giving rise to a mag-
netic quiver, listed in the first row of table 7. (This statement, and subsequent statements
in this section, can be obtained immediately using the attached code). An immediate
observation is that the subwebs associated with NS5s now have non-trivial intersection
number between them. In other words, the bouquets of U(1) nodes in the magnetic quiver
can now have edges between them, which is something we do not observe in good linear
quivers where all nodes are balanced or overbalanced.
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The next step is to turn the SU(5)s into U(5)s by locking the branes. In contrast to
good quivers where locking makes minor changes to the magnetic quivers, for bad quivers
it can also leave the magnetic quiver unchanged or it can change the structure drastically.

As already stated in this section, for a good linear quiver there is always a set of HW
transitions such that there is an unbound state of D5 and NS5 branes. As a corollary,
the NS5 branes move independently from each other. If the electric quiver contains un-
derbalanced nodes, this no longer holds and there may be bound states one cannot get rid
of. This, in return, can allow for more than one maximal decomposition with some of the
5-branes forced to move together. Note, we are not doing any locking here, but this is a
natural feature of a maximal decomposition of a brane web, even when all the gauge nodes
in the electric quiver are SU. In particular, for an SQCD electric quiver, the hyper-Kähler
cone where all the NS5 move independently from each other is called the baryonic branch.
If some of the NS5 move together, it is the mesonic branch. In table 7, the baryonic cone is
given by Magnetic Quiver 4 in the first row. The remaining magnetic quivers all have some
or all of the NS5 branes moving together. As a result, if the NS5 branes that are already
moving together are locked when going from SU to U, the resulting magnetic quiver will
stay the same. For example, Magnetic Quiver 1 remains the same when the second SU(5)
in the electric quiver is turned to U(5).

In the case of good linear quivers, we have seen that changing nodes in the electric
quiver from SU to U simply translates to merging some of the U(1)s in the bouquet. For
a quiver with bad nodes, the s-rule plays a crucial role which can result in a complete
change to the structure of the magnetic quiver. For example, Magnetic Quiver 3 changes
drastically when the second SU(5) in the electric quiver is changed to U(5).

When all the SU nodes are changed to U in the electric quiver, all four magnetic
quivers become identical. In other words, the four hyper-Kähler cones coalesce into a
single cone. This is expected as the Higgs branch of a bad quiver with only unitary gauge
nodes should be a single hyper-Kähler cone as observed in [10]. This is shown in the fourth
line of table 7. As a consistency check, the Higgs branch of any linear bad quiver with only
unitary gauge nodes is equivalent to the Higgs branch of a good quiver. The good quiver
can be obtained through a set of operations outlined in [18] and reviewed in appendix B.
Basically, assuming vanishing FI parameters, a bad node of U(k) with Nf flavor is replaced
with U(bNf/2c). This process is repeated until all gauge nodes are good. For our electric
quiver, the following equivalence in Higgs branches hold:

U(5)U(5)

2 3

H

U(2)U(2)

2 3

H= = C
1 2 2 1

2
(4.26)

where the right side is the known 3d mirror of the good theory in the middle.
For good linear quivers with different combinations of U/SU nodes, we can check the

conjectured mirror pairs through explicit Hilbert series computations. For electric quivers
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Electric Quiver Magnetic Quiver 1 Magnetic Quiver 2 Magnetic Quiver 3 Magnetic Quiver 4

SU(5)SU(5)

2 3

1 1 1

8 2

1 2 2 1

3
1 1 1

1
11

7
23

5

1

11

U(5)SU(5)

2 3

1 1 1

8 2

1 2 2 1

2

1

SU(5)U(5)

2 3

1 2 2 1

2

1
1

1
11

7

U(5)U(5)

2 3

1 2 2 1

2

1

Table 7. The first row displays the electric theory and the four corresponding magnetic quivers. The next few rows show how the magnetic quivers
change as the SU nodes in the electric theory are turned into U nodes. We observe how distinct subdivisions of the brane web (and hence their
magnetic quivers) become identical when some of the SU nodes are turned to U nodes. The light blue colored box indicates the same magnetic
quiver.
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with bad nodes, however, computational difficulties prevent us from doing the same explicit
checks. Nevertheless, we find consistency when comparing to the magnetic quivers found
using other methods.

