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The RSA cryptosystem comprises of two important features that are needed for encryption process known as the public parameter e and the modulus N . In 1999, a cryptanalysis on RSA which was described by Boneh and Durfee focused on the key equation ed -kφ(N ) = 1 and e of the same magnitude to N . Their method was applicable for the case of d < N 0.292 via Coppersmith's technique. In 2012, Kumar et al. presented an improved Boneh-Durfee attack using the same equation which is valid for any e with arbitrary size. In this paper, we present an exponential increment of the two former attacks using the variant equation ea -φ(N )b = c. The new attack breaks the RSA system when a and |c| are suitably small integers. Moreover, the new attack shows that the Boneh-Durfee attack and the attack of Kumar et al. can be derived using a single attack. We also showed that our bound manage to improve the bounds of Ariffin et al. and Bunder and Tonien. 

Introduction

The initial idea of cryptography started from a symmetric idea which implies that users were utilizing the same key in order to encrypt and decrypt the data. However, the problem on how to distribute key efficiently eventually arose as the number of the users increased. Two cryptographers namely Diffie and Hellman [START_REF] Diffie | New directions in cryptography[END_REF] contributed towards solving this problem by introducing public key cryptography (PKC) or also known as asymmetric cryptography which lead to a successful mass utilization of cryptography [START_REF] May | New RSA vulnerabilities using lattice reduction methods[END_REF]. An important feature of PKC is that, it uses a one-way function together with its trapdoor information. A one way function is a function that is easy to compute but computationally infeasible to invert unless if one has the trapdoor information that allows the inverse computation in polynomial time [START_REF] Hoffstein | An Introduction to Mathematical Cryptography[END_REF]. In 1978, Rivest, Shamir, and Adleman used the idea of [START_REF] Diffie | New directions in cryptography[END_REF] and invented an astounding cryptosystem namely RSA [START_REF] Rivest | A Method for obtaining digital signatures and public-key cryptosystems[END_REF] and it has been deployed globally to provide security in communication as well as protect information. The main characters in the RSA are the modulus N where it is a product of two distinct large and balance primes called p and q, a parameter e which is set as public key and relatively prime to Euler's totient function φ(N ), and a private exponent d connected via the relation ed ≡ 1 (mod φ(N )). The following algorithms describe the initial schemes of the RSA cryptosystem in details. variants of RSA have been designed in order to increase efficiency and to reduce cost of implementation. Works by [START_REF] Quisquater | Fast decipherment algorithm for RSA public key cryptosystem[END_REF], [START_REF] Rabin | Digitalized signatures and public-key functions as intractable as factorization[END_REF], [START_REF] Takagi | A fast RSA-type public-key primitive modulo p k q using Hensel lifting[END_REF] are the instances of variants of RSA. An interested reader may refer to [9] for further explanation. Another popular method to reduce the cost of the decryption and the signature generation is to use a short private exponent d. It is related to the public exponent e by the above congruence relations vis-à-vis the equation ed -kφ(N ) = 1. Unfortunately, this might render RSA insecure. Indeed, in 1990, Wiener's work [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] indicated that the RSA modulus N can be factored if d < 1 3 N 0.25 by the continued fraction attack. Using Coppersmith's technique and lattice reduction, [3] enhanced the attack range up to d < N 0.292 . Later on, [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] improved [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] and presented a generalized equation in the form ex + y = kφ(N ). They utilized the continued fraction method and Coppersmith's technique [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] and exposed that the solution for ex + y = kφ(N ) can be obtained if x < 1 3 N 0.25 and |y| < N -0.75 ex. Note that the bound of [3] is valid essentially when e is of the same magnitude than N . [13] extended the attack of [3] with the equation ed -kφ(N ) = 1 for arbitrary e < N β and d < N δ . They showed that RSA is vulnerable if δ < 1 -1 2

√

2β. In 2018, Bunder and Tonien proposed an attack on the RSA utilising continued fraction expansion over e N where N is a value that depends on the modulus N . They proved that the RSA is susceptible when e ≈ N t for 0 < t < 1 and d < 2

√ 2N 3 4 -t 2 .
Another attack on the small decryption exponent was proposed by Weger [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] using the primes difference method. He proved that the RSA is insecure when

d < N 3 4
|p-q| . In 2012, Nitaj [START_REF] Nitaj | Cryptanalysis of RSA using the ratio of the primes[END_REF] also proposed an attack on the RSA using the same method and he managed to improved Wiener's bound up to 4 . Later in 2018, Ariffin et al. generalized [START_REF] Nitaj | Cryptanalysis of RSA using the ratio of the primes[END_REF] and described an attack on the RSA using a combination of the small prime and continued fractions expansion methods and showed that when d < 

√ 6 √ 2 6 N 1
= N β , 0 < a < N δ , 0 < |c| < N γ .
Using Coppersmith's method and lattice reduction techniques, we show that if

δ < 1 - 1 2 γ - 1 2 2β, β > 1 2 ,
then the modulus N can be factored.

