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A projection-based model reduction method for nonlinear mechanics with internal variables: application to thermo-hydro-mechanical systems

Introduction 1.Model reduction for a class of models in nonlinear mechanics

The disposal and storage of high-level radioactive waste materials in geological means requires a careful assessment of the long-term effects on neighboring areas. The system behaviour is well-described by time-dependent large-scales coupled systems of partial differential equations (PDEs), which take into account the thermal, hydraulic and mechanical response of the geological medium. Numerical simulation of these systems is challenging due to several difficulties: first, finite element (FE) models of the problem are highly-nonlinear, time-dependent and high-dimensional; second, due to the uncertainty in model parameters, we need to solve the model for many different system configurations (many-query problem). In this work, we shall devise a model-order reduction (MOR) strategy to speed up parametric studies for radio-active waste disposal applications.

In this contribution we study a general class of nonlinear problems in structural mechanics with internal variables. We consider the spatial variable x in the Lipschitz domain Ω ⊂ R d with d = 2, 3, and the time variable t in the time internal (0, T f ), where T f is the final time. We further define the vector of parameters µ in the compact parameter region P ⊂ R P . We introduce the state (or primary) variables U and internal (or dependent) variables W ; we denote by X and W suitable Hilbert spaces in Ω for U and W , and we define the space of continuous functions from (0, T f ) to X and W, C(0, T f ; X ) and C(0, T f ; W). Then, we introduce the parameterised problem of interest: given µ ∈ P, find (U µ , W µ ) ∈ C(0, T f ; X ) × C(0, T f ; W) such that

   G µ (U µ , ∂ t U µ , W µ ) = 0 in Ω × (0, T f ) Ẇ µ = F µ (U µ , W µ ), in Ω × (0, T f ) (1) 
with suitable initial and boundary conditions. Here, G µ is a nonlinear second-order in space, first-order in time differential operator that is associated with the equilibrium equations, while F µ is a set of ordinary differential equations (ODEs) that is associated with the constitutive laws.

Our methodology is motivated by the application to thermo-hydro-mechanical (THM) systems of the form [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF], which are widely used to model the system's response for radio-active waste disposal applications. Radioactive material is placed in an array of horizontal boreholes (dubbed alveoli ) deep underground: due to the large temperature of the alveoli, a thermal flux is generated; the thermal flux then drives the mechanical and hydraulic response of the medium over the course of several years. We refer to section 4 for a detailed discussion of the considered THM model and boundary conditions.

Objective of the work and relationship to previous works

We propose a projection-based monolithic model order reduction (MOR ) ( [START_REF] Hesthaven | Certified reduced basis methods for parametrized partial differential equations[END_REF][START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF]) technique for problems of the form [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF], with particular emphasis on THM systems. The approach is characterised by an offline/online splitting to reduce the marginal cost, and relies on Galerkin projection to devise a reduced-order model (ROM) for the solution coefficients. We rely on hyper-reduction to speed up the assembly of the ROM during the online stage, and we rely on adaptive sampling to reduce the offline training costs.

The contribution of the present work is twofold. First, we propose an element-wise empirical quadrature (EQ) procedure for problems with internal variables; second, we extend the POD-Greedy algorithm and we propose an error indicator that is effective to drive the offline greedy search and is inexpensive to evaluate.

EQ procedures also dubbed mesh sampling and weighting have been first proposed in [START_REF] Farhat | Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models[END_REF][START_REF] Yano | Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws[END_REF][START_REF] Yano | An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs[END_REF] and further developed in several other works including [START_REF] Riffaud | The DGDD method for reduced-order modeling of conservation laws[END_REF]: the key feature of EQ is to recast the problem of hyperreduction as a sparse representation problem and then resort to state-of-the-art techniques in machine learning and signal processing to estimate the solution to the resulting optimisation problem. Here, we rely on the approach employed in [START_REF] Taddei | A discretize-then-map approach for the treatment of parameterized geometries in model order reduction[END_REF], which combines the methods in [START_REF] Farhat | Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models[END_REF] and [START_REF] Yano | Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws[END_REF] and relies on non-negative least-squares to estimate the solution to the sparse representation problem. As discussed in section 3, the presence of internal variables requires several changes to the EQ approach in [START_REF] Taddei | A discretize-then-map approach for the treatment of parameterized geometries in model order reduction[END_REF]. We emphasise that several other hyper-reduction techniques have been proposed in the literature including the empirical interpolation method (EIM, [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF]) and its discrete variant [START_REF] Chaturantabut | Nonlinear model reduction via discrete empirical interpolation[END_REF], the approach in [START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF], and Gappy-POD [START_REF] Carlberg | The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows[END_REF][START_REF] Willcox | Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition[END_REF]: a thorough comparison of state-of-the-art hyper-reduction techniques is beyond the scope of this work.

The POD-Greedy algorithm was introduced in [START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF] and analysed in [START_REF] Haasdonk | Convergence rates of the POD-greedy method[END_REF]: the approach combines proper orthogonal decomposition (POD, [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF][START_REF] Bergmann | Enablers for robust POD models[END_REF][START_REF] Volkwein | Model reduction using proper orthogonal decomposition[END_REF]) to compress temporal trajectories with a greedy search driven by an error indicator to explore the parameter domain. In this work, similarly to [START_REF] Fick | A stabilized pod model for turbulent flows over a range of reynolds numbers: Optimal parameter sampling and constrained projection[END_REF], we rely on a time-averaged error indicator to drive the greedy search; furthermore, we test two different compression strategies to update the POD basis at each greedy iteration.

We further observe that the development of online-efficient adaptive ROMs for problems of the form ( 1) is extremely limited in the literature. Relevant examples include the works in [START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Miled | A priori hyper-reduction method for coupled viscoelasticviscoplastic composites[END_REF][START_REF] Leuschner | Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces[END_REF], which, however, do not consider adaptive sampling. As regards the application of MOR to THM systems, we recall the recent contribution by Larion et al. [START_REF] Larion | Building a certified reduced basis for coupled thermohydro-mechanical systems with goal-oriented error estimation[END_REF]: note, however, that the work in [START_REF] Larion | Building a certified reduced basis for coupled thermohydro-mechanical systems with goal-oriented error estimation[END_REF] deals with a linearised THM model without internal variables.