4.3 3d mirror symmetry vs incomplete Higgsing

In some cases, the algorithm produces a 3d mirror pair. A necessary (but not sufficient)
condition for this is that all the nodes satisfy the 3d mirror condition in table 8. Another
necessary condition for this to happen is that a single magnetic quiver is produced, but
this is again not a sufficient condition. In many cases, the gauge groups in the linear U/SU
quivers can not be completely Higgsed using the available matter content. In this case, it
is not possible to have a mirror pair, even if only one magnetic quiver describes the Higgs
branch, as the Higgs branch is entirely contained in a larger mixed branch. We illustrate
these phenomena with several examples.

Example. Consider the pair of quivers

SU(2) U(2) SU(2)

1 2 2

←→

1
2

2

1
1

1

1

(4.27)

where the right hand side is the magnetic quiver for the left hand side produced by the
algorithm in section 3. The necessary conditions of table 8 are met for this to be a 3d
mirror pair, and indeed this is confirmed with a Hilbert series computation. The Coulomb
branch unrefined Hilbert series of the magnetic quiver on the right hand side of (4.27) is:

C(4.27) =


1 + 3t+ 14t2 + 51t3 + 170t4 + 511t5 + 1424t6 + 3621t7 + 8555t8 + 18760t9

+38410t10 + 73586t11 + 132502t12 + 224680t13 + 359934t14 + 545730t15

+784778t16 + 1071828t17 + 1392469t18 + 1722351t19 + 2030391t20 + 2282454t21

+2448132t22 + 2505814t23 + . . . palindromic · · ·+ t46


(1− t)3(1− t2)4(1− t3)7(1− t4)4(1− t5)4

(4.28)
The Higgs branch Hilbert series of the magnetic quiver is:

H(4.27) =

(
1 + t2 + 7t4 + 15t6 + 37t8 + 59t10 + 97t12 + 117t14 + 134t16 + 117t18

+97t20 + 59t22 + 37t24 + 15t26 + 7t28 + t30 + t32

)
(1− t2)(1− t4)3(1− t6)3(1− t8)

(4.29)
These are equal to the Higgs / Coulomb branches Hilbert series of the left hand side
of (4.27). Therefore one can claim that (4.27) is a 3d mirror pair.
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SQCD Condition 3d MS # of Cones HB = HV Complete Higgsing

U(k)

N N ≥ 2k 3 1 3 3

N = 2k − 1 (3) 1 3 7

N ≤ 2k − 2 7 1 3 7

SU(k)

N
N ≥ 2k − 1 3 1 3 3

N = 2k − 2 7 2 3 3

k ≤ N ≤ 2k − 3 7 2 7 7

N < k 7 1 7 7

Table 8. Summary of some properties of SQCD theories with unitary or special unitary gauge
group. The unitary case is discussed e.g. in [18], and appendix B. The special unitary case is taken
from [10]. The 3d mirror of U(k) with 2k − 1 fundamental hypers consists of its magnetic quiver
plus a free hyper, hence the (3) in the table. HB denotes the (possibly non-reduced) Higgs branch,
while HV denotes the Higgs variety.

Example. Consider now the very simple example

U(3)

4

−→

1 2 1

1
(4.30)

The right-hand side quiver is a magnetic quiver for the Higgs branch of the left-hand side
quiver. However the quivers do not form a mirror pair. Indeed, as explained in detail in
appendix B, the U(3) gauge group can not be fully Higgsed. On a generic point of the Higgs
branch there is a residual U(1) gauge symmetry. Therefore the Higgs branch is a subvariety
of a (quaternionic five dimensional) mixed branch,13 sometimes called Kibble branch [19],
or enhanced Higgs branch [20] as a dual notion to the enhanced Coulomb branch [21]. The
Higgs part of this branch has quaternionic dimension 3× 4− (33− 12) = 4 (see (B.12)). In
summary,

dimHH


U(3)