If γ = 0, we get δ < 1 -1 2 √ 2β which retrieves the bounds of [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF], [13], [START_REF] Bunder | A new attack on the RSA cryptosystem based on continued fractions[END_REF] for the equation ed -kφ(N ) = 1. Moreover, if β = 1, we get δ < 1 -1 2 √ 2 ≈ 0.292, which in turn retrieves the bound of [3]. As a consequence, our new attack fully covers both attacks of [3] and [13] on RSA. The method presented in this paper shows that the set of the weak public exponents e in the attacks of [3] and [13] can be expanded to more exponents.

The initiation for the new attack is the equation ea -φ(N )b = c. In all cases, we transform it to two a modular polynomial equations, f (y 1 , y 2 , y 3 ) ≡ 0 (mod e) with f (y 1 , y 2 , y 3 ) = y 1 y 2 + a 1 y 2 + y 3 , F (y 1 , u) ≡ 0 (mod e) with F (y 1 , u) = u + a 1 y 3 and u = y 1 y 2 + y 3 .

To find the small solutions of the modular equation f (y 1 , y 2 , y 3 ) ≡ 0 (mod e), we use Coppersmith's technique [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] and lattice reduction, combined with the strategies presented in [START_REF] Herrmann | Maximizing small root bounds by linearization and applications to small secret exponent RSA[END_REF] as well as in [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF]. Under the condition that the parameters a and c are suitably small, the solutions of the modular equation lead to the factorization of the RSA modulus. This paper has been divided into the following sections. Section 2 reviews on lattice reduction and Coppersmith's technique. Section 3 describes the new attack on RSA while Section 4 presents a comparison of the new attack with the existing attacks. Lastly, Section 5 provides the conclusion for this study.

Preliminaries

This section briefly present basics yet important materials on lattice reduction and Coppersmith's technique.

Lattice Reduction

Let u 1 , . . . , u ω be ω linearly independent vectors of R n with ω ≤ n. The lattice L spanned by (u 1 , . . . , u ω ) is the set of all integer linear combinations of the u i . Namely,

L = ω i=1 u i x i , x i ∈ Z .
Let U be the basis matrix, that is the matrix of the set (u 1 , . . . , u ω ) in the canonical basis of R n . The determinant of L is defined as det(L) = det(U t U ). The determinant reduces to det(L) = | det(U )| when ω = n. The set (u 1 , . . . , u ω ) is called a basis of L with dimension ω. Denote by ||v|| the Euclidean norm of a vector v ∈ L. The main problem in lattice reduction is to find short non-zero vectors in L. It is known that vectors with enough short norms can be found with the aid of using LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coeffficients[END_REF]. Theorem 1. [START_REF] Lenstra | Factoring polynomials with rational coeffficients[END_REF] Suppose that lattice L is spanned by a basis u 1 , . . . , u ω denoted by L. Then a new basis (b 1 , . . . , b ω ) of L will be produced by the LLL algorithm such that

||b 1 || ≤ • • • ≤ ||b i || ≤ 2 ω(ω-1) 4(ω+1-i) det(L) 1 ω+1-i for i = 1, 2, . . . , ω.
The complexity of the LLL algorithm depends on the dimension ω and on the maximum bitsize of the entries of the lattice matrix.

Coppersmith's method

In [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF], new techniques to find small modular roots of polynomials in one variable, and solutions of polynomial equations in two variables over the integers was presented. For better understanding, one may refer to [START_REF] Galbraith | Mathematics of public key cryptography[END_REF]. Since its invention, the ideas of Coppersmith have been heuristically extended to more than two variables. This was possible by applying a theorem in [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF]. For example, for a polynomial h(y

1 , y 2 , y 3 , u) = i1,i2,i3,i4 a i,j,k y i1 1 y i2 2 y i3 3 u i4 with the Euclidean norm h(y 1 , y 2 , y 3 , u) = i1,i2,i3,i4 a 2 i,j,k , Howgrave-Graham's theorem re- duces to the following result. Theorem 2. ([11]) Let h(y 1 , y 2 , y 3 , u) ∈ Z[y 1 , y 2 , y 3 , u] be a polynomial with at most ω monomials. Suppose h(y (0) 1 , y (0) 2 , y (0) 3 , u (0) ) ≡ 0 (mod e m ), provided that h(y 1 , y 2 , y 3 , u) < e m √ ω , where |y (0) 1 | < Y 1 , |y (0) 2 | < Y 2 , |y (0) 3 | < Y 3 and |u (0) | < U . Then, h(y (0) 1 , y (0) 2 , y (0) 
3 , u (0) ) = 0 holds over integers.