Outline

The outline of this paper is the following. In section 2 we briefly present the mathematical model and the numerical discretisation for the general class of nonlinear problems in structural mechanics defined in [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF]. In section 3, we present the MOR technique: to simplify the presentation, we first discuss the solution reproduction problem and then we extend the approach to the parametric case. Section 4 contains details of the THM mathematical model considered in the numerical section. In section 5, we present extensive numerical investigations for a two-dimensional THM system. In section 6, we draw some conclusions and we outline a number of subjects of ongoing research.

Formulation

Notation

In this section, we omit dependence on the parameter. Given Ω ⊂ R d , we define the triangulation {D k } Ne k=1 , where N e denotes the total number of elements, the nodes {x hf j } N hf j=1 and the connectivity matrix T ∈ N Ne,n lp such that T k,i ∈ {1, . . . , N hf } is the index of the i-th node of the k-th element of the mesh and n lp is the number of degrees of freedom in each element. Then, we introduce the continuous Lagrangian FE basis {ϕ i } N hf i=1 associated with the triangulation {D k } Ne k=1 , such that ϕ i (x hf j ) = δ i,j , and we introduce the FE space for the state variables:

X hf := span ϕ i e j : i = 1, . . . , N hf , j = 1, . . . , D eq , (2) 
where e 1 , . . . , e Deq are the elements of the canonical basis and D eq is the number of state variables. We denote by • = (•, •) the norm of X hf ; furthermore, given u ∈ X hf , we denote by u ∈ R N hf ,Deq the corresponding vector (or matrix) of coefficients such that (u) j, = u(x hf j ) for j = 1, . . . , N hf and = 1, . . . , D eq . In view of the MOR formulation, we introduce the elemental restriction operators

E k : R N hf → R n lp such that (E k u) i, = u(x hf T k,i ) , i = 1, . . . , n lp , = 1, . . . , D eq , k = 1, . . . , N e . (3a) 
Furthermore, we introduce the quadrature points {x hf,q q,k } q,k ⊂ Ω, such that x hf,q q,k is the q-th quadrature point of the k-th element of the mesh, with q = 1, . . . , n q , and the operators E qd k : R N hf → R nq and E qd,∇ k : R N hf → R nq,d such that

E qd k u q, = u(x hf,q q,k ) , E qd,∇ k u q, ,j = ∂ ∂x j u(x hf,q q,k ) (3b) 
where q = 1, . . . , n q , = 1, . . . , D eq , k = 1, . . . , N e and j = 1, . . . , d. To shorten notation, in the following, we further define E qd, k : R N hf → R nq,d+1 such that

E qd, k u q, ,1 = E qd k u q, , E qd, k u q, ,2...,d+1 = E qd,∇ k u q, ,• . ( 3c 
)
Remark 2.1. For the THM problem considered in this work, the state U contains the displacement u, the water pressure p and the temperature T (D eq = 2 + d); as discussed in the report [START_REF] Granet | Modélisations THHM[END_REF], to avoid instabilities, it is important to use polynomials of degree κ for displacement and κ-1 for pressure and temperature: as a result, we should introduce separate restriction operators and separate FE spaces for the different components of the state.

In the main body of the paper we choose to not explicitly address this issue to simplify notation: we remark that the extension to κ-κ -1 discretisations is computationally tedious but methodologically straightforward.

Finite element discretisation of (1)

We introduce the time grid 0 = t (0) < t (1) < . . . < t (Jmax) = T f such that t (j) = j∆t; we denote by {U (j) hf } Jmax j=1 ⊂ X hf the FE approximation of the state variables at each time step; on the other hand, we denote by W (j) hf ∈ R nq,Ne,Dint the tensor associated with the evaluation of the internal variables at time t (j) in the quadrature nodes:

W (j) hf q,k, = W (j)
hf (x hf,q q,k ) , q = 1, . . . , n q , k = 1, . . . , N e .

We further denote by I dir ⊂ {1, . . . , N hf • D eq } the indices associated with Dirichlet boundary conditions (if any), and we denote by g

dir ∈ R |I dir | the vector that contains the value of the solution at each Dirichlet node at time t (j) .

We state the FE discretisation of (1) as follows: for j = 1, 2, . . ., find (U

(j) hf , W (j) hf ) such that                    R hf U (j) hf , U (j-1) hf , W (j) hf , W (j-1) hf , V = 0, ∀ V ∈ X hf,0 ; U (j) hf (I dir ) = g (j) dir ; W (j) hf q,k, = F hf E qd, k U (j) hf q,• , E qd, k U (j-1) hf q,• , W (j-1) hf q,k,• , q = 1, . . . , n q , k = 1, . . . , N e , = 1, . . . , D int . (4) 
where X hf,0 := {V ∈ X hf : V(I dir ) = 0}. Note that R hf and F hf are the discrete counterparts of the operators G and F in [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF]. Note also that the constitutive laws are stated in the quadrature points of the mesh and the internal fields should be computed in the quadrature points of the mesh. At each time step, following [START_REF] Granet | Modélisations THHM[END_REF], we solve (4) for U (j) hf using a Newton method with line search; the method requires the computation of the Jacobian and the solution to a coupled linear system of size N hf • D eq . Since the underlying problem is second-order in space and first-order in time, the residual R hf can be written as the sum of local contributions:

R hf U (j) , U (j-1) , W (j) , W (j-1) , V = Ne k=1 r hf k E k U (j) , E k U (j-1) , W (j) •,k,• , W (j-1) •,k,• , E k V (j) (5)
As explained in section 3, decomposition [START_REF] Brand | Fast online SVD revisions for lightweight recommender systems[END_REF] provides the foundation of our hyper-reduction procedure.

Methodology

We propose a time-marching Galerkin ROM based on linear approximations. More precisely, we consider approximations of the form

U (j) µ = Z α (j) µ = N n=1 α (j) µ n ζ n , j = 1, . . . , J max , (6) 
where { α (j) µ } Jmax j=1 ⊂ R N are referred to as solution coefficients and are computed by solving a suitable ROM, while Z : R N → X hf is the reduced-order basis (ROB) and Z := span{ζ n } N n=1 is the reduced space. In presence of non-homogeneous Dirichlet conditions, it is convenient to consider affine approximations of the form

U (j) µ = Hg (j) + Z α (j)
µ , where H is a suitable lifting operator (see, e.g., [START_REF] Taddei | A discretize-then-map approach for the treatment of parameterized geometries in model order reduction[END_REF]) and Z ⊂ X hf,0 : since in this work, we consider homogeneous Dirichlet conditions, we do not address the treatment of non-homogeneous conditions.

