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Abstract

We propose a projection-based monolithic model order reduction (MOR) procedure for a class of problems
in nonlinear mechanics with internal variables. The work is is motivated by applications to thermo-hydro-
mechanical (THM) systems for radioactive waste disposal. THM equations model the behaviour of tem-
perature, pore water pressure and solid displacement in the neighborhood of geological repositories, which
contain radioactive waste and are responsible for a significant thermal flux towards the Earth’s surface. We
develop an adaptive sampling strategy based on the POD-Greedy method, and we develop an element-wise
empirical quadrature hyper-reduction procedure to reduce assembling costs. We present numerical results
for a two-dimensional THM system to illustrate and validate the proposed methodology.

Keywords: parameterized partial differential equations; model order reduction; nonlinear mechanics.

1 Introduction

1.1 Model reduction for a class of models in nonlinear mechanics

The disposal and storage of high-level radioactive waste materials in geological means requires a careful assess-
ment of the long-term effects on neighboring areas. The system behaviour is well-described by time-dependent
large-scales coupled systems of partial differential equations (PDEs), which take into account the thermal, hy-
draulic and mechanical response of the geological medium. Numerical simulation of these systems is challenging
due to several difficulties: first, finite element (FE) models of the problem are highly-nonlinear, time-dependent
and high-dimensional; second, due to the uncertainty in model parameters, we need to solve the model for many
different system configurations (many-query problem). In this work, we shall devise a model-order reduction
(MOR) strategy to speed up parametric studies for radio-active waste disposal applications.

In this contribution we study a general class of nonlinear problems in structural mechanics with internal
variables. We consider the spatial variable x in the Lipschitz domain Ω ⊂ Rd with d = 2, 3, and the time
variable t in the time internal (0, Tf), where Tf is the final time. We further define the vector of parameters µ
in the compact parameter region P ⊂ RP . We introduce the state (or primary) variables U and internal (or
dependent) variables W ; we denote by X and W suitable Hilbert spaces in Ω for U and W , and we define the
space of continuous functions from (0, Tf) to X and W, C(0, Tf ;X ) and C(0, Tf ;W). Then, we introduce the
parameterised problem of interest: given µ ∈ P, find (Uµ,Wµ) ∈ C(0, Tf ;X )× C(0, Tf ;W) such that Gµ(Uµ, ∂tUµ,Wµ) = 0 in Ω× (0, Tf)

Ẇµ = Fµ(Uµ,Wµ), in Ω× (0, Tf)
(1)

with suitable initial and boundary conditions. Here, Gµ is a nonlinear second-order in space, first-order in time
differential operator that is associated with the equilibrium equations, while Fµ is a set of ordinary differential
equations (ODEs) that is associated with the constitutive laws.

Our methodology is motivated by the application to thermo-hydro-mechanical (THM) systems of the form
(1), which are widely used to model the system’s response for radio-active waste disposal applications. Ra-
dioactive material is placed in an array of horizontal boreholes (dubbed alveoli) deep underground: due to the
large temperature of the alveoli, a thermal flux is generated; the thermal flux then drives the mechanical and
hydraulic response of the medium over the course of several years. We refer to section 4 for a detailed discussion
of the considered THM model and boundary conditions.
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1.2 Objective of the work and relationship to previous works

We propose a projection-based monolithic model order reduction (MOR ) ([15, 23, 25]) technique for problems
of the form (1), with particular emphasis on THM systems. The approach is characterised by an offline/online
splitting to reduce the marginal cost, and relies on Galerkin projection to devise a reduced-order model (ROM)
for the solution coefficients. We rely on hyper-reduction to speed up the assembly of the ROM during the online
stage, and we rely on adaptive sampling to reduce the offline training costs.

The contribution of the present work is twofold. First, we propose an element-wise empirical quadrature
(EQ) procedure for problems with internal variables; second, we extend the POD-Greedy algorithm and we
propose an error indicator that is effective to drive the offline greedy search and is inexpensive to evaluate.

EQ procedures also dubbed mesh sampling and weighting have been first proposed in [9, 32, 33] and further
developed in several other works including [24]: the key feature of EQ is to recast the problem of hyper-
reduction as a sparse representation problem and then resort to state-of-the-art techniques in machine learning
and signal processing to estimate the solution to the resulting optimisation problem. Here, we rely on the
approach employed in [29], which combines the methods in [9] and [32] and relies on non-negative least-squares
to estimate the solution to the sparse representation problem. As discussed in section 3, the presence of internal
variables requires several changes to the EQ approach in [29]. We emphasise that several other hyper-reduction
techniques have been proposed in the literature including the empirical interpolation method (EIM, [1]) and its
discrete variant [8], the approach in [26], and Gappy-POD [6, 31]: a thorough comparison of state-of-the-art
hyper-reduction techniques is beyond the scope of this work.

The POD-Greedy algorithm was introduced in [14] and analysed in [12]: the approach combines proper
orthogonal decomposition (POD, [4, 2, 30]) to compress temporal trajectories with a greedy search driven by
an error indicator to explore the parameter domain. In this work, similarly to [10], we rely on a time-averaged
error indicator to drive the greedy search; furthermore, we test two different compression strategies to update
the POD basis at each greedy iteration.

We further observe that the development of online-efficient adaptive ROMs for problems of the form (1) is
extremely limited in the literature. Relevant examples include the works in [26, 22, 21], which, however, do
not consider adaptive sampling. As regards the application of MOR to THM systems, we recall the recent
contribution by Larion et al. [19]: note, however, that the work in [19] deals with a linearised THM model
without internal variables.

1.3 Outline

The outline of this paper is the following. In section 2 we briefly present the mathematical model and the
numerical discretisation for the general class of nonlinear problems in structural mechanics defined in (1). In
section 3, we present the MOR technique: to simplify the presentation, we first discuss the solution repro-
duction problem and then we extend the approach to the parametric case. Section 4 contains details of the
THM mathematical model considered in the numerical section. In section 5, we present extensive numerical
investigations for a two-dimensional THM system. In section 6, we draw some conclusions and we outline a
number of subjects of ongoing research.

2 Formulation

2.1 Notation

In this section, we omit dependence on the parameter. Given Ω ⊂ Rd, we define the triangulation {Dk}Ne

k=1,

where Ne denotes the total number of elements, the nodes {xhf
j }

Nhf
j=1 and the connectivity matrix T ∈ NNe,nlp

such that Tk,i ∈ {1, . . . , Nhf} is the index of the i-th node of the k-th element of the mesh and nlp is the

number of degrees of freedom in each element. Then, we introduce the continuous Lagrangian FE basis {ϕi}Nhf
i=1

associated with the triangulation {Dk}Ne

k=1, such that ϕi(x
hf
j ) = δi,j , and we introduce the FE space for the state

variables:
Xhf := span

{
ϕiej : i = 1, . . . , Nhf , j = 1, . . . , Deq

}
, (2)

where e1, . . . , eDeq
are the elements of the canonical basis and Deq is the number of state variables. We denote

by ‖ · ‖ =
√

(·, ·) the norm of Xhf ; furthermore, given u ∈ Xhf , we denote by u ∈ RNhf ,Deq the corresponding
vector (or matrix) of coefficients such that (u)j,` =

(
u(xhf

j )
)
`

for j = 1, . . . , Nhf and ` = 1, . . . , Deq.