To find the roots of a system of polynomials, we use the Gröbner basis technique. As required by most multivariate applications of Coppersmith's technique, finding the roots relies on the subsequent assumption.

Assumption 1 Let h(y 1 , y 2 , y 3 , u) ∈ Z[y 1 , y 2 , y 3 , u] be the polynomial that are found by LLL algorithm. Then the ideal generated by the polynomial equations h1(y1, y2, y3, u) = 0, h2(y1, y2, y3, u) = 0, h3(y1, y2, y3, u) = 0, h4(y1, y2, y3, u) = 0 has dimension zero.

Note that in our attack, the strategy of Jochemsz-May [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] that we utilised implemented the Coppersmith's method in order to find the roots of a polynomial. They reformulated the idea from [START_REF] Coron | Finding small roots of bivariate integer polynomial equations revisited[END_REF], and came out with a strategy to find the roots of either modular or integer multivariate polynomial.

The Proposed Attack on RSA

A new attack on RSA will be described throughout this section. We examine the case where the RSA public parameters (N, e) satisfies an equation ea-φ(N ) = c where φ(N ) = (p -1)(q -1) and a and |c| are suitably small unknown integers.

Theorem 3. Let the modulus and the public exponent of the RSA be N = pq and e = N β respectively with β > 1 2 . Suppose that e satisfies the equation ea -

(p -1)(q -1)b = c with a < N δ and |c| < N γ . If δ < 1 -1 2 γ -1 2 √
2β -ε, then under Assumption 1, the modulus can be factored in polynomial time.

Proof. Let N = pq be an RSA modulus, e be its public exponent and e is required to satisfy ea -(p -1)(q -1)b = c. Then -b(N + 1 -p -q) -c ≡ 0 (mod e). Expanding this equation, we have b(p + q) -(N + 1)b -c ≡ 0 (mod e). Consider the polynomial

f (y 1 , y 2 , y 3 ) = y 1 y 2 + a 1 y 1 + y 3 ; a 1 = -(N + 1).
Then the polynomial modular equation f (y 1 , y 2 , y 3 ) ≡ 0 (mod e) would yield (y

(0) 1 , y (0) 2 , y (0) 
3 ) = (b, p + q, -c) as its solution. To obtain the intended roots of this modular equation, we apply Coppersmith's method combined with Jochemsz and May's strategy [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] for choosing the extra shifts.

Let s, t ∈ Z + that will be determined next. For 0 ≤ r ≤ s, assign the set

M r = 0≤j≤t y i1 1 y i2+j 2 y i3 3 |y i1 1 y i2 2 y i3 3 is a monomial of f s (y 1 , y 2 , y 3 ) and y i1 1 y i2 2 y i3 3 (y 1 y 2 ) r is a monomial off s-r .
A direct computation shows that f s (y 1 , y 2 , y 3 ) is

f s (y 1 , y 2 , y 3 ) = s i1=0 i1 i2=0 s i 1 i 1 i 2 a i1-i2 1 y i1 1 y i2 2 y s-i1 3 . Hence, y i1 1 y i2 2 y i3 3 is a monomial of f s (y 1 , y 2 , y 3 ) if i 1 = 0, . . . , s, i 2 = 0, . . . , i 1 , i 3 = s -i 1 .
Similarly,

y i1 1 y i2 2 y i3 3 is a monomial of f s-r (y 1 , y 2 , y 3 ) if i 1 = 0, . . . , s -r, i 2 = 0, . . . , i 1 , i 3 = s -r -i 1 .
Hence, for 0