The Galerkin ROM is obtained by projecting (4) onto the reduced space Z: this leads to a nonlinear system of N equations at each time step. To reduce assembly costs, it is important to avoid integration over the whole integration domain. Towards this end, we define the indices associated with the "sampled elements" I eq ⊂ {1, . . . , N e } and we define the EQ residual:

R eq µ U (j) , U (j-1) , W (j) , W (j-1) , V = k∈Ieq ρ eq k r hf µ,k E k U (j) , E k U (j-1) , W (j) •,k,• , W (j-1) •,k,• , E k V (j) (7a) 
where ρ eq = [ρ eq 1 , ..., ρ eq Ne ] T is a sparse vector of positive weights such that ρ eq k = 0 if k / ∈ I eq . In conclusion, the Galerkin ROM reads as follows: for j = 1, 2, . . ., find ( U

(j) µ , W (j) 
µ ) such that

             R eq µ U (j) µ , U (j-1) µ , W (j) µ , W (j-1) µ , V = 0, ∀ V ∈ Z; W (j) µ q,k, = F hf µ, E qd, k U (j) µ q,• , E qd, k U (j-1) µ q,• , W (j-1) µ q,k,• , q = 1, . . . , n q , k ∈ I eq , = 1, . . . , D int . (7b) 
Note that the internal variables need to be computed only in the sampled elements. Furthermore, computation of (7b) only requires the storage of the ROB in the sampled elements,

{E k ζ n : n = 1, . . . , N, k ∈ I eq }: provided that |I eq | N e
, this leads to significant savings in terms of online assembly costs and also in terms of online memory costs.

In the remainder of this section, we shall discuss the construction of the ROB Z (data compression), the empirical quadrature rule ρ eq (hyper-reduction) and also the error indicator. To simplify the presentation, in section 3.1 we focus on the solution reproduction problem, while in section 3.2 we discuss the extension to the parametric problem.

Solution reproduction problem

The solution reproduction problem refers to the task of reproducing the results obtained for a fixed value of the parameter µ. Algorithm 1 summarises the procedure: during the offline stage, we compute the hf solution to (6) for a given parameter and we store snapshots of the state variables at select time steps I s ⊂ {1, . . . , J max }; then, we use this piece of information to build a ROM for the state; then, during the online stage, we query the ROM for the same value of the parameter considered in the offline stage.

The solution reproduction problem is of little practical interest; however, it represents the first step towards the implementation of an effective ROM for the parametric problem. Note that during the offline stage we store the state variables in a subset of the time steps and we do not store internal variables: this choice is motivated by the fact that for practical problems memory constraints might prevent the storage of all snapshots; in addition, internal variables might not be computed explicitly by available hf codes.

Algorithm 1 Solution reproduction problem: offline/online decomposition

Offline stage:

1: compute {U (j)
hf,µ } j∈Is , I s ⊂ {1, . . . , J max }; 2: construct the ROB Z; section 3.1.1

3: construct the weights ρ eq . section 3.1.2 Online stage:

4: compute { α (j)
µ } Jmax j=1 by solving the ROM (7).

Data compression

We resort to POD based on the method of snapshots (cf. [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. I. Coherent structures[END_REF]) to generate the ROB Z. Given the snapshots {U

(j) hf,µ } j∈Is = {U (k) } K k=1 , K = |I s |, we define the Gramian matrix C ∈ R K,K such that C k,k = (U k , U k ); then,
we define the POD eigenpairs

C ζ n = λ n ζ n , λ 1 ≥ λ 2 ≥ . . . λ K ≥ 0;
finally, we define the POD modes

ζ n := K k=1 ζ n k U k , n = 1, . . . , N.
The reduced space size N can be chosen according to the energy criterion:

N := min M : M n=1 λ n ≥ (1 -tol 2 POD ) K i=1 λ i , (8) 
for some user-defined tolerance tol POD > 0. Note that the POD modes depend on the choice of the inner product (•, •): we discuss the choice of (•, •) for the THM problem considered in this paper in section 4.

Hyper-reduction

We denote by R hf µ (•) and R eq µ (•) the algebraic reduced residuals associated with the hf and empirical quadrature rules, such that

     R hf µ α; β, W n := R hf µ Z α, Z β, W µ , W , ζ n , n = 1, . . . , N, R eq µ α; β, W n := R eq µ Z α, Z β, W µ , W , ζ n , n = 1, . . . , N,
where α, β ∈ R N , W ∈ R nq,Ne,Dint , and W µ = W µ α, β; W is obtained by substituting in (4) 3 . We further introduce the Jacobians J hf µ (•), J eq µ (•) such that

J hf µ (α; β, W ) n,n := ∂ ∂α n R hf µ α; β, W n , J eq µ (α; β, W ) n,n := ∂ ∂α n R eq µ α; β, W n ,
for n, n = 1, . . . , N . We observe that the computation of the Jacobian involves the derivatives with respect to the constitutive laws in F hf ; we further observe that the residuals R hf µ (•) and R eq µ (•) satisfy

R hf µ α; β, W = G α; β, W ρ hf , R eq µ α; β, W = G α; β, W ρ eq , (9) 
where G ∈ R N,Ne can be explicitly derived using the same approach as in [START_REF] Taddei | A discretize-then-map approach for the treatment of parameterized geometries in model order reduction[END_REF] and

ρ hf = [1, . . . , 1] T .
As in [START_REF] Yano | An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs[END_REF], we reformulate the problem of finding the sparse weights ρ eq ∈ R Ne as the problem of finding a vector ρ eq such that:

1. the number of nonzero entries in ρ eq , which we denote by ρ eq 0 , is as small as possible;

2. the entries of ρ eq are non-negative;

3. (constant-function constraint) the constant function is integrated accurately:

Ne k=1 ρ eq k |D k | -|Ω| 1;
4. (manifold accuracy constraint) the empirical and hf residuals are close at operating conditions:

J hf µ (α (j) train , α (j) 
train ; W

(j-1) train ) -1 R hf µ α (j) train , α (j) 
train ; W

(j-1) train -R eq µ α (j) train , α (j) 
train ; W (j-1) train 2

1, (10) for j ∈ I s and for suitable choices of {α (j) train } j and {W (j) train } j that are discussed at the end of the section. Exploiting (9), we can restate the previous requirements as a sparse representation problem: find ρ eq ∈ arg min

ρ∈R Ne ρ 0 s.t. ρ ≥ 0 Cρ -b * ≤ δ, (11) 
for a suitable choices of the matrix C, the vector b, the norm • * , and the tolerance δ. Since ( 11) is NP-hard, we find an approximate solution to [START_REF] Granet | Modélisations THHM[END_REF] by solving the non-negative least-squares problem:

min ρ∈R Ne Cρ -b|| 2 s.t. ρ ≥ 0. ( 12 
)
In this work, we rely on the Matlab function lsqnonneg that implements the Greedy algorithm proposed in [START_REF] Lawson | Solving least squares problems[END_REF] and takes as input the matrix C, the vector b, and a tolerance tol eq : ρ eq = lsqnonneg(C, b, tol eq ).