In view of the MOR formulation, we introduce the elemental restriction operators Ek : RNhf → Rnlp such
that

(Eku)i,` =
(
u(xhf

Tk,i
)
)
`
, i = 1, . . . , nlp, ` = 1, . . . , Deq, k = 1, . . . , Ne. (3a)
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Furthermore, we introduce the quadrature points {xhf,q
q,k }q,k ⊂ Ω, such that xhf,q

q,k is the q-th quadrature point of

the k-th element of the mesh, with q = 1, . . . , nq, and the operators Eqd
k : RNhf → Rnq and Eqd,∇

k : RNhf → Rnq,d

such that (
Eqd
k u
)
q,`

=
(
u(xhf,q

q,k )
)
`
,
(
Eqd,∇
k u

)
q,`,j

=

(
∂

∂xj
u(xhf,q

q,k )

)
`

(3b)

where q = 1, . . . , nq, ` = 1, . . . , Deq, k = 1, . . . , Ne and j = 1, . . . , d. To shorten notation, in the following, we

further define Eqd,?
k : RNhf → Rnq,d+1 such that(

Eqd,?
k u

)
q,`,1

=
(
Eqd
k u
)
q,`
,
(
Eqd,?
k u

)
q,`,2...,d+1

=
(
Eqd,∇
k u

)
q,`,·

. (3c)

Remark 2.1. For the THM problem considered in this work, the state U contains the displacement u, the
water pressure p and the temperature T (Deq = 2+d); as discussed in the report [11], to avoid instabilities, it is
important to use polynomials of degree κ for displacement and κ−1 for pressure and temperature: as a result, we
should introduce separate restriction operators and separate FE spaces for the different components of the state.
In the main body of the paper we choose to not explicitly address this issue to simplify notation: we remark that
the extension to κ-κ− 1 discretisations is computationally tedious but methodologically straightforward.

2.2 Finite element discretisation of (1)

We introduce the time grid 0 = t(0) < t(1) < . . . < t(Jmax) = Tf such that t(j) = j∆t; we denote by {U (j)
hf }

Jmax
j=1 ⊂

Xhf the FE approximation of the state variables at each time step; on the other hand, we denote by W
(j)
hf ∈

Rnq,Ne,Dint the tensor associated with the evaluation of the internal variables at time t(j) in the quadrature
nodes: (

W
(j)
hf

)
q,k,`

=
(
W

(j)
hf (xhf,q

q,k )
)
`
, q = 1, . . . , nq, k = 1, . . . , Ne.

We further denote by Idir ⊂ {1, . . . , Nhf · Deq} the indices associated with Dirichlet boundary conditions (if

any), and we denote by g
(j)
dir ∈ R|Idir| the vector that contains the value of the solution at each Dirichlet node

at time t(j).
We state the FE discretisation of (1) as follows: for j = 1, 2, . . ., find (U

(j)
hf ,W

(j)
hf ) such that

Rhf
(
U

(j)
hf , U

(j−1)
hf , W

(j)
hf , W

(j−1)
hf , V

)
= 0, ∀V ∈ Xhf,0;

U
(j)
hf (Idir) = g

(j)
dir;(

W
(j)
hf

)
q,k,`

= Fhf
`

((
Eqd,?
k U

(j)
hf

)
q,·
,
(
Eqd,?
k U

(j−1)
hf

)
q,·
,
(
W

(j−1)
hf

)
q,k,·

)
,

q = 1, . . . , nq, k = 1, . . . , Ne, ` = 1, . . . , Dint.

(4)

where Xhf,0 := {V ∈ Xhf : V(Idir) = 0}. Note that Rhf and Fhf are the discrete counterparts of the operators
G and F in (1). Note also that the constitutive laws are stated in the quadrature points of the mesh and the
internal fields should be computed in the quadrature points of the mesh.

At each time step, following [11], we solve (4) for U
(j)
hf using a Newton method with line search; the method

requires the computation of the Jacobian and the solution to a coupled linear system of size Nhf ·Deq. Since
the underlying problem is second-order in space and first-order in time, the residual Rhf can be written as the
sum of local contributions:

Rhf
(
U(j), U(j−1), W(j), W(j−1), V

)
=

Ne∑
k=1

rhf
k

(
EkU

(j), EkU
(j−1),

(
W(j)

)
·,k,·

,
(
W(j−1)

)
·,k,·

, EkV
(j)

) (5)

As explained in section 3, decomposition (5) provides the foundation of our hyper-reduction procedure.

3 Methodology

We propose a time-marching Galerkin ROM based on linear approximations. More precisely, we consider
approximations of the form

Û
(j)

µ = Z α̂(j)
µ =

N∑
n=1

(
α̂(j)
µ

)
n
ζ
n
, j = 1, . . . , Jmax, (6)

3



where {α̂(j)
µ }

Jmax
j=1 ⊂ RN are referred to as solution coefficients and are computed by solving a suitable ROM,

while Z : RN → Xhf is the reduced-order basis (ROB) and Z := span{ζ
n
}Nn=1 is the reduced space. In

presence of non-homogeneous Dirichlet conditions, it is convenient to consider affine approximations of the form

Û
(j)

µ = Hg(j) + Z α̂(j)
µ , where H is a suitable lifting operator (see, e.g., [29]) and Z ⊂ Xhf,0: since in this work,

we consider homogeneous Dirichlet conditions, we do not address the treatment of non-homogeneous conditions.
The Galerkin ROM is obtained by projecting (4) onto the reduced space Z: this leads to a nonlinear system

of N equations at each time step. To reduce assembly costs, it is important to avoid integration over the
whole integration domain. Towards this end, we define the indices associated with the “sampled elements”
Ieq ⊂ {1, . . . , Ne} and we define the EQ residual:

Req
µ

(
U(j), U(j−1), W(j), W(j−1), V

)
=∑

k∈Ieq

ρeq
k rhf

µ,k

(
EkU

(j), EkU
(j−1),

(
W(j)

)
·,k,·

,
(
W(j−1)

)
·,k,·

, EkV
(j)

)
(7a)

where ρeq = [ρeq
1 , ..., ρ

eq
Ne

]T is a sparse vector of positive weights such that ρeq
k = 0 if k /∈ Ieq. In conclusion, the

Galerkin ROM reads as follows: for j = 1, 2, . . ., find (Û
(j)

µ , Ŵ
(j)

µ ) such that
Req
µ

(
Û

(j)

µ , Û
(j−1)

µ , Ŵ
(j)

µ , Ŵ
(j−1)

µ , V

)
= 0, ∀V ∈ Z;(

Ŵ
(j)

µ

)
q,k,`

= Fhf
µ,`

((
Eqd,?
k Û

(j)

µ

)
q,·
,

(
Eqd,?
k Û

(j−1)

µ

)
q,·
,

(
Ŵ

(j−1)

µ

)
q,k,·

)
,

q = 1, . . . , nq, k ∈ Ieq, ` = 1, . . . , Dint.