≤ r ≤ s, if y i1 1 y i2 2 y i3 3 is a monomial of f s (y 1 , y 2 , y 3 ) then y i 1 1 y i 2 2 y i 3 3 (y1y2) r is a monomial of f s-r (y 1 , y 2 , y 3 ) if i 1 = r, . . . , s, i 2 = r, . . . , i 1 , i 3 = s -i 1 .
which directs to classification of the set M r . For 0 ≤ r ≤ s, we have

y i1 1 y i2 2 y i3 3 ∈ M r if i 1 = r, • • • , s, i 2 = r, • • • , i 1 + t, i 3 = s -i 1 .
Substitute r by r + 1, we obtain

y i1 1 y i2 2 y i3 3 ∈ M r+1 if i 1 = r + 1, • • • , s, i 2 = r + 1, • • • , i 1 + t, i 3 = s -i 1 .
For 0 ≤ r ≤ s, define the following polynomials

g r,i1,i2,i3 (y 1 , y 2 , y 3 ) = y i1 1 y i2 2 y i3 3 (y 1 y 2 ) r f (y 1 , y 2 , y 3 ) r e s-r with y i1 1 y i2 2 y i3 3 ∈ M r \M (r+1) .
Since

y i1 1 y i2 2 y i3 3 ∈ M r \M r+1 if i 1 = r, • • • , s, i 2 = r, i 3 = s -i 1 or i 1 = r, i 2 = r + 1, • • • , i 1 + t, i 3 = s -i 1
then, the polynomials g r,i1,i2,i3 (y 1 , y 2 , y 3 ) are reduced into two polynomials denoted by A r,i1,i2,i3 (y 1 , y 2 , y 3 ) and B r,i1,i2,i3 (y 1 , y 2 , y 3 ) where

A r,i1,i2,i3 (y 1 , y 2 ,y 3 ) = y i1-r 1 y i2-r 2 y i3 3 f (y 1 , y 2 , y 3 ) r e s-r , for r = 0, • • • , s, i 1 = r, • • • , s, i 2 = r, i 3 = s -i 1 B r,i1,i2,i3 (y 1 , y 2 ,y 3 ) = y i1-r 1 y i2-r 2 y i3 3 f (y 1 , y 2 , y 3 ) r e s-r , for r = 0, • • • , s, i 1 = r, i 2 = r + 1, • • • , i 1 + t, i 3 = s -i 1 .
The former polynomials can be slightly transformed as follows A r,i1,i2,i3 (y 1 ,y 2 , y 3 ) = y i1 1 y i3 3 f (y 1 , y 2 , y 3 ) r e s-r , for r = 0,

• • • , s, i 1 = 0, • • • , s -r, i 2 = 0, i 3 = s -r -i 1 , B r,i1,i2,i3 (y 1 ,y 2 , y 3 ) = y i2 2 y i3 3 f (y 1 , y 2 , y 3 ) r e s-r , for r = 0, • • • , s, i 1 = 0, i 2 = 1, • • • , t, i 3 = s -r.
Next, we use the linearization technique that has been introduced by Herrmann and May in [START_REF] Herrmann | Maximizing small root bounds by linearization and applications to small secret exponent RSA[END_REF]. We transform the polynomial f (y 1 , y 2 , y 3 ) = y 1 y 2 + a 1 y 1 + y 3 to the reduced polynomial

F (y 1 , u) = u + a 1 y 1 , u = y 1 y 2 + y 3 .
Using the polynomials A r,i1,i2,i3 (y 1 , y 2 , y 3 ) and B r,i1,i2,i3 (y 1 , y 2 , y 3 ), we construct two new families of polynomials where each term y 1 y 2 is replaced by

y 3 -u, namely G r,i1,i2,i3 (y 1 ,y 2 , y 3 , u) = y i1 1 y i3 3 F (y 1 , u) r e s-r , for r = 0, • • • , s, i 1 = 0, • • • , s -r, i 2 = 0, i 3 = s -r -i 1 , i 4 = r, H r,i1,i2,i3 (y 1 ,y 2 , y 3 , u) = y i2 2 y i3 3 F (y 1 , u) r e s-r , for i 1 = 0, i 2 = 1, • • • t, r = s t i 2 , • • • , s, i 3 = s -r, i 4 = r.
It follows that the monomials in G r,i1,i2,i3 (y 1 , y 2 , y 3 , u) are in the form

y i1 1 y i2 2 y i3 3 u i4 with r = 0, • • • , s, i 1 = 0, • • • , s -r, i 2 = 0, i 3 = s -r -i 1 , i 4 = r (1) 
Similarly, the monomials in H r,i1,i2,i3 (y 1 , y 2 , y 3 , u) are in the form

y i1 1 y i2 2 y i3 3 u i4 with i 1 = 0, i 2 = 1, • • • t, r = s t i 2 , • • • , s, i 3 = s -r, i 4 = r. (2) 
The lattice denoted as L is built by the coefficient vectors of the two families of polynomials Gr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ) and Hr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ) where Y1, Y2, Y3, U are integers. These values will be defined later with the condition Y1Y2y1y2 = U u -Y3y3. The ordering of the rows is such that any polynomial Gr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ) is prior to any polynomial Hr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ), and in Gr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ) or in Hr,i 1 ,i 2 ,i 3 (y1Y1, y2Y2, y3Y3, uU ), Gr,i 1 ,i 2 ,i 3 is prior to G r ,i 1 ,i 2 ,i 3 and Hr,i 1 ,i 2 ,i 3 is prior to G r ,i 1 ,i 2 ,i 3 if one of the following conditions is satisfied