The same algorithm to find the sparse weights ρ eq given the matrices C, b has been first considered in [START_REF] Farhat | Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models[END_REF]: for large-scale problems, a parallelised extension of the algorithm was introduced and successfully applied to hyper-reduction in [START_REF] Chapman | Accelerated mesh sampling for the hyper reduction of nonlinear computational models[END_REF]. We remark that in order to compute the entries of C, b associated with [START_REF] Fick | A stabilized pod model for turbulent flows over a range of reynolds numbers: Optimal parameter sampling and constrained projection[END_REF] we should prescribe the triplets α

(j) train , α (j-1)
train , W (j-1) train j∈Is

; note, in particular, that the internal variables cannot be directly extracted from hf computations. We here choose to consider α

(j) train = α (j)
hf,µ and W

(j) train = W (j)
hf,µ where { α

(j) hf,µ , W (j) 
hf,µ } j denote the solution to [START_REF] Chapman | Accelerated mesh sampling for the hyper reduction of nonlinear computational models[END_REF] for ρ eq = ρ hf . Note that this choice requires the solution to a ROM with hf quadrature.

Parametric problem

In order to extend our methodology to parametric problems, we should address two challenges. First, we should propose an adaptive strategy to explore the parameter domain P based on an inexpensive error indicator; second, we should devise a compression strategy to combine information from different parameters.

Our point of departure is the POD-Greedy algorithm proposed in [START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF]. Algorithm 2 summarises the procedure: the procedure takes as input a discretisation of P, Ξ train , a tolerance tol loop for the outer greedy loop, a tolerance tol pod for the data compression step, and the maximum number of greedy iterations N count,maxwe here prescribe the termination condition based on the error indicator; we refer to the pMOR literature for other termination conditions.

We observe that the algorithm depends on several building blocks: the FE solver

{U (j) hf,µ } j∈Is = FE-solve(µ)
takes as input the vector of parameters and returns the snapshot set associated with the sampling times I s ⊂ {1, . . . , J max }; the data compression routine

Z , λ = data-compression Z, λ, {U (j) 
hf,µ } j∈Is , (•, •), tol pod takes as input the current ROB and the POD eigenvalues λ = [λ 1 , . . . , λ N ] T , and returns the updated ROB Z and the updated eigenvalues λ ; finally, we observe that construction of the ROM comprises both the construction of the Galerkin ROM and of the error indicator. In the remainder of this section, we discuss each element of the procedure.

Data compression

We consider two different data compression strategies: a hierarchical POD (H-POD) and a hierarchical approximate POD (HAPOD). Both techniques have been considered in several previous works: we refer to [13, section 3.5] for H-POD and to [START_REF] Himpe | Hierarchical approximate proper orthogonal decomposition[END_REF] for HAPOD; HAPOD is also related to incremental singular value decomposition in linear algebra [START_REF] Brand | Fast online SVD revisions for lightweight recommender systems[END_REF]. Here, we review the two approaches for completeness. We denote by Π Z : X hf → Z the orthogonal projection operator on Z ⊂ X hf ; furthermore, we introduce notation

[Z, λ] = POD {U (k) } K k=1 , (•, •), tol pod
to refer to the application of POD to the snapshot set {U (k) } K k=1 , with inner product (•, •), and tolerance tol pod

(cf. (8)), with Z = [ζ 1 , . . . , ζ N ], ζ n = 1, λ = [λ 1 , . . . , λ N ] T , and λ 1 ≥ λ 2 . . . ≥ λ N .
Given Z and the snapshots {U (j) hf,µ } j H-POD considers the update:

Z = [Z, Z new ] , Z new = POD {Π Z ⊥ U (j) hf,µ } j , (•, •), tol pod . ( 13a 
)
Note that the approach does not require to input the POD eigenvalues λ from the previous iterations. We observe that the approach leads to a sequence of nested spaces -that is, the updated ROB contains the ROB of the previous iteration -and it returns an orthonormal basis of the reduced space. In our experience, the choice of the tolerance tol pod is extremely challenging: since (8) depends on the relative energy content of the snapshot set, the update (13a) with fixed tolerance tol pod might lead to an excessively large (resp., small) Algorithm 2 POD-Greedy algorithm Require: Ξ train = {µ (k) } ntrain k=1 , tol loop , tol pod , N count,max . 1: Z = ∅, λ = ∅, µ = µ (1) .

2: for n count = 1, . . . , N count,max do 3:

{U (j) hf,µ } j∈Is = FE-solve(µ ); 4: [Z, λ] = data-compression(Z, λ, {U (j)
hf,µ } j∈Is , (•, •), tol pod ); section 3.2.1.

5:

Construct the ROM with error indicator. section 3.2.3.

6:

for j = 1 : n train do 7:

Solve the ROM (7) for µ = µ (k) and compute ∆ µ .

8:

end for end if.

13: end for return ROB Z and ROM:

µ ∈ P → { α µ (j) } Jmax j=1 .
number of modes when max j U

(j) hf,µ -Π Z U (j) hf,µ
is small (resp., large). For this reason, we propose to choose the number of new modes N new using the criterion:

N new := min M : max j∈Is Π (Z⊕Z new M ) ⊥ U (j) hf,µ U (j) hf,µ ≤ tol pod , Z new M = span{ζ new m } M m=1 . (13b) 
Note that this choice enforces that the in-sample relative projection error is below a certain threshold for all snapshots computed during the greedy iterations. HAPOD considers the update

[Z , λ ] = POD {U (j) hf,µ } j ∪ {λ n ζ n } N n=1 , (•, •), tol pod . ( 14 
)
Note that the approach [START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF] does not in general lead to hierarchical (nested) spaces. As discussed in [16, section 3.3], which refers to [START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF] as to distributed HAPOD, it is possible to relate the performance of the reduced space obtained using HAPOD to the performance of the POD space associated with the snapshot set {U (j) hf,µ ,n : n = 1, . . . , N count,max , j ∈ I s }: we refer to the above-mentioned paper for a thorough discussion.