(7b)

Note that the internal variables need to be computed only in the sampled elements. Furthermore, computation
of (7b) only requires the storage of the ROB in the sampled elements, {Ekζn : n = 1, . . . , N, k ∈ Ieq}: provided
that |Ieq| � Ne, this leads to significant savings in terms of online assembly costs and also in terms of online
memory costs.

In the remainder of this section, we shall discuss the construction of the ROB Z (data compression), the
empirical quadrature rule ρeq (hyper-reduction) and also the error indicator. To simplify the presentation, in
section 3.1 we focus on the solution reproduction problem, while in section 3.2 we discuss the extension to the
parametric problem.

3.1 Solution reproduction problem

The solution reproduction problem refers to the task of reproducing the results obtained for a fixed value of the
parameter µ. Algorithm 1 summarises the procedure: during the offline stage, we compute the hf solution to
(6) for a given parameter and we store snapshots of the state variables at select time steps Is ⊂ {1, . . . , Jmax};
then, we use this piece of information to build a ROM for the state; then, during the online stage, we query the
ROM for the same value of the parameter considered in the offline stage.

The solution reproduction problem is of little practical interest; however, it represents the first step towards
the implementation of an effective ROM for the parametric problem. Note that during the offline stage we store
the state variables in a subset of the time steps and we do not store internal variables: this choice is motivated by
the fact that for practical problems memory constraints might prevent the storage of all snapshots; in addition,
internal variables might not be computed explicitly by available hf codes.

Algorithm 1 Solution reproduction problem: offline/online decomposition

Offline stage:

1: compute {U(j)
hf,µ}j∈Is , Is ⊂ {1, . . . , Jmax};

2: construct the ROB Z; . section 3.1.1

3: construct the weights ρeq. . section 3.1.2

Online stage:

4: compute {α̂(j)
µ }

Jmax
j=1 by solving the ROM (7).

3.1.1 Data compression

We resort to POD based on the method of snapshots (cf. [27]) to generate the ROB Z. Given the snapshots

{U (j)
hf,µ}j∈Is = {U (k)}Kk=1, K = |Is|, we define the Gramian matrix C ∈ RK,K such that Ck,k′ = (Uk, Uk

′
); then,
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we define the POD eigenpairs
Cζ̃n = λnζ̃n, λ1 ≥ λ2 ≥ . . . λK ≥ 0;

finally, we define the POD modes

ζ
n

:=

K∑
k=1

(
ζ̃n

)
k
Uk, n = 1, . . . , N.

The reduced space size N can be chosen according to the energy criterion:

N := min

{
M :

M∑
n=1

λn ≥ (1− tol2POD)

K∑
i=1

λi

}
, (8)

for some user-defined tolerance tolPOD > 0. Note that the POD modes depend on the choice of the inner
product (·, ·): we discuss the choice of (·, ·) for the THM problem considered in this paper in section 4.

3.1.2 Hyper-reduction

We denote by R̂hf
µ (·) and R̂eq

µ (·) the algebraic reduced residuals associated with the hf and empirical quadrature
rules, such that 

(
R̂hf
µ

(
α; β,W′))

n
:= Rhf

µ

(
Zα, Zβ, W?

µ, W′, ζ
n

)
, n = 1, . . . , N,(

R̂eq
µ

(
α;β,W′))

n
:= Req

µ

(
Zα, Zβ, W?

µ, W′, ζ
n

)
, n = 1, . . . , N,

where α,β ∈ RN , W′ ∈ Rnq,Ne,Dint , and W?
µ = W?

µ

(
α,β; W′) is obtained by substituting in (4)3. We further

introduce the Jacobians Jhf
µ (·),Jeq

µ (·) such that

(
Jhf
µ (α;β,W′)

)
n,n′ :=

∂

∂αn′

(
R̂hf
µ

(
α;β,W′))

n
,
(
Jeq
µ (α;β,W′)

)
n,n′ :=

∂

∂αn′

(
R̂eq
µ

(
α;β,W′))

n
,

for n, n′ = 1, . . . , N . We observe that the computation of the Jacobian involves the derivatives with respect to
the constitutive laws in Fhf ; we further observe that the residuals R̂hf

µ (·) and R̂eq
µ (·) satisfy

R̂hf
µ

(
α;β,W′) = G

(
α;β,W′) ρhf , R̂eq

µ

(
α;β,W′) = G

(
α;β,W′) ρeq, (9)

where G ∈ RN,Ne can be explicitly derived using the same approach as in [29] and ρhf = [1, . . . , 1]T .
As in [33], we reformulate the problem of finding the sparse weights ρeq ∈ RNe as the problem of finding a

vector ρeq such that:

1. the number of nonzero entries in ρeq, which we denote by ‖ρeq‖0, is as small as possible;

2. the entries of ρeq are non-negative;

3. (constant-function constraint) the constant function is integrated accurately:
∣∣∣ Ne∑
k=1

ρeq
k |Dk| − |Ω|

∣∣∣� 1;

4. (manifold accuracy constraint) the empirical and hf residuals are close at operating conditions:∥∥(Jhf
µ (α

(j)
train,α

(j)
train; W

(j−1)
train )

)−1 (
R̂hf
µ

(
α

(j)
train,α

(j)
train; W

(j−1)
train

)
− R̂eq

µ

(
α

(j)
train,α

(j)
train; W

(j−1)
train

))∥∥
2
� 1,

(10)

for j ∈ Is and for suitable choices of {α(j)
train}j and {W(j)

train}j that are discussed at the end of the section.

Exploiting (9), we can restate the previous requirements as a sparse representation problem:

findρeq ∈ arg min
ρ∈RNe

‖ρ‖0 s.t.

{
ρ ≥ 0

‖Cρ− b‖∗ ≤ δ,
(11)

for a suitable choices of the matrix C, the vector b, the norm ‖ · ‖∗, and the tolerance δ. Since (11) is NP-hard,
we find an approximate solution to (11) by solving the non-negative least-squares problem:

min
ρ∈RNe

‖Cρ− b||2 s.t.ρ ≥ 0. (12)

5



In this work, we rely on the Matlab function lsqnonneg that implements the Greedy algorithm proposed in [20]
and takes as input the matrix C, the vector b, and a tolerance toleq:

ρeq = lsqnonneg(C,b, toleq).