r < r , r = r , i 1 < i 1 , r = r , i 1 = i 1 , i 2 < i 2 , r = r , i 1 = i 1 , i 2 = i 2 , i 3 < i 3 , r = r , i 1 = i 1 , i 2 = i 2 , i 3 = i 3 , i 4 < i 4 .
A similar rule is applied to order the monomials and the columns. Thus a lower triangular matrix is formed as in the following matrix where s = 3 and t = 2. 

0 0 0 Y 3 1 a 3 1 0 0 3U Y 2 1 a 2 1 0 3U 2 Y 1 a 1 U 3 0 0 0 0 0 H(1, 0, 1, 2, 1) -Y 3 3 a 1 e 2 0 0 0 Y 2 3 a 1 e 2 U 0 0 0 0 0 U Y 2 Y 2 3 e 2 0 0 0 0 H(2, 0, 1, 1, 2) 0 -Y 2 3 a 2 1 eY 1 0 0 -2U Y 2 3 a 1 e Y 3 a 2 1 eU Y 1 0 2U 2 Y 3 a 1 e 0 0 0 U 2 Y 2 Y 3 e 0 0 0 H(3, 0, 1, 0, 3) 0 0 -a 3 1 Y 3 Y 2 1 0 0 -3U a 2 1 Y 3 Y 1 a 3 1 U Y 2 1 -3U 2 a 1 Y 3 3U 2 a 2 1 Y 1 3U 3 a 1 0 0 U 3 Y 2 0 0 H(2, 0, 2, 1, 2) Y 3 3 a 2 1 e 0 0 0 -2Y 2 3 a 2 1 eU 0 0 Y 3 a 2 1 eU 2 0 0 -2U Y 2 3 a 1 eY 2 2U 2 Y 3 a 1 eY 0 U 2 Y 2 2 Y 3 e 0 H(3, 0, 2, 0, 3) 0 a 3 1 Y 2 3 Y 1 0 0 3U a 2 1 Y 2 3 -2a 3 1 U Y 3 Y 1 0 -6U 2 a 2 1 Y 3 a 3 1 U 2 Y 1 3U 3 a 2 1 0 -3U 2 a 1 Y 3 Y 2 3U 3 a 1 Y 2 0 U 3 Y 2 2
Table 1. The coefficient matrix for s = 3 and t = 2.

Since the lattice of L is a lower triangular matrix, thus the determinant is obtained by multiplying the diagonal terms. Since only Y 1 , Y 2 , Y 3 , U and e are involved, then determinant is of the form

det(L) = Y n Y 1 1 Y n Y 2 2 Y n Y 3 3 U n U e ne (3) 
Using the construction of the monomials of the polynomials Gr,i 1 ,i 2 ,i 3 ,i 4 (y1, y2, y3, u) and Hr,i 1 ,i 2 ,i 3 ,i 4 (y1, y2, y3, u) where r, i1, i2, i3, i4 satisfy the conditions ( 1) and ( 2), the dominant terms of the exponents n Y 1 , n Y 2 , n Y 3 , n U , ne as well as the dimension ω of the lattice satisfy

n Y1 = s r=0 s-r i1=0 i 1 = 1 6 s 3 + o(s 3 ) n Y2 = t i2=1 s r= s t i 2 = 1 2 st 2 - 1 3 
s t t 3 + o(s 3 ) n Y3 = s r=0 s-r i1=0 (s -r -i 1 ) + t i2=1 s r= s t (s -r) = 1 6 s 3 + 1 2 st 2 - 1 2 s t s 2 t + 1 6 s t 2 t 3 n U = s r=0 s-r i1=0 r + t i2=1 s r= s t r = 1 6 s 3 + 1 2 st 2 + 1 6 s t 2 t 3 n e = s r=0 s-r i1=0 (s -r) + t i2=1 s r= s t (s -r) = 1 3 s 3 + 1 2 s 2 t + 1 6 s t 2 t 3 - 1 2 s t st 2 ω = s r=0 s-r i1=0 1 + t i2=1 s r= s t 1 = 1 2 s 2 + st - 1 2 s t t 2 .
In the following asymptotic analysis, we set t = τ s with 0 < τ ≤ 1 and use s t ≈ 1/τ. Then, for sufficiently large s, the exponents n Y1 , n Y2 , n Y3 , n U , n e and the dimension ω reduce to