4
 = 4 = dimH C


1 2 1

2
 (4.31)

but

dimH C


U(3)

4
 = 3 6= 2 = dimHH


1 2 1

2
 . (4.32)

13Whenever there is incomplete Higgsing, the Higgs branch is included in such a mixed branch. The
Coulomb part of this mixed branch is the Coulomb branch of the remaining gauge theory.
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Running the algorithm iteratively we find

U(3)

4

−→

1 2 1

2
−→

U(2)

4

−→

1 2 1

2
−→ . . . (4.33)

The cycle on which the algorithm stabilizes is a well-known mirror pair.
Note that adding free hypers on the right-hand side in (4.30) does not restore mirror

symmetry, as this does not survive turning on Fayet-Iliopoulos (FI) parameters — see
appendix B for details on this point.

The effects discussed in table 8 concern SQCD theories, i.e. theories with a single gauge
group (unitary or special unitary). When considering a quiver with several gauge nodes, all
the effects shown in the table can occur, but it is much more difficult to diagnose exactly
when they occur: in particular, it is not enough to check the bounds of table 8 at each
gauge node to guarantee that there is a single cone, or that there is complete Higgsing, etc.

Example. To illustrate this point, consider the quiver

SU(2) SU(3) SU(2)

1

(4.34)

All the gauge nodes satisfy the equality Nf = 2Nc − 1, i.e. the balanced condition for SU
nodes, but the algorithm of section 3 shows that the Higgs branch is made up of two cones,
furthermore the theory is bad, as can be seen by the divergence of the monopole formula.

4.4 Argyres-Douglas theories

The Higgs branch of certain Argyres-Douglas (AD) theories has been argued to coincide
with the Higgs branch of U/SU linear quivers where one or more nodes have negative
balance [6–9]. These linear quivers can be used in the algorithm presented in section 3 in
order to produce magnetic quivers for the Higgs branches of the AD theories. The results
are consistent with the computations given in [6–9], which use different techniques.

As an illustration, let us consider the D14(SU(8)) theory, studied in ([6], Example 4).
We neglect free (twisted) hypermultiplets in this discussion. There, the Higgs branch of
D14(SU(8)) is proposed to be the Higgs branch of the quiver

U(7) U(6) U(6) U(5) U(5) U(4) SU(4) U(3) U(2) U(2) U(1) U(1)

8

. (4.35)
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Inputting this quiver in our algorithm, yields the magnetic quiver

1 2 3 4 5 6 7

1

1

12

4

4

, (4.36)

which agrees with ([7], (3.63)).
The theory D14(SU(8)) can be decomposed into a “generalized” quiver, or “quiver-

ine” [6, 22], which contains other Argyres-Douglas theories [6]:

D14(SU(8)) ∼= D7(8, 4)− SU(4)−D7(SU(4)) , (4.37)

where the right hand side denotes the gauging of a diagonal SU(4) flavour symmetry of
the D7(8, 4) and D7(SU(4)) theories. Magnetic quivers for the D7(8, 4) theory and the
D7(SU(4)) theory can be computed similarly to the case before, yielding the quiver on
top of figure 4 and the quiver for the nilpotent cone of SL(4), respectively. In figure 4 we
comment on the magnetic quiver side of the SU(4) gauging process.

4.5 Beyond linear quivers

We end this section with an example outside the scope of this paper, namely a non-linear
quiver (i.e. the gauge nodes do not form an A-type Dynkin diagram).

We consider the following electric quiver, where the gauge nodes form a D4 Dynkin
diagram:

1 U(2) U(3) U(2) 1

U(2)

1

(4.38)

It is known that this quiver has a 3d mirror quiver

U(1) USp(4) D4 , (4.39)

where the U(1) can be viewed as an SO(2). Both of these quivers can be obtained from a
NS5-D3-D5 system in the presence of an ON− plane, see e.g. [23].