The same algorithm to find the sparse weights ρeq given the matrices C,b has been first considered in [9]:
for large-scale problems, a parallelised extension of the algorithm was introduced and successfully applied to
hyper-reduction in [7].

We remark that in order to compute the entries of C,b associated with (10) we should prescribe the triplets{(
α

(j)
train,α

(j−1)
train ,W

(j−1)
train

)}
j∈Is

; note, in particular, that the internal variables cannot be directly extracted from

hf computations. We here choose to consider α
(j)
train = α̂

(j)
hf,µ and W

(j)
train = Ŵ

(j)

hf,µ where {α̂(j)
hf,µ,Ŵ

(j)

hf,µ}j denote

the solution to (7) for ρeq = ρhf . Note that this choice requires the solution to a ROM with hf quadrature.

3.2 Parametric problem

In order to extend our methodology to parametric problems, we should address two challenges. First, we should
propose an adaptive strategy to explore the parameter domain P based on an inexpensive error indicator;
second, we should devise a compression strategy to combine information from different parameters.

Our point of departure is the POD-Greedy algorithm proposed in [14]. Algorithm 2 summarises the proce-
dure: the procedure takes as input a discretisation of P, Ξtrain, a tolerance tolloop for the outer greedy loop,
a tolerance tolpod for the data compression step, and the maximum number of greedy iterations Ncount,max —
we here prescribe the termination condition based on the error indicator; we refer to the pMOR literature for
other termination conditions.

We observe that the algorithm depends on several building blocks: the FE solver[
{U(j)

hf,µ}j∈Is
]

= FE-solve(µ)

takes as input the vector of parameters and returns the snapshot set associated with the sampling times Is ⊂
{1, . . . , Jmax}; the data compression routine[

Z ′, λ′
]

= data-compression
(
Z, λ, {U(j)

hf,µ?}j∈Is , (·, ·), tolpod

)
takes as input the current ROB and the POD eigenvalues λ = [λ1, . . . , λN ]T , and returns the updated ROB
Z ′ and the updated eigenvalues λ′; finally, we observe that construction of the ROM comprises both the
construction of the Galerkin ROM and of the error indicator. In the remainder of this section, we discuss each
element of the procedure.

3.2.1 Data compression

We consider two different data compression strategies: a hierarchical POD (H-POD) and a hierarchical approx-
imate POD (HAPOD). Both techniques have been considered in several previous works: we refer to [13, section
3.5] for H-POD and to [16] for HAPOD; HAPOD is also related to incremental singular value decomposition
in linear algebra [5]. Here, we review the two approaches for completeness. We denote by ΠZ : Xhf → Z the
orthogonal projection operator on Z ⊂ Xhf ; furthermore, we introduce notation

[Z, λ] = POD
(
{U (k)}Kk=1, (·, ·), tolpod

)
to refer to the application of POD to the snapshot set {U (k)}Kk=1, with inner product (·, ·), and tolerance tolpod

(cf. (8)), with Z = [ζ
1
, . . . , ζ

N
], ‖ζ

n
‖ = 1, λ = [λ1, . . . , λN ]T , and λ1 ≥ λ2 . . . ≥ λN .

Given Z and the snapshots {U (j)
hf,µ?}j H-POD considers the update:

Z ′ = [Z,Znew] , Znew = POD
(
{ΠZ⊥U

(j)
hf,µ?}j , (·, ·), tolpod

)
. (13a)

Note that the approach does not require to input the POD eigenvalues λ from the previous iterations. We
observe that the approach leads to a sequence of nested spaces — that is, the updated ROB contains the ROB
of the previous iteration — and it returns an orthonormal basis of the reduced space. In our experience, the
choice of the tolerance tolpod is extremely challenging: since (8) depends on the relative energy content of
the snapshot set, the update (13a) with fixed tolerance tolpod might lead to an excessively large (resp., small)
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Algorithm 2 POD-Greedy algorithm

Require: Ξtrain = {µ(k)}ntrain

k=1 , tolloop, tolpod, Ncount,max.

1: Z = ∅, λ = ∅, µ? = µ(1).

2: for ncount = 1, . . . , Ncount,max do

3:

[
{U(j)

hf,µ?}j∈Is
]

= FE-solve(µ?);

4: [Z, λ] = data-compression(Z, λ, {U(j)
hf,µ?}j∈Is , (·, ·), tolpod); . section 3.2.1.

5: Construct the ROM with error indicator. . section 3.2.3.

6: for j = 1 : ntrain do

7: Solve the ROM (7) for µ = µ(k) and compute ∆µ.

8: end for

9: µ? = arg maxµ∈Ξtrain
∆µ . Greedy search

10: if ∆µ? < tolloop then, . Termination condition

11: break,

12: end if.

13: end for

return ROB Z and ROM: µ ∈ P 7→ {α̂µ(j)}Jmax
j=1 .

number of modes when maxj ‖U (j)
hf,µ? −ΠZU

(j)
hf,µ?‖ is small (resp., large). For this reason, we propose to choose

the number of new modes Nnew using the criterion:

Nnew := min

{
M : max

j∈Is

‖Π(Z⊕Znew
M )⊥U

(j)
hf,µ?‖

‖U (j)
hf,µ?‖

≤ tolpod, Znew
M = span{ζnew

m
}Mm=1

}
. (13b)

Note that this choice enforces that the in-sample relative projection error is below a certain threshold for all
snapshots computed during the greedy iterations.

HAPOD considers the update

[Z ′,λ′] = POD
(
{U (j)

hf,µ?}j ∪ {λnζn}
N
n=1, (·, ·), tolpod

)
. (14)

Note that the approach (14) does not in general lead to hierarchical (nested) spaces. As discussed in [16,
section 3.3], which refers to (14) as to distributed HAPOD, it is possible to relate the performance of the
reduced space obtained using HAPOD to the performance of the POD space associated with the snapshot set

{U (j)
hf,µ?,n : n = 1, . . . , Ncount,max, j ∈ Is}: we refer to the above-mentioned paper for a thorough discussion.