Time-averaged error indicator

We define the trajectories U = {U (j) } Jmax j=1 and W = {W (j) } Jmax j=1 ; given the pair (U, W), we define the timeaverage residual:

R hf avg,µ (U, W, V ) := Jmax j=1 (t (j) -t (j-1) ) R hf µ U (j) , U (j-1) , W (j) , W (j-1) , V , ∀ V ∈ X hf,0 , (15) 
and the error indicator

∆ hf µ (U, W) = sup V ∈X hf,0 R hf avg,µ (U, W, V ) V . (16) 
The indicator ( 16) is expensive to evaluate since it relies on hf quadrature and it requires the computation of the supremum over all elements of X hf,0 : following [START_REF] Taddei | An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces[END_REF], we consider the hyper-reduced error indicator

∆ µ (U, W) = sup V ∈Y R eq,r avg,µ (U, W, V ) V , (17) 
where Y ⊂ X hf,0 is an M -dimensional empirical test space, while R eq,r avg,µ is defined by replacing R hf µ in (15) with a suitable sparse weighted residual of the form (7a), defined over the elements I eq,r ⊂ {1, . . . , N e }.

Given the ROM solution ( U µ , W µ ), the test space Y should guarantee that sup

V ∈Y R hf avg,µ U µ , W µ , V V ≈ sup V ∈X hf,0 R hf avg,µ U µ , W µ , V V , ∀µ ∈ P, (18) 
which implies that Y should be an approximation of the space of Riesz elements M test := { ψ µ : µ ∈ P} with

ψ µ , V = R hf avg,µ U µ , W µ , V , ∀ V ∈ X hf,0 . (19) 
On the other hand, the empirical quadrature rule should ensure that

R eq,r avg,µ U µ , W µ , ψ m ≈ R hf avg,µ U µ , W µ , ψ m , ∀ µ ∈ P, m = 1, . . . , M, (20) 
where ψ 1 , . . . , ψ M is an orthonormal basis of Y.

In our implementation, we compute the error indicator during the time iterations -as opposed to after having computed the whole solution trajectory. Algorithm 3 provides the complete online solution and residual indicator computations. We find that computation of ∆ µ requires to compute the internal variables W µ in the elements I eq ∪ I eq,r at each time iteration (cf. (7b)), and it requires to store the trial ROB Z in {D k : k ∈ I eq ∪ I eq,r } and the test basis Y = [ψ 1 , . . . , ψ M ] in {D k : k ∈ I eq,r }.

Algorithm 3 Online solution and residual computations

1: Initial state and internal variables; set R avg µ = 0.

2: for j = 1, . . . , J max do 3:

Compute α (j) µ by solving (7b).

4:

Compute W

(j) µ •,k,•
for all k ∈ I eq,r using (7b) 2 .

5:

We further define the unassembled average residual R avg,un µ ∈ R n lp ,Ne,Deq : we observe that R avg,un µ might be employed to build the FE residual and ultimately compute the Riesz representers ψ µ in [START_REF] Larion | Building a certified reduced basis for coupled thermohydro-mechanical systems with goal-oriented error estimation[END_REF], and also, given Y, to compute G r µ . We focus on the construction of the ROM at the n c -th iteration of the POD Greedy algorithm. We define Ξ = {μ (j) } nrom j=1 = {µ ,(i) } nc i=1 ∪ {μ (j) } ntrain,eq j=1

, where µ ,(1) , . . . , µ ,(nc) are the parameters sampled by the greedy algorithm and μ(1) , . . . , μ(ntrain,eq) are independent identically distributed samples from the uniform distribution over P. Algorithm 4 summarises the computational procedure as implemented in our code. The test space Y is built using POD as in [START_REF] Taddei | An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces[END_REF], while the EQ weights ρ eq,r are obtained using the non-negative least-squares method.

Algorithm 4 Construction of the ROM

1: for µ ∈ Ξ do 2:
Solve the ROM with hf quadrature and compute C µ and R avg,un µ .

3: end for

4: Assemble C =        C μ(1) . . . C μ(nrom) c T        ∈ R K•N •nrom,
Ne and set ρ eq = lsqnonneg(C, Cρ hf , tol eq ).

5: Compute the Riesz representers { ψ µ } µ∈Ξ using [START_REF] Larion | Building a certified reduced basis for coupled thermohydro-mechanical systems with goal-oriented error estimation[END_REF].

6: Define the empirical test space Y = span{ψ m } M m=1 as [{ψ m } M m=1 ] = POD { ψ µ } µ∈Ξ , (•, •), tol pod,res . 7: Assemble G =        G μ(1) . . . G μ(nrom) c T        ∈ R M •nrom,
Ne and set ρ eq,r = lsqnonneg(G, Gρ hf , tol eq,r ).

The THM model

In this section we illustrate the non-dimensional mathematical formulation and the numerical discretisation of the THM system considered in this work. We assume that the solid undergoes small displacements and that soil is fully-saturated in water. We resort to a Lagrangian formulation for the solid, and to an Eulerian formulation for the fluid.

Preliminary definitions

We first introduce the state variables and the internal variables. The state variables represent solid displacement, water pressure and temperature and are reported in Table 1; the internal variables W = [ρ w , ϕ, h w , Q, M T w , m w ] T represent dependent physical quantities and are illustrated in 

J • Kg -1 mass enthalpy of water Q Pa non-convected heat M w kg • m -2 • s -1 mass flux m w kg • m -3 mass input Table 2: dependent variables
We denote the Cauchy stress tensor by σ[Pa], and we define the volumetric deformation V = tr( ) where is the strain tensor: = ∇ s u = 1 2 ∇u + ∇u T . We also provide in Table 3 

Geometry configuration

The computational domain is shown in Figure 1(a). The geological repositories, modelled as boundary conditions, are depicted in red at the bottom of the domain, in the case of two activated alveoli. In the vertical (x 2 ) direction, the domain is split into three layers: a clay layer denoted as UA ("unité argilleuse"), a transition layer UT ("unité de transition") and a silt-carbonate layer USC ("unité silto-carbonatée").

In Figure 1 The grid is refined in the proximity of the alveoli to better capture the relevant features of the solution. We consider a p = 3 FE discretisation for the displacement component, and a p = 2 FE discretisation for both pressure and temperature.