Let us now turn all U nodes in (4.38) into SU nodes, yielding

1 SU(2)SU(3)SU(2) 1

SU(2)

1

(4.40)
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1 2 3 4 5 6 7

1

4 3 2 1

3

4

1 2 3 14

SU(4)

1 2 3 4 5 6 7

1

1

4× 3

4

4× 1

MQ (D7(8, 4))

MQ (D7(SU(4)))

MQ (D14(SU(8))) = MQ (D7(8, 4)− SU(4)−D7(SU(4)))

gauge SU(4)

Figure 4. Magnetic quivers (MQ) involved in gauging D7(8, 4) and D7(SU(4)) to D7(8, 4) −
SU(4)−D7(SU(4)) ∼= D14(SU(8)). The SU(4) gauging seems to be realized in the following way as
an action on the magnetic quivers: The SU(4) which is gauged is the diagonal subgroup of the SU(4)
global symmetries stemming from the balanced nodes highlighted in green in both original magnetic
quivers. These two ‘tails’ are destroyed by gauging the SU(4). Furthermore the red U(4) node,
connected to the tail in the first quiver, and the blue U(1) node, connected to the tail in the second
quiver, are identified. Since gcd(4, 1) = 1 the resulting purple node should be a U(1). However the
nodes connected to the U(4) in the top quiver should keep their balance, hence some edge numbers
are multiplied by 4, resulting in the quiver at the bottom of the figure, which matches (4.36). Note
that free (twisted) hypermultiplets are neglected in those computations. See ([7], section 3.5) for
more information.

By ‘exploding’14 the flavour node [13, 24], we conjecture the magnetic quiver of (4.40)
takes the form:

USp(4)

SO(2) SO(2)

SO(2)

SO(2) SO(2)

(4.41)

The unrefined Coulomb branch Hilbert series of (4.41), computed using the prescription

14Explosion denotes the inverse process of hyper-Kähler implosion.
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of [25], matches that of the Higgs branch of (4.40). Both are equal to(
1 + 47t4 + 72t6 + 526t8 + 792t10 + 2065t12

+2304t14 + 3218t16 + . . . palindromic · · ·+ t32

)
(1− t2)6(1− t4)7(1− t6) (4.42)

Conversely, the unrefined Higgs branch Hilbert series of (4.41) matches with the unrefined
Coulomb branch Hilbert series of (4.40), both being equal to(

1− 4t2 + 16t4 − 11t6 + 29t8 + 31t10 + 12t12

+31t14 + 29t16 − 11t18 + 16t20 − 4t22 + t24

)
(1− t2)4 (1− t4)5 (1− t6)

. (4.43)

This suggests, that (4.40) and (4.41) form a mirror pair. We do not know a unitary
quiver with the same moduli space as (4.41), suggesting that in general for a non-linear
quiver with mixed U and SU nodes it is unlikely that unitary, simply laced magnetic
quivers can be found. It would be interesting to understand under which circumstances
orthosymplectic magnetic quivers are available; and whether other types of quivers (e.g.
non simply laced, wreathed) can make an appearance in that context. Note that both (4.38)
and (4.40) could also be obtained from the E6 quiver

U(1) U(2) U(3) U(2) U(1)

U(2)

1

, (4.44)

whose Coulomb branch is the closure of the minimal nilpotent orbit of E6, and Higgs
branch is C2/ΓE6 , by trading every unitary node to a special unitary node. The 3d mirror
of this E6 quiver is the 3d reduction of the E6 rank 1 theory [26, 27]. This theory has no
representation as a quiver. This strongly suggests, that not every theory has a magnetic
quiver (orthosymplectic, non-simply laced or otherwise) and that one has to turn to other
objects, such as the quiverines of [6, 22]. We leave these questions for future exploration.
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A The embedding HSU ⊃ HU/SU

A.1 The subvariety point of view

In this work we use the fact that
HSU ⊃ HU/SU (A.1)

in order to motivate the web locking. This equation deserves some comments. For simplic-
ity we will restrict ourselves to studying SQCD theories, i.e. linear quivers with a single
gauge node. Let us start with

SU(k)

N ≥ 2k

(A.2)

which has the magnetic quiver

1
· · ·

k

1

· · ·
k

1

· · ·
1

N − 1 (A.3)

In this case the Higgs branch is the Higgs variety, as there are no nilpotent operators in
the chiral ring. The global symmetry of the Higgs branch is SU(N) × U(1)B, the U(1)B
factor being the baryonic symmetry.