3.2.2 Time-averaged error indicator

We define the trajectories U = {U (j)}Jmax
j=1 and W = {W (j)}Jmax

j=1 ; given the pair (U,W), we define the time-
average residual:

Rhf
avg,µ (U,W, V ) :=

Jmax∑
j=1

(t(j) − t(j−1)) Rhf
µ

(
U (j), U (j−1),W (j),W (j−1), V

)
, ∀ V ∈ Xhf,0, (15)

and the error indicator

∆hf
µ (U,W) = sup

V ∈Xhf,0

Rhf
avg,µ (U,W, V )

‖V ‖
. (16)

The indicator (16) is expensive to evaluate since it relies on hf quadrature and it requires the computation of
the supremum over all elements of Xhf,0: following [28], we consider the hyper-reduced error indicator

∆µ (U,W) = sup
V ∈Y

Req,r
avg,µ (U,W, V )

‖V ‖
, (17)

where Y ⊂ Xhf,0 is an M -dimensional empirical test space, while Req,r
avg,µ is defined by replacing Rhf

µ in (15) with
a suitable sparse weighted residual of the form (7a), defined over the elements Ieq,r ⊂ {1, . . . , Ne}.
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Given the ROM solution (Ûµ, Ŵµ), the test space Y should guarantee that

sup
V ∈Y

Rhf
avg,µ

(
Ûµ, Ŵµ, V

)
‖V ‖

≈ sup
V ∈Xhf,0

Rhf
avg,µ

(
Ûµ, Ŵµ, V

)
‖V ‖

, ∀µ ∈ P, (18)

which implies that Y should be an approximation of the space of Riesz elements Mtest := {ψ̂
µ

: µ ∈ P} with(
ψ̂
µ
, V
)

= Rhf
avg,µ

(
Ûµ, Ŵµ, V

)
, ∀ V ∈ Xhf,0. (19)

On the other hand, the empirical quadrature rule should ensure that

Req,r
avg,µ

(
Ûµ, Ŵµ, ψm

)
≈ Rhf

avg,µ

(
Ûµ, Ŵµ, ψm

)
, ∀µ ∈ P, m = 1, . . . ,M, (20)

where ψ
1
, . . . , ψ

M
is an orthonormal basis of Y.

In our implementation, we compute the error indicator during the time iterations — as opposed to after
having computed the whole solution trajectory. Algorithm 3 provides the complete online solution and residual

indicator computations. We find that computation of ∆µ requires to compute the internal variables Ŵµ in the
elements Ieq ∪ Ieq,r at each time iteration (cf. (7b)), and it requires to store the trial ROB Z in {Dk : k ∈
Ieq ∪ Ieq,r} and the test basis Y = [ψ

1
, . . . , ψ

M
] in {Dk : k ∈ Ieq,r}.

Algorithm 3 Online solution and residual computations

1: Initial state and internal variables; set R̂avg
µ = 0.

2: for j = 1, . . . , Jmax do

3: Compute α̂(j)
µ by solving (7b).

4: Compute

(
Ŵ

(j)

µ

)
·,k,·

for all k ∈ Ieq,r using (7b)2.

5: Assemble R̂
(j)
µ ∈ RM such that

(
R̂

(j)
µ

)
m

= Req,r
µ

(
Û

(j)

µ , Û
(j−1)

µ , Ŵ
(j)

µ , Ŵ
(j−1)

µ , ψ
m

)
for m = 1, . . . ,M .

6: Update R̂avg
µ = R̂avg

µ + (t(j) − t(j−1))R̂
(j)
µ .

7: end for

return {α̂(j)
µ }j and ∆µ = ‖R̂avg

µ ‖2

Several authors (e.g., [14]) have considered the time-discrete L2(0, Tf ;X ′hf,0) residual indicator

∆hf,2
µ (U,W) =

√√√√√Jmax∑
j=1

(t(j) − t(j−1))

 sup
V ∈Xhf,0

Rhf
µ

(
U (j), U (j−1),W (j),W (j−1), V

)
‖V ‖

2

. (21)

We observe that we could apply the same ideas considered in this section to devise an hyper-reduced counterpart
of the residual indicator (21). However, we find that the test space Y and the empirical quadrature rule should
be accurate for all parameters and for all time steps: as a result, the resulting test space Y might be significantly
higher dimensional and the quadrature rule might be significantly less sparse, for the desired accuracy. For this
reason, in this work, we investigate the effectivity of the time-averaged error indicator (17).

3.2.3 ROM construction

In order to devise an actionable ROM, we should discuss (i) the choice of the EQ rule ρeq, (ii) the choice of the
test space Y and of the EQ rule ρeq,r in (17). In view of the presentation of the computational procedure, we

define the ROM solution with hf quadrature (Ûhf
µ , Ŵhf

µ ); we denote by Cµ ∈ RK·N,Ne the EQ matrix associated
with the manifold accuracy constraints in (10) for µ ∈ P (cf. section 3.1.2); we further define the vector
c = [|D1|, . . . , |DNe

|]T associated with the constant function accuracy constraint. Given the test reduced basis
ψ

1
, . . . , ψ

M
, we define Gr

µ ∈ RM,Ne such that

(
Gr
µρhf

)
m

= Req,r
avg,µ

(
Ûhf
µ , Ŵhf

µ , ψm

)
, ∀ µ ∈ P, m = 1, . . . ,M. (22)
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We further define the unassembled average residual Ravg,un
µ ∈ Rnlp,Ne,Deq : we observe that Ravg,un

µ might be

employed to build the FE residual and ultimately compute the Riesz representers ψ̂
µ

in (19), and also, given

Y, to compute Gr
µ.

We focus on the construction of the ROM at the nc-th iteration of the POD Greedy algorithm. We define
Ξ? = {µ̃(j)}nrom

j=1 = {µ?,(i)}nc
i=1∪{µ̃(j)}ntrain,eq

j=1 , where µ?,(1), . . . , µ?,(nc) are the parameters sampled by the greedy

algorithm and µ̃(1), . . . , µ̃(ntrain,eq) are independent identically distributed samples from the uniform distribution
over P. Algorithm 4 summarises the computational procedure as implemented in our code. The test space
Y is built using POD as in [28], while the EQ weights ρ

eq,r
are obtained using the non-negative least-squares

method.

Algorithm 4 Construction of the ROM

1: for µ ∈ Ξ? do

2: Solve the ROM with hf quadrature and compute Cµ and Ravg,un
µ .

3: end for

4: Assemble C =


Cµ̃(1)

...

Cµ̃(nrom)

cT

 ∈ RK·N ·nrom,Ne and set ρeq = lsqnonneg(C,Cρhf , toleq).

5: Compute the Riesz representers {ψ̂
µ
}µ∈Ξ?

using (19).

6: Define the empirical test space Y = span{ψ
m
}Mm=1 as [{ψ

m
}Mm=1] = POD

(
{ψ̂

µ
}µ∈Ξ? , (·, ·), tolpod,res

)
.

7: Assemble G =


Gµ̃(1)

...

Gµ̃(nrom)

cT

 ∈ RM ·nrom,Ne and set ρeq,r = lsqnonneg(G,Gρhf , toleq,r).

4 The THM model

In this section we illustrate the non-dimensional mathematical formulation and the numerical discretisation of
the THM system considered in this work. We assume that the solid undergoes small displacements and that soil
is fully-saturated in water. We resort to a Lagrangian formulation for the solid, and to an Eulerian formulation
for the fluid.