Mathematical problem

We first state the equilibrium equations -the superscripts (•) m , (•) n ,(•) t refer to quantities associated with the mechanical, hydraulic and thermal behaviours, respectively. Then, we present the constitutive laws that are considered and finally we present the boundary conditions. To clarify the presentation, we report in Table 4 the parameters that enter in the constitutive laws.

We denote by F m = -g γ e 2 (where γ = σ0 ρ0 H ) the mechanical force with g defined in Table 4 and we specify that n (resp. t) is the unitary outward normal (resp. tangential) vector in the domain depicted in Figure 1(a); then we introduce the equilibrium of mechanical forces:

               -∇ • σ = ρF m in Ω, σ n = g m,N on Γ N , u • n = 0 on ∂Ω \ Γ N , (σ n) • t = 0 on ∂Ω \ Γ N , (23a) 
where Γ N is depicted in Figure 1(a). The Neumann datum g m,N is given by g m,N = -e 2 . The stress tensor is linked to the primary and internal variables by the linear law

σ = 2µ∇ s u + (λ ∇ • u -(2µ + 3λ)α s T -bp w ) 1, (23b) 
where the Lamé constants µ , λ satisfy

µ = E 2(1 + ν) , λ = Eν (1 + ν)(1 -2ν)
,

and E and ν are introduced in Table 4.

We state the mass conservation of water as follows

∂ t m w + ∇ • M w = 0 in Ω M w • n = 0 on ∂Ω (24a) 
where the muss flux M w is given by the Darcy law

M w = -γ (∇p w -ρ w F m ), (24b) 
and

γ = ρ w κ w σ 0 t ρ 0 µ w,0 H2 exp - 1808.5 T ref + ∆T T . (24c) 
Finally we consider the energy balance:

h w ∂ t m w + ∂ t Q + ∇ • h w M w + q -M w • F m = Θ in Ω h w M w + q • n = g t,N on ∂Ω (25a)
where Q is the non-convective heat, q is the thermal flux and is given by the Fick law

q = -Λ∇T, (25b) 
with Λ = diag(λ 1 , λ 2 ). If we denote by Γ al ⊂ ∂Ω the region associated with the alveoli, g t,N is equal to

g t,N = P t n c t l Q H2 σ 0 exp -t/τ 1 Γ al = C al exp -t/τ 1 Γ al , (26) 
where n c [%] is the density of the radioactive waste stock in each alveolus (equal to 45 anisters), P t = 31.4 [W] is the unitary termic power at the initial time, l Q = 3.09 [m] is the size of each alveolus, σ 0 , H, t are introduced in Table 3 and

τ = t log(0.112) [s] is a characteristic decay time.                            dρ w ρ w = dp w K w -3α w dT dϕ b -ϕ = d V -3α s dT + dp w K s , dh w = C p w dT + (β p h -3α w T ) dp w ρ w , δQ = β Q + 3α s K 0 T d V -β p Q + 3α w,m T dp w + C 0 dT , m w = ρ w (1 + V ) ϕ -ρ 0 w ϕ 0 (27a) (27b) (27c) (27d) (27e) 
Here, we have 

β p h = 1 -3α w T ref , β Q = 3α s K 0 T ref , β p Q = 3α
= E 3(1-2ν) C p w J • kg -1 • K -1 heat
= ρ 0 -ρ 0 w ϕ 0 1-ϕ 0 C 0 Pa • K -1 specific heat at constant deformation C 0 = (1 -ϕ)ρsC s σ + ϕρwC p w -9T K0α 2 s Λ thermic conductivity tensor Λ = diag(λ1, λ2) λ1 Wm -1 K -1 thermic conductivity component 1.5 UA 1.5 UT 1.3 USC λ2 Wm -1 K -1 thermic conductivity component 1 UA 1 UT 1.3 USC Θ Pa • s -1 volumetric heat sources
Table 4: parameters of the constitutive laws. Layers UA, UT, USC are depicted in Figure 1 (a).

Initial conditions

To set the initial conditions, we consider the case of deactivated repositories: therefore, we set thermal flux equal to zero and we set a constant temperature T 0 = T ref in Ω, where the reference temperature is defined in Table 3. We aim at finding the initial values of the primary variables u and p w that correspond to the equilibium solutions of a preliminary problem: here, the Neumann boundary condition for the energy equation is zero, that is, g t,N = 0, and temperature is costant and equal to the reference value T ref (in Table 3).

We then seek u 0 , p w,0 such that the initial solution vector U 0 = [u T 0 , p w , T 0 ] T satisfies the equilibrium equations (23a), (24a) and (25a) with thermal flux g t,N equal to 0 on the domain boundary ∂Ω. Towards this end, we first observe that (27a) reduces to

dρ w ρ w = dp w K w (28) 
that brings to p w = ρ -∞ exp 1 Kw (p w -p -∞ ) . If we assume that ρ w = ρ -∞ = ρ w,0 , we find p w = p -∞ ; furthermore, by susbstituting these assumptions into the hydraulic equilibrium equation we find p w,0 (x, y) = p w,top + ρ w,0 g(1 -y) [START_REF] Taddei | A discretize-then-map approach for the treatment of parameterized geometries in model order reduction[END_REF] where p w,top is a datum for water pressure that is defined at the top boundary of the domain (0, 1) × {1}. Finally, we search for u 0 as the solution to the equilibrium equation of mechanical forces:

Ω 2µ ∇ s u 0 : ∇ s v + λ(∇ • u 0 )(∇ • v) -bp w,0 ∇ • v -ρ 0 F m • v dx = ΓN g m,N • v dx, (30) 
for all v ∈ X u hf , such that v • n| ∂Ω\ΓN = 0.