Following the conventions of [10, 17] the generators of the chiral ring are the N × N
meson matrix M of degree 2, and the baryonic generators Bi1,...,ik and B̃i1,...,ik of degree
k. The relations are

0 =(?B)B̃ − ?(Mk)
0 =M · (?B)
0 =(?B̃) ·M

0 =
(
M − 1

k
Tr(M)1N

)
·B = B̃ ·

(
M − 1

k
Tr(M)1N

)
0 =M ·

(
M − 1

k
Tr(M)1N

)
0 =B[i1i2...ikBj1]j2...jk

0 =B̃[i1i2...ikB̃j1]j2...jk .

(A.4)

We can compare this to the theory

U(k)

N ≥ 2k

(A.5)
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with the same k and N as before. The equations to describe its Higgs branch are much
simpler. We only have the mesonic generators M , and the relations:

M2 = 0 , Tr(M) = 0 , rank(M) ≤ k . (A.6)

The U theory is obtained from the SU theory by gauging the U(1)B symmetry. This means
that the two Higgs branches are related by a hyper-Kähler quotient:

HU = HSU///U(1)B . (A.7)

This is visible on the magnetic quiver side as follows: the two U(1) gauge nodes at the top
of (A.3) are combined into a single U(1) by the quotient. We obtain the magnetic quiver
of the U theory:

1
· · ·

k
· · ·

k
· · ·

1

1

N − 1 . (A.8)
Equation (A.7) however does not immediately imply equation (A.1). We can see that HU
is a subvariety of HSU by adding the relations

Tr(M) = 0, B = 0 and B̃ = 0 (A.9)

to those in (A.4). This is in agreement with (A.7) as B and B̃ are exactly the generators
of HSU which are charged under U(1)B, and the first equation Tr(M) = 0 simply prevents
the appearance of nilpotent operators.

The case k ≤ N < 2k works essentially along the same lines. In this case there are
two magnetic quivers for the SU theory, additionally there are nilpotent operators in the
chiral ring. However nothing changes in the procedure of going from HSU to HU.

For N < k there are no baryonic generators for HSU and the U(1)B symmetry is carried
by nilpotent operators alone. In this case one only needs to add the condition that the
meson matrix is traceless in order to obtain HU.

A.2 A comment on Hasse diagrams

To each Higgs branch discussed in this paper, one can associate a Hasse diagram, depicting
the partial order of symplectic leaves and elementary transitions between them. It should
be noted that the embedding (A.1) may or may not translate into an inclusion of the
respective Hasse diagrams.

Example. Consider the two theories depicted below, with the Hasse diagram of their
Higgs branches:15

SU(3)

4

a3

a1 a1

U(3)

4

a3

a1
(A.10)

15The FI parameter for the U(3) theory is taken to be vanishing, see appendix B for more on this point.
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The theory on the left has a mesonic branch and a baryonic branch, intersecting along a
quaternionic dimension 3 locus. When gauging the baryonic U(1), the baryonic branch is
removed, and the mesonic branch is unaffected, as can be seen in the Hasse diagram.

Consider now instead the two theories along with their Higgs branch Hasse diagrams

SU(2)

4
d4

U(2)

4

a3

a1
(A.11)

In this case, gauging the baryonic U(1) symmetry completely changes the structure of the
Hasse diagram. Note in particular that the Higgs branch of the SU(2) theory has only
a singularity at the origin, while the U(2) theory develops a non-trivial singular locus
(corresponding to the fact that U(2) can be Higgsed to U(1)).