4.1 Preliminary definitions

We first introduce the state variables and the internal variables. The state variables represent solid displacement,
water pressure and temperature and are reported in Table 1; the internal variables W = [ρw, ϕ, hw, Q,M

T
w,mw]T

represent dependent physical quantities and are illustrated in Table 2, together with the corresponding SI units.

SI unit description

u m solid displacement
pw Pa water pressure
T K temperature

Table 1: primary variables
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SI unit label

ρw kg ·m−3 water density
ϕ % Eulerian porosity
hw J ·Kg−1 mass enthalpy of water
Q Pa non-convected heat
Mw kg ·m−2 · s−1 mass flux
mw kg ·m−3 mass input

Table 2: dependent variables

We denote the Cauchy stress tensor by σ[Pa], and we define the volumetric deformation εV = tr(ε) where ε

is the strain tensor: ε = ∇su = 1
2

(
∇u+∇uT

)
. We also provide in Table 3 the characteristic parameters that

we use for the non-dimensionalisation.

SI unit value

t̄ s 3.15 · 107

H̄ m 77.3
σ0 Pa 11.3 · 106

ρ0 kg ·m−3 2450
Tref K 297.5
∆T K 30

Table 3: characteristic constants

4.1.1 Geometry configuration

The computational domain is shown in Figure 1(a). The geological repositories, modelled as boundary condi-
tions, are depicted in red at the bottom of the domain, in the case of two activated alveoli. In the vertical (x2)
direction, the domain is split into three layers: a clay layer denoted as UA (”unité argilleuse”), a transition
layer UT (”unité de transition”) and a silt-carbonate layer USC (”unité silto-carbonatée”).
In Figure 1(b) the finite element grid is shown. The number of degrees of freedom for the first state component
(solid displacement) is Nu

hf = 40430, while for water pressure and temperature is Np
hf = N t

hf = 9045.

UA

UT

USC

x1

x2

ΓN

(a) (b)

Figure 1: geometric configuration: (a) the non-dimensional domain (b) the mesh. The size of each alveoulus is
equal to lQ = 3.09 [m], while the distance between consecutive alveoli is equal to l = 6.18 [m].

The grid is refined in the proximity of the alveoli to better capture the relevant features of the solution.
We consider a p = 3 FE discretisation for the displacement component, and a p = 2 FE discretisation for both
pressure and temperature.

4.2 Mathematical problem

We first state the equilibrium equations – the superscripts (·)m, (·)n,(·)t refer to quantities associated with the
mechanical, hydraulic and thermal behaviours, respectively. Then, we present the constitutive laws that are
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considered and finally we present the boundary conditions. To clarify the presentation, we report in Table 4
the parameters that enter in the constitutive laws.

We denote by Fm = − g
γ e2 (where γ = σ0

ρ0H̄
) the mechanical force with g defined in Table 4 and we specify

that n (resp. t) is the unitary outward normal (resp. tangential) vector in the domain depicted in Figure 1(a);
then we introduce the equilibrium of mechanical forces:

−∇ · σ = ρFm in Ω,

σ n = g
m,N

on ΓN,

u · n = 0 on ∂Ω \ ΓN,

(σ n) · t = 0 on ∂Ω \ ΓN,

(23a)

where ΓN is depicted in Figure 1(a). The Neumann datum g
m,N

is given by g
m,N

= −e2. The stress tensor is

linked to the primary and internal variables by the linear law

σ = 2µ∇su+ (λ∇ · u − (2µ+ 3λ)αsT − bpw)1, (23b)

where the Lamé constants µ′, λ satisfy

µ′ =
E

2(1 + ν)
,

λ =
Eν

(1 + ν)(1− 2ν)
,

and E and ν are introduced in Table 4.
We state the mass conservation of water as follows{

∂tmw + ∇ ·Mw = 0 in Ω

Mw · n = 0 on ∂Ω
(24a)

where the muss flux Mw is given by the Darcy law

Mw = −γ (∇pw − ρwFm), (24b)

and

γ = ρw
κw σ0 t̄

ρ0µw,0 H̄2
exp

(
− 1808.5

Tref + ∆T T

)
. (24c)

Finally we consider the energy balance:{
hw∂tmw + ∂tQ + ∇ ·

(
hwMw + q

)
−Mw · Fm = Θ in Ω(

hwMw + q
)
· n = gt,N on ∂Ω

(25a)

where Q is the non-convective heat, q is the thermal flux and is given by the Fick law

q = −Λ∇T, (25b)

with Λ = diag(λ1, λ2). If we denote by Γal ⊂ ∂Ω the region associated with the alveoli, gt,N is equal to

gt,N =
Ptnct̄

lQH̄2σ0
exp

(
− t/τ

)
1Γal

= Cal exp
(
− t/τ

)
1Γal

, (26)

where nc [%] is the density of the radioactive waste stock in each alveolus (equal to 45 anisters), Pt = 31.4 [W]
is the unitary termic power at the initial time, lQ = 3.09 [m] is the size of each alveolus, σ0, H̄, t̄ are introduced

in Table 3 and τ = t̄
log(0.112) [s] is a characteristic decay time.

dρw

ρw
=

dpw

Kw
− 3αwdT

dϕ

b − ϕ
= dεV − 3αsdT +

dpw

Ks
,

dhw = Cp
w dT + (βp

h − 3αwT )
dpw

ρw
,

δQ =
(
βεQ + 3αsK0 T

)
dεV −

(
βp
Q + 3αw,mT

)
dpw + C0

ε dT ,

mw = ρw(1 + εV)ϕ− ρ0
wϕ

0

(27a)

(27b)

(27c)

(27d)

(27e)
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Here, we have βph = 1− 3αwTref , β
ε
Q = 3αsK0Tref , β

p
Q = 3αw,mTref .

The parameters in (27a)-(27e) are defined in Table 4.

SI unit description reference value formula

g m · s−2 gravity acceleration 9.81

E Pa Young’s modulus
11.4 · 109 UA
12.3 · 109 UT
20 · 109 USC

ν % Poisson’s ratio 0.3
µ Pa Lamé parameter, E

2(1+ν)

λ Pa Lamé parameter Eν
(1+ν)(1−2ν)

b % Biot coefficient 0.6

αs K−1 solid thermal expansion coefficient 1.28 · 10−5

α0 K−1 expansion coefficient 1.28 · 10−5

κw m2 intrinsic permeability of porous medium 10−21

µw MPa · s dynamic viscosity µw = µw,0 exp( 1808.5
T

)
µw,0 MPa · s dynamic viscosity coefficient 2.1 · 10−12

Ks Pa bulk modulus of the solid
Kw Pa bulk modulus of water 2 · 109 Ks = E

3(1−2ν)

Cp
w J · kg−1 · K−1 heat capacity at constant pressure 4180

K0 Pa drained bulk modulus K0 = (1 − b)Ks

αw K−1 thermal expansion coefficient of water αw = 9.52 · 10−5 log(T − 273) − 2.19 · 10−4