Finite element formulation

We resort to an implicit Euler time discretisation scheme, with J max = 100 uniform time steps; the superscript (•) + refers to the new solution (at the current time step j, for j = 1, ..., J max ), while (•) -refers to the solution at the previous time steps:

                               Ω 2µ ∇ s u + : ∇ s v + λ∇ • u + -(2µ + 3λ) α s T + -bp + w ∇ • v -ρ 0 + m + w F m • v dx = ΓN g + m,N • v dx; Ω 1 ∆t (m + w -m - w ) ψ + γ + (∇p + w -ρ + w F m ) • ∇ψ dx = 0; Ω h w ∆t (m + w -m - w ) + 1 ∆t (Q + -Q -) + γ + (∇p + w -ρ + w F m ) • F m ξ --h - w (∇p + w -ρ + w F m ) + q • ∇ξ = Ω Θ + ξ dx - ∂Ω g + t,N ξ dx; (31) for all v ∈ X u hf such that v • n| ∂Ω\Γ N = 0, ψ ∈ X p hf , ξ ∈ X t hf , where                                      ρ + w = ρ - w exp p + w -p - w K w -3α w (T + -T -) ; ϕ + = b -(b -ϕ -) exp -( + V -- V ) + 3α 0 (T + -T -) - 1 K s (p + w -p - w ) ; h + w = h - w + C p w (T + -T -) + β p h -3α w T + ρ + w p + w -p - w ; Q + = Q -+ β Q + 3α s K 0 1 2 (T + + T -) + V -- V -β p Q + 3α + w,m 1 2 (T + + T -) p + w -p - w + C 0,+ (T + -T -); m + w = ρ + w (1 + + V ) ϕ + -ρ 0 w ϕ 0 . (32) 

Choice of the norm

We equip the FE space X hf with the weighted inner product

(U , U ) = 1 λ u 2 d=1 (u d , u d ) H 1 (Ω) + 1 λ p (p, p ) H 1 (Ω) + 1 λ t (T, T ) H 1 (Ω) , (33) 
where the coefficients λ u , λ p , λ t are the largest eigenvalues of the Gramian matrices C u , C p , C t associated to displacement, pressure and temperature, respectively. Similarly to [START_REF] Taddei | An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces[END_REF], the inner product (33) is motivated by the need for properly taking into account the contributions of displacement, pressure and temperature, which are characterised by different magnitudes and different units.

Parametrization

We consider a vector of four parameters: the Young's modulus E and the Poisson's ratio ν in the region UA, the thermic factor τ and the constant C al in [START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF]. For all parameters, we define the parameter domain P by considering variations of ±15% with respect to the nominal value reported in Table 4. 

Error estimation

In Figure 5 we compare the dual residual and several EQ errors for each parameter µ in the training set Ξ train and for different dimensions of the reduced space that is progressively updated during the execution of the POD-Greedy algorithm. In particular, we show results in two cases: the hierarchical POD-Greedy (H-POD) and the hierarchical approximate POD-Greedy (denoted as HA-POD). 17) is correlated with the relative error (34). We observe that for values of the indicators that are larger than 10 -3 , correlation is very high, while for smaller values correlation is much weaker. To provide a a concrete reference, in Figure 6 we investigate the correlation between the relative error (34) and the time-discrete L 2 (0, T f ; X hf,0 ) residual indicator defined in [START_REF] Leuschner | Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces[END_REF]: we observe that the indicator in ( 21) is significantly more accurate, particularly for small values of the error. As stated in section 3, the residual indicator ( 21) is considerably more expensive in terms of both memory and computational costs.

POD-Greedy sampling

In Figures 7 and8 parameter µ is marked in red, while the previously selected parameters are marked in green. We also report the dimension of the updated reduced space and the number of sampled elements.

Predictive tests

In Figure 9, we assess out-of-sample performance of the proposed method. More precisely, we show the behaviour of the maximum relative error (34) over the test set max µ∈Ξtest E µ for both H-POD Greedy and HA-POD Greedy.

To provide a relevant benchmark, we compare results with the H-POD Greedy and HA-POD Greedy algorithms based on the exact errors (strong POD-Greedy). For this particular example, we observe that the proposed method is effective to generate accurate ROMs: in particular, the Greedy procedures based on the time-averaged error indicator are comparable in terms of performance with the corresponding strong POD-Greedy algorithms.

Conclusions

In this work, we developed and numerically validated a model order reduction procedure for a class of problems in nonlinear mechanics, and we successfully applied it to a two-dimensional parametric THM problems that arises in radio-active waste management. We proposed a time-averaged error indicator to drive the offline Greedy sampling, and an empirical quadrature procedure to reduce offline costs. We aim to extend the approach in several directions. First, we wish to apply our method to other problems of the form (1), to demonstrate the generality of the approach and its relevance for continuum mechanics applications. Second, we wish to combine our approach with domain decomposition methods ( [START_REF] Bergmann | A zonal Galerkin-free POD model for incompressible flows[END_REF][START_REF] Kaulmann | A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems[END_REF][START_REF] Huynh | A static condensation reduced basis element method: approximation and a posteriori error estimation[END_REF]) to deal with more complex parametrizations and topological changes. Towards this end, we wish to devise effective localised training methods to reduce offline costs and domain decomposition strategies to glue together the solution in different components of the domain. 

  (b) the finite element grid is shown. The number of degrees of freedom for the first state component (solid displacement) is N u hf = 40430, while for water pressure and temperature is N p hf = N t hf = 9045.
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 1 Figure 1: geometric configuration: (a) the non-dimensional domain (b) the mesh. The size of each alveoulus is equal to l Q = 3.09 [m], while the distance between consecutive alveoli is equal to l = 6.18 [m].

Figure 2 :

 2 Figure 2: (a): exponential decay of POD eigenvalues. (b), (c), (d): projection errors computed through (35) (in black) and (36)-(38)(in red) for increasing numbers of POD modes.
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  eq = 10 -8 tol eq = 10 -12 tol eq = 10 -14 (b) Selected elements
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 3 Figure 3: solution reproduction problem. (a): errors associated to projection error (proj), Galerkin with highfidelity quadrature (hfq) and Galerkin with empirical quadrature for several choices of tol eq with respect to the ROM dimension N . (b): percentage of selected elements for several tol eq .
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 4 Figure 4: solution reproduction problem. Reduced mesh for two choices of the empirical quadrature tolerance.

  Figures 5(a) and 5(b) show for both H-POD and HA-POD to what extent the residual-based error indicator defined in (

Figure 5 :

 5 Figure 5: parametric problem: correlation between the time-average residual indicator (17) and true relative errors (34).