n Y1 = 1 6 s 3 + o(s 3 ), n Y2 = 1 6 τ 2 s 3 + o(s 3 ), n Y3 = 1 6 (τ + 1)s 3 + o(s 3 ), (4) 
n U = 1 6 (2τ + 1)s 3 + o(s 3 ), n e = 1 6 (τ + 2)s 3 + o(s 3 ), ω = 1 2 (τ + 1)s 2 + o(s 2 ).
To apply Theorem 1 with i = 4 to the four shortest vectors in the LLL-reduced basis of L, we set 2 ω(ω-1)

4(ω-3) det(L) 1 ω-3 < e s √ ω . This transform to det(L) < 2 -ω(ω-1) 4 ( √ ω) ω-3 e s(ω-3) .
Then, using (3), we get

e ne-sω Y n Y 1 1 Y n Y 2 2 Y n Y 3 3 U n U < 2 -ω(ω-1) 4 ( √ ω) ω-3 e s(ω-3) . (5) 
Suppose that from ea-(p-1)(q -1)b = c we have e = N β , a < N δ and |c| < N γ . We set

Y 1 = 2N β+δ-1 , Y 2 = 3N 1 2 , Y 3 = N γ , U = 12N β+δ-1 2 . (6) 
Then the target solution y

(0) = (b, p+q, -c, b(p+q)-c) satisfies |y (0) 2 | < p + q < Y 2 , |y (0) 3 | = |c| < Y 3 , (0) 1 , y (0) 2 , y (0) 3 , u 
|y (0) 1 | = b = (ea -c) φ(N ) < ea + |c| φ(N ) < 2N β+δ-1 , and 
where we used φ(N ) ≈ N and |c| < ea. Hence, |y

1 | < Y 1 . It follows that |u (0) | = |y (0) 1 y (0) 2 + y (0) 3 | < 2 max(Y 1 Y 2 , Y 3 ) = 2 max 2N β+δ-1 • 3N 1 2 , N γ = 12N β+δ-1 2 (0) 
and consequently |u (0) | < U . Using the values n Y1 , n Y2 , n Y3 , n U , n e and ω from (4) as well as the values of Y 1 , Y 2 , Y 3 , and U from (6), we get e ne-sω = N (-

1 3 τ -1 6 )βs 3 +o(s 3 ) Y n Y 1 1 = 2 1 6 s 3 +o(s 3 ) N 1 6 (β+δ-1)s 3 +o(s 3 ) = N 1 6 (β+δ-1)s 3 +o(s 3 )+ε1 , Y n Y 2 2 = 3 1 6 τ 2 s 3 +o(s 3 ) N 1 2 τ 2 s 3 +o(s 3 ) = N 1 2 τ 2 s 3 +o(s 3 )+ε2 Y n Y 3 3 = N ( 1 6 τ + 1 6 )γs 3 +o(s 3 ) U n U = 12 ( 1 3 τ + 1 6 )s 3 +o(s 3 ) N ( 1 3 τ + 1 6 )(β+δ-1 2 )s 3 +o(s 3 ) = N ( 1 3 τ + 1 6 )(β+δ-1 2 )s 3 +o(s 3 )+ε3 2 -ω(ω-1) 4 ( √ ω) ω-3 e -3s = N -2βs-ε4 .
where ε 1 , ε 2 , ε 3 , ε 4 ∈ Z + and their values are small depending on s and N . Then, taking logarithms, dividing by s 3 log(N ) and letting ε 5 > 0 for the contributions of the small terms, the inequality (5) leads to

- 1 3 τ - 1 6 β + 1 6 (β + δ -1) + 1 12 τ 2 + 1 6 τ + 1 6 γ + 1 3 τ + 1 6 β + δ - 1 2 < -ε5,
where ε 5 ∈ Z + is a small value and depends on s and N . Then, rearranging, we get

τ 2 + (4δ + 2γ -2)τ + 2β + 4δ + 2γ -3 < -12ε 5 . (8) 
From the left side of ( 8), the value for τ is optimum when

τ 0 = 1 -2δ -γ.
Here we need τ 0 > 0. This is achieved if

δ < 1 2 - 1 2 γ. (9) 
Replacing τ 0 in (8), we get

-4δ 2 + (8 -4γ)δ + 4γ + 2β -γ 2 -4 < -12ε 4 ,
which will be true if

δ < 1 - 1 2 γ - 1 2 2β -ε, (10) 
where ε ∈ Z + is a small value and depends on s and N . Since δ satisfies (9) and ( 10) and β > 1 2 then