αw,m dilation coefficient

Cs
σ J kg−1 · K specific heat at constant stress

537 UA
603 UT
640 USC

ρ0 Kg · m−3 porous medium initial density
2450 UA
2450 UT
2500 USC

ρ0w Kg · m−3 initial water density 103

ϕ0 % initial Eulerian porosity
0.25 UA
0.21 UT
0.19 USC

h0
w m2 · s−2 initial water enthalpy h0

w =
p0w−patm

ρ0w

ρs Kg · m−3 density ratio ρs =
ρ0−ρ0wϕ

0

1−ϕ0

C0
ε Pa · K−1 specific heat at constant deformation C0

ε = (1 − ϕ)ρsC
s
σ + ϕρwC

p
w − 9TK0α

2
s

Λ thermic conductivity tensor Λ = diag(λ1, λ2)

λ1 Wm−1K−1 thermic conductivity component
1.5 UA
1.5 UT
1.3 USC

λ2 Wm−1K−1 thermic conductivity component
1 UA
1 UT
1.3 USC

Θ Pa · s−1 volumetric heat sources

Table 4: parameters of the constitutive laws. Layers UA, UT, USC are depicted in Figure 1 (a).

4.2.1 Initial conditions

To set the initial conditions, we consider the case of deactivated repositories: therefore, we set thermal flux
equal to zero and we set a constant temperature T0 = Tref in Ω, where the reference temperature is defined in
Table 3. We aim at finding the initial values of the primary variables u and pw that correspond to the equilibium
solutions of a preliminary problem: here, the Neumann boundary condition for the energy equation is zero, that
is, gt,N = 0, and temperature is costant and equal to the reference value Tref (in Table 3).
We then seek u0, pw,0 such that the initial solution vector U0 = [uT

0 , pw, T0]T satisfies the equilibrium equations
(23a), (24a) and (25a) with thermal flux gt,N equal to 0 on the domain boundary ∂Ω. Towards this end, we
first observe that (27a) reduces to

dρw

ρw
=
dpw

Kw
(28)
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that brings to pw = ρ−∞ exp
(

1
Kw

(pw − p−∞)
)

. If we assume that ρw = ρ−∞ = ρw,0, we find pw = p−∞;

furthermore, by susbstituting these assumptions into the hydraulic equilibrium equation we find

pw,0(x, y) = pw,top + ρw,0g(1− y) (29)

where pw,top is a datum for water pressure that is defined at the top boundary of the domain (0, 1) × {1}.
Finally, we search for u0 as the solution to the equilibrium equation of mechanical forces:∫

Ω

2µ∇s u0 : ∇s v + λ(∇ · u0)(∇ · v)− bpw,0∇ · v − ρ0Fm · v dx =

∫
ΓN

g
m,N
· v dx, (30)

for all v ∈ X u
hf , such that v · n|∂Ω\ΓN

= 0.

4.3 Finite element formulation

We resort to an implicit Euler time discretisation scheme, with Jmax = 100 uniform time steps; the superscript
(·)+ refers to the new solution (at the current time step j, for j = 1, ..., Jmax), while (·)− refers to the solution
at the previous time steps:

∫
Ω

2µ∇s u
+ : ∇s v +

(
λ∇ · u+ − (2µ+ 3λ)αsT

+ − bp+
w

)
∇ · v −

(
ρ0 +m+

w

)
Fm · v dx

=

∫
ΓN

g+
m,N
· v dx;∫

Ω

1

∆t
(m+

w −m−w)ψ + γ+ (∇p+
w − ρ+

wFm) · ∇ψ dx = 0;∫
Ω

((hw

∆t
(m+

w −m−w) +
1

∆t
(Q+ −Q−) + γ+ (∇p+

w − ρ+
wFm) · Fm

)
ξ −

(
−h−w (∇p+

w − ρ+
wFm) + q

)
· ∇ξ

=

∫
Ω

Θ+ ξ dx −
∫
∂Ω

g+
t,N ξ dx;

(31)
for all v ∈ X u

hf such that v · n|∂Ω\ΓN
= 0, ψ ∈ X p

hf , ξ ∈ X t
hf , where

ρ+
w = ρ−w exp

(
p+

w − p−w
Kw

− 3αw(T+ − T−)

)
;

ϕ+ = b − (b− ϕ−) exp

(
−(ε+V − ε

−
V) + 3α0(T+ − T−) − 1

Ks
(p+

w − p−w)

)
;

h+
w = h−w + Cp

w (T+ − T−) +
βp
h − 3αwT

+

ρ+
w

(
p+

w − p−w
)

;

Q+ = Q− +

(
βεQ + 3αsK0

1

2
(T+ + T−)

) (
ε+V − ε

−
V

)
−
(
βp
Q + 3α+

w,m

1

2
(T+ + T−)

) (
p+

w − p−w
)

+C0,+
ε (T+ − T−);

m+
w = ρ+

w(1 + ε+V)ϕ+ − ρ0
w ϕ

0.

(32)

4.4 Choice of the norm

We equip the FE space Xhf with the weighted inner product

(U,U ′) =
1

λu

2∑
d=1

(ud, u
′
d)H1(Ω) +

1

λp
(p, p′)H1(Ω) +

1

λt
(T, T ′)H1(Ω), (33)

where the coefficients λu, λp, λt are the largest eigenvalues of the Gramian matrices Cu, Cp, Ct associated to
displacement, pressure and temperature, respectively. Similarly to [28], the inner product (33) is motivated by
the need for properly taking into account the contributions of displacement, pressure and temperature, which
are characterised by different magnitudes and different units.

4.5 Parametrization

We consider a vector of four parameters: the Young’s modulus E and the Poisson’s ratio ν in the region UA,
the thermic factor τ and the constant Cal in (26). For all parameters, we define the parameter domain P by
considering variations of ±15% with respect to the nominal value reported in Table 4.
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5 Numerical results

We measure performance through the discrete L2(0, Tf ;Xhf) relative error

Eµ :=

√√√√Jmax∑
j=1

(
t(j) − t(j−1)

)∥∥U (j)
hf,µ − Û

(j)

µ

∥∥2

√√√√Jmax∑
j=1

(
t(j) − t(j−1)

)
‖U (j)

hf,µ‖
2

(34)

for any µ ∈ P. Similarly, we denote by Eu
µ, Ep

µ and Et
µ the discrete relative L2(0, Tf ;Xhf) errors associated with

the estimate of displacement, pressure and temperature, respectively.

5.1 Solution reproduction problem

We first present numerical results for a fixed configuration of parameters µ̄ ∈ P to validate the ROM described
in section 3. We consider µ̄ equal to the centroid of P. We perform data compression based on the whole set
of snapshots, i.e. |Is| = Jmax = 100.