Figure 6 :

 6 Figure 6: parametric problem: correlation between residual indicator (21) and true relative errors 34.

  (a) Iteration it = 1; N = 15, Q = 74, Qr = 16 (b) Iteration it = 2; N = 26, Q = 123, Qr = 18 (c) Iteration it = 3; N = 35, Q = 155, Qr = 22 (d) Iteration it = 4; N = 43, Q = 169, Qr = 18

Figure 7 :

 7 Figure 7: parametric problem: POD-Greedy algorithm convergence history in the H-POD case.

(a) it = 1 ;

 1 N = 15,Q = 74,Qr = 16 (b) it = 2; N = 25,Q = 120, Qr = 19 (c) it = 3; N = 31,Q = 135, Qr = 21 (d) Iteration it = 4; N = 37,Q = 156, Qr = 19

Figure 8 :

 8 Figure 8: parametric problem: POD-Greedy algorithm convergence history in the HA-POD case.

Figure 9 :

 9 Figure 9: Out-of-sample performance of the ROM parametric problem obtained using the POD-Greedy algorithm. Comparison with strong POD Greedy.

Table 2 ,

 2 together with the corresponding SI units.

		SI unit description
	u	m	solid displacement
	p w Pa	water pressure
	T	K	temperature
		Table 1: primary variables

Table 3 :

 3 the characteristic parameters that we use for the non-dimensionalisation. characteristic constants

		SI unit	value
	t	s	3.15 • 10 7
	H	m	77.3
	σ 0	Pa	11.3 • 10 6
	ρ 0	kg • m -3 2450
	T ref K	297.5
	∆T K	30

  w,m T ref .The parameters in (27a)-(27e) are defined in Table4.

		SI unit	description	reference value formula	
	g	m • s -2	gravity acceleration	9.81		
				11.4 • 10 9 UA		
	E	Pa	Young's modulus	12.3 • 10 9 UT		
				20 • 10 9 USC		
	ν	%	Poisson's ratio	0.3		
	µ	Pa	Lamé parameter,		E 2(1+ν)	
	λ	Pa	Lamé parameter		Eν (1+ν)(1-2ν)	
	b	%	Biot coefficient	0.6		
	αs	K -1	solid thermal expansion coefficient	1.28 • 10 -5		
	α0	K -1	expansion coefficient	1.28 • 10 -5		
	κw	m 2	intrinsic permeability of porous medium 10 -21		
	µw µw,0	MPa • s MPa • s	dynamic viscosity dynamic viscosity coefficient	2.1 • 10 -12	µw = µw,0 exp( 1808.5 T	)
	Ks	Pa	bulk modulus of the solid			
	Kw	Pa	bulk modulus of water	2 • 10 9	Ks	
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, ψ m for m = 1, . . . , M .

6:

Update R avg µ = R avg µ + (t (j) -t (j-1) ) R (j) µ .

7: end for return { α (j) µ } j and ∆ µ = R avg µ 2

Several authors (e.g., [START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF]) have considered the time-discrete L 2 (0, T f ; X hf,0 ) residual indicator

We observe that we could apply the same ideas considered in this section to devise an hyper-reduced counterpart of the residual indicator [START_REF] Leuschner | Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces[END_REF]. However, we find that the test space Y and the empirical quadrature rule should be accurate for all parameters and for all time steps: as a result, the resulting test space Y might be significantly higher dimensional and the quadrature rule might be significantly less sparse, for the desired accuracy. For this reason, in this work, we investigate the effectivity of the time-averaged error indicator (17).

ROM construction

In order to devise an actionable ROM, we should discuss (i) the choice of the EQ rule ρ eq , (ii) the choice of the test space Y and of the EQ rule ρ eq,r in [START_REF] Huynh | A static condensation reduced basis element method: approximation and a posteriori error estimation[END_REF]. In view of the presentation of the computational procedure, we define the ROM solution with hf quadrature ( U hf µ , W hf µ ); we denote by C µ ∈ R K•N,Ne the EQ matrix associated with the manifold accuracy constraints in [START_REF] Fick | A stabilized pod model for turbulent flows over a range of reynolds numbers: Optimal parameter sampling and constrained projection[END_REF] for µ ∈ P (cf. section 3.1.2); we further define the vector c = [|D 1 |, . . . , |D Ne |] T associated with the constant function accuracy constraint. Given the test reduced basis

5 Numerical results

We measure performance through the discrete L 2 (0, T f ; X hf ) relative error

for any µ ∈ P. Similarly, we denote by E u µ , E p µ and E t µ the discrete relative L 2 (0, T f ; X hf ) errors associated with the estimate of displacement, pressure and temperature, respectively.

Solution reproduction problem

We first present numerical results for a fixed configuration of parameters μ ∈ P to validate the ROM described in section 3. We consider μ equal to the centroid of P. We perform data compression based on the whole set of snapshots, i.e. |I s | = J max = 100.

Data compression: POD

In Figure 2 we compare performance of the global POD based on the weighted inner product (•, •) with the performance of the component-wise POD. More precisely, we define Z such that

and we extract the displacement, pressure and temperature components Z u , Z p , Z t . Then , we denote the "optimal" (in a discrete L 2 sense) spaces

[Z p,opt , λ p,opt ] = POD {p

In Figure 2 (a) we show the behaviour of the POD eigenvalues in (35); in Figure 2(b), (c), (d) we compare the relative projection errors associated with Z u and Z u,opt , Z p , Z p,opt and Z t and Z t,opt . We observe that the projection errors are nearly the same for all the three state variables: this obervation suggests to consider a single reduced space to approximate the solution field.

Hyper-reduction

In Figure 3(a) we show the performance of the Galerkin ROM with and without hyper-reduction. We distinguish between the high-fidelity quadrature rule, abbreviated as hfq, and the empirical quadrature rule for several tolerances tol eq . We also add as a reference, the relative projection error. Figure 3(b) shows the percentage of selected elements Q Ne × 100% for the same choices of the tolerance tol eq . We observe that the empirical quadrature procedure is able to significantly reduce the size of the mesh used for online calculations without compromising accuracy. The plateau for N 14 is due to the tolerance of the Newton iterative solver.

In Figure 4, we show the selected grid elements for two choices of the EQ tolerance value tol eq and for N = 12. We observe that the sampled elements are distributed over the whole domain with a slight prevalence of elements in the proximity of the alveoli.

Parametric problem

We present results for the parametric case. We denote by Ξ train ⊂ P the training set used to build the ROM and by Ξ test ⊂ P the test set used to assess performance. Both sets consist of independent identically distributed samples of a uniform distribution in P, with |Ξ train | = n train = 50 and |Ξ test | = n test = 10. We also set tol POD = 10 -7 in (8) and in (13b) for data compression, and we set tol POD,res = 10 -5 in (8) for the construction of the empirical test space. We set I s ⊂ {1, ..., J max } with |I s | = 20. EQ rules are depicted usign the tolerance tol eq = 10 -12 (cf . Algorithm 4).