δ < min 1 - 1 2 γ - 1 2 2β -ε, 1 2 - 1 2 γ = 1 - 1 2 γ - 1 2 2β -ε.
Using the first four vectors u 1 , u 2 , u 3 and u 4 in the LLL reduced basis, we get four vectors g 1 (y 1 , y 2 , y 3 , u), g 2 (y 1 , y 2 , y 3 , u), g 3 (y 1 , y 2 , y 3 , u) and g 4 (y 1 , y 2 , y 3 , u) such that g 1 (y

(0) 1 , y (0) 
2 , y

3 , u (0) =g 2 (y

(0) 1 , y (0) 
2 , y

3 , u (0) = g 3 (y

(0) 1 , y (0) 
2 , y

3 , u (0) = g 4 (y

(0) 1 , y (0) 2 , y (0) 3 , u (0) = 0.
Assume that g 1 y 1 , y 2 , y 3 , u , g 2 y 1 , y 2 , y 3 , u , g 3 y 1 , y 2 , y 3 , u and g 4 y 1 , y 2 , y 3 , u are algebraically independent, we apply resultant techniques or Gröbner basis method to find the solution y

(0) 1 , y (0) 2 , y (0) 
3 , u (0) = (b, p + q, -c, b(p + q) -c). From y (0) 2 = p + q and N = pq, we get p and q. Thus, this gives the factorization of N .

Comparison with Existing Results

Comparison with the result in [3]

For the balanced primes p and q and in the presence of an encryption exponent e of the same magnitude to N , [3] showed that the RSA modulus N = pq is factorable satisfying its original key equation ed -kφ(N ) = 1 with

δ = 1 - √ 2 2 ≈ 0.292. for d < N δ .
In 4.2 Comparison with the result in [13] The result presented in [13] extended the attack of [3] to all exponents e = N β and demonstrate that N can be factored with

δ < 1 - 1 2 2β where d < N δ . Remark that ed-kφ(N ) = 1 is a particular equation of ea-φ(N )b = c whenever c = N γ = 1 that is γ = 0. When we substitute this value in the new bound δ < 1 -1 2 γ -1 2 √ 2β -ε, we get δ < 1 - 1 2 2β -ε,
which retrieves the bound of [13]. Moreover, as in the previous comparison, the class of the weak exponents in [13] is a subclass of the weak exponents of the new attack.

Comparison with the result in [2]

A cryptanalysis result on RSA presented in [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] showed that for encryption exponent satisfies an equation ex -yφ

(N ) = z provided 0 < |x| ≤ 1 3 φ(N ) e N 3 4
p-q and |z| ≤ p-q φ(N )N 1 4 ex, then the RSA modulus can be factored. Suppose that |x| < N δ , e = N β , and p -q = cN 1 2 for some constant c < 1. Then, the attack in [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] can be applied only if

δ < 3 4 - 1 2 
β, and γ < β + δ -3 4 .

Hence, in the situation e ≈ N β , that is β = 1, therefore such attack is applicable only for δ < 1 4 and γ < 1 2 while our attack is applicable whenever the conditions of Theorem 3 are satisfied with β = 1, that is whenever

δ < 1 - 1 2 γ - 1 2 √ 2 -ε ≈ 0.292 - 1 2 γ.
This is better than the bound in [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] when 0.292 -1 2 γ > 1 4 , that is for γ < 0.048.

Comparison with the result in [22]

Bunder and Tonien described an attack on the RSA by using the continued fraction expansion. However, instead of finding the convergents of e N , they find the convergents of e N where N is given by N

= N -a + 3 2 √ 2 N 1 2 + 1 .
In their attack, they showed that for e ≈ N β , they can recover the private exponent when

d < 2 √ 2N 3 4 -β 2 .
Note that [START_REF] Bunder | A new attack on the RSA cryptosystem based on continued fractions[END_REF] also used the original key equation, ed -kφ(N ) = 1. Thus, in comparison, we let c = N γ = 1 which indicates that γ = 0. Thus we have

δ < 1 - 1 2 2β -ε.
Here is a direct way to show that our bound is better. We have

1- 1 2 2β- 3 4 + β 2 = β 2 - 1 2 2β+ 1 4 = 1 4 2β -2 2β + 1 = 1 4 2β -1 2 ≥ 0.
This shows that our bound is better than the bound of [START_REF] Bunder | A new attack on the RSA cryptosystem based on continued fractions[END_REF].