Hence we see that in general the Hasse diagram for HU/SU does not have to be a
subdiagram of the Hasse diagram of HSU, although it can be in some specific cases.

B A comment on bad theories

In this paper we compute magnetic quivers of 3d N = 4 good, ugly and bad theories given
by linear quivers with unitary or special unitary gauge nodes. The good theories enjoy the
following properties:

1. Every leaf closure in the moduli space is conical if masses and FI parameters are
turned off, and there is a unique point in the moduli space where the theory flows to
a fully interacting SCFT in the IR.

2. The theory has a 3d mirror with the same moduli space, albeit the names Coulomb
and Higgs are exchanged as well as mass and FI.

If the theory is bad, however, both of these statements are untrue in general. In
the following we summarize the complications of bad theories and their solution follow-
ing [18, 28], using the brane systems of [2]. Our conventions for depicting brane systems
are summarized in figure 5.

For simplicity we only consider U(k) SQCD, and illustrate through examples.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 x x x x x x
D3 x x x x
D5 x x x x x x

(x6)

(x3, x4, x5)

(x7, x8, x9)

NS5 NS5

origin k D3

N D5

. . .
k

N

(1)

(2)

Figure 5. (1) The Type IIB set-up: the ‘x’ mark the spacetime directions spanned by the various
branes. (2) Depiction of the brane system for U(k) with N flavors.

U(3) with 6 flavors. As a warm-up we start with a good theory. The brane system for
U(3) with 6 flavors at the origin of the moduli space is:

(B.1)

We can move to the Coulomb branch of the theory by moving all D3 branes along the
NS5 branes:

(B.2)

At a generic point on the Coulomb branch the gauge group is broken to U(1)3 and all
hypers are massive.
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We can move to the Higgs branch of the theory by breaking the D3 branes into segments
(respecting the S-rule) and moving the D3 segments along the D5 branes:

(B.3)

At a generic point on the Higgs branch the gauge group is completely broken and we are
left with nine massless free hypers.

Turning on all mass parameters (dashed lines), we can see that the Higgs branch is
lifted, and the Coulomb branch is resolved:

(B.4)

Similarly, turning on the FI parameter (dashed line), we can see that the Coulomb
branch is lifted and the Higgs branch is resolved:

(B.5)

Let us now focus on the Higgs phase when masses and FI are off. The magnetic quiver,
which is the 3d mirror of the theory, can be read off from the system after doing a few HW
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transitions from (B.3) annihilating all D3 branes stuck between a D5 and an NS5:

Qm =
1 2 3 2 1

2

(B.6)
One can straight forwardly convince oneself that the moduli space of the 3d mirror is indeed
the same as that of U(3) with 6 flavors, and turning on masses on one side corresponds to
turning on FI parameters on the other side and vice versa.

The Hasse diagram of the full moduli space of U(3) with 6 flavors can be obtained
straightforwardly, e.g. from the brane system, or using different methods [15, 29–31]. We
use the conventions of [31]:

0 0

0 5

0 8

0 9

1 0

1 5

1 8

2 0

2 53 0

a5

a3

a1

a5

a3a5

A1

A3

A5

A1

A3 A1

(B.7)

The lowest dimensional leaf is of dimension zero, the origin of the moduli space. The
Hasse diagram of the 3d mirror is obtained by exchanging the red and blue colors.

U(3) with 4 flavors. Let us now turn to a bad theory. We again pick the gauge group
U(3), but this time we only have 4 flavors. Before turning to branes let us make a few
observations:

1. The theory suffers from so called incomplete Higgsing, which means that even on a
generic point on the Higgs branch the gauge group is not completely broken. The
gauge group can only be broken to a U(1) theory. This means that on a generic point
on the Higgs branch there are still Coulomb directions in the full moduli space.