5.1.1 Data compression: POD

In Figure 2 we compare performance of the global POD based on the weighted inner product (·, ·) with the
performance of the component-wise POD. More precisely, we define Z such that

[Z,λ] = POD
(
{U (j)

hf,µ̄}j∈Is , (·, ·), tolpod

)
, (35)

and we extract the displacement, pressure and temperature components Zu, Zp, Zt. Then , we denote the
”optimal” (in a discrete L2 sense) spaces

[Zu,opt,λu,opt] = POD
(
{u(j)

hf,µ̄}j∈Is , (·, ·)H1 , tolpod

)
; (36)

[Zp,opt,λp,opt] = POD
(
{p(j)

hf,µ̄}j∈Is , (·, ·)H1 , tolpod

)
; (37)

[ZT,opt,λT,opt] = POD
(
{T (j)

hf,µ̄}j∈Is , (·, ·)H1 , tolpod

)
. (38)

In Figure 2 (a) we show the behaviour of the POD eigenvalues in (35); in Figure 2(b), (c), (d) we compare the
relative projection errors associated with Zu and Zu,opt, Zp, Zp,opt and Zt and Zt,opt. We observe that the
projection errors are nearly the same for all the three state variables: this obervation suggests to consider a
single reduced space to approximate the solution field.

5.1.2 Hyper-reduction

In Figure 3(a) we show the performance of the Galerkin ROM with and without hyper-reduction. We distinguish
between the high-fidelity quadrature rule, abbreviated as hfq, and the empirical quadrature rule for several
tolerances toleq. We also add as a reference, the relative projection error. Figure 3(b) shows the percentage

of selected elements Q
Ne
× 100% for the same choices of the tolerance toleq. We observe that the empirical

quadrature procedure is able to significantly reduce the size of the mesh used for online calculations without
compromising accuracy. The plateau for N & 14 is due to the tolerance of the Newton iterative solver.

In Figure 4, we show the selected grid elements for two choices of the EQ tolerance value toleq and for
N = 12. We observe that the sampled elements are distributed over the whole domain with a slight prevalence
of elements in the proximity of the alveoli.

5.2 Parametric problem

We present results for the parametric case. We denote by Ξtrain ⊂ P the training set used to build the ROM and
by Ξtest ⊂ P the test set used to assess performance. Both sets consist of independent identically distributed
samples of a uniform distribution in P, with |Ξtrain| = ntrain = 50 and |Ξtest| = ntest = 10. We also set
tolPOD = 10−7 in (8) and in (13b) for data compression, and we set tolPOD,res = 10−5 in (8) for the construction
of the empirical test space. We set Is ⊂ {1, ..., Jmax} with |Is| = 20. EQ rules are depicted usign the tolerance
toleq = 10−12 (cf . Algorithm 4).
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Figure 2: (a): exponential decay of POD eigenvalues. (b), (c), (d): projection errors computed through (35)
(in black) and (36)-(38)(in red) for increasing numbers of POD modes.
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Figure 3: solution reproduction problem. (a): errors associated to projection error (proj), Galerkin with high-
fidelity quadrature (hfq) and Galerkin with empirical quadrature for several choices of toleq with respect to the
ROM dimension N . (b): percentage of selected elements for several toleq.
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(a) toleq = 10−14 (b) toleq = 10−10

Figure 4: solution reproduction problem. Reduced mesh for two choices of the empirical quadrature tolerance.

5.2.1 Error estimation

In Figure 5 we compare the dual residual and several EQ errors for each parameter µ in the training set Ξtrain

and for different dimensions of the reduced space that is progressively updated during the execution of the
POD-Greedy algorithm. In particular, we show results in two cases: the hierarchical POD-Greedy (H-POD)
and the hierarchical approximate POD-Greedy (denoted as HA-POD). Figures 5(a) and 5(b) show for both
H-POD and HA-POD to what extent the residual-based error indicator defined in (17) is correlated with the
relative error (34). We observe that for values of the indicators that are larger than 10−3, correlation is very
high, while for smaller values correlation is much weaker.
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(a) H-POD
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(b) HA-POD

Figure 5: parametric problem: correlation between the time-average residual indicator (17) and true relative
errors (34).

To provide a a concrete reference, in Figure 6 we investigate the correlation between the relative error (34)
and the time-discrete L2(0, Tf ;X ′hf,0) residual indicator defined in (21): we observe that the indicator in (21)
is significantly more accurate, particularly for small values of the error. As stated in section 3, the residual
indicator (21) is considerably more expensive in terms of both memory and computational costs.

5.2.2 POD-Greedy sampling

In Figures 7 and 8 we show the POD-Greedy algorithm convergence history, for both the hierarchical and
approximate hierarchical PODs. At each iteration of the algorithm, until convergence, the error indicator ∆µ

is illustrated with respect to training parameter indices Itrain = {1, ..., |Ξtrain|} . At each iteration the selected
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Figure 6: parametric problem: correlation between residual indicator (21) and true relative errors 34.

parameter µ? is marked in red, while the previously selected parameters are marked in green. We also report
the dimension of the updated reduced space and the number of sampled elements.

5.2.3 Predictive tests

In Figure 9, we assess out-of-sample performance of the proposed method. More precisely, we show the behaviour
of the maximum relative error (34) over the test set max

µ∈Ξtest

Eµ for both H-POD Greedy and HA-POD Greedy.

To provide a relevant benchmark, we compare results with the H-POD Greedy and HA-POD Greedy algorithms
based on the exact errors (strong POD-Greedy). For this particular example, we observe that the proposed
method is effective to generate accurate ROMs: in particular, the Greedy procedures based on the time-averaged
error indicator are comparable in terms of performance with the corresponding strong POD-Greedy algorithms.

6 Conclusions

In this work, we developed and numerically validated a model order reduction procedure for a class of problems
in nonlinear mechanics, and we successfully applied it to a two-dimensional parametric THM problems that
arises in radio-active waste management. We proposed a time-averaged error indicator to drive the offline
Greedy sampling, and an empirical quadrature procedure to reduce offline costs.

We aim to extend the approach in several directions. First, we wish to apply our method to other problems
of the form (1), to demonstrate the generality of the approach and its relevance for continuum mechanics
applications. Second, we wish to combine our approach with domain decomposition methods ([3, 18, 17])
to deal with more complex parametrizations and topological changes. Towards this end, we wish to devise
effective localised training methods to reduce offline costs and domain decomposition strategies to glue together
the solution in different components of the domain.
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(a) Iteration it = 1; N = 15, Q = 74, Qr = 16 (b) Iteration it = 2; N = 26, Q = 123, Qr = 18

(c) Iteration it = 3; N = 35, Q = 155, Qr = 22 (d) Iteration it = 4; N = 43, Q = 169, Qr = 18

Figure 7: parametric problem: POD-Greedy algorithm convergence history in the H-POD case.
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