Comparison with the result in [1]

Ariffin et al. [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] proposed a short decryption exponent attack on the RSA. Using the small prime difference method of the form |b 2 p -a 2 q| < N γ where the ratio of b 2 a 2 is approximately close to q p , they show that one can find k d from the convergents of the continued fraction expansion of 

Since [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] used the key equation ed -kφ(N ) = 1, thus for our bound, we let γ = 0. Thus we have

δ < 1 - 1 2 2β -ε.
From [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF], it can be seen that their bound only depends on γ and they have stated that 0.25 ≤ γ < 0.5. Meanwhile, our bound depends on the size of β such that β = log N e. We present the comparison of bound in the following tables. Table 3. Comparison with methods from [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] for γ = 0.45.

h h h h h h h h h h h h h h

h h h h h h h h h h h h h h

The tables above show that our bound is increasing as the value of β is decreasing. From Table 2, we manage to improve [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] when β = 0.4 and from Table 3, we improve [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] when β = 0.8. This indicates that our bound is better [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] for smaller values of β. Observe that e and N satisfy an equation ea -(p -1)(q -1)b = c. Define the polynomial f (y 1 , y 2 , y 3 ) = y 1 y 2 + a 1 y 1 + y 3 where a 1 = -(N + 1), y 1 = b, RSA is unsecure if the parameters a,b, and c are suitably small. Moreover, we have shown that the famous bound d < N 0.292 of [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] is a particular case of our attack. Thus, one needs to be cautious in choosing the public and private exponent in order to ensure that the cryptosystem is invunerable from attacks. Alternatively, [START_REF] Sun | On the design of RSA with short secret exponent[END_REF] suggested that one could use unbalanced primes as an attempt to avoid small decryption exponent attack.

A numerical example

  , one can find d and k which then can lead to the factorization of the modulus N . Note that if d satisfies the equation ed -kφ(N ) = 1 then the continued fraction expansion of e φ(N ) would yield the candidates for k d in the list of the convergents. Exploiting this fact, from the relation ea -φ(N )b = c with 0 < a < d, 0 < b < k and is suitably small, if one obtains the convergent of a b which corresponds to e φ(N ) , the factorization of RSA modulus N = pq is feasible. In this paper, we study the RSA's public parameter associated with the equation of the form ea -φ(N )b = c with e

  the equation ea -φ(N )b = c with e = N β , a < N δ , and |c| < N γ , this corresponds to β = 1 and γ = 0. Plugging these values in δ < 1 same bound as in [3]. Observe that when a = d, b = k, c = 1, then the original RSA key equation is a particular case of the equation ea -φ(N )b = c. This implies that the class of the weak exponents in [3] is a subclass of the weak exponents of the new attack.

for |b 2 p

 2 -a 2 q| < N γ .

  Bound of δ β = log N (e) β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2

2 Ariffin

 2 Bound of δ β = log N (e) β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.

  As a numerical example, let us consider the RSA public key (N, e) with N = 5339583385665627056733057342119365266735235221280290598464283 e = 387352723307775993183504910232949247618286415301692228843681

Table 2 .

 2 Comparison with methods from[START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF] for γ = 0.25.

	Ariffin et al.[1]	0.50 0.50	0.50	0.50	0.50
	Our bound	0.29 0.36	0.45	0.55	0.68
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Y 3 3 e 3 y 2 = p + q and y 3 = -c. Then, applying the method of Theorem 3 with the parameters

we get a lattice of dimension 27 by executing the LLL algorithm. After which, when followed by the resultant technique, we obtain small solutions from systems of polynomial equations as follows;

Hence, p + q = y 2 = 4622321972461006749725016493996, which is sufficient to compute its corresponding prime factors

We notice that, using φ(N ) = (p -1)(q -1), we get

Hence, d ≈ N 0.981 >> N 0.292 . This is clearly an exponential increment of the RSA attack range. This shows that the attacks of Boneh-Durfee [3], Kumar et al. [13], Ariffin et al. [START_REF] Ariffin | New cryptanalytic attack on RSA modulus N = pq using small prime difference method[END_REF], and Bunder-Tonien [START_REF] Bunder | A new attack on the RSA cryptosystem based on continued fractions[END_REF] can not be applied for the key (e, N ). We also are able to retrieve the values

so that ea -φ(N )b = c with a ≈ N 0.262 . Also, we observe that a b is not a convergent of e N . Moreover, all the convergents a b of e N with a < 1 3 N

4 ea . This shows that the attack [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] will not give the factorization of N .

Conclusion

In this study, the case that we have taken into consideration is when the RSA public parameter N with its corresponding exponent e which associated to the equation ea -φ(N )b = c. Using Coppersmith's method, we have proved that