2. The Coulomb branch is not a cone. It can be viewed as the Coulomb branch of pure
U(1) where at each point there is a cone which is the Coulomb branch of U(2) with
4 flavors. In more mathematical terms, the Coulomb branch of U(3) with 4 flavors
is the generalized affine Grassmannian slice W [4]

[−2] of SL(2,C) [32].
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The brane system for U(3) with 4 flavors is:

A B

(B.8)

where we labelled the two NS5 branes for reasons which will become apparent later. Just
like before we can move to the Coulomb branch of the theory by moving all D3 branes
along the NS5 branes:

A B

(B.9)

At a generic point on the Coulomb branch the gauge group is broken to U(1)3 and all
hypers are massive.

However when attempting to move to the Higgs branch, we can only break two of the
D3 branes into segments which we can move along the D5 branes. The remaining D3 brane
can move along a Coulomb direction:

A B

(B.10)

We can read a magnetic quiver for the subsystem of branes expressing the Higgs branch
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after doing a HW transition:

A B

Qm =
1 2 1

2

(B.11)

This is the magnetic quiver (also 3d mirror) of U(2) with 4 flavors.
The Hasse diagram for the full moduli space of U(3) with 4 flavors is:

1 0

1 3

1 4

2 0

2 33 0

a3

a1a3

A1

A3 A1

(B.12)

where the bottom leaf is of dimension 1, it is the Coulomb branch of pure U(1).
In comparison, the Hasse diagram of U(2) with 4 flavors is:

0 0

0 3

0 4

1 0

1 32 0

a3

a1a3

A1

A3 A1

(B.13)

where the bottom leaf is zero dimensional. The Hasse diagram of the magnetic quiver of
U(3) with 4 flavors is obtained from the Hasse diagram (B.13) by exchanging red and blue
colors.

Now we can turn on the FI parameter and study the resolved Higgs branch. In order
to do this we can leave no D3 brane suspended between the two NS5:

A
B

(B.14)
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When we do the HW transitions in order to annihilate all D3 branes suspended between
a D5 and an NS5 we have to change the order along the x6 direction of the NS5 branes
(A↔B). Now we can find the magnetic quiver for this resolved Higgs branch (keeping in
mind that the mass parameter of the magnetic quiver is the FI parameter of the original
quiver).

A
B

Qm =
1 1 1

1 1

(B.15)

This is the magnetic quiver / 3d mirror of U(1) with 4 flavors.
To summarize, we find the following magnetic quivers for U(3) with 4 flavors:

Theory Magnetic Quivers
FI= 0 FI 6= 0

U(3)

4

1 2 1

2

1 1 1

1 1

(B.16)

Clearly the two magnetic quivers do not agree. Hence there is no clear way to define a
3d mirror of U(3) with 4 flavors, even if the mirror theory would be supplemented by free
hypers. In this paper we only provide the magnetic quivers in the case where FI parameters
are turned off.

We can make the following statements about the magnetic quivers (Higgs branches)
of U(k) SQCD: Let k ≤ N < 2k,

• if the FI parameter is turned off, then the magnetic quiver for U(k) with N flavors
is that of U(bN/2c) with N flavors. The smooth bottom leaf in the moduli space is
the Coulomb branch of U(k− bN/2c) with 0 flavors if N even and 1 flavor if N odd.
This is the part of the gauge theory which remains massless on a generic point in the
Higgs branch.

• if the FI parameter is turned on, then the magnetic quiver for U(k) with N flavors is
that of U(N − k) with N flavors. The Coulomb branch is lifted by the FI parameter.

If N < k, then no FI parameter can be turned on if supersymmetry is not to be broken.
Other than that this case behaves just like before.
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All of this is consistent with quiver subtraction which produces the Coulomb branch
Hasse diagram. For N odd and N even we get respectively:

...

k

N

k − 1

N − 2

k − 2

N − 4

k − bN/2c+ 1

3

k − bN/2c

1

AN−1

AN−3

A2

...

k

N

k − 1

N − 2

k − 2

N − 4

k −N/2 + 1

2

k −N/2

AN−1

AN−3

A1

(B.17)

This is in agreement with the Hasse diagram of generalized affine Grassmannian
slices ([33], (1.1)). The theory which is left after quiver subtraction in (B.17) is precisely
what remains on a generic point of the Higgs branch.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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